EP3792495A1 - Seitenkanal-maschine (verdichter, vakuumpumpe oder gebläse) mit einem entnahmekanal im abstreifer - Google Patents

Seitenkanal-maschine (verdichter, vakuumpumpe oder gebläse) mit einem entnahmekanal im abstreifer Download PDF

Info

Publication number
EP3792495A1
EP3792495A1 EP20205155.3A EP20205155A EP3792495A1 EP 3792495 A1 EP3792495 A1 EP 3792495A1 EP 20205155 A EP20205155 A EP 20205155A EP 3792495 A1 EP3792495 A1 EP 3792495A1
Authority
EP
European Patent Office
Prior art keywords
side channel
gas
impeller
channel
gas outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20205155.3A
Other languages
English (en)
French (fr)
Inventor
Rudi Dittmar
Peter Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gardner Denver Deutschland GmbH
Original Assignee
Gardner Denver Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gardner Denver Deutschland GmbH filed Critical Gardner Denver Deutschland GmbH
Publication of EP3792495A1 publication Critical patent/EP3792495A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/009Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by bleeding, by passing or recycling fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/188Rotors specially for regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • F04D5/007Details of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • F04D5/008Details of the stator, e.g. channel shape

Definitions

  • the invention relates to a side channel machine.
  • Side channel machines are generally known from the prior art. Side channel machines are able to convey or compress gas.
  • Generic side channel machines are from the DE 103 34 950 A1 , DE 197 08 953 A1 , DE 103 34 812 A1 or. DE 199 06 515 C1 for example known.
  • the invention is based on the object of providing a side channel machine which is particularly efficient and operates extremely quietly. Furthermore, the side channel machine should have a very high power density.
  • Geometry optimization and targeted flow guidance of the side channel machine bring about an improvement of at least one performance parameter of the same.
  • the power density, the efficiency and / or the noise development of the side channel machine is improved compared to conventional side channel machines.
  • the gas to be conveyed is preferably air or a technical gas.
  • the side channel machine is preferably designed as a side channel blower or side channel compressor executed. It is advantageous if the side channel machine is able to work in vacuum and / or compressor mode.
  • the side channel machine is designed in one or more stages.
  • the at least one gas inlet opening and the at least one gas outlet opening are arranged at a distance from one another in the flow direction of the gas about the axis of rotation. It is advantageous if there is an angle about the axis of rotation of at least 170 ° between them.
  • the impeller is advantageously in direct or indirect drive connection with a motor or drive.
  • the at least one interrupter is preferably mounted on the housing or is an integral part of the same.
  • the at least one gas inlet connector and / or the at least one gas outlet connector is / are preferably mounted on the housing or an integral part of the same.
  • the gas is conveyed from the at least one gas inlet opening in a flow direction around the axis of rotation to the at least one gas outlet opening which is arranged downstream of the at least one gas inlet opening.
  • the gas is thus guided in the side channel in an essentially ring-like manner.
  • it is preferably pressed in the side channel by the centrifugal force that occurs radially outwards and then again to the radially inner region of the side channel with respect to the axis of rotation out, where it re-enters impeller cells between adjacent impeller blades and is again subject to centrifugal force.
  • the side channel machine has two impeller flows.
  • a gas inlet connection is assigned to each impeller inlet.
  • the at least one gas outlet connection is connected essentially tangentially to the side channel for the essentially tangential removal of the gas from the side channel.
  • the at least one gas outlet connection is connected absolutely tangentially to the side channel for the tangential removal of the gas from the side channel.
  • an angle about the axis of rotation between 280 ° and 320 °, more preferably between 290 ° and 310 °, between an upstream connection of the at least one gas outlet connector to the side channel and a downstream outlet of this gas outlet connector.
  • This configuration also results in a reduction in pressure losses.
  • the side channel is delimited by a cover that is radially outer with respect to the axis of rotation, the at least one gas outlet connecting to the cover essentially without a transition and essentially tangentially.
  • the at least one gas outlet connection connects absolutely seamlessly and tangentially to a cover that delimits the side channel radially outward.
  • the side channel is preferably delimited by a base which is radially inner with respect to the axis of rotation, the at least one gas outlet connecting to the base in a substantially seamless and substantially tangential manner.
  • the statements relating to the radially outer cover apply essentially analogously to dependent claim 5. It is advantageous if the at least one gas outlet connection connects absolutely seamlessly and tangentially to a base that delimits the side channel radially inward.
  • the at least one gas outlet nozzle has at least one wall, preferably radially inner with respect to the axis of rotation, which runs essentially parallel to an absolute velocity vector of the gas flowing in the side channel adjacent downstream to the at least one interrupter.
  • the gas thus favorably brushes along the at least one wall of the at least one gas outlet connection.
  • there is at least one wall on the at least one interrupter It is expedient if the at least one wall runs absolutely parallel to an absolute velocity vector of the gas flowing in the side channel adjacent upstream of the at least one interrupter.
  • an interrupter gas mass flow can be discharged harmlessly into the at least one gas outlet nozzle.
  • the at least one discharge channel is advantageously circular in cross section and preferably runs radially with respect to the axis of rotation. In particular, it extends straight.
  • dependent claim 3 prevents gas from inadvertently escaping from the at least at certain operating points of the side channel machine a gas outlet nozzle flows back into the side channel or the at least one interrupter, which would be unfavorable in terms of efficiency and noise development. It is advantageous if the at least one valve is arranged essentially on the outlet side with respect to the flow of the gas on the at least one interrupter.
  • the gas can be sucked in a functionally reliable manner from at least one of the impeller cells adjacent to the at least one discharge channel. It is advantageous if the cross-sectional constriction necessary to form the Venturi arrangement is present in the at least one gas outlet nozzle.
  • the gas can be sucked off in a functionally reliable manner from at least one of the impeller cells adjacent to the at least one discharge channel.
  • the gas can be sucked in a functionally reliable manner from at least one of the impeller cells adjacent to the at least one discharge channel.
  • At least one relief groove extending from the side channel is arranged in the at least one interrupter.
  • the configuration according to dependent claim 11 effectively prevents the occurrence of noise and turbulence.
  • the essentially tangential arrangement of the at least one gas inlet connector on the side channel according to dependent claim 12 enables pressure losses to be reduced, which leads to an improvement in the efficiency of the side channel machine. It is advantageous if the at least one gas inlet connection is connected absolutely tangentially to the side channel for the tangential introduction of the gas into the side channel.
  • a conventional side channel blower 1 comprises an impeller 3 provided with impeller blades 2, which is rotatably mounted in a housing 4 about a longitudinal center axis or axis of rotation 5.
  • a conventional drive 7 is used to drive the impeller 3 in rotation. The gas is accordingly conveyed in the housing 4.
  • the housing 4 comprises a first housing part 8 and a second housing part 9.
  • the first housing part 8 and the second housing part 9 are shown in FIG Fig. 1 assembled and together enclose the rotatably drivable impeller 3 with the impeller blades 2, which is arranged on a drive shaft 10 in a rotationally fixed manner.
  • the impeller 3 is designed like a disk. It comprises an inner impeller hub 11 with a central, circular hub bore 12.
  • the impeller hub 11 is formed by an inner hub base 13 that delimits the hub bore 12 radially outward and a radial, annular hub disk 14 adjoining this.
  • the impeller 3 comprises a radially outer support ring 15, which adjoins the hub disk 14 on the outside and overlaps it on both sides in the direction of the longitudinal center axis 5.
  • the support ring 15 carries a multiplicity of impeller blades 2, distributed in the circumferential direction, which protrude radially from the support ring 15.
  • the impeller blades 2 are arranged equidistant from one another.
  • the impeller blades 2 limit the impeller cells 50 in the circumferential direction.
  • the central hub bore 12 is used to accommodate the drive shaft 10.
  • a conventional feather key connection is provided between the drive shaft 10 and the hub base 13 to transmit a torque applied by the drive shaft 10 to the impeller hub 11 to rotate the impeller 3.
  • the first housing part 8 has a central hub section 16 which delimits a partial hub receiving space 17 radially and axially.
  • the hub section 16 is penetrated by a central shaft bore 18 which opens into the partial hub receiving space 17.
  • An annular side wall 19 adjoins the hub section 16 and extends radially outward from the hub section 16.
  • a circumferential channel section 20 adjoins the side wall 19 on the outside.
  • the hub section 16, the side wall 19 and the channel section 20 are designed as a one-piece cast part and form the first housing part 8.
  • An annular side wall 24 adjoins the hub section 22 and extends radially outward.
  • a circumferential channel section 25 is connected on the outside with the side wall 24.
  • a roller bearing 26 for the drive shaft 10 is arranged in the hub section 22.
  • the hub section 22, the side wall 24 and the channel section 25 are designed as a one-piece cast part and together form the second housing part 9.
  • the first housing part 8 and the second housing part 9 are connected to one another in the assembled state in such a way that the two partial hub receiving spaces 17, 23 jointly delimit a hub receiving space 27 and the two channel sections 20, 25 jointly define a side channel 28 limit for conveying the gas.
  • the two side walls 19, 24 run parallel to one another, spaced apart.
  • the side channel 28 extends annularly around the longitudinal center axis 5.
  • the second housing part 9 is advantageously designed as a housing cover which can be removed from the first housing part 8. Alternatively, a reverse configuration is possible.
  • the side channel blower 1 has two gas inlet connections 29.
  • a gas inlet connection 29 is arranged on each housing part 8, 9.
  • Each gas inlet connector 29 supplies a flood of the side channel 28.
  • the gas to be conveyed can be introduced into the side channel fan 1 in a flow direction 30 via the gas inlet connector 29 when the side channel blower 1 is in operation.
  • the side channel blower 1 also has a gas outlet connection (not shown) which is formed by the two housing parts 8, 9.
  • the gas outlet connection is in flow connection with the side channel 28.
  • the gas can be discharged from the side channel blower 1 in a flow direction 32 via the gas outlet connection.
  • the gas inlet stub 29 and the gas outlet stub extend essentially perpendicular to one another.
  • the side channel blower 1 In the hub receiving space 27 delimited by the hub sections 16, 22, the side channel blower 1 is in the assembled state the hub foot 13 of the impeller 3 is arranged, the hub bore 12 being penetrated by the drive shaft 10. Between the spaced-apart side walls 18, 24 of the housing 4, the hub disk 14 of the impeller 3 extends radially outward from the hub base 13. The support ring 15 and the impeller blades 2 are located in the circumferential side channel 28.
  • FIG Fig. 2 a first embodiment of the invention described, which like the following embodiments in the side channel blower 1 according to Fig. 1 Can be applied.
  • Identical components are given the same reference numerals as in the side channel blower 1 according to FIG Fig. 1 .
  • Functionally identical, but structurally different components are given the same reference numerals with an "a" after them.
  • the side channel 28 is spatially delimited radially inward by a floor 35 and radially outward by a ceiling 36 in relation to the longitudinal center axis 5.
  • the floor 35 and the ceiling 36 lie opposite one another and run at a distance from one another, delimiting the side channel 28. They are formed on the housing 4a.
  • a gas outlet connection 31a is connected essentially tangentially to the side channel 28, so that gas conveyed in a conveying direction 6 leaves the side channel 28 via a gas outlet opening 33 in the housing 4a essentially tangentially.
  • a gas deflection point at which the gas being conveyed is slightly radially outward with respect to the Longitudinal central axis 5 is deflected.
  • the conveyed gas is slightly deflected both in the area of the floor 35 and in the area of the ceiling 36.
  • the gas outlet connector 31a expands substantially uniformly in the flow direction 32 of the gas.
  • the at least one gas inlet nozzle 29a is connected essentially tangentially to the side channel 28, so that the conveyed gas enters the side channel 28 essentially tangentially via at least one gas inlet opening 34 in the housing 4a.
  • connection pieces 29a, 31a Due to the essentially tangential arrangement of the connection pieces 29a, 31a on the side channel 28, pressure losses in the side channel blower 1a can be effectively reduced.
  • An interrupter 39 is arranged in the side channel 28 between the gas outlet opening 33 and the at least one gas inlet opening 34.
  • the interrupter 39 has a side wall 40 adjacent to the gas outlet opening 33.
  • the interrupter 39 has an inner wall 41 that is radially inner in relation to the longitudinal center axis 5 and a radially outer outer wall 42 opposite the inner wall 41.
  • FIG Fig. 3 described a second embodiment of the invention.
  • Structurally identical components are given the same reference numerals as in the side channel blowers 1, 1a according to FIG Fig. 1 or 2.
  • Functionally similar, but structurally different components are given the same reference numerals with a subsequent "b".
  • the at least one gas inlet nozzle 29a is again connected to the side channel 28 essentially tangentially.
  • the gas outlet connector 31b connects absolutely or completely tangentially to the side channel 28. According to Fig. 3 the connection between the side channel 28 and the gas outlet nozzle 31b is seamless. This applies to both the radially inner and the radially outer guidance of the gas in relation to the longitudinal center axis 5.
  • the gas outlet connection 31b widens downstream to the gas outlet opening 33.
  • an inner flow guide wall 37 of the gas outlet connector 31b, which adjoins the base 35, deviates by an angle b from a parallel to an opposite outer flow guide wall 38 of the gas outlet connector 31b, as in FIG Fig. 3 is shown in dashed lines.
  • the angle b is a maximum of 9 °.
  • connection angle c is advantageously a connection angle c about the longitudinal center axis 5, which is between 290 ° and 310 °.
  • Fig. 4 a third embodiment of the invention will be described. Identical parts are given the same reference numerals as in the previous embodiments. Parts that are structurally different but functionally identical are given the same reference numerals with a "c" after them.
  • the interrupter 39c is penetrated by a discharge channel 43 which extends between the inner wall 41 of the interrupter 39c and the outer wall 42 of the interrupter 39c radially with respect to the longitudinal center axis 5.
  • the discharge channel 43 has a cross-sectional area A.
  • a suction channel 44 adjoins the discharge channel 43 on the downstream side, radially on the inside, and opens into the side channel 28 at a distance from the discharge channel 43.
  • the mouth or inlet opening 45 of the suction channel 44 into the side channel 28 is located approximately opposite the discharge channel 43.
  • the inlet opening 45 is spaced from the discharge channel 43 by an angle d about the longitudinal center axis 5, which is between 120 ° and 140 °.
  • the suction channel 44 has a larger, in particular significantly larger, cross-sectional area B than the discharge channel 43.
  • Gas is sucked in via the discharge channel 43 from an impeller cell 50 of the rotating impeller 3, which is located just adjacent to an inlet opening 56 of the discharge channel 43 which opens into the side channel 28.
  • the gas transport can be achieved, for example, by means of corresponding pressure differences, in particular between inlet opening 56 and inlet opening 45. In particular, the pressure prevailing at the inlet opening 45 is lower than at the inlet opening 56.
  • the impeller cells 50 are spatially delimited in the circumferential direction of the side channel 28 by adjacently arranged impeller blades 2. The gas then flows in the suction channel 44 and re-enters the side channel 28 via the inlet opening 45.
  • FIG Fig. 5 a fourth embodiment of the invention is described. Identical parts are given the same reference numbers as in the previous embodiments. Parts that are structurally different but functionally identical have the same reference numerals followed by a "d".
  • the outer wall 42d of the interrupter 39d which also forms the flow guide wall 37, extends parallel to an absolute velocity vector or to an absolute velocity direction 46 of the gas flowing immediately upstream to the interrupter 39d at the flow point P.
  • the absolute velocity vector 46 is determined by adding the circumferential velocity of the Impeller 3 received about the longitudinal center axis 5 and the relative speed of the gas radially outward with respect to the longitudinal center axis 5.
  • angle e which is preferably between 15 ° and 40 °, more preferably between 20 ° and 30 °.
  • the gas outlet connector 31 can widen in the direction of flow 32.
  • FIG Fig. 6 a fifth embodiment of the invention is described. Identical parts are given the same reference numerals as in the previous embodiments. Parts that are structurally different but functionally identical have the same reference numerals followed by an "e”.
  • the discharge channel 43e is located in the interrupter 39e, which provides a flow connection between the side channel 28 and the gas outlet nozzle 31 manufactures.
  • the discharge channel 43e extends radially or essentially radially with respect to the longitudinal center axis 5.
  • the suction volume flow is thus dependent on the circumferential speed of the impeller, the cross-sectional area of the side channel on the pressure side, the pressure ratio over the side channel fan and the diameter of the Impeller at the impeller-blade base as well as the outer diameter of the impeller.
  • a dead space trough 47 extends from the gas outlet connection 31 or the outer wall 42e of the interrupter 39e.
  • the discharge channel 43e opens into the dead space trough 47.
  • an automatic valve plate 49 is fastened to the interrupter 39e via at least one fastening means 48, which, in its closed position, closes the discharge channel 43e at its downstream end area opposite its inlet opening 56. In the open position, the valve plate 49 is lifted from the interrupter 39e at least in some areas and thus releases the discharge channel 43e at least in some areas for the gas.
  • the gas outlet connector 31 In the area of the dead space trough 47, the gas outlet connector 31 thus has an expanded cross-sectional area.
  • a gas dead space area arises in the dead space trough 47.
  • the pressure of the gas is then reduced in the dead space trough 47, so that when the valve plate 49 is open, gas is sucked out of the impeller cell 50, which is currently adjacent to the discharge channel 43e.
  • the valve plate 49 In its closed position, the valve plate 49 prevents the gas from flowing back unintentionally from the gas outlet connector 31 or the dead space trough 47 into the discharge channel 43e or the side channel 28.
  • valve plate 49 can also in the embodiment according to Fig. 6 be present without dead space trough 47.
  • the suction volume flow is therefore dependent on the circumferential speed of the impeller, the cross-sectional area of the side channel on the pressure side, the pressure ratio over the side channel fan, the diameter of the impeller at the impeller-blade base and the outer diameter of the impeller as well as the cross-sectional area of the vena contracta of the Venturi nozzle in the Gas outlet connection dependent.
  • FIG Fig. 7 a sixth embodiment of the invention is described. Identical parts are given the same reference numerals as in the previous embodiments. Parts that are structurally different but functionally identical have the same reference numerals followed by an "f".
  • the side channel blower 1f has a flow-reducing projection 51 which jumps into the gas outlet connection 31.
  • the discharge channel 43f also penetrates the Flow reduction projection 51.
  • a valve plate 49 is preferably arranged on the flow reduction projection 51 again via at least one fastening means 48.
  • the gas outlet connector 31 has a reduced flow cross-section, so that there is a particularly high flow velocity of the conveyed gas. Conversely, there is consequently a reduced pressure there, so that gas is sucked out of the impeller cell 50 which is just adjacent to the discharge channel 43f via the discharge channel 43f into the gas outlet connection 31.
  • a Venturi nozzle or arrangement is created in this way, as it were.
  • FIG Fig. 8 a seventh embodiment of the invention is described. Identical parts are given the same reference numerals as in the previous embodiments. Parts that are structurally different but functionally identical have the same reference numerals with a "g" after them.
  • the interrupter 39g there is at least one stress-relieving groove 52 which starts from the side channel 28. Between an upstream starting point 53 of the expansion groove 52 and an axial or circumferential impeller cell opening 54, there is preferably a distance x which corresponds to at least 1.5 times the distance r between adjacent impeller blades 2 around the longitudinal center axis 5. In the conveying direction 6, the radial depth t of the relaxation groove 52 gradually increases in relation to the longitudinal center axis 5.
  • the angle e of the expansion groove 52 is favorably based on the pressure ratio p Z / p 1 and the circumferential speed u of the impeller, where pz is the pressure prevailing in the impeller cells 50 and p 1 is the suction pressure of the side channel blower is.
  • the at least one expansion groove 52 can then be dimensioned according to the known principles of the “Prandtl-Meyer corner flow”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft eine Seitenkanal-Maschine, die ein Gehäuse (4a), einen in dem Gehäuse (4a) befindlichen Seitenkanal (28) zur Führung eines Gases und mindestens eine, mit dem Seitenkanal (28) in Strömungsverbindung stehende, in dem Gehäuse (4a) ausgebildete Gas-Einlassöffnung (34) aufweist. Ferner hat die Seitenkanal-Maschine mindestens einen, sich an die mindestens eine Gas-Einlassöffnung (34) anschließenden Gas-Einlassstutzen (29a). Die Seitenkanal-Maschine umfasst außerdem mindestens eine Gas-Auslassöffnung (33) und mindestens einen, sich an die mindestens eine Gas-Auslassöffnung (33) anschließenden Gas-Auslassstutzen (31a). Ferner weist die Seitenkanal-Maschine ein in dem Gehäuse (4a) drehbares Laufrad mit in dem Seitenkanal (28) angeordneten, Laufrad-Zellen begrenzenden Laufrad-Schaufeln zur Förderung des sich in den Laufrad-Zellen befindlichen Gases von der mindestens einen Gas-Einlassöffnung (34) zu der mindestens einen Gas-Auslassöffnung (33) auf. Die Seitenkanal-Maschine weist ferner mindestens einen zwischen der mindestens einen Gas-Einlassöffnung (34) und der mindestens einen Gas-Auslassöffnung (33) angeordneten Unterbrecher (39) auf.

Description

  • Die vorliegende Patentanmeldung nimmt die Priorität der deutschen Patentanmeldung DE 10 2015 213 549.7 in Anspruch, deren Inhalt durch Bezugnahme hierin aufgenommen wird.
  • Die Erfindung betrifft eine Seitenkanal-Maschine.
  • Seitenkanal-Maschinen sind aus dem Stand der Technik allgemein bekannt. Seitenkanal-Maschinen sind imstande, Gas zu fördern bzw. zu verdichten.
  • Gattungsgemäße Seitenkanal-Maschinen sind aus der DE 103 34 950 A1 , DE 197 08 953 A1 , DE 103 34 812 A1 bzw. DE 199 06 515 C1 beispielsweise bekannt.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Seitenkanal-Maschine bereitzustellen, die einen besonders hohen Wirkungsgrad hat und äußerst geräuscharm arbeitet. Ferner soll die Seitenkanal-Maschine eine sehr hohe Leistungsdichte haben.
  • Diese Aufgabe wird erfindungsgemäß durch die in dem unabhängigen Anspruch 1 angegebenen Merkmale gelöst. Geometrieoptimierung und gezielte Strömungsführung der Seitenkanal-Maschine bewirken eine Verbesserung von mindestens einem Leistungsparameter derselben. Vorteilhafterweise ist die Leistungsdichte, der Wirkungsgrad und/oder die Geräuschentwicklung der Seitenkanal-Maschine gegenüber herkömmlicher Seitenkanal-Maschinen verbessert. Bei dem zu fördernden Gas handelt es sich vorzugsweise um Luft oder um ein technisches Gas. Die Seitenkanal-Maschine ist vorzugsweise als Seitenkanal-Gebläse oder Seitenkanal-Verdichter ausgeführt. Es ist von Vorteil, wenn die Seitenkanal-Maschine im Stande ist, im Vakuum- und/oder Kompressor-Betrieb zu arbeiten.
  • Die Seitenkanal-Maschine ist ein- oder mehrstufig ausgebildet.
  • Die mindestens eine Gas-Einlassöffnung und die mindestens eine Gas-Auslassöffnung sind in Strömungsrichtung des Gases um die Rotationsachse beabstandet zueinander angeordnet. Es ist von Vorteil, wenn zwischen diesen ein Winkel um die Rotationsachse von mindestens 170° vorliegt.
  • Das Laufrad steht günstigerweise mit einem Motor bzw. Antrieb in direkter oder indirekter Antriebsverbindung.
  • Der mindestens eine Unterbrecher ist vorzugsweise an dem Gehäuse montiert oder integraler Bestandteil desselben.
  • Der mindestens eine Gas-Einlassstutzen und/oder der mindestens eine Gas-Auslassstutzen ist/sind vorzugsweise an dem Gehäuse montiert oder integraler Bestandteil desselben.
  • Im Betrieb der Seitenkanal-Maschine wird das Gas von der mindestens einen Gas-Einlassöffnung in einer Strömungsrichtung um die Rotationsachse zu der mindestens einen Gas-Auslassöffnung gefördert, die stromabwärts zu der mindestens einen Gas-Einlassöffnung angeordnet ist. Das Gas ist so im Wesentlichen ringartig in dem Seitenkanal geführt. Es wird dabei vorzugsweise in dem Seitenkanal durch die auftretende Zentrifugalkraft nach radial außen gedrückt und anschließend wieder zum radial innenliegenden Bereich des Seitenkanals in Bezug auf die Rotationsachse geführt, wo es wieder in Laufrad-Zellen zwischen benachbarten Laufrad-Schaufeln eintritt und der Zentrifugalkraft erneut unterliegt.
  • Es ist von Vorteil, wenn zwei, günstigerweise nebeneinander angeordnete, Gas-Einlassöffnungen und genau eine Gas-Auslassöffnung sowie genau ein Unterbrecher vorhanden sind. Alternativ sind mehr als zwei Gas-Einlassöffnungen, mehrere Gas-Auslassöffnungen und/oder Unterbrecher vorgesehen.
  • Es ist zweckmäßig, wenn die Seitenkanal-Maschine zwei Laufrad-Fluten hat. Beispielsweise ist genau ein Gas-Einlassstutzen vorhanden, der ausgebildet ist, das Gas, insbesondere gleichmäßig, auf die zwei Laufrad-Fluten aufzuteilen. Alternativ ist beispielsweise jeder Laufrad-Flut ein Gas-Einlassstutzen zugeordnet.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Es ist von Vorteil, wenn sich der mindestens eine Gas-Auslassstutzen im Wesentlichen tangential an den Seitenkanal zum im Wesentlichen tangentialen Abführen des Gases aus dem Seitenkanal anschließt. Durch die im Wesentlichen tangentiale Anordnung des mindestens einen Gas-Auslassstutzens an dem Seitenkanal sind Druckverluste reduzierbar, was zu einer Verbesserung des Wirkungsgrads der Seitenkanal-Maschine führt. Es ist von Vorteil, wenn sich der mindestens eine Gas-Auslassstutzen absolut tangential an den Seitenkanal zum tangentialen Abführen des Gases aus dem Seitenkanal anschließt.
  • Günstigerweise liegt zwischen einem stromaufwärtigen Anschluss des mindestens einen Gas-Auslassstutzens an den Seitenkanal und einem stromabwärtigen Auslass dieses Gas-Auslassstutzens ein Winkel um die Rotationsachse zwischen 280° und 320°, bevorzugter zwischen 290° und 310°, vor. Auch diese Ausgestaltung ergibt eine Reduzierung der Druckverluste.
  • Es ist von Vorteil, wenn der Seitenkanal durch eine in Bezug auf die Rotationsachse radial äußere Decke begrenzt ist, wobei sich der mindestens eine Gas-Auslassstutzen im Wesentlichen übergangslos und im Wesentlichen tangential an die Decke anschließt. Durch diese Ausgestaltung sind Wirbelablösungen an den Laufrad-Schaufeln und an dem mindestens einen Gas-Auslassstutzen reduzierbar, wodurch Kennlinien-Einbußen bzw. Druckverluste vermeidbar sind. Ferner sind so Betriebsgeräusche der Seitenkanal-Maschine reduzierbar. Es ist von Vorteil, wenn sich der mindestens eine Gas-Auslassstutzen absolut übergangslos und tangential an eine den Seitenkanal nach radial außen begrenzende Decke anschließt.
  • Vorzugsweise ist der Seitenkanal durch einen in Bezug auf die Rotationsachse radial inneren Boden begrenzt, wobei sich der mindestens eine Gas-Auslassstutzen im Wesentlichen übergangslos und im Wesentlichen tangential an den Boden anschließt. Die Ausführungen zu der radial äußeren Decke gelten im Wesentlichen analog zu dem Unteranspruch 5. Es ist von Vorteil, wenn sich der mindestens eine Gas-Auslassstutzen absolut übergangslos und tangential an einen den Seitenkanal nach radial innen begrenzenden Boden anschließt.
  • Es ist zweckmäßig, wenn sich ein Strömungsquerschnitt in dem mindestens einen Gas-Auslassstutzen in Strömungsrichtung des Gases zumindest bereichsweise erweitert, wobei vorzugsweise zumindest in einem stromaufwärtigen Anfangsbereich des mindestens einen Gas-Auslassstutzens einander gegenüberliegende Strömungsführungswände des mindestens einen Gas-Auslassstutzens einen Erweiterungswinkel von höchstens 11°, bevorzugter von höchstens 9°, zueinander einnehmen.
  • Es ist von Vorteil, wenn der mindestens eine Gas-Auslassstutzen mindestens eine, vorzugsweise in Bezug auf die Rotationsachse radial innere, Wand aufweist, die im Wesentlichen parallel zu einem Absolutgeschwindigkeitsvektor des in dem Seitenkanal benachbart stromabwärts zu dem mindestens einen Unterbrecher strömenden Gases verläuft. Bei dieser Seitenkanal-Maschine sind Auftreffgeräusche des Gases auf den mindestens einen Unterbrecher verhinderbar, was einen besonders geräuscharmen Betrieb der Seitenkanal-Maschine gewährleistet. Das Gas streicht so günstigerweise an der mindestens einen Wand des mindestens einen Gas-Auslassstutzens entlang. Es ist von Vorteil, wenn diese mindestens eine Wand an dem mindestens einen Unterbrecher vorliegt. Es ist zweckmäßig, wenn die mindestens eine Wand absolut parallel zu einem Absolutgeschwindigkeitsvektor des in dem Seitenkanal benachbart stromaufwärts zu dem mindestens einen Unterbrecher strömenden Gases verläuft.
  • Bei der Seitenkanal-Maschine gemäß dem Unteranspruch 2 ist ein Unterbrecher-Gas-Massenstrom unschädlich in den mindestens einen Gas-Auslassstutzen abführbar. Der mindestens eine Abführkanal ist günstigerweise im Querschnitt kreisförmig und verläuft vorzugsweise radial in Bezug auf die Rotationsachse. Er erstreckt sich insbesondere gerade.
  • Die Ausgestaltung des Unteranspruchs 3 verhindert, dass bei bestimmten Betriebspunkten der Seitenkanal-Maschine Gas ungewollt aus dem mindestens einen Gas-Auslassstutzen in den Seitenkanal bzw. den mindestens einen Unterbrecher zurückströmt, was in Bezug auf Wirkungsgrad und Geräuschentwicklung ungünstig wäre. Es ist von Vorteil, wenn das mindestens eine Ventil im Wesentlichen ausgangsseitig in Bezug auf die Strömung des Gases an dem mindestens einen Unterbrecher angeordnet ist.
  • Durch die Ausgestaltung gemäß dem Unteranspruch 4 ist auf einfache Art und Weise das Gas aus mindestens einer der, zu dem mindestens einen Abführkanal benachbarten Laufrad-Zellen funktionssicher absaugbar. Es ist von Vorteil, wenn die zur Bildung der Venturi-Anordnung notwendige Querschnittsverengung in dem mindestens einen Gas-Auslassstutzen vorliegt.
  • Durch die Ausgestaltung gemäß dem Unteranspruch 5 ist auf einfache Art und Weise das Gas aus mindestens einer der, zu dem mindestens einen Abführkanal benachbarten Laufrad-Zellen funktionssicher absaugbar.
  • Durch die Ausgestaltung gemäß dem Unteranspruch 6 ist auf einfache Art und Weise das Gas aus mindestens einer der, zu dem mindestens einen Abführkanal benachbarten Laufrad-Zellen funktionssicher absaugbar.
  • Durch die in dem Unteranspruch 8 angegebene Beabstandung zwischen der stromabwärtigen Eintrittsöffnung des mindestens einen Absaugkanals in den Seitenkanal und einem stromaufwärtigen Beginn des mindestens einen Absaugkanals sind Beeinträchtigungen des Ansaugens des Gases in den mindestens einen Absaugkanal verhinderbar.
  • Gemäß dem Unteranspruch 9 ist in dem mindestens einen Unterbrecher mindestens eine, von dem Seitenkanal ausgehende Entspannungsnut angeordnet. Durch die mindestens eine Entspannungsnut ist das Entspannungsgeräusch des Gases, das im Betrieb der Seitenkanal-Maschine durch den aus den Laufrad-Zellen austretenden, gespannten Unterbrecher-Gas-Massenstrom entsteht, reduzierbar. Ferner sind Nutz-Volumenströme durch Blockieren eines Einströmquerschnitts reduzierbar.
  • Durch die Ausgestaltung gemäß dem Unteranspruch 10 sind Einflüsse der Zellenentspannung in dem mindestens einen Gas-Einlassstutzen vermeidbar, sodass der Nutz-Ansaug-Volumenstrom unbeeinflusst bleibt.
  • Die Ausgestaltung gemäß dem Unteranspruch 11 verhindert wirksam die Entstehung von Geräuschen und Turbulenzen.
  • Durch die im Wesentlichen tangentiale Anordnung des mindestens einen Gas-Einlassstutzens an den Seitenkanal gemäß dem Unteranspruch 12 sind Druckverluste reduzierbar, was zu einer Verbesserung des Wirkungsgrads der Seitenkanal-Maschine führt. Es ist von Vorteil, wenn sich der mindestens eine Gas-Einlassstutzen absolut tangential an den Seitenkanal zum tangentialen Einführen des Gases in den Seitenkanal anschließt.
  • Nachfolgend werden unter Bezugnahme auf die beigefügte Zeichnung bevorzugte Ausführungsformen der Erfindung beispielhaft beschrieben. Dabei zeigen:
  • Fig. 1
    eine Ansicht einer herkömmlichen Seitenkanal-Maschine und eines an diese angeflanschten Antriebs, wobei die Seitenkanal-Maschine im Längsschnitt dargestellt ist,
    Fig. 2
    eine Draufsicht auf eine erfindungsgemäße Seitenkanal-Maschine gemäß einer ersten Ausführungsform,
    Fig. 3
    eine der Fig. 2 entsprechende Draufsicht auf eine erfindungsgemäße Seitenkanal-Maschine gemäß einer zweiten Ausführungsform,
    Fig. 4
    eine der Fig. 2 entsprechende Draufsicht auf eine erfindungsgemäße Seitenkanal-Maschine gemäß einer dritten Ausführungsform,
    Fig. 5
    eine vereinfachte Ansicht, die im Wesentlichen einen Gas-Auslassstutzen, einen Teil eines Laufrads und einen Teil eines Unterbrechers einer erfindungsgemäßen Seitenkanal-Maschine gemäß einer vierten Ausführungsform veranschaulicht,
    Fig. 6
    eine der Fig. 5 entsprechende vereinfachte Ansicht, die im Wesentlichen einen Gas-Auslassstutzen, einen Teil eines Laufrads und einen Teil eines Unterbrechers einer erfindungsgemäßen Seitenkanal-Maschine gemäß einer fünften Ausführungsform veranschaulicht,
    Fig. 7
    eine der Fig. 5 entsprechende vereinfachte Ansicht, die im Wesentlichen einen Gas-Auslassstutzen, einen Teil eines Laufrads und einen Teil eines Unterbrechers einer erfindungsgemäßen Seitenkanal-Maschine gemäß einer sechsten Ausführungsform veranschaulicht, und
    Fig. 8
    eine der Fig. 5 entsprechende vereinfachte Ansicht, die im Wesentlichen einen Gas-Auslassstutzen, einen Teil eines Laufrads und einen Teil eines Unterbrechers einer erfindungsgemäßen Seitenkanal-Maschine gemäß einer siebten Ausführungsform veranschaulicht.
  • Zunächst Bezug nehmend auf Fig. 1, die zur allgemeinen Erläuterung dient, umfasst ein herkömmliches Seitenkanal-Gebläse 1 ein mit Laufrad-Schaufeln 2 versehenes Laufrad 3, das in einem Gehäuse 4 um eine Längsmittelachse bzw. Rotationsachse 5 drehbar gelagert ist. Zum Drehantrieb des Laufrads 3 dient ein herkömmlicher Antrieb 7. Das Gas wird so entsprechend in dem Gehäuse 4 gefördert.
  • Das Gehäuse 4 umfasst ein erstes Gehäuseteil 8 und ein zweites Gehäuseteil 9. Das erste Gehäuseteil 8 und das zweite Gehäuseteil 9 sind gemäß Fig. 1 zusammengefügt und umschließen gemeinsam das auf einer Antriebswelle 10 drehfest angeordnete, drehantreibbare Laufrad 3 mit den Laufrad-Schaufeln 2.
  • Das Laufrad 3 ist scheibenartig ausgebildet. Es umfasst eine innere Laufrad-Nabe 11 mit einer zentralen, kreisförmigen Nabenbohrung 12. Die Laufrad-Nabe 11 ist durch einen inneren, die Nabenbohrung 12 radial nach außen begrenzenden Nabenfuß 13 sowie eine sich an diesen anschließende, radiale, kreisringförmige Nabenscheibe 14 gebildet. Ferner umfasst das Laufrad 3 einen radial äußeren Tragring 15, der sich außenseitig an die Nabenscheibe 14 anschließt und diese in Richtung der Längsmittelachse 5 beidseitig überlappt. Der Tragring 15 trägt in Umfangsrichtung verteilt eine Vielzahl der Laufrad-Schaufeln 2, die von dem Tragring 15 radial abstehen. Insbesondere sind die Laufrad-Schaufeln 2 äquidistant zueinander angeordnet. Durch die Laufrad-Schaufeln 2 sind Laufrad-Zellen 50 in Umfangsrichtung begrenzt.
  • Die zentrale Nabenbohrung 12 dient zur Aufnahme der Antriebswelle 10. Zur Übertragung eines von der Antriebswelle 10 aufgebrachten Drehmoments auf die Laufrad-Nabe 11 zur Rotation des Laufrads 3 ist eine herkömmliche Passfeder-Verbindung zwischen der Antriebswelle 10 und dem Nabenfuß 13 vorgesehen.
  • Das erste Gehäuseteil 8 hat einen zentralen Nabenabschnitt 16, der einen Teil-Naben-Aufnahme-Raum 17 radial und axial begrenzt. Der Nabenabschnitt 16 ist von einer zentralen Wellenbohrung 18 durchsetzt, die in den Teil-Naben-Aufnahme-Raum 17 mündet. An den Nabenabschnitt 16 schließt sich eine ringförmige Seitenwand 19 an, die von dem Nabenabschnitt 16 radial nach außen verläuft. An die Seitenwand 19 grenzt außenseitig ein umlaufender Kanalabschnitt 20 an. Der Nabenabschnitt 16, die Seitenwand 19 und der Kanalabschnitt 20 sind als einstückiges Gußteil ausgebildet und bilden das erste Gehäuseteil 8.
  • Das zweite Gehäuseteil 9, das mittels mehrerer Verbindungsschrauben 21 mit dem ersten Gehäuseteil 8 verschraubt ist, weist wieder einen zentralen Nabenabschnitt 22 auf, der einen Teil-Naben-Aufnahme-Raum 23 radial und axial begrenzt. An den Nabenabschnitt 22 schließt sich eine ringförmige Seitenwand 24 an, die radial nach außen verläuft. Mit der Seitenwand 24 ist außenseitig ein umlaufender Kanalabschnitt 25 verbunden. In dem Nabenabschnitt 22 ist ein Wälzlager 26 für die Antriebswelle 10 angeordnet. Der Nabenabschnitt 22, die Seitenwand 24 und der Kanalabschnitt 25 sind als einstückiges Gußteil ausgebildet und bilden zusammen das zweite Gehäuseteil 9.
  • Das erste Gehäuseteil 8 und das zweite Gehäuseteil 9 sind in zusammengesetztem Zustand so miteinander verbunden, dass die beiden Teil-Naben-Aufnahme-Räume 17, 23 gemeinsam einen Naben-Aufnahme-Raum 27 begrenzen und die beiden Kanalabschnitte 20, 25 gemeinsam einen Seitenkanal 28 zur Förderung des Gases begrenzen. Die beiden Seitenwände 19, 24 verlaufen dabei beabstandet parallel zueinander. Der Seitenkanal 28 erstreckt sich ringförmig um die Längsmittelachse 5.
  • Günstigerweise ist das zweite Gehäuseteil 9 als Gehäusedeckel ausgeführt, der von dem ersten Gehäuseteil 8 abnehmbar ist. Eine umgekehrte Ausgestaltung ist alternativ möglich.
  • Das Seitenkanal-Gebläse 1 hat zwei Gas-Einlassstutzen 29. An jedem Gehäuseteil 8, 9 ist ein Gas-Einlassstutzen 29 angeordnet. Jeder Gas-Einlassstutzen 29 versorgt eine Flut des Seitenkanals 28. Über die Gas-Einlassstutzen 29 ist im Betrieb des Seitenkanal-Gebläses 1 das zu fördernde Gas in einer Strömungsrichtung 30 in das Seitenkanal-Gebläse 1 einführbar.
  • Ferner hat das Seitenkanal-Gebläse 1 einen Gas-Auslassstutzen (nicht dargestellt), der durch die beiden Gehäuseteile 8, 9 gebildet ist. Der Gas-Auslassstutzen steht mit dem Seitenkanal 28 in Strömungsverbindung. Über den Gas-Auslassstutzen ist das Gas aus dem Seitenkanal-Gebläse 1 in einer Strömungsrichtung 32 abführbar. Die Gas-Einlassstutzen 29 und der Gas-Auslassstutzen erstrecken sich im Wesentlichen senkrecht zueinander.
  • In dem durch die Nabenabschnitte 16, 22 begrenzten Naben-Aufnahme-Raum 27 ist in zusammengesetztem Zustand des Seitenkanal-Gebläses 1 der Nabenfuß 13 des Laufrads 3 angeordnet, wobei die Nabenbohrung 12 von der Antriebswelle 10 durchdrungen ist. Zwischen den zueinander beabstandeten Seitenwänden 18, 24 des Gehäuses 4 erstreckt sich die Nabenscheibe 14 des Laufrads 3 von dem Nabenfuß 13 radial nach außen. Der Tragring 15 und die Laufrad-Schaufeln 2 befinden sich dabei in dem umlaufenden Seitenkanal 28.
  • Nachfolgend wird unter Bezugnahme auf Fig. 2 eine erste Ausführungsform der Erfindung beschrieben, die wie die nachfolgenden Ausführungsformen bei dem Seitenkanal-Gebläse 1 gemäß Fig. 1 Anwendung finden kann. Auf die Ausführungen zu dem Seitenkanal-Gebläse 1 gemäß Fig. 1 wird verwiesen. Identische Bauteile erhalten nachfolgend dieselben Bezugszeichen wie bei dem Seitenkanal-Gebläse 1 gemäß Fig. 1. Funktionell identische, jedoch konstruktiv unterschiedliche Bauteile erhalten dieselben Bezugszeichen mit einem nachgeordneten "a".
  • Bei dem Seitenkanal-Gebläse 1a ist der Seitenkanal 28 durch einen Boden 35 nach radial innen und durch eine Decke 36 nach radial außen in Bezug auf die Längsmittelachse 5 räumlich begrenzt. Der Boden 35 und die Decke 36 liegen einander gegenüber und verlaufen unter Begrenzung des Seitenkanals 28 beabstandet zueinander. Sie sind an dem Gehäuse 4a gebildet.
  • Bei dem Seitenkanal-Gebläse 1a gemäß Fig. 2 ist ein Gas-Auslassstutzen 31a im Wesentlichen tangential an den Seitenkanal 28 angeschlossen, sodass in einer Förderrichtung 6 gefördertes Gas den Seitenkanal 28 über eine Gas-Auslassöffnung 33 in dem Gehäuse 4a im Wesentlichen tangential verlässt. Zwischen dem Seitenkanal 28 und dem Gas-Auslassstutzen 31a liegt benachbart zu der Gas-Auslassöffnung 33 eine Gas-Umlenkstelle vor, bei der das geförderte Gas geringfügig radial nach außen in Bezug auf die Längsmittelachse 5 umgelenkt wird. Das geförderte Gas wird dabei sowohl im Bereich des Bodens 35 als auch im Bereich der Decke 36 geringfügig umgelenkt.
  • Der Gas-Auslassstutzen 31a erweitert sich im Wesentlichen gleichmäßig in der Strömungsrichtung 32 des Gases.
  • Wie außerdem aus Fig. 2 hervorgeht, ist der mindestens eine Gas-Einlassstutzen 29a im Wesentlichen tangential an den Seitenkanal 28 angeschlossen, sodass das geförderte Gas im Wesentlichen tangential über mindestens eine Gas-Einlassöffnung 34 in dem Gehäuse 4a in den Seitenkanal 28 eintritt.
  • Durch die im Wesentlichen tangentiale Anordnung der Stutzen 29a, 31a an den Seitenkanal 28 sind Druckverluste in dem Seitenkanal-Gebläse 1a wirksam reduzierbar.
  • Zwischen der Gas-Auslassöffnung 33 und der mindestens einen Gas-Einlassöffnung 34 ist ein Unterbrecher 39 in dem Seitenkanal 28 angeordnet. Der Unterbrecher 39 hat eine der Gas-Auslassöffnung 33 benachbarte Seitenwand 40. Ferner weist der Unterbrecher 39 eine in Bezug auf die Längsmittelachse 5 radial innere Innenwand 41 und eine der Innenwand 41 gegenüberliegende, radial äußere Außenwand 42.
  • Nachfolgend wird unter Bezugnahme auf Fig. 3 eine zweite Ausführungsform der Erfindung beschrieben. Konstruktiv identische Bauteile erhalten dieselben Bezugszeichen wie bei den Seitenkanal-Gebläsen 1, 1a gemäß Fig. 1 bzw. 2. Funktionell gleichartige, jedoch konstruktiv unterschiedliche Bauteile erhalten dieselben Bezugszeichen mit einem nachgeordneten "b".
  • Bei dem Seitenkanal-Gebläse 1b schließt sich der mindestens eine Gas-Einlassstutzen 29a wieder im Wesentlichen tangential an den Seitenkanal 28 an.
  • Der Gas-Auslassstutzen 31b schließt sich absolut bzw. vollkommen tangential an den Seitenkanal 28 an. Gemäß Fig. 3 ist der Anschluss zwischen dem Seitenkanal 28 und dem Gas-Auslassstutzen 31b übergangslos. Dies gilt sowohl für die radial innere als auch die radial äußere Führung des Gases in Bezug auf die Längsmittelachse 5.
  • Es ist von Vorteil, wenn sich der Gas-Auslassstutzen 31b stromabwärts zu der Gas-Auslassöffnung 33 erweitert. Besonders bevorzugt weicht eine innere, sich an den Boden 35 anschließende Strömungsführungswand 37 des Gas-Auslassstutzens 31b um einen Winkel b von einer Parallelen zu einer gegenüberliegenden äußeren Strömungsführungswand 38 des Gas-Auslassstutzens 31b ab, wie in Fig. 3 gestrichelt dargestellt ist. Der Winkel b beträgt höchstens 9°.
  • Zwischen einem Anschluss 55 des Gas-Auslassstutzens 31b an den Seitenkanal 28 und der radial inneren Strömungsführungswand 37 bei dem Auslass des Seitenkanal-Gebläses 1b liegt günstigerweise ein Anschlusswinkel c um die Längsmittelachse 5 vor, der zwischen 290° und 310° liegt.
  • Nachfolgend Bezug nehmend auf Fig. 4 wird eine dritte Ausführungsform der Erfindung beschrieben. Identische Teile erhalten dieselben Bezugszeichen wie bei den vorherigen Ausführungsformen. Konstruktiv unterschiedliche, jedoch funktionell gleichartige Teile erhalten dieselben Bezugszeichen mit einem nachgeordneten "c".
  • Bei dem Seitenkanal-Gebläse 1c gemäß Fig. 4 ist der Unterbrecher 39c von einem Abführkanal 43 durchsetzt, der sich zwischen der Innenwand 41 des Unterbrechers 39c und der Außenwand 42 des Unterbrechers 39c radial in Bezug auf die Längsmittelachse 5 erstreckt. Der Abführkanal 43 hat eine Querschnittsfläche A.
  • An den Abführkanal 43 schließt sich abstromseitig, radial innen ein Absaugkanal 44 an, der beabstandet zu dem Abführkanal 43 in den Seitenkanal 28 mündet. Die Mündungsstelle bzw. Eintrittsöffnung 45 des Absaugkanals 44 in den Seitenkanal 28 befindet sich in etwa gegenüberliegend zu dem Abführkanal 43. Die Eintrittsöffnung 45 ist um einen Winkel d um die Längsmittelachse 5 zu dem Abführkanal 43 beabstandet, der zwischen 120° und 140° liegt. Der Absaugkanal 44 hat eine größere, insbesondere wesentlich größere, Querschnittsfläche B als der Abführkanal 43.
  • Über den Abführkanal 43 wird Gas aus einer Laufrad-Zelle 50 des rotierenden Laufrads 3 gesaugt, die sich gerade benachbart zu einer in den Seitenkanal 28 mündenden Einlassöffnung 56 des Abführkanals 43 befindet. Der Gastransport ist beispielsweise durch entsprechende Druckunterschiede, insbesondere zwischen Einlassöffnung 56 und Eintrittsöffnung 45, erzielbar. Insbesondere ist der herrschende Druck bei der Eintrittsöffnung 45 kleiner als bei der Einlassöffnung 56. Die Laufrad-Zellen 50 sind in Umfangsrichtung des Seitenkanals 28 durch benachbart angeordnete Laufrad-Schaufeln 2 räumlich begrenzt. Das Gas strömt dann in dem Absaugkanal 44 und tritt über die Eintrittsöffnung 45 wieder in den Seitenkanal 28 ein.
  • Nachfolgend wird unter Bezugnahme auf Fig. 5 eine vierte Ausführungsform der Erfindung beschrieben. Identische Teile erhalten dieselben Bezugszeichen wie bei den vorherigen Ausführungsformen. Konstruktiv unterschiedliche, jedoch funktionell gleichartige Teile erhalten dieselben Bezugszeichen mit einem nachgeordneten "d".
  • Bei dem Seitenkanal-Gebläse 1d gemäß Fig. 5 erstreckt sich die Außenwand 42d des Unterbrechers 39d, die auch die Strömungsführungswand 37 bildet, parallel zu einem Absolutgeschwindigkeitsvektor bzw. zu einer Absolutgeschwindigkeitsrichtung 46 des unmittelbar stromaufwärts zu dem Unterbrecher 39d strömenden Gases bei dem Strömungspunkt P. Der Absolutgeschwindigkeitsvektor 46 ist durch die Addition der Umfangsgeschwindigkeit des Laufrads 3 um die Längsmittelachse 5 und der Relativgeschwindigkeit des Gases nach radial außen in Bezug auf die Längsmittelachse 5 erhalten.
  • Zwischen der Innenwand 41 und der Außenwand 42d liegt ein Winkel e vor, der vorzugsweise zwischen 15° und 40°, bevorzugter zwischen 20° und 30°, liegt.
  • Der Gas-Auslassstutzen 31 kann sich in Strömungsrichtung 32 erweitern.
  • Nachfolgend wird unter Bezugnahme auf Fig. 6 eine fünfte Ausführungsform der Erfindung beschrieben. Identische Teile erhalten dieselben Bezugszeichen wie bei den vorherigen Ausführungsformen. Konstruktiv unterschiedliche, jedoch funktionell gleichartige Teile erhalten dieselben Bezugszeichen mit einem nachgeordneten "e".
  • Im Gegensatz zu der Ausführungsform gemäß Fig. 5 befindet sich bei dem Seitenkanal-Gebläse 1e in dem Unterbrecher 39e der Abführkanal 43e, der eine Strömungsverbindung zwischen dem Seitenkanal 28 und dem Gas-Auslassstutzen 31 herstellt. Der Abführkanal 43e erstreckt sich in Bezug auf die Längsmittelachse 5 radial bzw. im Wesentlichen radial.
  • Für eine funktionssichere Absaugung gilt insbesondere: pU > pT, wobei pu der herrschende Druck in der Laufrad-Zelle 50 bei dem Abführkanal 43e und pT der herrschende Druck stromabwärts des Abführkanals 43e in dem Gas-Auslassstutzen 31 ist.
  • Eine Abführung des Gases über den Abführkanal 43e von dem Seitenkanal 28 zu dem Gas-Auslassstutzen 31 erfolgt besonders funktionssicher, wenn auch die nachfolgend aufgeführte Bedingung erfüllt ist: V 1 > u A K p 2 p 1 1 D i D a 2
    Figure imgb0001
  • V1:
    Ansaugvolumenstrom bzw. Absaugvolumenstrom in dem Abführkanal 43 e
    u:
    Umfangsgeschwindigkeit des Laufrads
    AK:
    Querschnittsfläche des Seitenkanals 28 auf Druckseite
    p2/p1:
    Druckverhältnis über dem Seitenkanal-Gebläse 1e
    Di:
    Durchmesser des Laufrads am Laufrad-Schaufel-Fuß
    Da:
    Außendurchmesser des Laufrads
  • Der Ansaugvolumenstrom ist somit von der Umfangsgeschwindigkeit des Laufrads, der Querschnittsfläche des Seitenkanals auf Druckseite, dem Druckverhältnis über dem Seitenkanal-Gebläse und dem Durchmesser des Laufrads am Laufrad-Schaufel-Fuß sowie dem Außendurchmesser des Laufrads abhängig.
  • Von dem Gas-Auslassstutzen 31 bzw. der Außenwand 42e des Unterbrechers 39e geht gemäß einer bevorzugten Ausführungsform eine Totraum-Mulde 47 aus. Der Abführkanal 43e mündet in die Totraum-Mulde 47.
  • In der Totraum-Mulde 47 ist über mindestens ein Befestigungsmittel 48 eine selbsttätige Ventilplatte 49 an dem Unterbrecher 39e befestigt, die in ihrer Schließstellung den Abführkanal 43e an dessen stromabwärtigen Endbereich gegenüber zu dessen Einlassöffnung 56 verschließt. In der Offenstellung ist die Ventilplatte 49 von dem Unterbrecher 39e zumindest bereichsweise abgehoben und gibt so den Abführkanal 43e zumindest bereichsweise für das Gas frei.
  • Im Bereich der Totraum-Mulde 47 hat der Gas-Auslassstutzen 31 somit eine erweiterte Querschnittsfläche. In der Totraum-Mulde 47 entsteht im Betrieb des Seitenkanal-Gebläses 1e ein Gas-Totraum-Gebiet. In der Totraum-Mulde 47 liegt dann somit ein reduzierter Druck des Gases vor, sodass Gas bei geöffneter Ventilplatte 49 aus der Laufrad-Zelle 50 gesaugt wird, die gerade benachbart zu dem Abführkanal 43e ist. Die Ventilplatte 49 verhindert in ihrer Schließstellung ein ungewolltes Rückströmen des Gases aus dem Gas-Auslassstutzen 31 bzw. der Totraum-Mulde 47 in den Abführkanal 43e bzw. den Seitenkanal 28.
  • Eine Ausgestaltung ohne Ventilplatte 49 ist alternativ möglich. Die Ventilplatte 49 kann auch bei der Ausgestaltung gemäß Fig. 6 ohne Totraum-Mulde 47 vorhanden sein.
  • Eine Abführung des Gases über den Abführkanal 43e von dem Seitenkanal 28 zu dem Gas-Auslassstutzen 31 erfolgt besonders funktionssicher, wenn die nachfolgend aufgeführte Bedingung erfüllt ist: V 1 > u A K p 2 p 1 1 D i D a 2 A K A V 2 1
    Figure imgb0002
  • Av:
    Querschnittsfläche der Vena Contracta der Venturidüse in dem Gas-Auslassstutzen 31
  • Der Ansaugvolumenstrom ist somit von der Umfangsgeschwindigkeit des Laufrads, der Querschnittsfläche des Seitenkanals auf Druckseite, dem Druckverhältnis über dem Seitenkanal-Gebläse, dem Durchmesser des Laufrads am Laufrad-Schaufel-Fuß und dem Außendurchmesser des Laufrads sowie der Querschnittsfläche der Vena Contracta der Venturidüse in dem Gas-Auslassstutzen abhängig.
  • Nachfolgend wird unter Bezugnahme auf Fig. 7 eine sechste Ausführungsform der Erfindung beschrieben. Identische Teile erhalten dieselben Bezugszeichen wie bei den vorherigen Ausführungsformen. Konstruktiv unterschiedliche, jedoch funktionell gleichartige Teile erhalten dieselben Bezugszeichen mit einem nachgeordneten "f".
  • Das Seitenkanal-Gebläse 1f hat anstelle der Totraum-Mulde 47 an dem Unterbrecher 39f einen Strömungsreduzierungs-Vorsprung 51, der in den Gas-Auslassstutzen 31 springt. Der Abführkanal 43f durchsetzt auch den Strömungsreduzierungs-Vorsprung 51. Vorzugsweise ist an dem Strömungsreduzierungs-Vorsprung 51 wieder über mindestens ein Befestigungsmittel 48 eine Ventilplatte 49 angeordnet.
  • Im Bereich des Strömungsreduzierungs-Vorsprungs 51 hat der Gas-Auslassstutzen 31 einen reduzierten Strömungsquerschnitt, sodass dort eine besonders hohe Strömungsgeschwindigkeit des geförderten Gases vorliegt. Umgekehrt herrscht dort folglich ein reduzierter Druck, sodass Gas aus der zu dem Abführkanal 43f gerade benachbarten Laufrad-Zelle 50 über den Abführkanal 43f in den Gas-Auslassstutzen 31 abgesaugt wird. Es ist so quasi eine Venturi-Düse bzw. -Anordnung geschaffen.
  • Nachfolgend wird unter Bezugnahme auf Fig. 8 eine siebte Ausführungsform der Erfindung beschrieben. Identische Teile erhalten dieselben Bezugszeichen wie bei den vorherigen Ausführungsformen. Konstruktiv unterschiedliche, jedoch funktionell gleichartige Teile erhalten dieselben Bezugszeichen mit einem nachgeordneten "g".
  • In dem Unterbrecher 39g befindet sich mindestens eine Entspannungsnut 52, die von dem Seitenkanal 28 ausgeht. Zwischen einem stromaufwärtigen Anfangspunkt 53 der Entspannungsnut 52 und einer axialen bzw. umfangsseitigen Laufrad-Zellen-Öffnung 54 liegt vorzugsweise ein Abstand x vor, der mindestens dem 1,5-fachen Abstand r benachbarter Laufrad-Schaufeln 2 um die Längsmittelachse 5 zueinander entspricht. In Förderrichtung 6 nimmt die radiale Tiefe t der Entspannungsnut 52 in Bezug auf die Längsmittelachse 5 allmählich zu. Der Winkel e der Entspannungsnut 52 richtet sich günstigerweise nach dem Druckverhältnis pZ/p1 und der Umfangsgeschwindigkeit u des Laufrads, wobei pz der herrschende Druck in den Laufrad-Zellen 50 ist und p1 der Ansaugdruck des Seitenkanal-Gebläses ist. Bei der Entspannung der Laufrad-Zellen 50 überlagern sich die Umfangsgeschwindigkeit des Laufrads 3 und die Strömungsgeschwindigkeit, sodass es auch zu transsonischen oder sogar supersonischen Strömungen kommen kann. Eine Abschätzung zum Auftreten von Überschallströmungen gibt die Gleichung: M u krit = 0 , 9 p 1 p 2 2 , 46
    Figure imgb0003
  • Bei M · u > M · ukrit tritt Überschall auf. Die mindestens eine Entspannungsnut 52 kann dann nach den bekannten Gesetzmäßigkeiten der "Prandtl-Meyer-Eckenströmung" dimensioniert werden.
  • Kombinationen der unterschiedlichen Ausführungsformen sind möglich, insbesondere in Bezug auf die verschiedenen Stutzen und Unterbrecher.

Claims (12)

  1. Seitenkanal-Maschine, umfassend
    a) ein Gehäuse (4),
    b) einen in dem Gehäuse (4; 4a; 4b; 4c) befindlichen, im Wesentlichen ringartigen Seitenkanal (28) zur Führung eines Gases,
    c) mindestens einen Gas-Einlassstutzen (29; 29a),
    d) mindestens eine, mit dem Seitenkanal (28) in Strömungsverbindung stehende, in dem Gehäuse (4; 4a; 4b; 4c) ausgebildete Gas-Einlassöffnung (34) zur Führung des Gases aus dem mindestens einen Gas-Einlassstutzen (29; 29a) in den Seitenkanal (28),
    e) mindestens eine, in dem Gehäuse (4; 4a; 4b; 4c) angeordnete Gas-Auslassöffnung (33) zur Abführung des Gases aus dem Seitenkanal (28),
    f) mindestens einen, sich an die mindestens eine Gas-Auslassöffnung (33) anschließenden Gas-Auslassstutzen (31; 31a; 31b; 31c),
    g) ein in dem Gehäuse (4) um eine Rotationsachse (5) drehbares Laufrad (3) mit in dem Seitenkanal (28) angeordneten, Laufrad-Zellen (50) begrenzenden Laufrad-Schaufeln (2) zur Förderung des sich in den Laufrad-Zellen (50) befindlichen Gases in dem Seitenkanal (28) von der mindestens einen Gas-Einlassöffnung (34) zu der mindestens einen Gas-Auslassöffnung (33), und
    h) mindestens einen zwischen der mindestens einen Gas-Einlassöffnung (34) und der mindestens einen Gas-Auslassöffnung (33) angeordneten Unterbrecher (39; 39c; 39d; 39e; 39f; 39g) zum Verhindern eines Transports des Gases von der mindestens einen Gas-Auslassöffnung (33) zu der mindestens einen Gas-Einlassöffnung (34).
  2. Seitenkanal-Maschine nach Anspruch 1, dadurch gekennzeichnet, dass in dem mindestens einen Unterbrecher (39; 39c; 39e; 39f) mindestens ein Abführkanal (43; 43e; 43f) zum Abführen des in mindestens einer der, gerade zu dem mindestens einen Abführkanal (43; 43e; 43f) benachbarten Laufrad-Zellen (50) eingeschlossenen Gases aus dem Seitenkanal (28) in den mindestens einen Gas-Auslassstutzen (31; 31a; 31b; 31c) angeordnet ist.
  3. Seitenkanal-Maschine nach Anspruch 2, gekennzeichnet durch mindestens ein dem mindestens einen Abführkanal (43e; 43f) zugeordnetes Ventil (49), insbesondere Plattenventil, zum Verhindern einer Rückströmung des Gases aus dem mindestens einen Gas-Auslassstutzen (31; 31a; 31b; 31c) in den Seitenkanal (28).
  4. Seitenkanal-Maschine nach Anspruch 2 oder 3, gekennzeichnet durch mindestens eine Venturi-Anordnung zum Saugen des in mindestens einer der, gerade zu dem mindestens einen Abführkanal (43e; 43f) benachbarten Laufrad-Zellen (50) eingeschlossenen Gases aus dem Seitenkanal (28) in den mindestens einen Gas-Auslassstutzen (31; 31a; 31b; 31c) über den mindestens einen Abführkanal (43e; 43f).
  5. Seitenkanal-Maschine nach einem der Ansprüche 2 bis 4, gekennzeichnet durch mindestens eine an dem Unterbrecher (39e) angeordnete Totraum-Mulde (47) zum Saugen des in mindestens einer der, gerade zu dem mindestens einen Abführkanal (43e) benachbarten Laufrad-Zellen (50) eingeschlossenen Gases aus dem Seitenkanal (28) in den mindestens einen Gas-Auslassstutzen (31; 31a; 31b; 31c) über den mindestens Abführkanal (43e).
  6. Seitenkanal-Maschine nach Anspruch 2 oder 3, gekennzeichnet durch mindestens einen, sich an den mindestens einen Abführkanal (43) anschließenden Absaugkanal (44) zum Saugen des in mindestens einer der, gerade zu dem mindestens einen Abführkanal (43) benachbarten Laufrad-Zellen (50) eingeschlossenen Gases aus dem Seitenkanal (28) in den Seitenkanal (28) beabstandet zu dem mindestens einen Abführkanal (43).
  7. Seitenkanal-Maschine nach Anspruch 6 dadurch gekennzeichnet, dass eine Gesamt-Querschnittsfläche des mindestens einen Absaukanals (44) zwischen 0,001 x Gesamt-Volumen der Laufrad-Zellen (50) des Laufrads (3) und 0,006 x Gesamt-Volumen der Laufrad-Zellen (50) des Laufrads (3) liegt.
  8. Seitenkanal-Maschine nach Anspruch 7, dadurch gekennzeichnet, dass zwischen einer stromabwärtigen Eintrittsöffnung (45) des mindestens einen Absaugkanals (44) in den Seitenkanal (28) und einem stromaufwärtigen Beginn des mindestens einen Absaugkanals (44) ein Winkel (d) um die Rotationsachse (5) zwischen 90° und 170°, bevorzugter zwischen 120° und 140°, vorliegt.
  9. Seitenkanal-Maschine nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in dem mindestens einen Unterbrecher (39g) mindestens eine, von dem Seitenkanal (28) ausgehende Entspannungsnut (52) angeordnet ist.
  10. Seitenkanal-Maschine nach Anspruch 9, dadurch gekennzeichnet, dass zwischen einem stromaufwärtigen Anfang (53) der mindestens einen Entspannungsnut (52) und einer Laufrad-Zellen-Öffnung (54) mindestens einer der, zu der mindestens einen Entspannungsnut (52) benachbarten Laufrad-Zellen (50) in Umfangsrichtung um die LängsMittel-Achse (5) ein Mindestabstand (x) von dem 1,1-fachen bis 2,0-fachen, bevorzugter von dem 1,4-fachen bis 1,6-fachen, Abstand (r) benachbarter Laufrad-Schaufeln (2) zueinander in Umfangsrichtung um die Rotationsachse (5) vorliegt.
  11. Seitenkanal-Maschine nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die mindestens eine Entspannungsnut (52) derart geformt ist, dass das Gas imstande ist, an der die mindestens eine Entspannungsnut (52) begrenzenden Wandung des Unterbrechers (39g) zumindest bereichsweise entlang zu streichen.
  12. Seitenkanal-Maschine nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass sich der mindestens eine Gas-Einlassstutzen (29; 29a) im Wesentlichen tangential an den Seitenkanal (28) zum im Wesentlichen tangentialen Einführen des Gases in den Seitenkanal (28) anschließt.
EP20205155.3A 2015-07-17 2016-07-15 Seitenkanal-maschine (verdichter, vakuumpumpe oder gebläse) mit einem entnahmekanal im abstreifer Withdrawn EP3792495A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015213549.7A DE102015213549A1 (de) 2015-07-17 2015-07-17 Seitenkanal-Maschine
PCT/EP2016/066918 WO2017013021A1 (de) 2015-07-17 2016-07-15 Seitenkanal-maschine (verdichter, vakuumpumpe oder gebläse) mit einem entnahmekanal im abstreifer
EP16738825.5A EP3325812B1 (de) 2015-07-17 2016-07-15 Seitenkanal-maschine (verdichter, vakuumpumpe oder gebläse) mit einem entnahmekanal im abstreifer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP16738825.5A Division EP3325812B1 (de) 2015-07-17 2016-07-15 Seitenkanal-maschine (verdichter, vakuumpumpe oder gebläse) mit einem entnahmekanal im abstreifer

Publications (1)

Publication Number Publication Date
EP3792495A1 true EP3792495A1 (de) 2021-03-17

Family

ID=56411666

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20205155.3A Withdrawn EP3792495A1 (de) 2015-07-17 2016-07-15 Seitenkanal-maschine (verdichter, vakuumpumpe oder gebläse) mit einem entnahmekanal im abstreifer
EP16738825.5A Active EP3325812B1 (de) 2015-07-17 2016-07-15 Seitenkanal-maschine (verdichter, vakuumpumpe oder gebläse) mit einem entnahmekanal im abstreifer

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16738825.5A Active EP3325812B1 (de) 2015-07-17 2016-07-15 Seitenkanal-maschine (verdichter, vakuumpumpe oder gebläse) mit einem entnahmekanal im abstreifer

Country Status (8)

Country Link
US (4) US10767654B2 (de)
EP (2) EP3792495A1 (de)
JP (1) JP2018520295A (de)
CN (1) CN108138785A (de)
CA (1) CA2992672A1 (de)
DE (1) DE102015213549A1 (de)
ES (1) ES2846857T3 (de)
WO (1) WO2017013021A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015213549A1 (de) 2015-07-17 2017-01-19 Gardner Denver Deutschland Gmbh Seitenkanal-Maschine
EP3728860B1 (de) * 2017-12-21 2021-10-13 Pierburg GmbH Seitenkanalgebläse, insbesondere sekundärluftgebläse für eine verbrennungskraftmaschine
US11598347B2 (en) * 2019-06-28 2023-03-07 Trane International Inc. Impeller with external blades
CN110425157B (zh) * 2019-09-04 2023-12-15 宁波纽新克电机有限公司 一种高效型混气离心风机
JP7342574B2 (ja) * 2019-09-27 2023-09-12 株式会社島津製作所 真空ポンプ
DE102020205531A1 (de) 2020-04-30 2021-11-04 Mahle International Gmbh Seitenkanalverdichter zum Verdichten von Gas
DE102020205533A1 (de) 2020-04-30 2021-11-04 Mahle International Gmbh Seitenkanalverdichter zum Verdichten eines Gases
US11624405B1 (en) * 2020-06-23 2023-04-11 Airtech Group, Inc. Bearing housing and bearing subassembly for use in side channel blower and side channel blower employing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2409183A1 (de) * 1974-02-26 1975-08-28 Siemens Ag Ringverdichter
EP0011983A1 (de) * 1978-11-28 1980-06-11 CompAir Industrial Limited Drehende Seitenkanalmaschine
EP0636792A1 (de) * 1993-07-28 1995-02-01 Lucas Industries Public Limited Company Seitenkanalpumpenregelung
DE19708953A1 (de) 1997-03-05 1998-09-17 Busch Gmbh K Seitenkanalverdichter mit modifiziertem Unterbrecher
DE19906515C1 (de) 1999-02-17 2000-02-03 Webasto Thermosysteme Gmbh Seitenkanalgebläse
DE10334950A1 (de) 2003-07-31 2004-12-09 Nash_Elmo Industries Gmbh Seitenkanalverdichter und Verfahren zum Betrieb eines Seitenkanalverdichters
DE10334812A1 (de) 2003-07-30 2005-03-03 J. Eberspächer GmbH & Co. KG Gebläse, insbesondere Verbrennungsluftgebläse für ein Fahrzeugheizgerät und Verfahren zum Betreiben des Gebläses
DE102015213549A1 (de) 2015-07-17 2017-01-19 Gardner Denver Deutschland Gmbh Seitenkanal-Maschine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951567A (en) * 1971-12-18 1976-04-20 Ulrich Rohs Side channel compressor
JPS537807U (de) * 1976-07-07 1978-01-23
DE3447007A1 (de) 1984-12-21 1986-06-26 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Seitenkanalgeblaese
CN1016209B (zh) 1988-05-14 1992-04-08 苏联科学院西伯利亚分院理论力学及实用力学研究所 流体介质的汲送装置
JPH03119593A (ja) 1989-10-03 1991-05-21 Pioneer Electron Corp カセットチェンジャの表示装置
JPH03119593U (de) * 1990-03-22 1991-12-10
FR2664333B1 (fr) * 1990-07-04 1994-08-12 Bertin & Cie Electro-soufflante de circulation d'un fluide gazeux, tel que de l'air par exemple.
RU2032836C1 (ru) * 1992-12-29 1995-04-10 Владимир Николаевич Хмара Вихревой компрессор
GB9315630D0 (en) * 1993-07-28 1993-09-08 Dowty Defence & Air Syst Pumps
KR100408249B1 (ko) 2001-11-23 2003-12-01 주식회사 엘지이아이 저압방식 밀폐형 압축기
NL1022785C2 (nl) 2003-02-26 2004-08-30 Tendris Solutions Bv Pomp of turbine, aandrijving die een dergelijke pomp of turbine omvat en buitenboordmotor.
GB0327149D0 (en) * 2003-11-21 2003-12-24 Boc Group Plc Vacuum pumping arrangement
EP1837527B1 (de) 2006-03-21 2009-01-28 ESAM S.p.A. Rotierendes Gebläse und Saugvorrichtung mit modifizierbarer Konfiguration
US7628577B2 (en) * 2006-08-31 2009-12-08 Varian, S.P.A. Vacuum pumps with improved pumping channel configurations
DE102007062484B3 (de) * 2007-12-20 2009-04-30 Gardner Denver Deutschland Gmbh Druckgussöffnungen mit Vorsprüngen
DE102010046870B4 (de) 2010-09-29 2016-09-22 Pierburg Gmbh Seitenkanalgebläse, insbesondere Sekundärluftgebläse für eine Verbrennungskraftmaschine
DE102011004512A1 (de) * 2011-02-22 2012-08-23 Gardner Denver Deutschland Gmbh Seitenkanal-Maschinen-Anordnung
EP2832392A1 (de) * 2013-07-29 2015-02-04 PARI Pharma GmbH Aerosolabgabevorrichtung und Verfahren zum Betreiben einer Aerosolabgabevorrichtung
US20150104335A1 (en) 2013-10-15 2015-04-16 Solar Turbines Incorporated Internal-driven compressor having a powered compressor rotor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2409183A1 (de) * 1974-02-26 1975-08-28 Siemens Ag Ringverdichter
EP0011983A1 (de) * 1978-11-28 1980-06-11 CompAir Industrial Limited Drehende Seitenkanalmaschine
EP0636792A1 (de) * 1993-07-28 1995-02-01 Lucas Industries Public Limited Company Seitenkanalpumpenregelung
DE19708953A1 (de) 1997-03-05 1998-09-17 Busch Gmbh K Seitenkanalverdichter mit modifiziertem Unterbrecher
DE19906515C1 (de) 1999-02-17 2000-02-03 Webasto Thermosysteme Gmbh Seitenkanalgebläse
DE10334812A1 (de) 2003-07-30 2005-03-03 J. Eberspächer GmbH & Co. KG Gebläse, insbesondere Verbrennungsluftgebläse für ein Fahrzeugheizgerät und Verfahren zum Betreiben des Gebläses
DE10334950A1 (de) 2003-07-31 2004-12-09 Nash_Elmo Industries Gmbh Seitenkanalverdichter und Verfahren zum Betrieb eines Seitenkanalverdichters
DE102015213549A1 (de) 2015-07-17 2017-01-19 Gardner Denver Deutschland Gmbh Seitenkanal-Maschine

Also Published As

Publication number Publication date
JP2018520295A (ja) 2018-07-26
US11536281B2 (en) 2022-12-27
EP3325812A1 (de) 2018-05-30
WO2017013021A1 (de) 2017-01-26
US10767654B2 (en) 2020-09-08
US20180202447A1 (en) 2018-07-19
US20220228595A1 (en) 2022-07-21
US20230193907A1 (en) 2023-06-22
US11248615B2 (en) 2022-02-15
DE102015213549A1 (de) 2017-01-19
ES2846857T3 (es) 2021-07-29
CN108138785A (zh) 2018-06-08
EP3325812B1 (de) 2020-11-11
CA2992672A1 (en) 2017-01-26
US20210095677A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
EP3325812B1 (de) Seitenkanal-maschine (verdichter, vakuumpumpe oder gebläse) mit einem entnahmekanal im abstreifer
DE60320537T2 (de) Kompressor mit schaufelspitzeneinrichtung
EP2138727B1 (de) Schaufeldeckband mit Durchlass
EP2304186B1 (de) Axialturbomaschine mit geringen spaltverlusten
DE60211061T2 (de) Axialturbine mit einer Stufe in einem Abströmkanal
WO2007141160A1 (de) Ringförmiger strömungskanal für eine in axialrichtung von einem hauptstrom durchströmbare strömungsmaschine
EP3121373B1 (de) Gekühltes turbinenlaufrad, insbesondere für ein flugtriebwerk
EP2796668A2 (de) Gehäuseabschnitt einer Turbomaschinenverdichter- oder Turbomaschinenturbinenstufe
DE102015219556A1 (de) Diffusor für Radialverdichter, Radialverdichter und Turbomaschine mit Radialverdichter
EP3051142B1 (de) Gasturbinen-axialverdichter
EP3404269B1 (de) Gebläseanordnung mit strömungsteilungsdüse
EP2746534B1 (de) Stator- und/oder Rotorstufe einer Strömungsmaschine, sowie zugehörige Gasturbine
WO2020099034A1 (de) Kompakter diagonalventilator mit nachleiteinrichtung
DE102015100215B4 (de) Seitenkanalgebläse für eine Verbrennungskraftmaschine
DE102007050916A1 (de) Verfahren und Vorrichtung zum Zusammenbau von Gasturbinen-Triebwerken
WO2007022648A1 (de) Kreiselverdichter
EP3388626B1 (de) Konturierung einer schaufelgitterplattform
EP3561228B1 (de) Schaufel, schaufelsegment und baugruppe für eine turbomaschine und turbomaschine
EP3682119A1 (de) Diffusor für einen radialverdichter
DE102020201830B4 (de) Leitschaufel-diffusor und zentrifugalkompressor
EP3358135A1 (de) Konturierung einer schaufelgitterplattform
DE102012100339A1 (de) Verfahren und Vorrichtung zur Stabilisierung eines Verdichterstroms
DE202017102950U1 (de) Gebläseanordnung mit Strömungsteilungsdüse
EP1845266A2 (de) Laufrad, insbesondere zweiflutiges Laufrad, und Verfahren zur Herstellung eines solchen Laufrads
WO2021037296A1 (de) Verdichter-laufschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3325812

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DITTMAR, RUDI

Inventor name: FISCHER, PETER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210918