EP3796358A1 - Temperaturabhängiger schalter - Google Patents

Temperaturabhängiger schalter Download PDF

Info

Publication number
EP3796358A1
EP3796358A1 EP20196416.0A EP20196416A EP3796358A1 EP 3796358 A1 EP3796358 A1 EP 3796358A1 EP 20196416 A EP20196416 A EP 20196416A EP 3796358 A1 EP3796358 A1 EP 3796358A1
Authority
EP
European Patent Office
Prior art keywords
temperature
switch
dependent
switching mechanism
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20196416.0A
Other languages
English (en)
French (fr)
Other versions
EP3796358B1 (de
Inventor
Marcel P. Hofsaess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3796358A1 publication Critical patent/EP3796358A1/de
Application granted granted Critical
Publication of EP3796358B1 publication Critical patent/EP3796358B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5409Bistable switches; Resetting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/002Thermally-actuated switches combined with protective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/04Bases; Housings; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/60Means for producing snap action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/64Contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/10Adaptation for built-in fuses
    • H01H9/104Adaptation for built-in fuses with interlocking mechanism between switch and fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0006Apparatus or processes specially adapted for the manufacture of electric switches for converting electric switches
    • H01H2011/0043Apparatus or processes specially adapted for the manufacture of electric switches for converting electric switches for modifying the number or type of operating positions, e.g. momentary and stable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5427Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting encapsulated in sealed miniaturised housing

Definitions

  • the present invention relates to a temperature-dependent switch which has a first and a second stationary contact and a temperature-dependent switching mechanism with a movable contact member.
  • the switching mechanism presses the contact element against the first contact and, via the contact element, establishes an electrically conductive connection between the two contacts.
  • the switching mechanism keeps the contact member at a distance from the first contact and thus interrupts the electrically conductive connection between the two contacts.
  • the temperature-dependent switching mechanism has a temperature-dependent snap part which, when a switching temperature is exceeded, snaps from its geometric low-temperature configuration to its geometric high-temperature configuration and, when the switch-back temperature is subsequently fallen below, snaps back from its geometric high-temperature configuration to its geometric low-temperature configuration.
  • a locking lock is also provided, which prevents the switch, which has been opened, from being closed again by holding the switching mechanism in its second switching position.
  • Such temperature-dependent switches are used in a known manner to protect electrical devices from overheating.
  • the switch is electrically connected in series with the device to be protected and its supply voltage and is mechanically arranged on the device in such a way that it is in thermal connection with it.
  • a temperature-dependent switching mechanism ensures that the two stationary contacts of the switch are electrically connected to one another below the response temperature of the switching mechanism are connected. Thus, the circuit is closed below the response temperature and the load current of the device to be protected can flow through the switch.
  • the switching mechanism lifts the movable contact element from the mating contact, whereby the switch is opened and the load current of the device to be protected is interrupted.
  • the now de-energized device can then cool down again.
  • the switch that is thermally coupled to the device also cools down again and would then actually close again automatically.
  • a locking mechanism ensures that this switching back does not take place in the cooling position, so that the device to be protected cannot switch itself on again automatically after it has been switched off.
  • the locking device locks the switching mechanism mechanically so that the switching mechanism cannot close again after it has been opened once, even if there are strong vibrations or temperature fluctuations.
  • switches of this type which do not close again after being opened once, are also referred to as single-use switches.
  • opening the switch is understood to mean the interruption of the electrically conductive connection between the two contacts of the switch and not an opening of the switch housing in the mechanical sense.
  • Another switch of this type is from the DE 10 2013 101 392 A1 known.
  • This switch has a temperature-dependent switching mechanism with a temperature-dependent bimetal snap-action disk and a bistable spring disk which carries a movable contact or a current transmission element.
  • the bimetal snap disk When the bimetal snap disk is on a temperature above its response temperature is heated, it lifts the contact or the current transmission element against the force of the spring washer from the mating contact or contacts and thereby pushes the spring washer into its second stable configuration in which the switching mechanism is in its high-temperature position.
  • the snap-action disk is a bistable snap-action disk which, depending on the temperature, assumes either a high-temperature configuration or a low-temperature configuration.
  • the spring washer is a circular spring snap-action disk to which the contact member is attached in the middle.
  • the contact member is, for example, a movable contact part which is pressed by the spring snap-action disk against the first stationary contact which is arranged on the inside on a cover of the housing of the known switch. With its edge, the spring snap-action disk is pressed against an inner base of a lower part of the housing, which acts as a second contact. In this way, the self-electrically conductive spring snap-action disk creates an electrically conductive connection between the two mating contacts.
  • the bimetal snap disk In its low-temperature position, the bimetal snap disk lies loosely on the contact part. If the temperature of the bimetal snap disk increases, it jumps to its high temperature position, in which it presses with its edge on the inside of the upper part of the housing and with its center presses on the spring snap disk so that it moves from its first into their second stable configuration jumps, whereby the movable contact part is lifted from the stationary contact and the switch is opened.
  • the bimetal snap-action disk jumps back to its low-temperature position. It comes with its edge in contact with the edge of the spring snap disk and with its center in contact with the upper part of the housing. However, the actuating force of the bimetal snap disk is not sufficient to allow the spring snap disk to jump back into its first configuration.
  • the one from the DE 10 2007 042 188 B3 Known switch remains open after a single opening until it has cooled to a temperature below room temperature, for which purpose a cold spray can be used, for example.
  • the spring snap disk is fixed with its edge on the lower part of the housing, while the bimetallic snap disk is provided between the spring snap disk and the inner bottom of the lower part.
  • contact plates are Spring snap disk and bimetal snap disk are captively connected to one another by a centrally running rivet.
  • this switch Due to its design, this switch therefore has a self-holding function. In the event of strong mechanical vibrations, however, in rare cases, the spring snap-action disk can also spring back unintentionally.
  • a temperature-dependent switch with a current transmission element designed as a contact bridge in which the contact bridge is pressed against two stationary mating contacts via a closing spring.
  • the contact bridge is in contact with a temperature-dependent switching mechanism via an actuating bolt, which consists of a bimetallic snap disk and a spring washer, both of which are clamped at their edge.
  • the spring washer and the bimetal snap disk are both bistable in this switch, the bimetal snap disk in a temperature-dependent manner and the spring washer in a temperature-independent manner.
  • the bimetal snap disk presses the spring washer into its second configuration, in which it presses the actuating bolt against the contact bridge and lifts it against the force of the closing spring from the stationary mating contacts.
  • this switch has the disadvantage that, in the open state, the spring washer lifts the contact bridge against the force of the closing spring from the mating contacts, so that the spring washer in its second configuration must reliably overcome the force of the closing spring.
  • the closing spring ensures that the contact bridge rests securely on the mating contacts in the closed state, a spring washer with very high stability is required in the second configuration.
  • Another switch with three switch positions is from the DE 86 25 999 U1 known.
  • a spring tongue clamped in on one side is provided, which at its free end carries a movable contact part which cooperates with a fixed counter-contact.
  • a dome is formed on this spring tongue, which is pressed into its second configuration by a bimetal plate also fastened to the spring tongue, in which it spaces the movable contact part from the stationary mating contact.
  • the dome must hold the movable contact part at a distance from the fixed mating contact against the closing force of the spring tongue clamped in on one side, so that the dome in its second configuration has to apply a high actuating force.
  • the known switch thus has the disadvantages already discussed above, namely that high actuating forces have to be overcome, which leads to high production costs and an unsafe state in the cooling position.
  • the present invention is based on the object of developing the switch mentioned at the beginning in such a way that it is simpler and therefore more cost-effective to manufacture and yet a reliable interruption of the circuit is ensured even in the cool-down position of the switch and in the event of strong vibrations.
  • this object is achieved in a switch of the type mentioned in that the locking device has a fusible medium which is designed to melt when a temperature of the switch exceeds a melting temperature of the medium, in the molten state with part of the switching mechanism in To make contact when it is in its second switch position, and then to solidify again and thereby lock the switching mechanism in its second switch position when the temperature of the switch falls below the melting temperature of the medium again.
  • the locking mechanism of the rear derailleur is similar to that of the DE 10 2018 100 890 B3 known switch locked, it cannot close again after opening it once, even if strong mechanical vibrations occur.
  • the switch is consequently also locked, which is used synonymously in the context of the present invention.
  • the switch according to the invention is thus prevented from switching back.
  • the switching mechanism according to the present invention is not mechanically locked by locking. Instead, the switching mechanism is locked using a fusible medium that comes into contact with the switching mechanism in its second switching position (open position) and solidifies when the switch cools below the melting temperature of the medium.
  • the solidification of the medium preferably creates an adhesive connection, particularly preferably a material connection, between part of the switching mechanism and part of the switch housing in which the switching mechanism is arranged.
  • the switching mechanism thus adheres to part of the switch housing as soon as the medium solidifies. The rear derailleur can then no longer be moved.
  • the temperature-dependent snap part tries to snap back into its geometric low-temperature configuration when it reaches or falls below its switch-back temperature and press the movable contact member against the first contact again in order to establish an electrically conductive connection between the two contacts.
  • This renewed closing of the is, however, prevented by the adhesive or cohesive connection which is brought about by the solidified medium between part of the switching mechanism and part of the switch housing.
  • the locking device generated in this way is very easy to manufacture in terms of manufacturing technology.
  • a fusible medium only needs to be arranged at a suitable point, which medium comes into contact with a part of the switching mechanism when it is in its second switch position.
  • the fusible medium should be capable of producing an adhesive connection between this part of the switching mechanism and a part of the switch housing through its solidification.
  • the fusible medium is set up to come into contact in the molten state with the movable contact member of the switching mechanism when the switching mechanism is in its second switching position.
  • the fusible medium is particularly preferably set up to establish an adhesive or material connection between the movable contact element of the switching mechanism and part of the housing as soon as the temperature of the switch falls below the melting temperature of the medium and the medium solidifies.
  • the movable contact member is usually designed as a solid component, so that it is very well suited to being connected to a part of the housing by means of the initially melted and then solidified medium. Since the movable contact member, especially on its underside, usually offers a very large contact surface for such an adhesive or material connection with the housing, a mechanically very stable locking lock can be generated by the adhesive or material connection.
  • the meltable medium is stored in a reservoir which is arranged in the housing.
  • the fusible medium is stored in a reservoir with which the movable contact member comes into contact when the temperature-dependent snap part snaps from its geometric low-temperature configuration to its geometric high-temperature configuration and moves the switching mechanism from its first switch position to its second switch position .
  • Such a reservoir can be implemented, for example, by a recess, an essentially cup-shaped receptacle or a simple container which is arranged in the interior of the switch.
  • the storage of the fusible medium within such a reservoir has the advantage that the medium does not distribute itself within the switch after it has melted and could thereby impair other components of the switch. Furthermore, such a reservoir has the advantage that the position of the fusible medium can be precisely aligned relative to the switching mechanism, so that it can be guaranteed that the movable contact member is in the second switching position of the switching mechanism with the reservoir or the one located therein fusible medium comes into contact.
  • the housing has a lower part closed by an upper part, the first stationary contact or each of the two stationary contacts being arranged on an inner side of the upper part, and the reservoir being arranged in the lower part in such a way that that the movable contact member comes into contact with the medium with its underside facing away from the upper part when the temperature-dependent snap part snaps from its geometric low-temperature configuration into its geometric high-temperature configuration and brings the switching mechanism from its first switch position to its second switch position.
  • the reservoir is particularly preferably arranged on an inner bottom surface of the lower part below the movable contact member.
  • the reservoir is integrated directly into the inner bottom surface of the lower part.
  • a closed contour that serves as a receiving basin for the fusible medium can be introduced into the inner bottom surface.
  • the reservoir can also be formed by a bead protruding from the inner bottom surface be formed, which forms a closed, for example circular contour that surrounds the fusible medium.
  • the reservoir has a container which is connected to the lower part with a force fit, form fit and / or material fit.
  • the container can, for example, be a type of inlay that is inserted into the lower part of the housing and welded, soldered or glued to the inner bottom surface.
  • the container can be crimped to the inner bottom surface of the lower part or fastened to it in a clamping manner.
  • the fusible medium is preferably a solder.
  • the fusible medium is particularly preferably a soft solder. In principle, however, a hard solder can be used.
  • solder has the particular advantage that it creates a mechanically extremely stable, cohesive connection between the part of the switching mechanism and the part of the housing, which are connected to one another by the solder.
  • the melting temperature of the medium or solder is higher than the reset temperature of the temperature-dependent snap part.
  • the material connection produced by the solidified medium which holds the switching mechanism in its second switch position, prevents the temperature-dependent snap part from snapping over from its high-temperature configuration back to its low-temperature configuration.
  • the melting temperature of the meltable medium or solder is lower than the switching temperature of the temperature-dependent snap part.
  • the melting temperature of the medium or solder does not necessarily have to be lower than the switching temperature of the temperature-dependent snap part. It can also be slightly higher than the switching temperature of the temperature-dependent snap-in part and, for example, be in the range of the overshoot temperature of the switch.
  • the "overshoot temperature” is typically the temperature or the temperature range to which the switch typically increases to a maximum after it has been switched off. Normally, after the switch has been switched off, the temperature will still overshoot a bit if it is already open, as the switch continues to heat up due to the residual heat of the device to be protected.
  • the melting temperature of the medium or solder is in the range of this overshoot temperature, the medium or solder has not yet melted when the switching mechanism comes into contact with it when it snaps into its second switching position. However, the medium or solder then melts subsequently, so that the aforementioned material connection can also be established when the switch and thus the medium or solder later cool down again to a temperature below the melting temperature of the medium or solder.
  • the switching mechanism has a temperature-independent spring part which is connected to the movable contact member, the temperature-dependent snap part when the switching temperature is exceeded acts on the spring part and thereby lifts the movable contact member from the first contact.
  • the spring part is a bistable spring part with two temperature-independent, stable geometric configurations.
  • the spring part is designed as a bistable spring washer, it is preferred that the spring washer presses the movable contact member against the first contact in its first stable configuration and keeps the movable contact member spaced apart from the first contact in its second stable configuration.
  • This has the advantage that in the closed state of the switch (in the first switching position of the switching mechanism) the spring washer produces the closing force and thus the contact pressure between the movable contact member and the first contact. This relieves the mechanical load on the temperature-dependent snap-in part, which has a positive effect on its service life and the long-term stability of its response temperature (switching temperature).
  • the spring part is designed as a bistable spring washer with two temperature-independent stable geometric configurations, this has the additional advantage that the bistable spring washer keeps the switch in its open state after opening. Even if the temperature-dependent snap part then wants to snap back into its low-temperature configuration after the switch has cooled to the reset temperature, the spring washer keeps the switch in its open position in addition to the locking device described above.
  • the melting temperature of the medium or solder is lower than the reset temperature of the temperature-dependent snap part. If the switch that is already open (switching mechanism in the second switch position) cools down to the switch-back temperature, then the locking lock is not yet activated because the medium or solder has not yet solidified. However, the bistable spring part still holds the switch in its open position. If the switch then cools down even further down to the melting temperature of the medium or solder, the locking device is ultimately also activated.
  • the temperature-dependent snap part is fixed on the movable contact member, but is otherwise freely suspended in its geometric low-temperature configuration in the interior of the housing without being supported on the housing or any other part of the switch.
  • the temperature-dependent snap part in its low-temperature configuration cannot be supported on the housing or on any other part of the switch, the temperature-dependent snap part can then not generate any closing force which presses the movable contact member against the first contact.
  • the closing force is generated by the temperature-independent spring part. If the temperature of the switch and thus also the temperature of the temperature-dependent snap part increases above its switching temperature, the temperature-dependent snap part snaps into its high-temperature configuration, in which, however, it can be supported on the temperature-independent spring part or another part of the switch and thus open the switch can.
  • the temperature-dependent snap part snaps back into its low-temperature configuration when the switch has cooled below the switch-back temperature, the temperature-dependent snap part virtually snaps "into the void" so that the switch is not closed again as a result.
  • the bistable spring part then holds the switch in its open position.
  • the locking mechanism works as soon as the medium or solder has solidified when it has reached its melting temperature.
  • the temperature-dependent snap part is preferably designed as a bistable bi- or tri-metal snap disk.
  • the movable contact member comprises a movable contact part cooperating with the first contact, and that the spring part cooperates with the second contact, wherein it is further preferred that the spring part is electrically at least in its first geometric configuration over its edge is in communication with the second contact.
  • This configuration is basically from the DE 10 2018 100 890 B3 , of the DE 10 2007 042 188 B3 or the DE 10 2013 101 392 A1 known. It causes the temperature dependent Snap part is not temperature-loaded in any position of the switch, but that the load current of the electrical device to be protected flows through the spring part.
  • the movable contact member comprises a current transmission member that interacts with both contacts.
  • the advantage here is that the switch can carry considerably higher currents than that from the DE 10 2007 042 188 B3 known switches.
  • the current transfer element arranged on the contact element ensures the electrical short circuit between the two contacts when the switch is closed, so that not only the temperature-dependent snap part, but also the temperature-independent spring part are no longer traversed by the load current, as in principle already from the DE 10 2013 101 392 A1 is known.
  • Fig. 1 is shown in a schematic, sectional side view of a switch 10, which is rotationally symmetrical in plan view and preferably has a circular shape.
  • the switch 10 has a housing 12 in which a temperature-dependent switching mechanism 14 is arranged.
  • the housing 12 comprises a pot-like lower part 16 and an upper part 18 which is held on the lower part 16 by a bent or flanged edge 20.
  • the first embodiment shown is both the lower part 16 and the upper part 18 made of an electrically conductive material, preferably made of metal. Between the lower part 16 and the upper part 18, a spacer ring 22 is arranged, which carries the upper part 18 with an insulating film 24 in between and keeps the upper part 18 at a distance from the lower part 16.
  • the insulating film 24 ensures electrical insulation of the upper part 18 from the lower part 16.
  • the insulating film 24 also provides a mechanical seal that prevents liquids or contaminants from entering the interior of the housing from the outside.
  • the lower part 16 and the upper part 18 in this exemplary embodiment are each made of electrically conductive material, thermal contact with an electrical device to be protected can be established via their outer surfaces.
  • the outer surfaces also serve for the electrical external connection of the switch 10 at the same time.
  • a further insulation layer 26 may be attached.
  • the switching mechanism 14 has a temperature-independent spring part 28 and a temperature-dependent snap disk 30.
  • the spring part 28 is preferably designed as a bistable spring washer. This spring washer 28 accordingly has two geometric configurations that are stable, independent of temperature.
  • Fig. 1 its first configuration is shown.
  • the temperature-dependent snap disk 30 is preferably designed as a bimetal snap disk.
  • the bimetal snap disk 30 has two temperature dependent configurations, a high temperature geometric configuration and a low temperature geometric configuration.
  • the first switching position of the switching mechanism 14 shown is the bimetallic snap disk 30 in its geometric low-temperature configuration.
  • the spring washer 28 rests with its edge 32 on a circumferential shoulder 34 formed in the lower part 16, and is clamped between this shoulder 34 and the spacer ring 22.
  • the bimetal snap disk 30 is in its Fig. 1 The low-temperature configuration shown, however, is freely suspended. It hangs freely with its edge 36 and is not supported by it on any part of the housing 12 or on any other part of the switch 10.
  • the spring washer 28 With its center 40, the spring washer 28 is fixed on a movable contact member 42 of the switching mechanism 14.
  • the center 44 of the bimetallic snap disk 30 is also fixed on the movable contact member 42.
  • the movable contact member 42 has a ring 46 which surrounds the movable contact member 42. This ring 46 is preferably pressed onto the movable contact member 42. It has a circumferential shoulder 47 on which the snap disk 30 rests with its center 44.
  • the spring washer 28 is clamped between the ring 40 and the upper widened section of the contact member 42. In this way, the temperature-dependent switching mechanism 14 is a captive unit of contact element 42, spring washer 28 and bimetallic snap disk 30.
  • the switching mechanism 14 can be inserted directly into the lower part 16 as a unit.
  • the movable contact member 42 has a movable contact part 38 on its upper side.
  • the movable contact part 38 works together with a fixed mating contact 48, which is arranged on the inside of the upper part 18.
  • This mating contact 48 is also referred to here as the first stationary contact.
  • the outside of the lower part 16 serves as the second stationary contact 50.
  • the temperature of the device to be protected and thus the temperature of the switch 10 and the bimetallic snap disk 30 arranged therein increases to the switching temperature of the snap disk 30 or above this switching temperature, it snaps from its in Fig. 1 convex low-temperature configuration shown in their concave high-temperature configuration, which is shown in Fig. 1 is shown.
  • the bimetal snap disk 30 is supported with its edge 36 on part of the switch 10, in this case on the edge 32 of the spring washer 28. With its center 44, the bimetal snap disk 30 pulls the movable contact member 42 downwards and downwards lifts the movable contact part 38 from the first stationary contact 48.
  • Fig. 2 shows the high temperature position of the switch 10 in which it is open. The circuit is thus interrupted.
  • the spring washer 30 snaps when it is reached the switch-back temperature back to its low-temperature position, as shown, for example, in Fig. 1 is shown. If the bimetallic snap disk 30 cannot be supported on a part of the switch 10 in this low-temperature position, it snaps into the void, as it were. Because of the bistability of the temperature-independent spring washer 28, the switch 10 would then remain open anyway.
  • a locking device 51 in any case.
  • This closing lock 51 is brought about by a fusible medium 54 which is arranged on the inner bottom surface 56 of the lower part 16.
  • This fusible medium is preferably a solder, particularly preferably a soft solder.
  • This solder 54 is preferably stored in a reservoir or container which is arranged on the inner bottom surface 56 and / or is integrated into it.
  • the fusible medium or solder 54 melts as soon as the temperature of the switch 10 reaches or exceeds a melting temperature of the medium or solder 54. If the solder 54 then comes into contact with part of the switching mechanism 14 in this molten state and then solidifies again when the switch 10 and thus the solder 54 cool down again to a temperature below the melting temperature of the solder 54, the then solidified solder for a cohesive or at least adhesive connection between the part of the switching mechanism 14 with which it comes into contact in the molten state and the lower part 16 of the switch 10.
  • the movable contact member 42 comes into contact with the solder 54 as soon as the switch 10 is opened when the switching temperature is reached and the switching mechanism 14 is brought into its second switching position with the aid of the bimetal snap disk 30, as shown in FIG Fig. 2 is shown.
  • the underside 55 of the movable contact member 42 comes into contact with the solder 54.
  • the movable contact member 42 preferably dips at least partially with its underside 55 into the reservoir 52 filled with the solder 54 when the second switching position of the switching mechanism 14 is reached.
  • the solder 54 should then have already melted. Accordingly, a solder 54 is preferably selected whose melting temperature is below or in the range of the switching temperature of the bimetal snap disk 30.
  • the melting temperature of the solder 54 can also be slightly higher than the switching temperature of the bimetal snap-action disk 30, since the switch 10 typically continues to heat up a little even after it has been opened and the circuit is interrupted.
  • the switch 10 typically continues to heat up a little even after it has been opened and the circuit is interrupted.
  • the device to be protected After reaching this so-called overshoot temperature at the latest, the device to be protected, and thus also the switch 10, typically cools down again. As soon as the melting temperature of the solder 54 is undershot in this cooling process, it consequently solidifies. The underside 55 of the movable contact member 42 then adheres firmly to the inner bottom surface 56 of the lower part 16. The lock 51 is thus activated.
  • the switch 10 cools down to the reset temperature of the bimetal snap-action disk 30, it tries to snap back into its low-temperature position, but this is then done by the closing lock 51, which the movable contact member 42 in its in Fig. 2 shown position is prevented.
  • the locking lock 51 caused by the solidified solder 54 prevents the switch 10 from switching back, even if the bimetallic snap disk 30 can be supported on the raised inner base 53 or on another part of the switch 10 when it snaps back into its low-temperature position.
  • the melting temperature of the Lot 54 should be selected higher than the reset temperature of the bimetal snap disk 30, since the locking lock must already be activated in such a case (i.e. the solder must have already cooled down) before the bimetal snap disk 30 snaps from its high temperature position back into its low temperature position .
  • the solder 54 used for the locking device 51 can in principle also come into contact with another part of the switching mechanism 14 when this is in its second switching position, for example with the bimetal snap disk 30.
  • the production of a material connection between the movable contact member 42 and the lower part 16 of the housing 12 with the aid of the solder 54 has the advantage that the movable contact member 42 is a relatively large and stable component that provides a large contact surface for such a material connection.
  • enough space for attaching such a reservoir 52 is provided on the inner bottom surface 56 of the lower part 16 anyway.
  • the reservoir 52 in which the solder 54 is preferably stored, can be produced in various ways. It can be a simple recess or hole in the inner bottom surface 56. Likewise, the reservoir 52 can be provided, for example, as a circular bead which is arranged on the upper side of the inner bottom surface 56 or introduced into it and forms a closed contour within which the solder 54 is stored. In principle, however, it is also possible to use a separate vessel or a circumferential wall (for example a ring) as a separate component in the housing 12 of the switch 10 and to connect it to the inner bottom surface 56 in a non-positive, positive or material fit.
  • the medium 54 does not necessarily have to be a solder. It can also be a different fusible material or an adhesive which, in the second switching position of the switching mechanism 14, produces an adhesive connection between part of the switching mechanism 14 and part of the housing 12.
  • Fig. 3 and 4th show a second embodiment of the switch 10 'according to the invention.
  • Fig. 3 shows the closed position of the switch 10 ', in which the switching mechanism 14 'is in its first switch position.
  • Fig. 4 shows the open position of the switch 10 ', in which the switching mechanism 1' is in its second switching position.
  • the second embodiment shown differs from that in FIG Fig. 1 and 2
  • the first exemplary embodiment shown essentially by the structure of the housing 12 'and by the structure of the switching mechanism 14'.
  • the closing lock 51 is, however, also here brought about by a fusible medium 54, which is preferably arranged in a reservoir 52 on the inner bottom surface 56 of the lower part 16 'and in the second switching position of the switching mechanism 14' for a cohesive or at least adhesive connection between the contact member 42 'and the lower part 16' and thus prevents the switch 10 'from switching back.
  • the lower part 16 ' is in the Fig. 3 and 4th shown, second embodiment again made of electrically conductive material.
  • the flat upper part 18 ′ is here made of electrically insulating material. It is held on the lower part 16 'by a bent edge 20'.
  • a spacer ring 22 ' is provided between the upper part 18' and the lower part 16 ', which keeps the upper part 18' at a distance from the lower part 16 '.
  • the upper part 18 ' On its inside 58, the upper part 18 'has a first stationary contact 48' and a second stationary contact 50 '.
  • the contacts 48 'and 50' are designed as rivets which extend through the upper part 18 'and end on the outside in the heads 60, 62, which are used for the external connection of the switch 10'.
  • the movable contact member 52 ' here comprises a current transmission member 64, which is designed here as a contact plate, the top side of which is coated in an electrically conductive manner, so that it can be used in the case of FIG Fig. 3 system shown on the contacts 48 'and 50' for an electrically conductive connection between the two contacts 48 'and 50'.
  • the current transmission element 64 is connected to the spring washer and the bimetallic snap disk 30 via a rivet 66, which is also to be regarded as part of the contact element 42 ′. In the second switching position of the switching mechanism 14 ', this rivet 66 comes into contact with the fusible medium or solder with its underside 55 (see FIG Fig.
  • FIG. 3 and 4th A major advantage of the in Fig. 3 and 4th
  • the switch structure shown in the figure can be seen in the fact that, in contrast to the in Fig. 1 and 2
  • the illustrated embodiment of the switch here neither through the spring washer 28 nor through the bimetallic snap disk 30 in the closed state of the switch does a current flow. This only flows from the first external connection 60 via the first stationary contact 48 ′, the current transmission element 64 and the second stationary contact 50 ′ to the second external connection 62.

Abstract

Temperaturabhängiger Schalter (10), der einen ersten und einen zweiten stationären Kontakt (48, 50) sowie ein temperaturabhängiges Schaltwerk (14) mit einem beweglichen Kontaktglied (42) aufweist. Das temperaturabhängige Schaltwerk (14) weist ein temperaturabhängiges Schnappteil (30) auf, das bei Überschreiten einer Schalttemperatur aus seiner geometrischen Tieftemperaturkonfiguration in seine geometrische Hochtemperaturkonfiguration umschnappt und bei einem anschließenden Unterschreiten einer Rückschalttemperatur wieder aus seiner geometrischen Hochtemperaturkonfiguration zurück in seine geometrische Tieftemperaturkonfiguration umschnappt. Ein Umschnappen des temperaturabhängigen Schnappteils (30) aus seiner geometrischen Tieftemperaturkonfiguration in seine geometrische Hochtemperaturkonfiguration bringt das Schaltwerk (14) aus seiner ersten Schaltstellung in seine zweite Schaltstellung und öffnet damit den Schalter (10). Des Weiteren ist eine Schließsperre (51) vorgesehen, die ein erneutes Schließen des einmal geöffneten Schalters (10) verhindert, in dem sie das Schaltwerk (14) in dessen zweiter Schaltstellung hält. Die Schließsperre (51) weist ein schmelzbares Medium (54) auf, das dazu eingerichtet ist, zu schmelzen, wenn eine Temperatur des Schalters (10) eine Schmelztemperatur des Mediums (54) überschreitet, in geschmolzenem Zustand mit einem Teil des Schaltwerks (14) in Kontakt zu treten, wenn dieses sich in seiner zweiten Schaltstellung befindet, und anschließend wieder zu erstarren und dadurch das Schaltwerk (14) in dessen zweiter Schaltstellung zu arretieren, wenn die Temperatur des Schalters (10) die Schmelztemperatur des Mediums (54) wieder unterschreitet.

Description

  • Die vorliegende Erfindung betrifft einen temperaturabhängigen Schalter, der einen ersten und einen zweiten stationären Kontakt sowie ein temperaturabhängiges Schaltwerk mit einem beweglichen Kontaktglied aufweist. Das Schaltwerk drückt in seiner ersten Schaltstellung das Kontaktglied gegen den ersten Kontakt und stellt dabei über das Kontaktglied eine elektrisch leitende Verbindung zwischen den beiden Kontakten her. In seiner zweiten Schaltstellung hält das Schaltwerk das Kontaktglied zu dem ersten Kontakt beabstandet und unterbricht damit die elektrisch leitende Verbindung zwischen den beiden Kontakten. Das temperaturabhängige Schaltwerk weist ein temperaturabhängiges Schnappteil auf, das bei Überschreiten einer Schalttemperatur aus seiner geometrischen Tieftemperaturkonfiguration in seine geometrische Hochtemperaturkonfiguration umschnappt und bei einem anschließenden Unterschreiten einer Rückschalttemperatur wieder aus seiner geometrischen Hochtemperaturkonfiguration zurück in seine geometrische Tieftemperaturkonfiguration umschnappt. Ein Umschnappen des temperaturabhängigen Schnappteils aus seiner geometrischen Tieftemperaturkonfiguration in seine geometrische Hochtemperaturkonfiguration bringt das Schaltwerk aus seiner ersten Schaltstellung in seine zweite Schaltstellung und öffnet damit den Schalter. Bei dem erfindungsgemäßen Schalter ist des Weiteren eine Schließsperre vorgesehen, die ein erneutes Schließen des einmal geöffneten Schalters verhindert, in dem sie das Schaltwerk in dessen zweiter Schaltstellung hält.
  • Ein gattungsgemäßer Schalter ist bereits aus der DE 10 2018 100 890 B3 bekannt.
  • Derartige temperaturabhängige Schalter werden in bekannter Weise dazu verwendet, elektrische Geräte vor Überhitzung zu schützen. Dazu wird der Schalter elektrisch mit dem zu schützenden Gerät und dessen Versorgungsspannung in Reihe geschaltet und mechanisch so an dem Gerät angeordnet, dass er mit diesem in thermischer Verbindung steht.
  • Ein temperaturabhängiges Schaltwerk sorgt dafür, dass die beiden stationären Kontakte des Schalters unterhalb der Ansprechtemperatur des Schaltwerks elektrisch miteinander verbunden sind. Somit ist der Stromkreis unterhalb der Ansprechtemperatur geschlossen und der Laststrom des zu schützenden Gerätes kann über den Schalter fließen.
  • Erhöht sich die Temperatur über einen zulässigen Wert hinaus, so hebt das Schaltwerk das bewegliche Kontaktglied von dem Gegenkontakt ab, wodurch der Schalter geöffnet und der Laststrom des zu schützenden Gerätes unterbrochen wird. Das jetzt stromlose Gerät kann dann wieder abkühlen. Dabei kühlt sich auch der thermisch an das Gerät angekoppelte Schalter wieder ab, der daraufhin eigentlich selbsttätig wieder schließen würde.
  • Bei dem aus der DE 10 2018 100 890 B3 bekannten Schalter sorgt jedoch eine Schließsperre dafür, dass diese Rückschaltung in der Abkühlstellung nicht erfolgt, so dass sich das zu schützende Gerät nach dem Abschalten nicht wieder automatisch einschalten kann. Die Schließsperre arretiert das Schaltwerk mechanisch, so dass sich das Schaltwerk nach einmaligem Öffnen nicht wieder schließen kann, selbst wenn starke Erschütterungen oder Temperaturschwankungen auftreten.
  • Dies ist eine Sicherheitsfunktion, die beispielsweise für Elektromotoren gilt, die als Antriebsaggregate eingesetzt werden. Hierdurch sollen insbesondere Beschädigungen am Gerät oder gar Verletzungen der das Gerät benutzenden Person vermieden werden.
  • Aufgrund ihres Schaltverhaltens werden derartige Schalter, die nach einmaligem Öffnen nicht wieder schließen, auch als Einmalschalter bezeichnet.
  • Es versteht sich, dass unter einem "Öffnen" des Schalters die Unterbrechung der elektrisch leitenden Verbindung zwischen den beiden Kontakten des Schalters verstanden wird und nicht ein Öffnen des Schalter-Gehäuses im mechanischen Sinne.
  • Ein weiterer Schalter dieser Art ist aus der DE 10 2013 101 392 A1 bekannt. Dieser Schalter weist ein temperaturabhängiges Schaltwerk mit einer temperaturabhängigen Bimetall-Schnappscheibe und einer bistabilen Federscheibe auf, die einen beweglichen Kontakt oder ein Stromübertragungsglied trägt. Wenn die Bimetall-Schnappscheibe auf eine Temperatur oberhalb ihrer Ansprechtemperatur erhitzt wird, hebt sie den Kontakt oder das Stromübertragungsglied gegen die Kraft der Federscheibe von dem Gegenkontakt oder den Gegenkontakten ab und drückt dabei die Federscheibe in ihre zweite stabile Konfiguration, in der sich das Schaltwerk in seiner Hochtemperaturstellung befindet.
  • Kühlen sich der Schalter und damit die Bimetall-Schnappscheibe wieder ab, so springt diese in ihre Niedrigtemperaturstellung zurück. Sie kann sich konstruktionsbedingt mit ihrem Rand aber nicht an einem Gegenlager abstützen, so dass die Federscheibe in der stabilen zweiten Konfiguration verbleibt, in der der Schalter geöffnet ist.
  • Der Schalter bleibt also nach einmaligem Öffnen in seiner geöffneten Stellung, auch wenn er wieder abkühlt. Allerdings haben Versuche in der Firma des Anmelders ergeben, dass sich der aus der DE 10 2013 101 392 A1 bekannte Schalter bei stärkeren mechanischen Erschütterungen doch wieder schließt, so dass er unter Sicherheitsaspekten in einigen Anwendungsfällen ggf. nicht optimal einsetzbar ist.
  • Es ist auch bekannt, derartige temperaturabhängige Schalter mit einem sogenannten Selbsthaltewiderstand zu versehen, der parallel zu den beiden Gegenkontakten geschaltet ist, so dass er einen Teil des Laststroms übernimmt, wenn der Schalter öffnet. In diesem Selbsthaltewiderstand wird dann Ohm'sche Wärme erzeugt, die ausreichend ist, um die Schnappscheibe oberhalb ihrer Ansprechtemperatur zu halten.
  • Diese sogenannte Selbsthaltung ist jedoch nur solange aktiv, wie das elektrische Gerät noch eingeschaltet ist. Sobald das Gerät von dem Versorgungsstromkreis abgeschaltet wird, fließt auch kein Strom mehr durch den temperaturabhängigen Schalter, so dass die Selbsthaltefunktion entfällt. Nach dem Wiedereinschalten des elektrischen Gerätes würde sich der Schalter daher wieder in geschlossenem Zustand befinden, so dass sich das Gerät wieder aufheizen kann, was zu Folgeschäden führen könnte.
  • Diese Problematik wird bei den aus der DE 10 2007 042 188 B3 und der DE 10 2013 101 392 A1 bekannten Schaltern vermieden, bei denen die Selbsthaltefunktion nicht elektrisch, sondern durch ein bistables Federteil realisiert wird, das temperaturunabhängig zwei stabile geometrische Konfigurationen aufweist, wie es in den oben zitierten Druckschriften beschrieben ist.
  • Im Gegensatz dazu ist die Schnappscheibe eine bistabile Schnappscheibe, die temperaturabhängig entweder eine Hochtemperaturkonfiguration oder eine Tieftemperaturkonfiguration einnimmt.
  • Bei den eingangs erwähnten DE 10 2007 042 188 B3 ist die Federscheibe eine kreisförmige Feder-Schnappscheibe, an der mittig das Kontaktglied befestigt ist. Das Kontaktglied ist beispielsweise ein bewegliches Kontaktteil, das durch die Feder-Schnappscheibe gegen den ersten stationären Kontakt gedrückt wird, der innen an einem Deckel des Gehäuses des bekannten Schalters angeordnet ist. Mit ihrem Rand drückt sich die Feder-Schnappscheibe an einem inneren Boden eines Unterteils des Gehäuses ab, der als zweiter Kontakt wirkt. Auf diese Weise stellt die selbst elektrisch leitende Feder-Schnappscheibe eine elektrisch leitende Verbindung zwischen den beiden Gegenkontakten her.
  • In ihrer Tieftemperaturstellung liegt die Bimetall-Schnappscheibe lose an dem Kontaktteil. Erhöht sich die Temperatur der Bimetall-Schnappscheibe, so springt sie in ihre Hochtemperaturstellung um, in der sie sich mit ihrem Rand innen an dem Oberteil des Gehäuses abdrückt und dabei mit ihrem Zentrum so auf die Feder-Schnappscheibe drückt, dass diese von ihrer ersten in ihre zweite stabile Konfiguration umspringt, wodurch das bewegliche Kontaktteil von dem stationären Kontakt abgehoben und der Schalter geöffnet wird.
  • Kühlt sich die Temperatur des Schalters wieder ab, so springt die Bimetall-Schnappscheibe wieder in ihre Tieftemperaturstellung um. Dabei gelangt sie mit ihrem Rand in Anlage mit dem Rand der Feder-Schnappscheibe und mit ihrem Zentrum in Anlage mit dem Oberteil des Gehäuses. Die Stellkraft der Bimetall-Schnappscheibe reicht jedoch nicht aus, um die Feder-Schnappscheibe wieder in ihre erste Konfiguration umspringen zu lassen.
  • Erst durch starkes Abkühlen des Schalters krümmt sich die Bimetall-Schnappscheibe weiter um, so dass sie schließlich den Rand der Feder-Schnappscheibe so weit auf den inneren Boden des Unterteiles herunterdrücken kann, dass die Feder-Schnappscheibe wieder in ihre erste Konfiguration umspringt und den Schalter wieder schließt.
  • Der aus der DE 10 2007 042 188 B3 bekannte Schalter bleibt also nach einmaligem Öffnen solange geöffnet, bis er auf eine Temperatur unter Raumtemperatur abgekühlt wurde, wozu beispielsweise ein Kältespray verwendet werden kann.
  • Obwohl dieser Schalter in vielen Anwendungsfällen den entsprechenden Sicherheitsanforderungen genügt, hat sich doch herausgestellt, dass durch das Verspannen der Bimetall-Schnappscheibe zwischen dem Oberteil des Gehäuses und dem Rand der Feder-Schnappscheibe in seltenen Fällen doch ein ungewolltes Rückspringen der Feder-Schnappscheibe erfolgt.
  • Aus der DE 10 2013 101 392 A1 ist es ferner bekannt, als bewegliches Kontaktglied ein Stromübertragungsglied beispielsweise in Form eines Kontakttellers zu verwenden, der von der Feder-Schnappscheibe getragen wird. An der Innenseite des Deckels des Gehäuses sind jetzt beide stationären Kontakte angeordnet, wobei durch Anlage des Kontakttellers mit diesen beiden Kontakten eine elektrisch leitende Verbindung zwischen diesen hergestellt wird.
  • Bei diesem Schalter ist die Feder-Schnappscheibe mit ihrem Rand an dem Unterteil des Gehäuses festgelegt, während zwischen der Feder-Schnappscheibe und dem inneren Boden des Unterteils die Bimetall-Schnappscheibe vorgesehen ist.
  • Unterhalb der Ansprechtemperatur der Bimetall-Schnappscheibe drückt die Feder-Schnappscheibe den Kontaktteller gegen die beiden stationären Kontakte. Springt die Bimetall-Schnappscheibe in ihre Hochtemperaturstellung um, so drückt sie mit ihrem Rand gegen die Feder-Schnappscheibe und zieht mit ihrem Zentrum die Feder-Schnappscheibe von dem Oberteil weg, so dass der Kontaktteller außer Anlage mit den beiden Gegenkontakten gerät. Damit dies geometrisch möglich ist, sind Kontaktteller, Feder-Schnappscheibe sowie Bimetall-Schnappscheibe durch einen zentrisch verlaufenden Niet unverlierbar miteinander verbunden.
  • Wenn sich die Temperatur der Bimetall-Schnappscheibe wieder absenkt, springt diese zwar in ihre Tieftemperaturstellung zurück, die Federscheibe verbleibt jedoch in ihrer eingenommenen Konfiguration, da der Bimetall-Schnappscheibe ein Gegenlager für ihren Rand fehlt, so dass sie das Stromübertragungsglied nicht wieder gegen die beiden stationären Kontakte drücken kann.
  • Dieser Schalter weist also konstruktionsbedingt eine Selbsthaltefunktion auf. Bei starken mechanischen Erschütterungen kann in seltenen Fällen aber auch hier ein ungewolltes Rückspringen der Feder-Schnappscheibe erfolgen.
  • Aus der DE 25 44 201 A1 ist des Weiteren ein temperaturabhängiger Schalter mit einem als Kontaktbrücke ausgeführten Stromübertragungsglied bekannt, bei dem die Kontaktbrücke über eine Schließfeder gegen zwei stationäre Gegenkontakte gedrückt wird. Über einen Betätigungsbolzen ist die Kontaktbrücke mit einem temperaturabhängigen Schaltwerk in Kontakt, das aus einer Bimetall-Schnappscheibe sowie einer Federscheibe besteht, die beide an ihrem Rand eingespannt sind.
  • Wie bei dem aus der DE 10 2007 042 188 B3 bekannten Schalter sind auch bei diesem Schalter die Federscheibe sowie die Bimetall-Schnappscheibe beide bistabil, die Bimetall-Schnappscheibe auf temperaturabhängige Weise und die Federscheibe auf temperaturunabhängige Weise.
  • Erhöht sich die Temperatur der Bimetall-Schnappscheibe, so drückt sie die Federscheibe in ihre zweite Konfiguration, in der diese den Betätigungsbolzen gegen die Kontaktbrücke drückt und diese dabei gegen die Kraft der Schließfeder von den stationären Gegenkontakten abhebt.
  • Auch beim Abkühlen der Bimetall-Schnappscheibe verbleibt die Federscheibe in dieser zweiten Konfiguration und hält den bekannten Schalter gegen die Kraft der Schließfeder geöffnet.
  • Von außen kann jetzt durch einen Knopf Druck auf die Kontaktbrücke ausgeübt werden, so dass dadurch über den Betätigungsbolzen die Federscheibe in ihre erste stabile Konfiguration zurückgedrückt wird.
  • Neben der sehr aufwändigen Konstruktion weist dieser Schalter zum einen den Nachteil auf, dass im geöffneten Zustand die Federscheibe die Kontaktbrücke gegen die Kraft der Schließfeder von den Gegenkontakten abhebt, so dass die Federscheibe in ihrer zweiten Konfiguration die Kraft der Schließfeder zuverlässig überwinden muss. Weil die Schließfeder im geschlossenen Zustand jedoch für die sichere Anlage der Kontaktbrücke an den Gegenkontakten sorgt, ist hier eine Federscheibe mit sehr hoher Stabilität in der zweiten Konfiguration erforderlich.
  • Ein weiterer Schalter mit drei Schaltstellungen ist aus der DE 86 25 999 U1 bekannt. Bei diesem bekannten Schalter ist eine einseitig eingespannte Federzunge vorgesehen, die an ihrem freien Ende ein bewegliches Kontaktteil trägt, das mit einem festen Gegenkontakt zusammenwirkt.
  • An dieser Federzunge ist eine Kalotte ausgebildet, die durch eine ebenfalls an der Federzunge befestigte Bimetallplatte in ihre zweite Konfiguration gedrückt wird, in der sie das bewegliche Kontaktteil zu dem stationären Gegenkontakt beabstandet.
  • Die Kalotte muss bei diesem Schalter gegen die Schließkraft der einseitig eingespannten Federzunge das bewegliche Kontaktteil im Abstand zu dem festen Gegenkontakt halten, so dass die Kalotte in ihrer zweiten Konfiguration eine hohe Stellkraft aufbringen muss.
  • Der bekannte Schalter weist damit die oben bereits diskutierten Nachteile auf, dass nämlich hohe Stellkräfte zu überwinden sind, was zu hohen Fertigungskosten und zu einem nicht sicheren Zustand in der Abkühlstellung führt.
  • Der aus der eingangs erwähnten DE 10 2018 100 890 B3 bekannte Schalter hat im Vergleich zu den übrigen erwähnten Schaltern die mechanisch stabilste Schließsperre. Aufgrund der mechanischen Arretierung des Schaltwerks, welcher durch die Schließsperre bewirkt wird, ist eine versehentliche Rückschaltung nach einmal geöffnetem Schalter nahezu ausgeschlossen.
  • Es hat sich jedoch gezeigt, dass die aus der DE 10 2018 100 890 B3 bekannte Schließsperre relativ aufwändig zu fertigen ist, so dass die Fertigungskosten des Schalters vergleichsweise hoch sind.
  • Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, den eingangs erwähnten Schalter derart weiterzubilden, dass dieser einfacher und damit kostengünstiger zu fertigen ist und dennoch eine sichere Unterbrechung des Stromkreises auch in der Abkühlstellung des Schalters und bei starken Erschütterungen gewährleistet ist.
  • Erfindungsgemäß wird diese Aufgabe bei einem Schalter der eingangs erwähnten Art dadurch gelöst, dass die Schließsperre ein schmelzbares Medium aufweist, das dazu eingerichtet ist, zu schmelzen, wenn eine Temperatur des Schalters eine Schmelztemperatur des Mediums überschreitet, in geschmolzenem Zustand mit einem Teil des Schaltwerks in Kontakt zu treten, wenn dieses sich in seiner zweiten Schaltstellung befindet, und anschließend wieder zu erstarren und dadurch das Schaltwerk in dessen zweiter Schaltstellung zu arretieren, wenn die Temperatur des Schalters die Schmelztemperatur des Mediums wieder unterschreitet.
  • Weil die Schließsperre das Schaltwerk ähnlich wie bei dem aus der DE 10 2018 100 890 B3 bekannten Schalter arretiert, kann es sich nach einmaligem Öffnen nicht wieder schließen, selbst wenn starke mechanische Erschütterungen auftreten. Durch die Arretierung des temperaturabhängigen Schalters wird folglich auch der Schalter arretiert, was im Rahmen der vorliegenden Erfindung synonym verwendet wird. Der erfindungsgemäße Schalter wird somit an einer Rückschaltung gehindert.
  • Im Gegensatz zu dem aus der DE 10 2018 100 890 B3 bekannten Schalter wird das Schaltwerk gemäß der vorliegenden Erfindung jedoch nicht mechanisch durch Verrasten arretiert. Stattdessen erfolgt die Arretierung des Schaltwerks mit Hilfe eines schmelzbaren Mediums, das mit dem Schaltwerk in seiner zweiten Schaltstellung (geöffneten Stellung) in Kontakt tritt und bei einem Abkühlen des Schalters unter die Schmelztemperatur des Mediums erstarrt.
  • Durch das Erstarren des Mediums wird vorzugsweise eine haftende Verbindung, besonders bevorzugt eine stoffschlüssige Verbindung, zwischen einem Teil des Schaltwerks und einem Teil des Schalter-Gehäuses hergestellt, in dem das Schaltwerk angeordnet ist. Das Schaltwerk haftet somit an einem Teil des Schalter-Gehäuses, sobald das Medium erstarrt. Das Schaltwerk kann dann nicht mehr bewegt werden.
  • Zwar versucht das temperaturabhängige Schnappteil bei Erreichen bzw. Unterschreiten seiner Rückschalttemperatur wieder in seine geometrische Tieftemperaturkonfiguration umzuschnappen und dabei das bewegliche Kontaktglied wieder gegen den ersten Kontakt zu drücken, um eine elektrisch leitende Verbindung zwischen den beiden Kontakten herzustellen. Dieses erneute Schließen des wird jedoch durch die haftende bzw. stoffschlüssige Verbindung, die durch das erstarrte Medium zwischen einem Teil des Schaltwerks und einem Teil des Schalter-Gehäuses bewirkt wird, verhindert.
  • Die auf diese Weise erzeugte Schließsperre lässt sich fertigungstechnisch sehr einfach herstellen. Ausgehend von den bereits bekannten temperaturabhängigen Schaltern dieser Art muss lediglich an geeigneter Stelle ein schmelzbares Medium angeordnet werden, das mit einem Teil des Schaltwerks in Kontakt tritt, wenn dieses sich in seiner zweiten Schaltstellung befindet. Das schmelzbare Medium sollte dazu geeignet ist, durch sein Erstarren eine haftende Verbindung zwischen diesem Teil des Schaltwerks und einem Teil des Schalter-Gehäuses herzustellen.
  • Die Materialkosten für dieses zusätzlich bereitzustellende, schmelzbare Medium sowie die Fertigungskosten für die Anordnung dieses schmelzbaren Mediums im Inneren des Schalters sind denkbar gering.
  • Die oben genannte Aufgabe ist somit vollkommen gelöst.
  • Gemäß einer bevorzugten Ausgestaltung ist das schmelzbare Medium dazu eingerichtet, in geschmolzenem Zustand mit dem beweglichen Kontaktglied des Schaltwerks in Kontakt zu treten, wenn sich das Schaltwerk in seiner zweiten Schaltstellung befindet. Besonders bevorzugt ist das schmelzbare Medium dazu eingerichtet, zwischen dem beweglichen Kontaktglied des Schaltwerks und einem Teil des Gehäuses eine haftende oder stoffschlüssige Verbindung herzustellen, sobald die Temperatur des Schalters nach einem Überschreiten der Schmelztemperatur des Mediums diese wieder unterschreitet und das Medium erstarrt.
  • Dies hat den Vorteil, dass das bewegliche Kontaktglied meist als massives Bauteil ausgestaltet ist, so dass dieses sich sehr gut dafür eignet, um mittels des zunächst geschmolzenen und dann erstarrten Mediums mit einem Teil des Gehäuses verbunden zu werden. Da das bewegliche Kontaktglied insbesondere an seiner Unterseite meist eine sehr große Angriffsfläche für eine solche haftende bzw. stoffschlüssige Verbindung mit dem Gehäuse bietet, lässt sich durch die haftende bzw. stoffschlüssige Verbindung eine mechanisch sehr stabile Schließsperre erzeugen.
  • Beispielsweise kann es vorgesehen sein, dass das schmelzbare Medium in einem Reservoir aufbewahrt ist, das in dem Gehäuse angeordnet ist.
  • Es kann auch vorgesehen sein, dass das schmelzbare Medium in einem Reservoir aufbewahrt ist, mit dem das bewegliche Kontaktglied in Kontakt tritt, wenn das temperaturabhängige Schnappteil aus seiner geometrischen Tieftemperaturkonfiguration in seine geometrische Hochtemperaturkonfiguration umschnappt und das Schaltwerk aus seiner ersten Schaltstellung in seine zweite Schaltstellung bringt.
  • Ein solches Reservoir kann beispielsweise durch eine Aussparung, eine im Wesentlichen topfförmige Aufnahme oder ein einfaches Behältnis, das im Inneren des Schalters angeordnet ist, realisiert sein.
  • Die Aufbewahrung des schmelzbaren Mediums innerhalb eines solchen Reservoirs hat den Vorteil, dass sich das Medium nach dessen Schmelzen nicht innerhalb des Schalters verteilt und andere Bauteile des Schalters dadurch beeinträchtigen könnte. Des Weiteren hat ein solches Reservoir den Vorteil, dass sich die Position des schmelzbaren Mediums auf exakte Weise relativ zu dem Schaltwerk ausrichten lässt, so dass garantiert werden kann, dass das bewegliche Kontaktglied in der zweiten Schaltstellung des Schaltwerks mit dem Reservoir bzw. dem darin befindlichen schmelzbaren Medium in Kontakt tritt.
  • In einer weiteren bevorzugten Ausgestaltung ist es vorgesehen, dass das Gehäuse ein von einem Oberteil verschlossenes Unterteil aufweist, wobei an einer Innenseite des Oberteils der erste stationäre Kontakt oder jeder der beiden stationären Kontakte angeordnet ist, und wobei das Reservoir in dem Unterteil derart angeordnet ist, dass das bewegliche Kontaktglied mit seiner von dem Oberteil abgewandten Unterseite mit dem Medium in Kontakt tritt, wenn das temperaturabhängige Schnappteil aus seiner geometrischen Tieftemperaturkonfiguration in seine geometrische Hochtemperaturkonfiguration schnappt und das Schaltwerk aus seiner ersten Schaltstellung in seine zweite Schaltstellung bringt. Das Reservoir ist hierzu besonders bevorzugt auf einer Innenbodenfläche des Unterteils unterhalb des beweglichen Kontaktglieds angeordnet.
  • Dies hat den Vorteil einer platzsparenden Unterbringung des Reservoirs und des darin aufbewahrten schmelzbaren Mediums, da bei konventionellen Schaltern dieser Art im Unterteil hierfür ohnehin genügend Platz ist. Bei den meisten bisher bekannten Schaltern wird das bewegliche Kontaktglied ohnehin bei Erreichen der Schalttemperatur des temperaturabhängigen Schnappteils in Richtung auf die Innenbodenfläche des Unterteils zu bewegt. Das bewegliche Kontaktteil gelangt in der zweiten Schaltstellung des Schaltwerks somit automatisch mit dem geschmolzenen Medium in Kontakt und bleibt nach Erstarren des Mediums an dem Unterteil des Gehäuses haften.
  • Gemäß einer Ausgestaltung ist das Reservoir direkt in die Innenbodenfläche des Unterteils integriert. Beispielsweise kann in die Innenbodenfläche eine geschlossene Kontur eingebracht sein, die als Aufnahmebecken für das schmelzbare Medium dient. Ebenso kann das Reservoir durch eine von der Innenbodenfläche abstehende Sicke gebildet sein, die eine geschlossene, beispielsweise kreisrunde Kontur bildet, die das schmelzbare Medium umgibt.
  • Gemäß einer weiteren Ausgestaltung weist das Reservoir ein Behältnis auf, das kraft-, form- und/oder stoffschlüssig mit dem Unterteil verbunden ist.
  • Das Behältnis kann beispielsweise eine Art Inlay sein, das in das Unterteil des Gehäuses eingesetzt ist und mit der Innenbodenfläche verschweißt, verlötet oder verklebt ist. Alternativ oder zusätzlich dazu kann das Behältnis mit der Innenbodenfläche des Unterteils verbördelt oder an dieser klemmend befestigt sein.
  • Vorzugsweise handelt es sich bei dem schmelzbaren Medium um ein Lot. Besonders bevorzugt handelt es sich bei dem schmelzbaren Medium um ein Weichlot. Grundsätzlich kann jedoch ein Hartlot verwendet werden.
  • Die Verwendung eines Lots hat insbesondere den Vorteil, dass hierdurch eine mechanisch extrem stabile, stoffschlüssige Verbindung zwischen dem Teil des Schaltwerks und dem Teil des Gehäuses entsteht, die durch das Lot miteinander verbunden werden.
  • Gemäß einer Ausgestaltung ist die Schmelztemperatur des Mediums bzw. Lots höher als die Rückschalttemperatur des temperaturabhängigen Schnappteils.
  • Dies hat den Vorteil, dass die als Schließsperre wirkende stoffschlüssige Verbindung, die das Schaltwerk in dessen zweiter Schaltstellung arretiert, bereits erkaltet und damit erstarrt ist, bevor das temperaturabhängige Schnappteil bei Erreichen seiner Rückschalttemperatur das Kontaktglied wieder versucht auf den ersten stationären Kontakt zu zu bewegen und den Schalter damit zu schließen.
  • Bei Erreichen der Rückschalttemperatur verhindert somit die durch das erstarrte Medium hergestellte stoffschlüssige Verbindung, die das Schaltwerk in seiner zweiten Schaltstellung hält, ein Umschnappen des temperaturabhängigen Schnappteils von seiner Hochtemperaturkonfiguration zurück in seine Tieftemperaturkonfiguration.
  • Des Weiteren ist es bevorzugt, dass die Schmelztemperatur des schmelzbaren Mediums bzw. Lots niedriger als die Schalttemperatur des temperaturabhängigen Schnappteils ist.
  • Dies hat den Vorteil, dass das Medium bzw. Lot bereits geschmolzen ist, wenn das Schaltwerk bei Erreichen der Schalttemperatur durch das temperaturabhängige Schnappteil aus seiner ersten Schaltstellung in seine zweite Schaltstellung gebracht wird und mit dem schmelzbaren Medium bzw. Lot in Kontakt tritt. Da der Schalter dann geöffnet ist, sinkt die Temperatur des Schalters und damit auch die Temperatur des schmelzbaren Mediums bzw. Lots, so dass dieses wieder erstarren kann und die oben genannte stoffschlüssige Verbindung zwischen Schaltwerk und Schalter-Gehäuse herstellen kann.
  • Die Schmelztemperatur des Mediums bzw. Lots muss jedoch nicht zwangsläufig niedriger als die Schalttemperatur des temperaturabhängigen Schnappteils sein. Sie kann auch etwas höher als die Schalttemperatur des temperaturabhängigen Schnappteils sein und z.B. im Bereich der Überschwungtemperatur des Schalters angesiedelt sein. Als "Überschwungtemperatur" wird typischerweise die Temperatur oder der Temperaturbereich bezeichnet, auf den sich der Schalter typischerweise nach dessen Abschalten maximal erhöht. Normalerweise schwingt die Temperatur nach einem Abschalten des Schalters nämlich auch dann noch etwas über, wenn dieser bereits geöffnet ist, da sich der Schalter durch die vorhandene Restwärme des zu schützenden Geräts weiter aufheizt.
  • Ist die Schmelztemperatur des Mediums bzw. Lots also im Bereich dieser Überschwungtemperatur angesiedelt, so ist das Medium bzw. Lot zwar noch nicht geschmolzen, wenn das Schaltwerk beim Umschnappen in seine zweite Schaltstellung mit diesem in Kontakt tritt. Das Medium bzw. Lot schmilzt jedoch dann nachträglich, so dass auch dann die genannte stoffschlüssige Verbindung hergestellt werden kann, wenn der Schalter und damit das Medium bzw. Lot später wieder auf eine Temperatur unter die Schmelztemperatur des Mediums bzw. Lots abkühlt.
  • Gemäß einer weiteren Ausgestaltung ist es vorgesehen, dass das Schaltwerk ein temperaturunabhängiges Federteil aufweist, das mit dem beweglichen Kontaktglied verbunden ist, wobei das temperaturabhängige Schnappteil bei Überschreiten der Schalttemperatur auf das Federteil einwirkt und dadurch das bewegliche Kontaktglied von dem ersten Kontakt abhebt. Hierbei ist es insbesondere bevorzugt, dass das Federteil ein bistabiles Federteil mit zwei temperaturunabhängigen, stabilen geometrischen Konfigurationen ist.
  • Sofern das Federteil als bistabile Federscheibe ausgestaltet ist, ist es bevorzugt, dass die Federscheibe in ihrer ersten stabilen Konfiguration das bewegliche Kontaktglied gegen den ersten Kontakt drückt und in ihrer zweiten stabilen Konfiguration das bewegliche Kontaktglied zu dem ersten Kontakt beabstandet hält. Dies hat den Vorteil, dass die Federscheibe im geschlossenen Zustand des Schalters (in der ersten Schaltstellung des Schaltwerks) die Schließkraft und damit den Kontaktdruck zwischen dem beweglichen Kontaktglied und dem ersten Kontakt bewirkt. Dadurch wird das temperaturabhängige Schnappteil mechanisch entlastet, was dessen Lebensdauer und die Langzeitstabilität seiner Ansprechtemperatur (Schalttemperatur) positiv beeinflusst.
  • Wenn das Federteil als bistabile Federscheibe mit zwei temperaturunabhängig stabilen geometrischen Konfigurationen ausgestaltet ist, hat dies den zusätzlichen Vorteil, dass die bistabile Federscheibe den Schalter nach dem Öffnen in seinem geöffneten Zustand hält. Selbst wenn das temperaturabhängige Schnappteil dann nach Abkühlen des Schalters auf die Rückschalttemperatur wieder in seine Tieftemperaturkonfiguration zurückschnappen will, hält die Federscheibe zusätzlich zu der oben beschriebenen Schließsperre den Schalter in seiner geöffneten Stellung.
  • In einem solchen Fall ist es sogar möglich, dass die Schmelztemperatur des Mediums bzw. Lots niedriger als die Rückschalttemperatur des temperaturabhängigen Schnappteils ist. Kühlt der bereits geöffnete Schalter (Schaltwerk in zweiter Schaltstellung) auf die Rückschalttemperatur ab, so ist dann zwar die Schließsperre noch nicht aktiviert, da das Medium bzw. Lot dann noch nicht erstarrt ist. Das bistabile Federteil hält den Schalter jedoch dennoch in seiner geöffneten Stellung. Kühlt der Schalter dann noch weiter ab bis auf die Schmelztemperatur des Mediums bzw. Lots, so wird die Schließsperre letztendlich auch dann aktiviert.
  • In letztgenanntem Fall ist es bevorzugt, dass das temperaturabhängige Schnappteil an dem beweglichen Kontaktglied festgelegt ist, in seiner geometrischen Tieftemperaturkonfiguration ansonsten jedoch frei im Inneren des Gehäuses aufgehängt ist, ohne sich an dem Gehäuse oder einem sonstigen Teil des Schalters abzustützen.
  • Da sich das temperaturabhängige Schnappteil in seiner Tieftemperaturkonfiguration nicht an dem Gehäuse oder an einem sonstigen Teil des Schalters abstützen kann, kann das temperaturabhängige Schnappteil dann keine Schließkraft erzeugen, die das bewegliche Kontaktglied gegen den ersten Kontakt drückt. Die Schließkraft wird durch das temperaturunabhängige Federteil erzeugt. Bei einer Erhöhung der Temperatur des Schalters und damit auch der Temperatur des temperaturabhängigen Schnappteils über seine Schalttemperatur hinaus schnappt das temperaturabhängige Schnappteil in seine Hochtemperaturkonfiguration um, in der es sich hingegen an dem temperaturunabhängigen Federteil oder einem sonstigen Teil des Schalters abstützen kann und somit den Schalter öffnen kann. Schnappt das temperaturabhängige Schnappteil nahe dem Abkühlen des Schalters unter die Rückschalttemperatur wieder in seine Tieftemperaturkonfiguration zurück, so schnappt das temperaturabhängige Schnappteil quasi "ins Leere", so dass der Schalter hierdurch nicht wieder geschlossen wird. Das bistabile Federteil hält dann den Schalter in seiner geöffneten Stellung. Zusätzlich wirkt die Schließsperre, sobald das Medium bzw. Lot bei Erreichen von dessen Schmelztemperatur erstarrt ist.
  • Das temperaturabhängige Schnappteil ist vorzugsweise als bistabile Bi- oder Trimetall-Schnappscheibe ausgestaltet.
  • Gemäß einer weiteren Ausgestaltung ist es bevorzugt, dass das bewegliche Kontaktglied ein mit dem ersten Kontakt zusammenwirkendes bewegliches Kontaktteil umfasst, und dass das Federteil mit dem zweiten Kontakt zusammenwirkt, wobei ferner bevorzugt ist, dass das Federteil zumindest in seiner ersten geometrischen Konfiguration über seinen Rand elektrisch mit dem zweiten Kontakt in Verbindung steht.
  • Diese Konfiguration ist prinzipiell aus der DE 10 2018 100 890 B3 , der DE 10 2007 042 188 B3 oder der DE 10 2013 101 392 A1 bekannt. Sie führt dazu, dass das temperaturabhängige Schnappteil in keine Stellung des Schalters temperaturbelastet ist, sondern dass der Laststrom des zu schützenden elektrischen Gerätes durch das Federteil fließt.
  • In einer alternativen Ausgestaltung umfasst das bewegliche Kontaktglied ein mit beiden Kontakten zusammenwirkendes Stromübertragungsglied.
  • Hier ist von Vorteil, dass der Schalter erheblich höhere Ströme führen kann als der aus der DE 10 2007 042 188 B3 bekannte Schalter. Das an dem Kontaktglied angeordnete Stromübertragungsglied sorgt nämlich im geschlossenen Zustand des Schalters für den elektrischen Kurzschluss zwischen den beiden Kontakten, so dass nicht nur das temperaturabhängige Schnappteil, sondern auch das temperaturunabhängige Federteil jetzt nicht mehr vom Laststrom durchflossen werden, wie es prinzipiell bereits aus der DE 10 2013 101 392 A1 bekannt ist.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • Fig. 1
    eine schematische Schnittansicht eines ersten Ausführungsbeispiels des erfindungsgemäßen Schalters in seiner Tieftemperaturstellung;
    Fig. 2
    eine schematische Schnittansicht des in Fig. 1 gezeigten ersten Ausführungsbeispiels des erfindungsgemäßen Schalters in seiner Hochtemperaturstellung;
    Fig. 3
    eine schematische Schnittansicht eines zweiten Ausführungsbeispiels des erfindungsgemäßen Schalters in seiner Tieftemperaturstellung; und
    Fig. 4
    eine schematische Schnittansicht des in Fig. 3 gezeigten zweiten Ausführungsbeispiels des erfindungsgemäßen Schalters in seiner Hochtemperaturstellung.
  • In Fig. 1 ist in einer schematischen, geschnittenen Seitenansicht ein Schalter 10 gezeigt, der in der Draufsicht rotationssymmetrisch ausgebildet ist und vorzugsweise eine kreisrunde Form aufweist.
  • Der Schalter 10 weist ein Gehäuse 12 auf, in dem ein temperaturabhängiges Schaltwerk 14 angeordnet ist. Das Gehäuse 12 umfasst ein topfartiges Unterteil 16 sowie ein Oberteil 18, das durch einen umgebogenen oder umgebördelten Rand 20 an dem Unterteil 16 gehalten wird.
  • In dem in Fig. 1 gezeigten ersten Ausführungsbeispiel ist sowohl das Unterteil 16 als auch das Oberteil 18 aus einem elektrisch leitenden Material, vorzugsweise aus Metall. Zwischen dem Unterteil 16 und dem Oberteil 18 ist ein Distanzring 22 angeordnet, der das Oberteil 18 unter Zwischenlage einer Isolierfolie 24 trägt und das Oberteil 18 gegenüber dem Unterteil 16 beabstandet hält.
  • Die Isolierfolie 24 sorgt für eine elektrische Isolation des Oberteils 18 gegenüber dem Unterteil 16. Ebenso sorgt die Isolierfolie 24 für eine mechanische Abdichtung, die verhindert, dass Flüssigkeiten oder Verunreinigungen von außen in das Gehäuseinnere eintreten.
  • Da das Unterteil 16 und das Oberteil 18 in diesem Ausführungsbeispiel jeweils aus elektrisch leitendem Material gefertigt sind, kann über ihre Außenflächen thermischer Kontakt zu einem zu schützenden elektrischen Gerät hergestellt werden. Die Außenflächen dienen gleichzeitig auch dem elektrischen Außenanschluss des Schalters 10.
  • Außen an dem Oberteil 18 kann, wie in Fig. 1 gezeigt, noch eine weitere Isolationsschicht 26 angebracht sein.
  • Das Schaltwerk 14 weist ein temperaturunabhängiges Federteil 28 sowie ein temperaturabhängiges Schnappscheibe 30 auf. Das Federteil 28 ist vorzugsweise als eine bistabile Federscheibe ausgestaltet. Diese Federscheibe 28 weist demnach zwei temperaturunabhängig stabile geometrische Konfigurationen auf. In Fig. 1 ist deren erste Konfiguration gezeigt. Das temperaturabhängige Schnappscheibe 30 ist vorzugsweise als eine Bimetall-Schnappscheibe ausgestaltet. Die Bimetall-Schnappscheibe 30 weist zwei temperaturabhängige Konfigurationen, eine geometrische Hochtemperaturkonfiguration und eine geometrische Tieftemperaturkonfiguration auf. In der in Fig. 1 gezeigten ersten Schaltstellung des Schaltwerks 14 befindet sich die Bimetall-Schnappscheibe 30 in ihrer geometrischen Tieftemperaturkonfiguration.
  • Die Federscheibe 28 liegt mit ihrem Rand 32 auf einer im Unterteil 16 ausgebildeten, umlaufenden Schulter 34 auf, und ist zwischen dieser Schulter 34 und dem Distanzring 22 eingeklemmt. Die Bimetall-Schnappscheibe 30 ist in ihrer in Fig. 1 gezeigten Tieftemperaturkonfiguration hingegen freihängend. Sie hängt mit ihrem Rand 36 frei und stützt sich mit diesem an keinem Teil des Gehäuses 12 und auch an keinem sonstigen Teil des Schalters 10 ab.
  • Mit ihrem Zentrum 40 ist die Federscheibe 28 an einem beweglichen Kontaktglied 42 des Schaltwerks 14 festgelegt. Die Bimetall-Schnappscheibe 30 ist mit ihrem Zentrum 44 ebenfalls an dem beweglichen Kontaktglied 42 festgelegt. In dem in Fig. 1 und 2 gezeigten Ausführungsbeispiel des Schalters 10 weist das bewegliche Kontaktglied 42 hierzu einen Ring 46 auf, der das bewegliche Kontaktglied 42 umgibt. Dieser Ring 46 ist vorzugsweise auf das bewegliche Kontaktglied 42 aufgepresst. Er weist eine umlaufende Schulter 47 auf, auf der die Schnappscheibe 30 mit ihrem Zentrum 44 aufliegt. Die Federscheibe 28 wird zwischen dem Ring 40 und dem oberen verbreiterten Abschnitt des Kontaktglieds 42 eingeklemmt. Auf diese Weise ist das temperaturabhängige Schaltwerk 14 eine unverlierbare Einheit aus Kontaktglied 42, Federscheibe 28 und Bimetall-Schnappscheibe 30. Bei der Montage des Schalters 10 kann das Schaltwerk 14 also als Einheit unmittelbar in das Unterteil 16 eingelegt werden.
  • An seiner Oberseite weist das bewegliche Kontaktglied 42 ein bewegliches Kontaktteil 38 auf. Das bewegliche Kontaktteil 38 arbeitet mit einem festen Gegenkontakt 48 zusammen, der innen an dem Oberteil 18 angeordnet ist. Dieser Gegenkontakt 48 wird vorliegend auch als erster stationärer Kontakt bezeichnet. Als zweiter stationärer Kontakt 50 dient die Außenseite des Unterteils 16.
  • In der in Fig. 1 gezeigten Stellung befindet sich der Schalter 10 in seiner Tieftemperaturstellung, in der sich die temperaturunabhängige Federscheibe 28 in ihrer ersten Konfiguration und die temperaturabhängige Schnappscheibe 30 in ihrer Tieftemperaturkonfiguration befinden. Die Federscheibe 28 drückt dabei das bewegliche Kontaktteil 38 gegen den ersten stationären Kontakt 48. In der geschlossenen Tieftemperaturstellung des Schalters 10 gemäß Fig. 1 ist somit eine elektrisch leitende Verbindung zwischen dem ersten stationären Kontakt 48 und dem zweiten stationären Kontakt 50 über das bewegliche Kontaktglied 42 und die Federscheibe 28 hergestellt. Der Kontaktdruck zwischen dem beweglichen Kontaktteil 38 und dem ersten stationären Kontakt 48 wird durch die temperaturunabhängige Federscheibe 28 erzeugt. Die temperaturabhängige Bimetall-Schnappscheibe 30 ist in diesem Zustand hingegen nahezu kräftefrei.
  • Erhöht sich nun die Temperatur des zu schützenden Gerätes und damit die Temperatur des Schalters 10 sowie der darin angeordneten Bimetall-Schnappscheibe 30 auf die Schalttemperatur der Schnappscheibe 30 oder über diese Schalttemperatur hinaus, so schnappt diese von ihrer in Fig. 1 gezeigten, konvexen Tieftemperaturkonfiguration in ihre konkave Hochtemperaturkonfiguration um, die in Fig. 1 gezeigt ist. Bei diesem Umschnappen stützt sich die Bimetall-Schnappscheibe 30 mit ihrem Rand 36 an einem Teil des Schalters 10, in diesem Fall an dem Rand 32 der Federscheibe 28. Mit ihrem Zentrum 44 zieht die Bimetall-Schnappscheibe 30 dabei das bewegliche Kontaktglied 42 nach unten und hebt das bewegliche Kontaktteil 38 von dem ersten stationären Kontakt 48 ab. Dadurch biegt sich gleichzeitig die Federscheibe 28 an ihrem Zentrum 40 nach unten durch, so dass die Federscheibe 28 von ihrer in Fig. 1 gezeigten, ersten stabilen geometrischen Konfiguration in ihre in Fig. 2 gezeigte, zweite geometrisch stabile Konfiguration umschnappt. Fig. 2 zeigt die Hochtemperaturstellung des Schalters 10, in der dieser geöffnet ist. Der Stromkreis ist damit unterbrochen.
  • Wenn sich das zu schützende Gerät und damit der Schalter 10 samt Bimetall-Schnappscheibe 30 dann wieder abkühlen, so schnappt die Federscheibe 30 bei Erreichen der Rückschalttemperatur wieder in ihre Tieftemperaturstellung um, wie sie beispielsweise in Fig. 1 gezeigt ist. Wenn sich die Bimetall-Schnappscheibe 30 in dieser Tieftemperaturstellung nicht an einem Teil des Schalters 10 abstützen kann, so schnappt diese quasi "ins Leere". Aufgrund der Bistabilität der temperaturunabhängigen Federscheibe 28 bliebe der Schalter 10 dann ohnehin geöffnet.
  • Dies muss jedoch nicht zwangsläufig so sein, da der Innenboden des Unterteils 16 auch seitlich etwas hochgezogen sein kann, wie dies in Fig. 1 mit der gestrichelten Linie 53 gekennzeichnet ist. Dann könnte die Bimetall-Schnappscheibe 30 mit ihrem Rand 36 auf diesem hochgezogenen Innenboden 53 aufliegen. Ebenso ist es möglich, dass die Bimetall-Schnappscheibe 30 in ihrer Tieftemperaturstellung auf einer ähnlichen Schulter im Unterteil 16 aufliegt, wie die Schulter 34, auf der die Federscheibe 28 aufliegt. In diesen Fällen würde ein Zurückschnappen der Bimetall-Schnappscheibe 30 aus ihrer Hochtemperaturstellung in ihre Tieftemperaturstellung ein erneutes Schließen des Schalters 10 verursachen, bei der die Bimetall-Schnappscheibe 30 das bewegliche Kontaktglied 42 wieder nach oben bewegt und das bewegliche Kontaktteil 38 mit dem ersten stationären Kontakt 48 in Kontakt bringt.
  • Unabhängig davon, ob sich die Bimetall-Schnappscheibe 30 in ihrer Tieftemperaturstellung an einem Teil des Schalters 10 abstützen kann oder nicht, wird der beschriebene Rückschaltvorgang bei dem erfindungsgemäßen Schalter 10 ohnehin durch eine Schließsperre 51 verhindert. Diese Schließsperre 51 wird durch ein schmelzbares Medium 54 bewirkt, das auf der Innenbodenfläche 56 des Unterteils 16 angeordnet ist. Bei diesem schmelzbaren Medium handelt es sich vorzugsweise um ein Lot, besonders bevorzugt um ein Weichlot. Dieses Lot 54 ist vorzugsweise in einem Reservoir oder Behältnis aufbewahrt, das auf der Innenbodenfläche 56 angeordnet ist und/oder in diese integriert ist.
  • Das schmelzbare Medium bzw. Lot 54 schmilzt, sobald die Temperatur des Schalters 10 eine Schmelztemperatur des Mediums bzw. Lots 54 erreicht bzw. überschreitet. Tritt das Lot 54 in diesem geschmolzenen Zustand dann mit einem Teil des Schaltwerks 14 in Kontakt und erstarrt danach wieder, wenn sich der Schalter 10 und damit das Lot 54 wieder auf eine Temperatur unterhalb der Schmelztemperatur des Lots 54 abkühlen, so sorgt das dann erstarrte Lot für eine stoffschlüssige oder zumindest haftende Verbindung zwischen dem Teil des Schaltwerks 14, mit dem es in geschmolzenem Zustand in Kontakt tritt, und dem Unterteil 16 des Schalters 10.
  • In dem vorliegend gezeigten Ausführungsbeispiel tritt das bewegliche Kontaktglied 42 mit dem Lot 54 in Kontakt, sobald der Schalter 10 bei Erreichen der Schalttemperatur geöffnet wird und das Schaltwerk 14 mithilfe der Bimetall-Schnappscheibe 30 in seine zweite Schaltstellung gebracht wird, wie sie in Fig. 2 gezeigt ist. In dieser Situation kommt die Unterseite 55 des beweglichen Kontaktglieds 42 in Kontakt mit dem Lot 54. Vorzugsweise taucht das bewegliche Kontaktglied 42 bei Erreichen der zweiten Schaltstellung des Schaltwerks 14 zumindest zum Teil mit seiner Unterseite 55 in das mit dem Lot 54 gefüllte Reservoir 52 ein. Das Lot 54 sollte dann bereits geschmolzen sein. Dementsprechend wird vorzugsweise ein Lot 54 gewählt, dessen Schmelztemperatur unterhalb oder im Bereich der Schalttemperatur der Bimetall-Schnappscheibe 30 ist. Grundsätzlich kann die Schmelztemperatur des Lots 54 jedoch auch etwas höher als die Schalttemperatur der Bimetall-Schnappscheibe 30 sein, da sich der Schalter 10 typischerweise auch nach dessen Öffnen und der damit verbundenen Unterbrechung des Stromkreises noch etwas weiter aufheizt. Man spricht dabei von einem sogenannten Überschwingen der Temperatur.
  • Spätestens nach Erreichen dieser sogenannten Überschwungtemperatur kühlt das zu schützende Gerät und damit auch der Schalter 10 typischerweise wieder ab. Sobald in diesem Abkühlprozess die Schmelztemperatur des Lots 54 unterschritten wird, erstarrt dieses folglich. Die Unterseite 55 des beweglichen Kontaktglieds 42 haftet dann an der Innenbodenfläche 56 des Unterteils 16 fest. Die Schließsperre 51 ist damit aktiviert.
  • Auch bei einem Abkühlen des Schalters 10 auf die Rückschalttemperatur der Bimetall-Schnappscheibe 30 versucht diese zwar wieder zurück in ihre Tieftemperaturstellung zu schnappen, was jedoch dann durch die Schließsperre 51, die das bewegliche Kontaktglied 42 in seiner in Fig. 2 gezeigten Stellung hält, verhindert wird. Die durch das erstarrte Lot 54 bewirkte Schließsperre 51 verhindert eine Rückschaltung des Schalters 10 auch dann, wenn sich die Bimetall-Schnappscheibe 30 bei einem Zurückschnappen in ihre Tieftemperaturstellung auf dem hochgezogenen Innenboden 53 oder an einem sonstigen Teil des Schalters 10 abstützen kann. Für diesen Fall sollte die Schmelztemperatur des Lots 54 allerdings höher gewählt werden als die Rückschalttemperatur der Bimetall-Schnappscheibe 30, da die Schließsperre in einem solchen Fall bereits aktiviert sein muss (d.h. das Lot bereits erkaltet sein muss), bevor die Bimetall-Schnappscheibe 30 aus ihrer Hochtemperaturstellung zurück in ihre Tieftemperaturstellung schnappt.
  • Das für die Schließsperre 51 verwendete Lot 54 kann grundsätzlich auch mit einem anderen Teil des Schaltwerks 14 in Kontakt treten, wenn dieses sich in seiner zweiten Schaltstellung befindet, beispielsweise mit der Bimetall-Schnappscheibe 30. Die Herstellung einer stoffschlüssigen Verbindung zwischen dem beweglichen Kontaktglied 42 und dem Unterteil 16 des Gehäuses 12 mithilfe des Lots 54 hat jedoch den Vorteil, dass es sich bei dem beweglichen Kontaktglied 42 um ein relativ großes und stabiles Bauteil handelt, das eine große Kontaktfläche für eine derartige stoffschlüssige Verbindung liefert. Zudem ist auf der Innenbodenfläche 56 des Unterteils 16 ohnehin genügend Platz zur Anbringung eines solchen Reservoirs 52 vorgesehen.
  • Das Reservoir 52, in dem das Lot 54 vorzugsweise aufbewahrt wird, kann auf verschiedene Art und Weise hergestellt sein. Es kann sich um eine einfache Aussparung oder Loch in der Innenbodenfläche 56 handeln. Ebenso kann das Reservoir 52 beispielsweise als eine kreisförmige Sicke vorgesehen sein, die an der Oberseite der Innenbodenfläche 56 angeordnet bzw. in diese eingebracht ist und eine geschlossene Kontur bildet, innerhalb derer das Lot 54 aufbewahrt wird. Grundsätzlich ist es jedoch auch möglich, ein separates Gefäß oder eine umlaufende Wandung (beispielsweise einen Ring) als separates Bauteil in das Gehäuse 12 des Schalters 10 einzusetzen und dieses mit der Innenbodenfläche 56 kraft-, form- oder stoffschlüssig zu verbinden.
  • Bei dem Medium 54 muss es sich auch nicht zwangsweise um ein Lot handeln. Es kann sich auch um ein anderes schmelzbares Material oder um einen Klebstoff handeln, der in der zweiten Schaltstellung des Schaltwerks 14 eine haftende Verbindung zwischen einem Teil des Schaltwerks 14 und einem Teil des Gehäuses 12 herstellt.
  • Fig. 3 und 4 zeigen ein zweites Ausführungsbeispiel des erfindungsgemäßen Schalters 10'. Fig. 3 zeigt die geschlossene Stellung des Schalters 10', bei der sich das Schaltwerk 14' in seiner ersten Schaltstellung befindet. Fig. 4 zeigt die geöffnete Stellung des Schalters 10', bei der sich das Schaltwerk 1' in seiner zweiten Schaltstellung befindet.
  • Das in Fig. 3 und 4 gezeigte, zweite Ausführungsbeispiel unterscheidet sich von dem in Fig. 1 und 2 gezeigten, ersten Ausführungsbeispiel im Wesentlichen durch den Aufbau des Gehäuses 12' sowie durch den Aufbau des Schaltwerks 14'. Die Schließsperre 51 wird jedoch auch hier durch ein schmelzbares Medium 54 bewirkt, das vorzugsweise in einem Reservoir 52 auf der Innenbodenfläche 56 des Unterteils 16' angeordnet ist und in der zweiten Schaltstellung des Schaltwerks 14' für eine stoffschlüssige oder zumindest haftende Verbindung zwischen dem Kontaktglied 42' und dem Unterteil 16' sorgt und damit eine Rückschaltung des Schalters 10' verhindert.
  • Das Unterteil 16' ist in dem in Fig. 3 und 4 gezeigten, zweiten Ausführungsbeispiel wiederum aus elektrisch leitendem Material. Das flach ausgestaltete Oberteil 18' ist hier hingegen aus elektrisch isolierendem Material gefertigt. Es wird durch einen umgebogenen Rand 20' an dem Unterteil 16' gehalten.
  • Zwischen dem Oberteil 18' und dem Unterteil 16' ist auch hier ein Distanzring 22' vorgesehen, der das Oberteil 18' gegenüber dem Unterteil 16' beabstandet hält. Auf seiner Innenseite 58 weist das Oberteil 18' einen ersten stationären Kontakt 48' sowie einen zweiten stationären Kontakt 50' auf. Die Kontakte 48' und 50' sind als Nieten ausgebildet, die sich durch das Oberteil 18' hindurch erstrecken und außen in den Köpfen 60, 62 enden, die dem Außenanschluss des Schalters 10' dienen.
  • Das bewegliche Kontaktglied 52' umfasst hier ein Stromübertragungsglied 64, das hier als Kontaktteller ausgestaltet ist, dessen Oberseite elektrisch leitend beschichtet ist, so dass er bei der in Fig. 3 gezeigten Anlage an den Kontakten 48' und 50' für eine elektrisch leitende Verbindung zwischen den beiden Kontakten 48' und 50' sorgt. Das Stromübertragungsglied 64 ist über einen Niet 66, der ebenfalls als Teil des Kontaktglieds 42' anzusehen ist, mit der Federscheibe und der Bimetall-Schnappscheibe 30 verbunden. Dieser Niet 66 kommt in der zweiten Schaltstellung des Schaltwerks 14' mit seiner Unterseite 55 in Kontakt mit dem schmelzbaren Medium bzw. Lot (siehe Fig. 4), so dass bei einem Erstarren des Mediums bzw. Lots 54 wie zuvor eine stoffschlüssige Verbindung zwischen dem beweglichen Kontaktglied 42' und dem Unterteil 16' des Schalters10' hergestellt wird, wodurch ein erneutes Schließen des Schalters 10' auch bei Erreichen oder Unterschreiten der Rückschalttemperatur verhindert wird.
  • Ein wesentlicher Vorteil des in Fig. 3 und 4 gezeigten Schalteraufbaus ist darin zu sehen, dass im Gegensatz zu dem in Fig. 1 und 2 gezeigten Ausführungsbeispiel des Schalters hier weder durch die Federscheibe 28 noch durch die Bimetall-Schnappscheibe 30 im geschlossenen Zustand des Schalters ein Strom fließt. Dieser fließt lediglich von dem ersten Außenanschluss 60 über den ersten stationären Kontakt 48', das Stromübertragungsglied 64 und den zweiten stationären Kontakt 50' zu dem zweiten Außenanschluss 62.

Claims (15)

  1. Temperaturabhängiger Schalter (10), der einen ersten und einen zweiten stationären Kontakt (48, 50) sowie ein temperaturabhängiges Schaltwerk (14) mit einem beweglichen Kontaktglied (42) aufweist, wobei das Schaltwerk (14) in seiner ersten Schaltstellung das Kontaktglied (42) gegen den ersten Kontakt (48) drückt und dabei über das Kontaktglied (42) eine elektrisch leitende Verbindung zwischen den beiden Kontakten (48, 50) herstellt und in seiner zweiten Schaltstellung das Kontaktglied (42) zu dem ersten Kontakt (48) beabstandet hält und damit die elektrisch leitende Verbindung zwischen den beiden Kontakten (48, 50) unterbricht, wobei das temperaturabhängige Schaltwerk (14) ein temperaturabhängiges Schnappteil (30) aufweist, das bei Überschreiten einer Schalttemperatur aus seiner geometrischen Tieftemperaturkonfiguration in seine geometrische Hochtemperaturkonfiguration umschnappt und bei einem anschließenden Unterschreiten einer Rückschalttemperatur wieder aus seiner geometrischen Hochtemperaturkonfiguration zurück in seine geometrische Tieftemperaturkonfiguration umschnappt, wobei ein Umschnappen des temperaturabhängigen Schnappteils (30) aus seiner geometrischen Tieftemperaturkonfiguration in seine geometrische Hochtemperaturkonfiguration das Schaltwerk (14) aus seiner ersten Schaltstellung in seine zweite Schaltstellung bringt und damit den Schalter (10) öffnet, und wobei eine Schließsperre (51) vorgesehen ist, die ein erneutes Schließen des einmal geöffneten Schalters (10) verhindert, in dem sie das Schaltwerk (14) in dessen zweiter Schaltstellung hält,
    dadurch gekennzeichnet, dass die Schließsperre (51) ein schmelzbares Medium (54) aufweist, das dazu eingerichtet ist, zu schmelzen, wenn eine Temperatur des Schalters (10) eine Schmelztemperatur des Mediums (54) überschreitet, in geschmolzenem Zustand mit einem Teil des Schaltwerks (14) in Kontakt zu treten, wenn sich dieses in seiner zweiten Schaltstellung befindet, und anschließend wieder zu erstarren und dadurch das Schaltwerk (14) in dessen zweiter Schaltstellung zu arretieren, wenn die Temperatur des Schalters (10) die Schmelztemperatur des Mediums (54) wieder unterschreitet.
  2. Temperaturabhängiger Schalter nach Anspruch 1, dadurch gekennzeichnet, dass der Schalter (10) ein Gehäuse (12) aufweist, und dass das schmelzbare Medium (54) dazu eingerichtet ist, eine haftende oder stoffschlüssige Verbindung zwischen dem Teil des Schaltwerks (14) und einem Teil des Gehäuses (12) herzustellen, wenn die Temperatur des Schalters (10) nach einem Überschreiten der Schmelztemperatur des Mediums (54) diese wieder unterschreitet.
  3. Temperaturabhängiger Schalter nach Anspruch 2, dadurch gekennzeichnet, dass das schmelzbare Medium (54) in einem Reservoir (52) aufbewahrt ist, das in dem Gehäuse (12) angeordnet ist.
  4. Temperaturabhängiger Schalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das schmelzbare Medium (54) dazu eingerichtet ist, in geschmolzenem Zustand mit dem beweglichen Kontaktglied (42) in Kontakt zu treten, wenn sich das Schaltwerk (14) in seiner zweiten Schaltstellung befindet.
  5. Temperaturabhängiger Schalter nach Anspruch 3, dadurch gekennzeichnet, dass das Gehäuse (12) ein von einem Oberteil (18) verschlossenes Unterteil (16) aufweist, wobei an einer Innenseite des Oberteils (18) der erste stationäre Kontakt (48) oder jeder der beiden stationären Kontakte (48', 50') angeordnet ist, und wobei das Reservoir (52) in dem Unterteil (16) derart angeordnet ist, dass das bewegliche Kontaktglied (42) mit seiner von dem Oberteil (18) abgewandten Unterseite (55) mit dem Medium (54) in Kontakt tritt, wenn das temperaturabhängige Schnappteil (30) aus seiner geometrischen Tieftemperaturkonfiguration in seine geometrische Hochtemperaturkonfiguration umschnappt und das Schaltwerk (14) aus seiner ersten Schaltstellung in seine zweite Schaltstellung bringt.
  6. Temperaturabhängiger Schalter nach Anspruch 5, dadurch gekennzeichnet, dass das Reservoir (52) auf einer Innenbodenfläche (56) des Unterteils (16) unterhalb des beweglichen Kontaktglieds (42) angeordnet ist.
  7. Temperaturabhängiger Schalter nach Anspruch 6, dadurch gekennzeichnet, dass das Reservoir (52) ein Behältnis aufweist, das kraft-, form- und/oder stoffschlüssig mit dem Unterteil (16) verbunden ist.
  8. Temperaturabhängiger Schalter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das schmelzbare Medium (54) ein Lot ist.
  9. Temperaturabhängiger Schalter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Schmelztemperatur des Mediums (54) höher als die Rückschalttemperatur des temperaturabhängigen Schnappteils (30) ist.
  10. Temperaturabhängiger Schalter nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Schmelztemperatur des Mediums (54) niedriger als die Schalttemperatur des temperaturabhängigen Schnappteils (30) ist.
  11. Temperaturabhängiger Schalter nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Schaltwerk (14) ein temperaturunabhängiges Federteil (28) aufweist, das mit dem beweglichen Kontaktglied (42) verbunden ist, wobei das temperaturabhängige Schnappteil (30) bei Überschreiten der Schalttemperatur auf das Federteil (28) einwirkt und dadurch das bewegliche Kontaktglied (42) von dem ersten Kontakt (48) abhebt.
  12. Temperaturabhängiger Schalter nach einem der Ansprüche 2, 3, 5, 6 oder 7,
    dadurch gekennzeichnet, dass das temperaturabhängige Schnappteil (30) an dem beweglichen Kontaktglied (42) festgelegt ist, in seiner geometrischen Tieftemperaturkonfiguration ansonsten jedoch frei im Inneren des Gehäuses (12) aufgehängt ist, ohne sich an dem Gehäuse (12) oder einem sonstigen Teil des Schalters (10) abzustützen.
  13. Temperaturabhängiger Schalter nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das temperaturabhängige Schnappteil (30) eine Bi- oder Trimetall-Schnappscheibe ist.
  14. Temperaturabhängiger Schalter nach Anspruch 11, dadurch gekennzeichnet, dass das bewegliche Kontaktglied (42) ein mit dem ersten Kontakt (48) zusammenwirkendes bewegliches Kontaktteil (38) umfasst, und dass das Federteil (28) mit dem zweiten Kontakt (50) zusammenwirkt.
  15. Temperaturabhängiger Schalter nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das bewegliche Kontaktglied (42') ein mit beiden Kontakten (48', 50') zusammenwirkendes Stromübertragungsglied (64) umfasst.
EP20196416.0A 2019-09-20 2020-09-16 Temperaturabhängiger schalter Active EP3796358B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019125452.3A DE102019125452B4 (de) 2019-09-20 2019-09-20 Temperaturabhängiger Schalter

Publications (2)

Publication Number Publication Date
EP3796358A1 true EP3796358A1 (de) 2021-03-24
EP3796358B1 EP3796358B1 (de) 2024-01-03

Family

ID=72521517

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20196416.0A Active EP3796358B1 (de) 2019-09-20 2020-09-16 Temperaturabhängiger schalter

Country Status (5)

Country Link
US (1) US11264194B2 (de)
EP (1) EP3796358B1 (de)
CN (1) CN112542350B (de)
DE (1) DE102019125452B4 (de)
DK (1) DK3796358T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023104836B3 (de) 2023-02-28 2024-05-16 Marcel P. HOFSAESS Temperaturabhängiges Schaltwerk und temperaturabhängiger Schalter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019128367B4 (de) * 2019-10-21 2021-06-10 Marcel P. HOFSAESS Temperaturabhängiger schalter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2432901A1 (de) * 1974-07-09 1976-01-29 Thermik Geraetebau Gmbh Temperaturwaechter
DE2544201A1 (de) 1975-10-03 1977-04-07 Inter Control Koehler Hermann Rueckstellbarer temperaturbegrenzer
DE8625999U1 (de) 1986-09-29 1986-11-13 Temtech-Temperatur-Technik Hans-Peter Bojer, 7530 Pforzheim, De
DE4321960A1 (de) * 1992-07-16 1994-01-20 Electrovac Thermischer Schalter
US20070188293A1 (en) * 2006-02-16 2007-08-16 Yu-Kang Yang Temperature switch
DE102007042188B3 (de) 2007-08-28 2009-04-09 Hofsaess, Marcel P. Temperaturabhängiger Schalter mit Selbsthaltefunktion
DE102013101392A1 (de) 2013-02-13 2014-08-14 Thermik Gerätebau GmbH Temperaturabhängiger Schalter
DE102018100890B3 (de) 2018-01-16 2019-07-18 Marcel P. HOFSAESS Temperaturabhängiger Schalter

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925742A (en) * 1974-06-25 1975-12-09 Fasco Industries Mechanical latch relay
DE2625120C3 (de) * 1976-06-04 1980-04-10 Peter 7530 Pforzheim Hofsaess Elektrischer Temperaturschutzschalter
AT354140B (de) * 1976-07-23 1979-12-27 Electrovac Thermischer schalter
AT362600B (de) * 1979-04-19 1981-05-25 Electrovac Thermischer schalter
DE3122899C2 (de) * 1981-06-10 1984-10-11 Peter 7530 Pforzheim Hofsäss Temperaturschalter
AT383696B (de) * 1982-03-03 1987-08-10 Electrovac Thermischer schalter
JPH0244232U (de) * 1988-09-21 1990-03-27
US5084691A (en) * 1990-10-01 1992-01-28 Motorola, Inc. Controllable fuse
JPH11167852A (ja) * 1997-12-05 1999-06-22 Hitachi Ltd 継電器を備えた機器
US5986535A (en) * 1998-01-20 1999-11-16 Texas Instruments Incorporated Low cost thermostat apparatus and method for calibrating same
US6191680B1 (en) * 1998-02-23 2001-02-20 HOFSäSS MARCEL Switch having a safety element
DE19827113C2 (de) * 1998-06-18 2001-11-29 Marcel Hofsaes Temperaturabhängiger Schalter mit Stromübertragungsglied
DE19856707A1 (de) * 1998-12-09 2000-06-21 Ellenberger & Poensgen Schutzschalter zur Absicherung von Stromkreisen
US6236300B1 (en) * 1999-03-26 2001-05-22 R. Sjhon Minners Bistable micro-switch and method of manufacturing the same
JP3269495B2 (ja) * 2000-02-02 2002-03-25 松下電器産業株式会社 暖房装置
JP4312350B2 (ja) * 2000-06-06 2009-08-12 ウチヤ・サーモスタット株式会社 サーマルプロテクタ
US6741159B1 (en) * 2002-05-16 2004-05-25 Robert A. Kuczynski Fail-safe assembly for coacting contacts in a current-carrying system, apparatus or component
US7071809B2 (en) * 2002-11-25 2006-07-04 Honeywell International Inc. Thermal fuse containing bimetallic sensing element
US7209336B2 (en) * 2004-10-02 2007-04-24 Tsung-Mou Yu Double-protection circuit protector
US7345568B2 (en) * 2005-05-03 2008-03-18 Tsung-Mou Yu Dual protection device for circuits
WO2010103590A1 (ja) * 2009-03-12 2010-09-16 ウチヤ・サーモスタット株式会社 サーマルスイッチ
DE102011101862B4 (de) * 2011-05-12 2012-12-13 Thermik Gerätebau GmbH Temperaturabhängiger Schalter mit Stromübertragungsglied
DE102011119637B4 (de) * 2011-11-22 2013-06-06 Marcel P. HOFSAESS Temperaturabhängiger Schalter mit einem temperaturabhängigen Schaltwerk sowie Verfahren zum Herstellen eines solchen Schalters
DE102012103306B3 (de) * 2012-04-17 2013-04-25 Thermik Gerätebau GmbH Temperaturabhängiger Schalter mit Kontaktteil als Heizwiderstand
DE102013101393B4 (de) * 2013-02-13 2014-10-09 Thermik Gerätebau GmbH Temperaturabhängiger Schalter
WO2014171516A1 (ja) * 2013-04-19 2014-10-23 タイコエレクトロニクスジャパン合同会社 保護装置
DE102013108508A1 (de) * 2013-08-07 2015-02-12 Thermik Gerätebau GmbH Temperaturabhängiger Schalter
DE102014108518A1 (de) * 2014-06-17 2015-12-17 Thermik Gerätebau GmbH Temperaturabhängiger Schalter mit Distanzring
CN208973337U (zh) * 2018-06-08 2019-06-14 九阳股份有限公司 一种温度波动小的电火锅

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2432901A1 (de) * 1974-07-09 1976-01-29 Thermik Geraetebau Gmbh Temperaturwaechter
DE2544201A1 (de) 1975-10-03 1977-04-07 Inter Control Koehler Hermann Rueckstellbarer temperaturbegrenzer
DE8625999U1 (de) 1986-09-29 1986-11-13 Temtech-Temperatur-Technik Hans-Peter Bojer, 7530 Pforzheim, De
DE4321960A1 (de) * 1992-07-16 1994-01-20 Electrovac Thermischer Schalter
US20070188293A1 (en) * 2006-02-16 2007-08-16 Yu-Kang Yang Temperature switch
DE102007042188B3 (de) 2007-08-28 2009-04-09 Hofsaess, Marcel P. Temperaturabhängiger Schalter mit Selbsthaltefunktion
DE102013101392A1 (de) 2013-02-13 2014-08-14 Thermik Gerätebau GmbH Temperaturabhängiger Schalter
DE102018100890B3 (de) 2018-01-16 2019-07-18 Marcel P. HOFSAESS Temperaturabhängiger Schalter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023104836B3 (de) 2023-02-28 2024-05-16 Marcel P. HOFSAESS Temperaturabhängiges Schaltwerk und temperaturabhängiger Schalter

Also Published As

Publication number Publication date
DE102019125452B4 (de) 2021-04-22
US20210090833A1 (en) 2021-03-25
DE102019125452A1 (de) 2021-03-25
CN112542350B (zh) 2023-12-26
EP3796358B1 (de) 2024-01-03
CN112542350A (zh) 2021-03-23
US11264194B2 (en) 2022-03-01
DK3796358T3 (da) 2024-04-02

Similar Documents

Publication Publication Date Title
DE3122899C2 (de) Temperaturschalter
EP3511968B1 (de) Temperaturabhängiger schalter
DE102007042188B3 (de) Temperaturabhängiger Schalter mit Selbsthaltefunktion
EP4258315A2 (de) Temperaturabhängiger schalter
DE202013012037U1 (de) Temperaturabhängiger Schalter
DE102015114248A1 (de) Temperaturabhängiger Schalter mit Schneidgrat
EP3813090B1 (de) Temperaturabhängiger schalter
EP3796358B1 (de) Temperaturabhängiger schalter
DE102019125451B4 (de) Temperaturabhängiger Schalter
EP3736845B1 (de) Temperaturabhängiger schalter
EP0962024B1 (de) Thermische schalteinrichtung, insbesondere bimetallgesteuerter temperaturregler
EP3796360B1 (de) Temperaturabhängiger schalter
DE102019127678B3 (de) Temperaturabhängiger schalter
DE102023104836B3 (de) Temperaturabhängiges Schaltwerk und temperaturabhängiger Schalter
DE102022134379B3 (de) Temperaturabhängiger Schalter
DE102022120447B3 (de) Temperaturabhängiger Schalter
EP3660877B1 (de) Vorrichtung umfassend einen temperaturabhängigen schalter und eine metallene montagekappe
DE102022134380B3 (de) Temperaturabhängige Schaltwerke und temperaturabhängiger Schalter mit einem solchen Schaltwerk
DE102023102302B3 (de) Temperaturabhängiger Schalter
DE102023104839B3 (de) Temperaturabhängiger Schalter
DE102022118402B3 (de) Temperaturabhängiges Schaltwerk, temperaturabhängiger Schalter und Verfahren zur Herstellung eines temperaturabhängigen Schaltwerks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210629

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 37/00 20060101ALI20230127BHEP

Ipc: H01H 37/74 20060101ALI20230127BHEP

Ipc: H01H 37/54 20060101AFI20230127BHEP

INTG Intention to grant announced

Effective date: 20230221

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230718

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006587

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20240325

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D