EP3777875A1 - Chirurgische verfahren unter verwendung aufgereinigter amphiphiler peptidzusammensetzungen - Google Patents
Chirurgische verfahren unter verwendung aufgereinigter amphiphiler peptidzusammensetzungen Download PDFInfo
- Publication number
- EP3777875A1 EP3777875A1 EP20172555.3A EP20172555A EP3777875A1 EP 3777875 A1 EP3777875 A1 EP 3777875A1 EP 20172555 A EP20172555 A EP 20172555A EP 3777875 A1 EP3777875 A1 EP 3777875A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- bleeding
- peptide
- site
- surgical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 473
- 238000000034 method Methods 0.000 title claims abstract description 268
- 108090000765 processed proteins & peptides Proteins 0.000 title claims description 382
- 230000000740 bleeding effect Effects 0.000 claims abstract description 351
- 238000001356 surgical procedure Methods 0.000 claims abstract description 222
- 208000032843 Hemorrhage Diseases 0.000 claims description 392
- 150000002500 ions Chemical class 0.000 claims description 74
- 229940071643 prefilled syringe Drugs 0.000 claims description 46
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 41
- 238000002271 resection Methods 0.000 claims description 37
- 210000000988 bone and bone Anatomy 0.000 claims description 34
- 210000004351 coronary vessel Anatomy 0.000 claims description 30
- 230000007704 transition Effects 0.000 claims description 30
- 238000012752 Hepatectomy Methods 0.000 claims description 29
- 238000002224 dissection Methods 0.000 claims description 28
- 230000036961 partial effect Effects 0.000 claims description 24
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 23
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 claims description 23
- 239000011734 sodium Substances 0.000 claims description 23
- 229910052708 sodium Inorganic materials 0.000 claims description 23
- 210000001367 artery Anatomy 0.000 claims description 22
- 238000012326 endoscopic mucosal resection Methods 0.000 claims description 19
- 229910052755 nonmetal Inorganic materials 0.000 claims description 19
- 238000012323 Endoscopic submucosal dissection Methods 0.000 claims description 17
- 210000001165 lymph node Anatomy 0.000 claims description 17
- 210000004072 lung Anatomy 0.000 claims description 16
- 238000013059 nephrectomy Methods 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 206010051077 Post procedural haemorrhage Diseases 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 10
- 210000000709 aorta Anatomy 0.000 claims description 7
- 238000012830 laparoscopic surgical procedure Methods 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 238000012976 endoscopic surgical procedure Methods 0.000 claims description 5
- 230000000399 orthopedic effect Effects 0.000 claims description 5
- 230000003111 delayed effect Effects 0.000 claims description 3
- 210000004369 blood Anatomy 0.000 abstract description 49
- 239000008280 blood Substances 0.000 abstract description 48
- 230000004962 physiological condition Effects 0.000 abstract description 18
- 210000001124 body fluid Anatomy 0.000 abstract description 8
- 239000013011 aqueous formulation Substances 0.000 abstract description 3
- 208000034158 bleeding Diseases 0.000 description 352
- 239000000243 solution Substances 0.000 description 96
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 84
- 102000004196 processed proteins & peptides Human genes 0.000 description 73
- 210000001519 tissue Anatomy 0.000 description 60
- 210000004185 liver Anatomy 0.000 description 44
- 239000000463 material Substances 0.000 description 40
- 235000001014 amino acid Nutrition 0.000 description 34
- 229940024606 amino acid Drugs 0.000 description 34
- 150000001413 amino acids Chemical group 0.000 description 34
- 206010028980 Neoplasm Diseases 0.000 description 30
- 230000015271 coagulation Effects 0.000 description 29
- 238000005345 coagulation Methods 0.000 description 29
- 238000011282 treatment Methods 0.000 description 29
- 230000003872 anastomosis Effects 0.000 description 27
- 238000003860 storage Methods 0.000 description 27
- 230000006872 improvement Effects 0.000 description 25
- 241001631457 Cannula Species 0.000 description 23
- 230000002792 vascular Effects 0.000 description 20
- 241001465754 Metazoa Species 0.000 description 18
- 230000007423 decrease Effects 0.000 description 18
- 230000008901 benefit Effects 0.000 description 16
- 230000001276 controlling effect Effects 0.000 description 16
- 230000002411 adverse Effects 0.000 description 15
- 230000017531 blood circulation Effects 0.000 description 15
- 239000000499 gel Substances 0.000 description 14
- 230000002980 postoperative effect Effects 0.000 description 14
- 208000010392 Bone Fractures Diseases 0.000 description 13
- 241000124008 Mammalia Species 0.000 description 13
- 210000002216 heart Anatomy 0.000 description 13
- 230000008439 repair process Effects 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 230000006378 damage Effects 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 210000002254 renal artery Anatomy 0.000 description 12
- 206010017076 Fracture Diseases 0.000 description 11
- 241000699670 Mus sp. Species 0.000 description 11
- 241000283973 Oryctolagus cuniculus Species 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 11
- 230000001976 improved effect Effects 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 210000003195 fascia Anatomy 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 230000003902 lesion Effects 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 210000000038 chest Anatomy 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- 238000002357 laparoscopic surgery Methods 0.000 description 9
- 210000003205 muscle Anatomy 0.000 description 9
- 210000000056 organ Anatomy 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 238000001338 self-assembly Methods 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 241000282472 Canis lupus familiaris Species 0.000 description 8
- 210000004204 blood vessel Anatomy 0.000 description 8
- 210000002808 connective tissue Anatomy 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- -1 for example Substances 0.000 description 8
- 230000000977 initiatory effect Effects 0.000 description 8
- 210000003734 kidney Anatomy 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 230000002265 prevention Effects 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 210000000689 upper leg Anatomy 0.000 description 8
- 241000283690 Bos taurus Species 0.000 description 7
- 241001164374 Calyx Species 0.000 description 7
- 241000700198 Cavia Species 0.000 description 7
- 241000282326 Felis catus Species 0.000 description 7
- 208000007474 aortic aneurysm Diseases 0.000 description 7
- 230000000747 cardiac effect Effects 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 210000002700 urine Anatomy 0.000 description 7
- 235000002198 Annona diversifolia Nutrition 0.000 description 6
- 241000283726 Bison Species 0.000 description 6
- 241001416152 Bos frontalis Species 0.000 description 6
- 241000030939 Bubalus bubalis Species 0.000 description 6
- 241000282832 Camelidae Species 0.000 description 6
- 241000283707 Capra Species 0.000 description 6
- 241000282994 Cervidae Species 0.000 description 6
- 244000249211 Cissus discolor Species 0.000 description 6
- 235000000469 Cissus discolor Nutrition 0.000 description 6
- 241000283086 Equidae Species 0.000 description 6
- 241000283074 Equus asinus Species 0.000 description 6
- 241001331845 Equus asinus x caballus Species 0.000 description 6
- 241000282838 Lama Species 0.000 description 6
- 241001494479 Pecora Species 0.000 description 6
- 241000283011 Rangifer Species 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- 241000283984 Rodentia Species 0.000 description 6
- 241000282887 Suidae Species 0.000 description 6
- 241001416177 Vicugna pacos Species 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000003146 anticoagulant agent Substances 0.000 description 6
- 229940127219 anticoagulant drug Drugs 0.000 description 6
- 210000000702 aorta abdominal Anatomy 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 229920000669 heparin Polymers 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 210000003752 saphenous vein Anatomy 0.000 description 6
- 238000010561 standard procedure Methods 0.000 description 6
- 210000003462 vein Anatomy 0.000 description 6
- 208000000575 Arteriosclerosis Obliterans Diseases 0.000 description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 description 5
- 102000007327 Protamines Human genes 0.000 description 5
- 108010007568 Protamines Proteins 0.000 description 5
- 108090000190 Thrombin Proteins 0.000 description 5
- 208000002223 abdominal aortic aneurysm Diseases 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 210000002376 aorta thoracic Anatomy 0.000 description 5
- 210000002168 brachiocephalic trunk Anatomy 0.000 description 5
- 230000001364 causal effect Effects 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 230000034994 death Effects 0.000 description 5
- 231100000517 death Toxicity 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 238000001839 endoscopy Methods 0.000 description 5
- 238000004299 exfoliation Methods 0.000 description 5
- 230000002440 hepatic effect Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- KHLVKKOJDHCJMG-QDBORUFSSA-L indigo carmine Chemical compound [Na+].[Na+].N/1C2=CC=C(S([O-])(=O)=O)C=C2C(=O)C\1=C1/NC2=CC=C(S(=O)(=O)[O-])C=C2C1=O KHLVKKOJDHCJMG-QDBORUFSSA-L 0.000 description 5
- 229960003988 indigo carmine Drugs 0.000 description 5
- 235000012738 indigotine Nutrition 0.000 description 5
- 239000004179 indigotine Substances 0.000 description 5
- 210000001349 mammary artery Anatomy 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 210000002796 renal vein Anatomy 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 210000003270 subclavian artery Anatomy 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 229960004072 thrombin Drugs 0.000 description 5
- 230000000699 topical effect Effects 0.000 description 5
- 210000001835 viscera Anatomy 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 4
- 108010035532 Collagen Proteins 0.000 description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 4
- 206010028851 Necrosis Diseases 0.000 description 4
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- 230000023555 blood coagulation Effects 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 238000002674 endoscopic surgery Methods 0.000 description 4
- 210000000109 fascia lata Anatomy 0.000 description 4
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 4
- 229960001008 heparin sodium Drugs 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 230000002262 irrigation Effects 0.000 description 4
- 238000003973 irrigation Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000017074 necrotic cell death Effects 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 210000001147 pulmonary artery Anatomy 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 230000002485 urinary effect Effects 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 3
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 3
- 206010020100 Hip fracture Diseases 0.000 description 3
- 206010071229 Procedural haemorrhage Diseases 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 201000010814 Synostosis Diseases 0.000 description 3
- 206010047700 Vomiting Diseases 0.000 description 3
- 210000000577 adipose tissue Anatomy 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 235000009697 arginine Nutrition 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 3
- 239000003114 blood coagulation factor Substances 0.000 description 3
- 230000036772 blood pressure Effects 0.000 description 3
- 230000002612 cardiopulmonary effect Effects 0.000 description 3
- 238000013130 cardiovascular surgery Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 125000001165 hydrophobic group Chemical group 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 230000000302 ischemic effect Effects 0.000 description 3
- 238000009533 lab test Methods 0.000 description 3
- 238000002350 laparotomy Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 210000004303 peritoneum Anatomy 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 210000004224 pleura Anatomy 0.000 description 3
- 239000004633 polyglycolic acid Substances 0.000 description 3
- 229950008885 polyglycolic acid Drugs 0.000 description 3
- 238000011205 postoperative examination Methods 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 229950008679 protamine sulfate Drugs 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000011200 topical administration Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000008673 vomiting Effects 0.000 description 3
- 239000008215 water for injection Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 2
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 2
- 229930182837 (R)-adrenaline Natural products 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 206010000117 Abnormal behaviour Diseases 0.000 description 2
- 102000016284 Aggrecans Human genes 0.000 description 2
- 108010067219 Aggrecans Proteins 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 108091005515 EGF module-containing mucin-like hormone receptors Proteins 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 229920000544 Gore-Tex Polymers 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 108010006035 Metalloproteases Proteins 0.000 description 2
- 102000005741 Metalloproteases Human genes 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 229920002201 Oxidized cellulose Polymers 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 208000010378 Pulmonary Embolism Diseases 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 2
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001295 alanines Chemical class 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 150000001484 arginines Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000012503 blood component Substances 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 230000035602 clotting Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000002079 electron magnetic resonance spectroscopy Methods 0.000 description 2
- 229960005139 epinephrine Drugs 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 210000000416 exudates and transudate Anatomy 0.000 description 2
- 229950003499 fibrin Drugs 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 238000002695 general anesthesia Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 229960003160 hyaluronic acid Drugs 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000003908 liver function Effects 0.000 description 2
- 235000018977 lysine Nutrition 0.000 description 2
- 150000002669 lysines Chemical class 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 201000011591 microinvasive gastric cancer Diseases 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 229940107304 oxidized cellulose Drugs 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 229940127557 pharmaceutical product Drugs 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000003058 plasma substitute Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229940048914 protamine Drugs 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 210000005084 renal tissue Anatomy 0.000 description 2
- 210000000574 retroperitoneal space Anatomy 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000001839 systemic circulation Effects 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 229940116269 uric acid Drugs 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 238000007631 vascular surgery Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- BSFODEXXVBBYOC-UHFFFAOYSA-N 8-[4-(dimethylamino)butan-2-ylamino]quinolin-6-ol Chemical compound C1=CN=C2C(NC(CCN(C)C)C)=CC(O)=CC2=C1 BSFODEXXVBBYOC-UHFFFAOYSA-N 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010002199 Anaphylactic shock Diseases 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000008035 Back Pain Diseases 0.000 description 1
- 108010027612 Batroxobin Proteins 0.000 description 1
- 208000006017 Cardiac Tamponade Diseases 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 238000005773 Enders reaction Methods 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000032456 Hemorrhagic Shock Diseases 0.000 description 1
- 241000270923 Hesperostipa comata Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000019025 Hypokalemia Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 101000811743 Mesostigma viride Uncharacterized protein ycf20 Proteins 0.000 description 1
- 206010071759 Muscle oedema Diseases 0.000 description 1
- 206010028331 Muscle rupture Diseases 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 206010036155 Poor peripheral circulation Diseases 0.000 description 1
- 208000035965 Postoperative Complications Diseases 0.000 description 1
- 208000004550 Postoperative Pain Diseases 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 208000006193 Pulmonary infarction Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 206010039509 Scab Diseases 0.000 description 1
- 206010049771 Shock haemorrhagic Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000008050 Total Bilirubin Reagent Methods 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 239000004775 Tyvek Substances 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 208000024248 Vascular System injury Diseases 0.000 description 1
- 208000012339 Vascular injury Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 206010000059 abdominal discomfort Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 108010027597 alpha-chymotrypsin Proteins 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000001567 anti-fibrinolytic effect Effects 0.000 description 1
- 239000000504 antifibrinolytic agent Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000012865 aseptic processing Methods 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical class N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 210000004191 axillary artery Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 210000001168 carotid artery common Anatomy 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008568 cell cell communication Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000005859 cell recognition Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 210000000795 conjunctiva Anatomy 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000003221 ear drop Substances 0.000 description 1
- 229940047652 ear drops Drugs 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000012277 endoscopic treatment Methods 0.000 description 1
- 230000002327 eosinophilic effect Effects 0.000 description 1
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011902 gastrointestinal surgery Methods 0.000 description 1
- 210000005095 gastrointestinal system Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 150000002306 glutamic acid derivatives Chemical class 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 210000000527 greater trochanter Anatomy 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 210000003026 hypopharynx Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 208000012947 ischemia reperfusion injury Diseases 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 208000013433 lightheadedness Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 210000002698 mandibular nerve Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000001370 mediastinum Anatomy 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001483 mobilizing effect Effects 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 238000012753 partial hepatectomy Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008807 pathological lesion Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 210000003516 pericardium Anatomy 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000009894 physiological stress Effects 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 208000024896 potassium deficiency disease Diseases 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000007575 pulmonary infarction Effects 0.000 description 1
- 238000007674 radiofrequency ablation Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000013538 segmental resection Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000009154 spontaneous behavior Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 230000009404 submucosal invasion Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 108010034963 tachocomb Proteins 0.000 description 1
- 208000008203 tachypnea Diseases 0.000 description 1
- 206010043089 tachypnoea Diseases 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 210000004876 tela submucosa Anatomy 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- GYDJEQRTZSCIOI-LJGSYFOKSA-N tranexamic acid Chemical compound NC[C@H]1CC[C@H](C(O)=O)CC1 GYDJEQRTZSCIOI-LJGSYFOKSA-N 0.000 description 1
- 229960000401 tranexamic acid Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
- 230000006496 vascular abnormality Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/10—Polypeptides; Proteins
- A61L24/108—Specific proteins or polypeptides not covered by groups A61L24/102 - A61L24/106
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/05—Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0015—Medicaments; Biocides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0031—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/002—Packages specially adapted therefor, e.g. for syringes or needles, kits for diabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/28—Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/28—Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
- A61M5/285—Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle with sealing means to be broken or opened
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D75/00—Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
- B65D75/28—Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
- B65D75/30—Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
- B65D75/32—Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding one or both sheets or blanks being recessed to accommodate contents
- B65D75/36—Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding one or both sheets or blanks being recessed to accommodate contents one sheet or blank being recessed and the other formed of relatively stiff flat sheet material, e.g. blister packages, the recess or recesses being preformed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00646—Type of implements
- A61B2017/0065—Type of implements the implement being an adhesive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00893—Material properties pharmaceutically effective
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/42—Anti-thrombotic agents, anticoagulants, anti-platelet agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/04—Materials for stopping bleeding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/3129—Syringe barrels
- A61M5/3137—Specially designed finger grip means, e.g. for easy manipulation of the syringe rod
- A61M2005/3139—Finger grips not integrally formed with the syringe barrel, e.g. using adapter with finger grips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/19—Constructional features of carpules, syringes or blisters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/34—Constructions for connecting the needle, e.g. to syringe nozzle or needle hub
Definitions
- Surgical procedures are performed to correct a variety of medical problems encountered by patients.
- an incision is made to access a surgical site within the body of a patient.
- Blood vessels may be clamped to prevent and/or minimize bleeding; retractors may be employed to expose the surgical site or allow it to remain open thereby permitting a surgeon to perform one or more tasks associated with the procedure.
- several incisions and/or dissections may be necessary in order to penetrate to the surgical site.
- to gain access to a location in the abdomen it may be necessary to dissect skin, subcutaneous tissue, muscle layers and/or peritoneum.
- some surgical procedures may involve cutting the skull to gain access to the brain, or cutting the chest to gain access to the heart. Bleeding can and typically does occur at multiple points in the performance of any or all of these procedures.
- Some bleeding during surgery is to be expected. However, extensive bleeding (i.e., beyond what is typically encountered in a given surgical procedure) can be dangerous, even life-threatening. In some cases, severe bleeding may cause a surgical procedure to be terminated. In some cases, a transfusion may be necessary. Blood or blood expanders are typically employed during a surgical procedure to compensate for blood loss. In some cases, steps taken to address blood loss can add considerable time to a surgical procedure and/or lead to longer recovery times for patients.
- the standard of care for controlling bleeding during surgical procedures includes the use of synthetic products, materials derived from animals, or human blood components that are locally administered in an as needed manner or by established methodology.
- Such products and materials are primarily composed of tissue-building proteins are well suited for surgical application as they are biocompatible and demonstrate effectiveness. However, they are not without limitation.
- these products can present a risk of infection through the presence of infection substances, e.g., viruses.
- animal-derived products present their own risks in that they can trigger untoward immune responses, potentially including anaphylactic shock, when the patient's body reacts to foreign antigens in the products.
- the present invention provides, among other things, improved surgical procedures that, for example, employ materials that are safer and more effective in controlling and arresting bleeding encountered by surgeons while performing surgical tasks.
- the present invention also provides surgical procedures that are performed in shorter time and/or involve less bleeding than typically occurs in standard procedures.
- the present invention provides, among other things, improved surgical methods for treating and/or stopping bleeding (e.g., exudative bleeding) during surgery. It is contemplated that peptide compositions provided by the present invention are particularly useful for use in surgical methods employed to stop bleeding, such as coronary artery bypass and liver resection in whole or in part. In some embodiments, use of peptide compositions as described herein in surgical methods provides an improvement in stopping and/or controlling bleeding during a surgical procedure (e.g., intrabody).
- a surgical procedure e.g., intrabody
- the present invention provides in a method of performing an intrabody surgical procedure on a patient or subject in which an incision is made in a body so that a) access to a site including a damaged portion of an internal organ or tissue is provided for a first period of time, b) removal, repair, or replacement of some or all of the damaged portion is performed during the first period of time, and c) the incision is closed at the first period of time's end, an improvement comprising within the first period of time, performing at least one application within the site of a composition comprising a of 0.1 - 10% peptide solution, wherein the peptide comprises an amino acid sequence of RADA repeats; and wherein the solution is characterized by an ability to transition between two states: an un-gelled state adopted when one or more particular ions is substantially absent, and a gelled state adopted when the one or more ions is present at or above a threshold level, wherein the one or more ions is or becomes present in the location; and permitting the composition to remain in the site for a
- a first period of time is greater than five minutes; in some embodiments, greater than 10, 20, 30, 40, 50, or 60 minutes. In some embodiments, a first period of time is about one hour. In some embodiments, a first period of time is less than five minutes; in some embodiments, less than 10, 20, 30, 40, 50 or 60 minutes. In some embodiments, a first period of time is less than one hour.
- the present invention further comprises an improvement of performing, within a second period of time, at least one other medical procedure in a site.
- a second period of time is less than five minutes; in some embodiments, less than 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 minute.
- a second period of time is about 5 minutes.
- a second period of time is greater than five minutes; in some embodiments, a second period of time is greater than 6, 7, 8, 9, 10, or more minutes.
- a second period of time is about 10 minutes.
- one or more ions are selected from potassium (K + ) and sodium (Na + ). In some embodiments, one or more ions are potassium (K + ) and sodium (Na + ).
- a threshold level is characterized by physiological conditions present within a surgical site of a patient or subject. In some embodiments, a threshold level is provided by contact with bodily fluids, blood, tissues and/or a combination thereof within the surgical site of a patient or subject.
- patients or subjects are human or non-human.
- non-human subjects include mammals.
- mammals include rodents (e.g., mice or rats), dogs, cats, horses, pigs, cattle, sheep, goats, alpacas, bantengs, bison, camels, deer, donkeys, gayals, guinea pigs, llamas, mules, rabbits, reindeer, water buffalo and yaks.
- an intrabody surgical procedure of the present invention is a resection of or at least a portion of the liver.
- a resection of the liver in whole or in part is performed.
- of the present invention further comprises an improvement of completing the liver resection within a first period of time that is less than four hours (e.g., less than 3.75, 3.50, 3.00, 2.75, 2.00, 1.75, 1.50, or 1.00) and therefore reduced as compared with the standard first period of time absent such improvement, which standard first period of time is within the range of five to six hours (e.g., within the range of about five to about six hours, inclusive; in some embodiments, about 5.0, 5.1, 5.2, 5.3. 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0 hours).
- the present invention further comprises an improvement of not applying fibrin glue or SURGICEL® or a combination thereof within the site during the first period of time. In some embodiments, the present invention comprises an improvement of applying the composition comprising a solution of peptides in addition to fibrin glue or SURGICEL® or a combination thereof within the site during the first period of time.
- At least one first application is completed prior to any other surgical activity within the site.
- an intrabody surgical procedure of the present invention is a coronary artery bypass.
- a patient or subject is dosed with an anti-coagulant prior to surgery.
- an intrabody surgical procedure of the present invention is a coronary artery bypass in which an improvement further comprises completing the surgical procedure within a first period of time that is at least 20 minutes (e.g., at least 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 minutes) per graft shorter as compared with the standard first period of time absent such improvement; in some certain embodiments, about 20 minutes.
- a peptide solution of the present invention has a concentration within the range of about 0.1% to about 10% (e.g., about 0.1 - 10%; 0.2 - 9.9%, 0.3 - 9.8%, 0.4 - 9.7%, 0.5 - 9.6%, 0.6 - 9.5%, 0.7 - 9.4%, 0.8 - 9.3%, 0.9 - 9.2%, 1.0 - 9.1%, 1.1 - 9.0%, 1.2 - 8.9%, 1.3 - 8.8%, 1.4 - 8.7%, 1.5 - 8.6%, 1.6 - 8.5%, 1.7 - 8.4%, 1.8 - 8.3%, 1.9 - 8.2%, 2.0 - 8.1%, 2.1 - 8.0%, 2.2 - 7.9%, 2.3 - 7.8%, 2.4 - 7.7%, 2.5 - 7.6%, 2.6 - 7.5%, 2.7 - 7.4%, 2.8 - 7.3%, 2.9 - 7.2%, 3.0 - 7.1%, 3.1 - 7.0%, 3.2 - 6.9%
- the concentration is within the range of 0.1 - 5%, 0.25 - 4.75%, 0.5 - 4.5%, 0.75 - 4.25%, 1.0 - 4.0%, 1.25 - 3.75%, 1.5 - 3.5%, 1.75 - 3.25%, 2.0 - 3.0%, or 2.25 - 2.75%.
- a peptide solution of the present invention has a concentration within the range of 1 - 3%, inclusive; in some certain embodiments, about 1.0%, in some embodiments, about 1.5%; in some embodiments, about 2.0%; in some embodiments, about 2.5%; in some embodiments, about 3%.
- a peptide of the present invention comprises an amino acid sequence that comprises two, three or four repeats of RADA (SEQ ID NO:1); in some embodiments, an amino acids sequence of two RADA repeats (e.g., RADARADA; SEQ ID NO:2); in some embodiments, an amino acids sequence of three repeats (e.g., RADARADARADA; SEQ ID NO:3); in some embodiments, an amino acids sequence of four RADA repeats (e.g., RADARADARADARADA; SEQ ID NO:4).
- the present invention provides a method of performing an intrabody surgical procedure on a patient or subject comprising exposing a location within the patient's body to access a damaged portion of an internal organ or tissue for a first period of time in order to remove, repair, or replace at least some portion of the organ or tissue during the first period of time, applying, to a site within the location, a composition comprising a 0.1 - 10% peptide solution, wherein the peptide comprises an amino acid sequence of RADA repeats; and wherein the solution is characterized by an ability to transition between two states: an un-gelled state adopted when one or more particular ions is substantially absent, and a gelled state adopted when the one or more ions is present at or above a threshold level, wherein the one or more ions is or becomes present in the location, retaining the composition in the location for a second period of time, wherein the peptides in the composition transitions to a gelled state.
- a first period of time is greater than five minutes; in some embodiments, greater than 10, 20, 30, 40, 50, or 60 minutes. In some embodiments, a first period of time is about one hour. In some embodiments, a first period of time is less than five minutes; in some embodiments, less than 10, 20, 30, 40, 50 or 60 minutes. In some embodiments, a first period of time is less than one hour.
- the present invention further comprises an improvement of performing, during the second period of time, at least one other medical procedure in the location.
- a second period of time is less than five minutes; in some embodiments, less than 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 minute. In some embodiments, a second period of time is about 5 minutes. In some embodiments, a second period of time is greater than five minutes; in some embodiments, a second period of time is greater than 6, 7, 8, 9, 10, or more minutes. In some embodiments, a second period of time is about 10 minutes.
- one or more ions are selected from potassium (K + ) and sodium (Na + ). In some embodiments, one or more ions are potassium (K + ) and sodium (Na + ).
- a threshold level is characterized by physiological conditions present within a surgical site of a patient or subject. In some embodiments, a threshold level is provided by contact with bodily fluids, blood, tissues and/or a combination thereof within the surgical site of a patient or subject.
- patients or subjects are human or non-human.
- non-human patients include mammals.
- mammals include rodents (e.g., mice or rats), dogs, cats, horses, pigs, cattle, sheep, goats, alpacas, bantengs, bison, camels, deer, donkeys, gayals, guinea pigs, llamas, mules, rabbits, reindeer, water buffalo and yaks.
- an intrabody surgical procedure of the present invention is a liver resection and is completed within a first period of time that is less than four hours (e.g., less than 3.75, 3.50, 3.00, 2.75, 2.00, 1.75, 1.50, or 1.00) and therefore reduced as compared with the standard first period of time absent the application, which standard first period of time is within the range of five to six hours (e.g., within the range of about five to about six hours, inclusive; in some embodiments, about 5.0, 5.1, 5.2, 5.3. 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0 hours).
- the present invention further comprises an improvement of a method that excludes application of fibrin glue or SURGICEL® or a combination thereof within the site during the first period of time. In some embodiments, the present invention further comprises an improvement of applying the composition comprising a solution of peptides in addition to fibrin glue or SURGICEL® or a combination thereof within the site during the first period of time.
- At least one first application is completed prior to any other surgical activity within the site.
- a patient is dosed with an anti-coagulant prior to surgery.
- a peptide solution of the present invention has a concentration within the range of about 0.1% to about 10% (e.g., about 0.1 - 10%; 0.2 - 9.9%, 0.3 - 9.8%, 0.4 - 9.7%, 0.5 - 9.6%, 0.6 - 9.5%, 0.7 - 9.4%, 0.8 - 9.3%, 0.9 - 9.2%, 1.0 - 9.1%, 1.1 - 9.0%, 1.2 - 8.9%, 1.3 - 8.8%, 1.4 - 8.7%, 1.5 - 8.6%, 1.6 - 8.5%, 1.7 - 8.4%, 1.8 - 8.3%, 1.9 - 8.2%, 2.0 - 8.1%, 2.1 - 8.0%, 2.2 - 7.9%, 2.3 - 7.8%, 2.4 - 7.7%, 2.5 - 7.6%, 2.6 - 7.5%, 2.7 - 7.4%, 2.8 - 7.3%, 2.9 - 7.2%, 3.0 - 7.1%, 3.1 - 7.0%, 3.2 - 6.9%
- the concentration is within the range of 0.1 - 5%, 0.25 - 4.75%, 0.5 - 4.5%, 0.75 - 4.25%, 1.0 - 4.0%, 1.25 - 3.75%, 1.5 - 3.5%, 1.75 - 3.25%, 2.0 - 3.0%, or 2.25 - 2.75%.
- a peptide solution of the present invention has a concentration within the range of 1 - 3%; inclusive. In some certain embodiments, about 1.0%, in some embodiments, about 1.5%; in some embodiments, about 2.0%; in some embodiments, about 2.5%; in some embodiments, about 3%.
- a peptide of the present invention comprises an amino acid sequence that comprises two, three or four repeats of RADA (SEQ ID NO:1); in some embodiments, an amino acids sequence of two RADA repeats (e.g., RADARADA; SEQ ID NO:2); in some embodiments, an amino acids sequence of three repeats (e.g., RADARADARADA; SEQ ID NO:3); in some embodiments, an amino acids sequence of four RADA repeats (e.g., RADARADARADARADA; SEQ ID NO:4).
- the present invention provides a method of treating exudative bleeding during liver surgery in a patient or subject, the method comprising the steps of (a) applying to a location of exudative bleeding in a patient or subject a composition comprising a 0.1 - 10% peptide solution, wherein the peptide comprises an amino acid sequence of RADA repeats; and wherein the solution is characterized by an ability to transition between two states: an un-gelled state adopted when one or more particular ions is substantially absent, and a gelled state adopted when the one or more ions is present at or above a threshold level, wherein the one or more ions is or becomes present in the location; (b) retaining the applied composition in the location, with the one or more ions, for a period of time sufficient for the composition to gel; and (c) performing one or more liver surgery tasks in the location without first removing the composition.
- exudative bleeding is caused by electrocauterization.
- a patient or subject is dosed with an anticoagulant prior to the start of the liver surgery.
- a peptide composition of the present invention that comprises a solution is applied endoscopically.
- one or more liver surgery tasks is performed endoscopically.
- one or more liver surgery tasks is performed laproscopically.
- one or more liver surgery tasks include liver separation.
- one or more liver surgery tasks include vascular exfoliation.
- a peptide solution of the present invention has a concentration within the range of about 0.1% to about 10% (e.g., 0.1 - 10%; 0.2 - 9.9%, 0.3 - 9.8%, 0.4 - 9.7%, 0.5 - 9.6%, 0.6 - 9.5%, 0.7 - 9.4%, 0.8 - 9.3%, 0.9 - 9.2%, 1.0 - 9.1%, 1.1 - 9.0%, 1.2 - 8.9%, 1.3 - 8.8%, 1.4 - 8.7%, 1.5 - 8.6%, 1.6 - 8.5%, 1.7 - 8.4%, 1.8-8.3%, 1.9 - 8.2%, 2.0 - 8.1%, 2.1 - 8.0%, 2.2 - 7.9%, 2.3 - 7.8%, 2.4 - 7.7%, 2.5 - 7.6%, 2.6 - 7.5%, 2.7 - 7.4%, 2.8 - 7.3%, 2.9 - 7.2%, 3.0 - 7.1%, 3.1 - 7.0%, 3.2 - 6.9%,
- the concentration is within the range of 0.1 - 5%, 0.25 - 4.75%, 0.5 - 4.5%, 0.75 - 4.25%, 1.0 - 4.0%, 1.25 - 3.75%, 1.5 - 3.5%, 1.75 - 3.25%, 2.0 - 3.0%, or 2.25 - 2.75%.
- a peptide solution of the present invention has a concentration within the range of 1 - 3%; inclusive. In some certain embodiments, about 1.0%, in some embodiments, about 1.5%; in some embodiments, about 2.0%; in some embodiments, about 2.5%; in some embodiments, about 3%.
- a peptide of the present invention comprises an amino acid sequence that comprises two, three or four repeats of RADA (SEQ ID NO:1); in some embodiments, an amino acids sequence of two RADA repeats (e.g., RADARADA; SEQ ID NO:2); in some embodiments, an amino acids sequence of three repeats (e.g., RADARADARADA; SEQ ID NO:3); in some embodiments, an amino acids sequence of four RADA repeats (e.g., RADARADARADARADA; SEQ ID NO:4).
- one or more ions are selected from potassium (K + ) and sodium (Na + ). In some embodiments, one or more ions are potassium (K + ) and sodium (Na + ).
- a threshold level is characterized by physiological conditions present within a surgical site of a patient or subject. In some embodiments, a threshold level is provided by contact with bodily fluids, blood, tissues and/or a combination thereof within the surgical site of a patient or subject.
- patients or subjects are human or non-human.
- non-human patients or subjects include mammals.
- mammals include rodents (e.g., mice or rats), dogs, cats, horses, pigs, cattle, sheep, goats, alpacas, bantengs, bison, camels, deer, donkeys, gayals, guinea pigs, llamas, mules, rabbits, reindeer, water buffalo and yaks.
- the present invention provides a method of treating bleeding during graft collection during coronary artery bypass surgery in a patient or subject comprising (a) applying to a graft collection site a composition comprising a 0.1 - 10% peptide solution, wherein the peptide comprises an amino acid sequence of RADA repeats; and wherein the solution is characterized by an ability to transition between two states: an ungelled state adopted when one or more particular ions is substantially absent, and a gelled state adopted when the one or more ions is present at or above a threshold level, wherein the one or more ions is or becomes present in the location; and (b) retaining the composition in the location, with the one or more ions, for a period of time sufficient for the composition to gel.
- bleeding is caused by electrocauterization.
- applying a peptide composition of the present invention is performed prior to initiation of graft collection. In some certain embodiments, graft collection is performed without removing an applied peptide composition which is present in a gelled state.
- applying a peptide composition of the present invention is performed after initiation but prior to completion of graft collection. In some certain embodiments, graft collection is performed without removing an applied peptide composition which is present in a gelled state.
- retaining a peptide composition of the present invention in a location comprises retaining through performance of at least one step graft collection step. In some embodiments, retaining a peptide composition of the present invention in a location comprises retaining through completion of graft collection steps. In various embodiments, graft collection is performed and/or completed without removing an applied peptide composition of the present invention.
- a peptide solution of the present invention has a concentration within the range of about 0.1% to about 10% (e.g., 0.1 - 10%; 0.2 - 9.9%, 0.3 - 9.8%, 0.4 - 9.7%, 0.5 - 9.6%, 0.6 - 9.5%, 0.7 - 9.4%, 0.8 - 9.3%, 0.9 - 9.2%, 1.0 - 9.1%, 1.1 - 9.0%, 1.2 - 8.9%, 1.3 - 8.8%, 1.4 - 8.7%, 1.5 - 8.6%, 1.6 - 8.5%, 1.7 - 8.4%, 1.8-8.3%, 1.9 - 8.2%, 2.0 - 8.1%, 2.1 - 8.0%, 2.2 - 7.9%, 2.3 - 7.8%, 2.4 - 7.7%, 2.5 - 7.6%, 2.6 - 7.5%, 2.7 - 7.4%, 2.8 - 7.3%, 2.9 - 7.2%, 3.0 - 7.1%, 3.1 - 7.0%, 3.2 - 6.9%,
- the concentration is within the range of 0.1 - 5%, 0.25 - 4.75%, 0.5 - 4.5%, 0.75 - 4.25%, 1.0 - 4.0%, 1.25 - 3.75%, 1.5 - 3.5%, 1.75 - 3.25%, 2.0 - 3.0%, or 2.25 - 2.75%.
- a peptide solution of the present invention has a concentration within the range of 1 - 3%; inclusive. In some certain embodiments, about 1.0%, in some embodiments, about 1.5%; in some embodiments, about 2.0%; in some embodiments, about 2.5%; in some embodiments, about 3%.
- a peptide of the present invention comprises an amino acid sequence that comprises two, three or four repeats of RADA (SEQ ID NO:1); in some embodiments, an amino acids sequence of two RADA repeats (e.g., RADARADA; SEQ ID NO:2); in some embodiments, an amino acids sequence of three repeats (e.g., RADARADARADA; SEQ ID NO:3); in some embodiments, an amino acids sequence of four RADA repeats (e.g., RADARADARADARADA; SEQ ID NO:4).
- one or more ions are selected from potassium (K + ) and sodium (Na + ). In some embodiments, one or more ions are potassium (K + ) and sodium (Na + ).
- a threshold level is characterized by physiological conditions present within a surgical site of a patient or subject. In some embodiments, a threshold level is provided by contact with bodily fluids, blood, tissues and/or a combination thereof within the surgical site of a patient or subject.
- patients or subjects are human or non-human.
- non-human patients or subjects include mammals.
- mammals include rodents (e.g., mice or rats), dogs, cats, horses, pigs, cattle, sheep, goats, alpacas, bantengs, bison, camels, deer, donkeys, gayals, guinea pigs, llamas, mules, rabbits, reindeer, water buffalo and yaks.
- the present invention provides a method of performing a coronary artery bypass graft procedure in a patient or subject comprising (a) applying to a cardiac location in the patient a composition comprising a 0.1 - 10% peptide solution, wherein the peptide an amino acid sequence of RADA repeats; and wherein the solution is characterized by an ability to transition between two states: an un-gelled state adopted when one or more particular ions is substantially absent, and a gelled state adopted when the one or more ions is present at or above a threshold level, wherein the one or more ions is or becomes present in the location.
- a cardiac location is an anastomy site on a coronary artery. In some embodiments, a cardiac location is an anastomy site on a graft vessel. In some embodiments, a cardiac location is an annula connection site for an oxygenator.
- a peptide composition of the present invention is applied to a cardiac location without additional pressure.
- applying a peptide composition of the present invention is performed after initiation but prior to completion of graft collection. In some certain embodiments, graft collection is performed without removing an applied peptide composition which is present in a gelled state.
- applying a peptide composition of the present invention is performed after initiation but prior to completion of graft collection. In some certain embodiments, graft collection is performed without removing an applied peptide composition which is present in a gelled state.
- an applied peptide composition of the present invention is retained at the site through performance of at least one step graft collection step. In some embodiments, an applied peptide composition of the present invention is retained at the site through the completion of graft collection steps. In various embodiments, graft collection is performed and/or completed without removing an applied peptide composition of the present invention.
- a method of performing a coronary artery bypass graft procedure in a patient or subject is provided, an improvement comprising excluding application of fibrin glue or SURGICEL® within the site.
- a method of performing a coronary artery bypass graft procedure in a patient or subject comprising applying a peptide composition of the present invention in addition to application of fibrin glue or SURGICEL® within the site.
- a peptide solution of the present invention has a concentration within the range of about 0.1% to about 10% (e.g., 0.1 - 10%; 0.2 - 9.9%, 0.3 - 9.8%, 0.4 - 9.7%, 0.5 - 9.6%, 0.6 - 9.5%, 0.7 - 9.4%, 0.8 - 9.3%, 0.9 - 9.2%, 1.0 - 9.1%, 1.1 - 9.0%, 1.2 - 8.9%, 1.3 - 8.8%, 1.4 - 8.7%, 1.5 - 8.6%, 1.6 - 8.5%, 1.7 - 8.4%, 1.8-8.3%, 1.9 - 8.2%, 2.0 - 8.1%, 2.1 - 8.0%, 2.2 - 7.9%, 2.3 - 7.8%, 2.4 - 7.7%, 2.5 - 7.6%, 2.6 - 7.5%, 2.7 - 7.4%, 2.8 - 7.3%, 2.9 - 7.2%, 3.0 - 7.1%, 3.1 - 7.0%, 3.2 - 6.9%,
- the concentration is within the range of 0.1 - 5%, 0.25 - 4.75%, 0.5 - 4.5%, 0.75 - 4.25%, 1.0 - 4.0%, 1.25 - 3.75%, 1.5 - 3.5%, 1.75 - 3.25%, 2.0 - 3.0%, or 2.25 - 2.75%.
- a peptide solution of the present invention has a concentration within the range of 1 - 3%; inclusive. In some certain embodiments, about 1.0%, in some embodiments, about 1.5%; in some embodiments, about 2.0%; in some embodiments, about 2.5%; in some embodiments, about 3%.
- a peptide of the present invention comprises an amino acid sequence that comprises two, three or four repeats of RADA (SEQ ID NO:1); in some embodiments, an amino acids sequence of two RADA repeats (e.g., RADARADA; SEQ ID NO:2); in some embodiments, an amino acids sequence of three repeats (e.g., RADARADARADA; SEQ ID NO:3); in some embodiments, an amino acids sequence of four RADA repeats (e.g., RADARADARADARADA; SEQ ID NO:4).
- one or more ions are selected from potassium (K + ) and sodium (Na + ). In some embodiments, one or more ions are potassium (K + ) and sodium (Na + ).
- a threshold level is characterized by physiological conditions present within a surgical site of a patient or subject. In some embodiments, a threshold level is provided by contact with bodily fluids, blood, tissues and/or a combination thereof within the surgical site of a patient or subject.
- patients or subjects are human or non-human.
- non-human patients or subjects include mammals.
- mammals include rodents (e.g., mice or rats), dogs, cats, horses, pigs, cattle, sheep, goats, alpacas, bantengs, bison, camels, deer, donkeys, gayals, guinea pigs, llamas, mules, rabbits, reindeer, water buffalo and yaks.
- the present invention provides a pre-filled syringe for use in a surgical procedure comprising a peptide composition of the present invention as described herein.
- a pre-filled syringe for use in a surgical procedure comprising a barrel comprising a 0.1 - 10% peptide solution, wherein the peptide comprises an amino acid sequence of RADA repeats; and wherein the peptide solution is characterized by an ability to transition between two states: an ungelled state adopted when one or more particular ions is substantially absent, and a gelled state adopted when the one or more ions is present at or above a threshold level, wherein the one or more ions is or becomes present in the location; and, a non-metal nozzle; wherein said barrel and non-metal nozzle are capable of forming a secure connection in a liquid-tight manner.
- a peptide solution of the present invention has a concentration within the range of about 0.1% to about 10% (e.g., 0.1 - 10%; 0.2 - 9.9%, 0.3 - 9.8%, 0.4 - 9.7%, 0.5 - 9.6%, 0.6 - 9.5%, 0.7 - 9.4%, 0.8 - 9.3%, 0.9 - 9.2%, 1.0 - 9.1%, 1.1 - 9.0%, 1.2 - 8.9%, 1.3 - 8.8%, 1.4 - 8.7%, 1.5 - 8.6%, 1.6 - 8.5%, 1.7 - 8.4%, 1.8-8.3%, 1.9 - 8.2%, 2.0 - 8.1%, 2.1 - 8.0%, 2.2 - 7.9%, 2.3 - 7.8%, 2.4 - 7.7%, 2.5 - 7.6%, 2.6 - 7.5%, 2.7 - 7.4%, 2.8 - 7.3%, 2.9 - 7.2%, 3.0 - 7.1%, 3.1 - 7.0%, 3.2 - 6.9%,
- the concentration is within the range of 0.1 - 5%, 0.25 - 4.75%, 0.5 - 4.5%, 0.75 - 4.25%, 1.0 - 4.0%, 1.25 - 3.75%, 1.5 - 3.5%, 1.75 - 3.25%, 2.0 - 3.0%, or 2.25 - 2.75%.
- a peptide solution of the present invention has a concentration within the range of 1 - 3%; inclusive. In some certain embodiments, about 1.0%, in some embodiments, about 1.5%; in some embodiments, about 2.0%; in some embodiments, about 2.5%; in some embodiments, about 3%.
- a peptide of the present invention comprises an amino acid sequence that comprises two, three or four repeats of RADA (SEQ ID NO:1); in some embodiments, an amino acids sequence of two RADA repeats (e.g., RADARADA; SEQ ID NO:2); in some embodiments, an amino acids sequence of three repeats (e.g., RADARADARADA; SEQ ID NO:3); in some embodiments, an amino acids sequence of four RADA repeats (e.g., RADARADARADARADA; SEQ ID NO:4).
- one or more ions are selected from potassium (K + ) and sodium (Na + ). In some embodiments, one or more ions are potassium (K + ) and sodium (Na + ).
- a threshold level is characterized by physiological conditions present within a surgical site of a patient or subject. In some embodiments, a threshold level is provided by contact with bodily fluids, blood, tissues and/or a combination thereof within the surgical site of a patient or subject.
- patients or subjects are human or non-human.
- non-human patients or subjects include mammals.
- mammals include rodents (e.g., mice or rats), dogs, cats, horses, pigs, cattle, sheep, goats, alpacas, bantengs, bison, camels, deer, donkeys, gayals, guinea pigs, llamas, mules, rabbits, reindeer, water buffalo and yaks.
- a pre-filled syringe of the present invention is used in a surgical procedure selected from the group consisting of coronary artery bypass graft (CABG), hepatectomy, pure laparoscopic hepatectomy (PLH), endoscopic mucosal resection (EMR), endoscopic sub mucosal dissection (ESD), thoracoscopic partial lung resection, lymph node dissection, open partial nephrectomy, laparoscopic partial nephrectomy, aorta replacement and orthopedic bone surgery.
- CABG coronary artery bypass graft
- PHL pure laparoscopic hepatectomy
- EMR endoscopic mucosal resection
- ESD endoscopic sub mucosal dissection
- thoracoscopic partial lung resection lymph node dissection
- lymph node dissection open partial nephrectomy
- laparoscopic partial nephrectomy laparoscopic partial nephrectomy
- aorta replacement a surgical procedure selected from
- a pre-filled syringe of the present invention comprises a non-metal nozzle that is rigid. In some embodiments, a pre-filled syringe of the present invention comprises a non-metal nozzle that is flexible. In some certain embodiments, a non-metal nozzle is flexible such that it is capable for use in an endoscopic surgical procedure. In some certain embodiments, a non-metal nozzle is flexible such that it is capable for use in a laparoscopic surgical procedure.
- a pre-filled syringe of the present invention comprises a peptide solution as described herein in a volume within the range of about 1 - 50 mL (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 mL).
- kits comprising one or more pre-filled syringes as described herein is provided. In some certain embodiments, a kit comprises one, two, three, four, five, or more pre-filled syringes.
- a pharmaceutical package comprising a pre-filled syringe as described herein and a blister pack specifically formed to accept such pre-filled syringe.
- carrier refers to a diluent, adjuvant, excipient, or vehicle with which a composition is administered.
- Carriers can include sterile liquids, such as, for example, water and oils, including oils of petroleum, animal, vegetable or synthetic origin, such as, for example, peanut oil, soybean oil, mineral oil, sesame oil and the like.
- each hydrophilic residue in a peptide either interacts (e.g., hydrogen bonds or ionically pairs) with a hydrophilic residue on an adjacent peptide, or is exposed to solvent.
- excipient refers to a non-therapeutic agent added to a pharmaceutical composition to provide a desired consistency or stabilizing effect.
- suitable pharmaceutical excipients include, for example, starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
- physiological conditions refers to conditions of the external or internal mileu that may occur in nature for an organism or cell system.
- physiological conditions are those conditions present within the body of a human or non-human animal, especially those conditions present at and/or within a surgical site.
- Exemplary physiological conditions are in contrast to conditions in a laboratory setting, which are interpreted to be artificial in comparison.
- Physiological conditions typically include, e.g., a temperature range of 20 - 40°C, atmospheric pressure of 1, pH of 6 - 8, glucose concentration of 1 - 20 mM, oxygen concentration at atmospheric levels, and gravity as it is encountered on earth.
- a peptide composition is considered to be a "pure" composition of a particular peptide (i.e., of a peptide having a particular amino acid sequence) if substantially all peptides in the composition have amino acid sequences that are identical to the particular sequence, or to a truncation thereof (e.g., a terminal truncation thereof, for example a carboxy-terminal truncation thereof).
- At least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of the peptides in a pure composition of a particular peptide i.e., of a peptide having a particular amino acid sequence
- a truncation thereof e.g., a terminal truncation thereof, for example an amino-terminal truncation thereof.
- At least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of the peptides in a pure composition of a particular peptide are full length.
- terapéuticaally effective amount is meant an amount that produces the desired effect for which it is administered.
- the term refers to an amount that is sufficient, when administered to a population suffering from or susceptible to a disease, disorder, and/or condition in accordance with a therapeutic dosing regimen, to treat the disease, disorder, and/or condition.
- a therapeutically effective amount is one that reduces the incidence and/or severity of, and/or delays onset of, one or more symptoms of the disease, disorder, and/or condition.
- therapeutically effective amount does not in fact require successful treatment be achieved in a particular individual.
- a therapeutically effective amount may be that amount that provides a particular desired pharmacological response in a significant number of subjects when administered to patients in need of such treatment.
- reference to a therapeutically effective amount may be a reference to an amount as measured in one or more specific tissues (e.g., a tissue affected by the disease, disorder or condition) or fluids (e.g., blood, saliva, serum, sweat, tears, urine, etc.).
- tissue e.g., a tissue affected by the disease, disorder or condition
- fluids e.g., blood, saliva, serum, sweat, tears, urine, etc.
- a therapeutically effective amount of a particular agent or therapy may be formulated and/or administered in a single dose.
- a therapeutically effective agent may be formulated and/or administered in a plurality of doses, for example, as part of a dosing regimen.
- topical when used to describe application of a composition is intended to describe a situation when the composition is applied to body surfaces such as the skin or mucous membranes as is typically the case in the context of known compositions used in a similar manner, such as, e.g., creams, foams, gels, lotions and ointments.
- Topical administration is understood to be epicutaneous, meaning that they are applied directly to the skin.
- Topical administration is also intended to include other formulations that may be applied to the surface of tissues other than the skin, such as eye drops applied to the conjunctiva, or ear drops placed in the ear, or treatment applied to the surface of a tooth.
- topical administration are contrasted with enteral (in the digestive tract) and parenteral administration (injected into the circulatory system).
- storage and/or drug delivery system refers to a system for storing and/or delivering peptide compositions described herein.
- Exemplary storage and/or delivery systems suitable for peptide compositions described herein are vials, bottles, beakers, bags, syringes, ampules, cartridges, reservoirs or LYO-JECTS®. Storage and/or delivery systems need not be one in the same and can be separate.
- nozzle refers to a generally thin, cylindrical object, often with a narrow end and a wide end, which is adapted for fixing onto a delivery device described herein.
- the terms “nozzle” and “cannula” are used interchangeably.
- Nozzles are composed of two connection points or ends, a first connection point or end to connect to a delivery system (e.g. a syringe) and a second connection point which may serve as the point where delivery of pharmaceutical composition is administered or as a point to connect to a secondary device (e.g., a catheter).
- bore is used herein to refer to an opening of a nozzle, cannula and/or catheter that are used in connection with delivery and/or storage systems (e.g., a syringe) containing peptide compositions of the present invention as described herein.
- a bore is characterized by various measurements or gauge, e.g., an inner wall diameter thickness, an outer wall diameter and a wall thickness.
- Exemplary measurements or the gauge of (e.g., diameter, thickness, etc.) a bore of a nozzle, cannula and/or catheter for use in connection with delivery and/or storage systems (e.g., a syringe) containing peptide compositions of the present invention can be found in any needle gauge system (e.g., a French scale or French gauge system, Stubs Iron Wire Gauge system also known as the Birmingham Wire Gauge).
- a French scale or French gauge system e.g., Stubs Iron Wire Gauge system also known as the Birmingham Wire Gauge.
- intrapeptide distance is calculated based on molecular modeling or based on simplified procedures known in the art (see, for example, U.S. Patent Number 5,670,483 ). In one exemplary method, intrapeptide distance is calculated by taking the sum of the number of unbranched atoms on the side-chains of each amino acid in a pair.
- the variation in the intrapeptide distance of peptides having lysine-glutamic acid pairs and glutamine-glutamine pairs is 3 angstroms.
- the term "subject” means any mammal, including humans. In certain embodiments of the present invention the subject is an adult, an adolescent or an infant. In some embodiments, terms “individual” or “patient” are used and are intended to be interchangeable with “subject”. Also contemplated by the present invention are the administration of the pharmaceutical compositions and/or performance of the methods of treatment in-utero.
- the present disclosure provides surgical methodologies that are improved through the use of certain sterile self-gelling peptide compositions, as described herein.
- the present disclosure further provides such compositions specifically prepared for administration during particular surgical procedures.
- the present disclosure provides specially designed delivery systems (e.g., pre-loaded syringes and/or cannulas) containing such self-gelling peptide compositions.
- compositions, surgical methods and devices disclosed herein provide various improvements to existing methodologies.
- Particular exemplary peptides appropriate for use in peptide compositions as described herein include those with sequences reported in U.S. Patents Nos. 5,670,483 , and/or 5,955,343 , and/or in U.S. Patent Application No. 09/778,200 , each of which is incorporated herein by reference.
- These peptides have amino acid sequences that consist of alternating hydrophilic and hydrophobic amino acids, and are characterized by an ability to self-assemble in the present of electrolytes (e.g., monovalent cations) into a stable beta-sheet macroscopic structure.
- Exemplary electrolytes are Na + and K + .
- These peptide chains are self-complementary and structurally compatible. When assembled into the beta-sheet structure, the amino acid side-chains of residues within the peptide partition into one of two faces, a polar face with charged ionic side chains and a nonpolar face with alanines or other hydrophobic groups.
- utilized peptides have amino acid sequences that consist of alternating positively and negatively charged amino acids. Such peptides are considered to be self-complementary when the positively charged and negatively charged amino acid residues can form complementary ionic pairs. Such peptide chains are referred to as ionic, self-complementary peptides, or Type I self-assembling peptides.
- peptide chains are described as "modulus I;” if the ionic residues alternate with two positively and two negatively charged residues (--++--++), the peptide chains are described as "modulus II.”
- Exemplary peptides for use with the present invention include those whose sequences are presented in Table 1 (N/A: not applicable; Asterisk: These peptides form a beta-sheet when incubated in a solution containing NaCl, however they have not been observed to self-assemble to form macroscopic scaffolds).
- hydrophilic residues such as asparagine and glutamine
- hydrophilic residues such as asparagine and glutamine
- these peptide chains have a greater tendency to self-assemble and form peptide matrices with enhanced strength.
- Some peptides that have similar compositions and lengths as the aforementioned peptide chains form alpha-helices and random-coils rather than beta-sheets and do not form macroscopic structures.
- other factors are likely to be important for the formation of macroscopic scaffolds, such as the chain length, the degree of intermolecular interaction, and the ability to form staggered arrays.
- self-assembling peptide chains may be generated, for example that have amino acid sequences that differ from that of any self-assembling peptide chains by a single amino acid residue or by multiple amino acid residues. Additionally, the incorporation of specific cell recognition ligands, such as RGD or RAD, into self-assembling peptides may promote the proliferation of cells in the scaffold, and/or may attract cells into the scaffold.
- specific cell recognition ligands such as RGD or RAD
- cysteines are included in self-assembling peptides, for example to permit formation of disulfide bonds.
- residues with aromatic rings may be incorporated into self-assembling peptides, so that cross-links between peptide chains can be generated by exposure to UV light.
- Table 2 presents representative examples of amino acid sequences of peptides that are susceptible to UV crosslinking. The extent of the cross-linking may be precisely controlled by the predetermined length of exposure to UV light and the predetermined peptide chain concentration. The extent of cross-linking may be determined, for example, by light scattering, gel filtration, or scanning electron microscopy using standard methods.
- the extent of cross-linking may be examined by HPLC and/or mass spectrometry analysis of a self-assembled peptide structure after digestion with a protease, such as matrix metalloproteases.
- the material strength of the scaffold may be determined before and after cross-linking, as described herein.
- peptide sequences are selected to achieve a desired level of stiffness and/or elasticity in the structure formed by self-assembly of the peptides. While not wishing to be bound by any theory, low elasticity may help allow cells to migrate into the assembled structure and/or to communicate with one another once resident in the structure.
- peptide sequences are selected to assemble into structures with a low elastic modulus, for example in the range of 1-10 kPa as measured in a standard cone-plate rheometer.
- a low elastic modulus for example in the range of 1-10 kPa as measured in a standard cone-plate rheometer.
- Such low values permit scaffold deformation as a result of cell contraction, and this deformation may provide the means for cell-cell communication.
- moduli allow the scaffold to transmit physiological stresses to cells migrating therein, stimulating the cells to produce tissue that is closer in microstructure to native tissue than scar.
- Scaffold stiffness can be controlled by a variety of means including, for example, changes in peptide sequence, changes in peptide concentration, changes in peptide length, and combinations thereof.
- other methods for increasing stiffness can be used, such as attaching one or more crosslinkable moieties (e.g., biotin) to the peptides (e.g., to the amino terminus, to the carboxy terminus, or to an internal site such as to a side chain) so that they may be cross-linked for example within a self-assembled structure.
- crosslinkable moieties e.g., biotin
- degradation sites such as one or more aggrecan processing sites (e.g., as underlined in Table 3), matrix metalloprotease (MMP) cleavage sites, such as those for collagenase sites, etc. may be introduced into peptides, whether at their amino termini, their carboxy termini, or elsewhere in their sequence the same manner.
- Peptide structures formed from such degradation-site-containing peptides, alone or in combination with peptides capable of being cross-linked may be degraded by exposure to appropriate proteases under appropriate conditions (including time of exposure) as understood by those skilled in the art.
- the in vivo half-life of a structure formed by assembled peptides may be modulated by incorporation of one or more degradation sites into utilized peptides, for example allowing the structure to be enzymatically degraded.
- the rate of degradation of peptide structures may be determined, for example, by HPLC, mass spectrometry, and/or NMR analysis of released peptide components. Alternatively or additionally, if radiolabeled peptides are utilized, the amount of released radioactivity may be measured, for example by scintillation counting. For some embodiments, the beta-sheet structure of the assembled peptide chains is degraded sufficiently rapidly that it is not necessary to incorporate cleavage sites into peptides used for assembly.
- utilized peptides possess an alternating structure of the hydrophobic amino acid alanine (A) and the hydrophilic amino acids arginine (R) and aspartate (D), in which the respective positive and negative charges determine the relative position of the adjoining molecules.
- A hydrophobic amino acid alanine
- R hydrophilic amino acids arginine
- D aspartate
- self-assembly may be completed by hydrophobic bonding between neutral amino acid side chains and hydrogen bonding between peptide backbones.
- utilized peptides have an amino acid sequence that comprises, or in some embodiments consists of, repeats of arginine-alanine-aspartate-alanine (RADA).
- utilized peptides contain two, three, four or more repeats of RADA (SEQ ID NO: 1). In some embodiments, utilized peptides contain four RADA repeats (e.g., have the sequence RADARADARADARADA; SEQ ID NO:4).
- peptides utilized in peptide compositions as described herein are at least 12 or 16 amino acids long. In some embodiments, peptides utilized in peptide compositions as described herein are exactly 12 or 16 amino acids long.
- peptides utilized in peptide compositions as described herein are at least 8 or 12 amino acids long. In some embodiments, peptides utilized in peptide compositions as described herein are exactly 8 or 12 amino acids long.
- peptides utilized in peptide compositions as described herein comprise or consist of natural amino acids; in some embodiments they include one or more non-natural and/or modified amino acids.
- peptides utilized in peptide compositions as described herein comprise or consist of D- amino acids. In some embodiments, peptides utilized in peptide compositions as described herein comprise or consist of L- amino acids. In some embodiments, peptides utilized in peptide compositions as described include both D- and L-amino acids.
- peptides utilized in peptide compositions as described herein are synthesized, for example using standard f-moc chemistry and purified using high pressure liquid chromatography.
- a peptide composition for use in accordance with the present invention is or comprises a bioabsorbable aqueous solution having as its main constituent a peptide.
- a solution is characterized by an ability to transition between two states: an un-gelled state adopted, for example at a particular pH and/or when one or more particular ions is substantially absent, and a gelled state adopted at a particular pH and/or when the one or more ions is present at or above a threshold level.
- transition from un-gelled to gelled state occurs when the peptide solution is exposed to pH in the vicinity of the isoelectric point; in some such embodiments, the isoelectric point is around pH 7.
- such transition occurs when the peptide solution is exposed to a pH within a range of about pH 6 to about pH 8, inclusive, for example about 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, or 8.0; in some embodiments, such pH is within the range of about 6.5 to about 7.5, inclusive; in some embodiments about 6.8 to about 7.2, inclusive; in some embodiments about 7.0.
- transition from un-gelled to gelled state occurs when the peptide solution is exposed to the presence of a low-concentration (e.g., about several millimoles, for example within a range of about 1 millimole to about 10 millimoles, inclusive) of univalent alkali metal ions (e.g., Na + , K + ).
- a low-concentration e.g., about several millimoles, for example within a range of about 1 millimole to about 10 millimoles, inclusive
- univalent alkali metal ions e.g., Na + , K +
- concentration of univalent alkali metal ions is about 1, 2, 3, 4, 5, 6, 7, 8, 9 or about 10 millimoles. In some embodiments, such concentration is greater than 1 millimole.
- such transition occurs under physiological conditions (i.e., pH around 7 in the presence of salts such as Na + and K + ). In some embodiments, such transition (and/or peptide self-assembly) occurs rapidly (e.g., within a time period less than about 5 minutes) upon exposure to appropriate pH and metal ions; in some embodiments, such transition occurs within a time period of about 1 minute to about 5 minutes, inclusive, for example, about 1, 2, 3, 4 or 5 minutes; in some embodiments, such transition occurs within about 5 minutes; in some embodiments such transition occurs within about 4 minutes; in some embodiments, such transition occurs within about 3 minutes; in some embodiments, such transition occurs within about 2 minutes; in some embodiments, such transition occurs within about 1 minute.
- physiological conditions are those present in a body of a subject, e.g., at a surgical site within or on a subject.
- physiological conditions can be achieved by the presence of bodily fluids, blood, tissues and/or a combination thereof.
- physiological conditions are achieved in vivo or ex vivo by the addition of a buffer that comprise the ions, e.g., by exogenously adding one or exemplary ions at a level that induces the formation of the gelled state.
- peptides may be exposed to appropriate physiological conditions ex vivo, for example prior to or during a surgical procedure. In some embodiments, such exposure occurs within a subject's body (e.g., during intrabody surgery), or on a subject's body (e.g., when applied topically, for example, to opening left from a laparoscope or biopsy.
- utilized peptides in solution self-assemble into a structure, for example comprised of a network of fibers, when exposed to an appropriate pH and ion condition.
- utilized peptides self-assemble into a network structure that includes fibers and pores.
- such fibers have a diameter within the range of about 10 to about 20 nm, inclusive; in some embodiments, such pores have a diameter within the range of about 50 to about 200 nm.
- a utilized peptide self-assembles into a network structured that resembles the structure of natural collagen ( Figure 1 ).
- peptide compositions for use in accordance with the present invention contain peptides in solution in a concentration within the range of about 0.1% to about 10%, inclusive.
- the concentration is within the range of 0.1 - 10%; 0.2 - 9.9%, 0.3 - 9.8%, 0.4 - 9.7%, 0.5 - 9.6%, 0.6 - 9.5%, 0.7 - 9.4%, 0.8 - 9.3%, 0.9 - 9.2%, 1.0 - 9.1%, 1.1 - 9.0%, 1.2 - 8.9%, 1.3 - 8.8%, 1.4 - 8.7%, 1.5 - 8.6%, 1.6 - 8.5%, 1.7 - 8.4%, 1.8 - 8.3%, 1.9 - 8.2%, 2.0 - 8.1%, 2.1 - 8.0%, 2.2 - 7.9%, 2.3 - 7.8%, 2.4 - 7.7%, 2.5 - 7.6%, 2.6 - 7.5%, 2.7 - 7.4%, 2.8 - 7.3%, 2.9 - 7.2%, 3.
- the concentration is within the range of 0.1 - 5%, 0.25 - 4.75%, 0.5 - 4.5%, 0.75 - 4.25%, 1.0 - 4.0%, 1.25 - 3.75%, 1.5 - 3.5%, 1.75 - 3.25%, 2.0 - 3.0%, 2.25 - 2.75%; in a specific embodiment, within a range of 1.0 - 3.0%; in a specific embodiment, the concentration is about 1%; in a specific embodiment, the concentration is about 1.5%; in a specific embodiment, the concentration is about 2%; in a specific embodiment, the concentration is about 2.5%; in a specific embodiment, the concentration is about 3%.
- peptide compositions contain peptides in solution at a concentration within the range of about 0.5% to about 5%. In some embodiments, peptide compositions for use in accordance with the present invention contains peptides in solution at a concentration of about 0.5%, 1%, 1.5%, 2%, 2.5%, 3%,3.5%, 4%, 4.5%, 5%, or more.
- the present invention provides methods of using compositions comprising the peptide solutions described herein, in particular, in methods of performing surgical procedures.
- the surgical procedures may be intrabody surgical procedures.
- the surgical procedures may be may be superficial or topical.
- Peptide compositions described herein may be used in various surgical procedures to control and arrest bleeding encountered by surgeons while performing surgical tasks in a more effective and efficient manner. Exemplary surgical procedures are provided that are performed in shorter time and/or involve less bleeding than typically occurs in standard procedures by use of the peptide compositions described herein.
- the present invention provides the insight that peptide compositions as described herein are particularly useful in, and/or provide particular advantages when utilized in certain surgical procedures.
- the present invention encompasses the recognition that the peptide compositions described herein provide an effectiveness advantage in arresting bleeding during various surgical procedures. Exemplary advantages are faster completion of one or more surgical tasks during a surgical procedure and, as a result, a decrease in the overall duration of a surgical procedure.
- the various examples describe the efficacy and safety of a composition comprising a peptide solution, wherein the peptide comprises an amino acid sequence of RADA repeats; and wherein the solution is characterized by an ability to transition between two states: an ungelled (or aqueous) state adopted when one or more particular ions is substantially absent, and a gelled state adopted when the one or more ions is present at or above a threshold level, wherein the one or more ions is or becomes present in the site (or location) of administration.
- the present invention provides the recognition, among other things, that peptide compositions described herein provide clinical advantages compared to existing materials used in a similar manner for arresting bleeding during surgical procedures.
- the present invention provides the recognition, among other things, that peptide compositions may be manufactured from artificial synthesis without the use of any animal-derived products, negating any risk of infection.
- the present invention provides the recognition that, compared with existing materials, methods of performing a surgical procedure on a subject comprising applying peptide compositions described herein require minimal, or substantially no, preparation and operation, thereby providing an advantage in application.
- the present invention provides the recognition that existing materials (e.g., fibrin glue), in contrast to peptide compositions described herein, are difficult to remove from application sites after hardening.
- existing materials e.g., fibrin glue
- peptide compositions may be washed with saline, allowing for repeated use during surgery.
- the present invention provides the recognition that peptide compositions described herein are colorless and remain transparent once in the gelled state has been adopted during application, thereby maintaining a clear surgical field of view. Such is essential for ascertaining effective control and/or arrest of bleeding from a surgical site.
- the present invention provides the recognition that upon stoppage of bleeding during a surgical procedure or once all or substantially all tasks associated with the a surgical procedure have been completed, excess peptide composition described herein can simply be removed by washing with water.
- excess peptide composition described herein can simply be removed by washing with water.
- secondary bleeding is impeded, inhibited and/or ameliorated by the coagulation system of the subject.
- the present invention provides the recognition that gelation of peptide compositions described herein after contact with blood at or on an application site, rather than solidification within a delivery device, e.g. a nozzle attached to a pre-filled syringe, allows use in specific surgical procedures, e.g., endoscopy and laparoscopy, and thereby eliminates difficulties by using existing materials, which can solidify leading to complications.
- a delivery device e.g. a nozzle attached to a pre-filled syringe
- the present invention provides the recognition that peptide compositions described herein provide a contrasting mechanism of action.
- application of peptide compositions described herein to one or more bleeding sites provides a surface pressure on the one or more bleeding sites. Such surface pressure provides normal coagulation to occur beneath the layer of the applied peptide composition once a gelled state is adopted, thereby closing the bleeding site and stopping bleeding. Existing materials require additional manual pressure for compression.
- the present invention provides the recognition that peptide compositions described herein provide a decrease in the time to perform one or more tasks associated with a surgical procedure.
- the present invention provides improved surgical methods that utilize peptide compositions as described herein.
- a provided surgical method is improved relative to a reference or standard of care method in that it is performed in shorter period of time.
- a provided surgical method is improved relative to a reference or standard of care method in that recovery of a patient is improved relative to a patient on whom the same surgical method was performed without utilizing peptide compositions described herein.
- peptide compositions described herein are utilized in surgical methods that are performed on the exterior or interior of the body of a subject. In certain embodiments, peptide compositions described herein are utilized in surgical methods that are performed on the vasculature, internal organs and/or bone(s) of a subject.
- peptide compositions described herein are utilized in surgical methods to graft vessels within a surgical site.
- vascular surgical methods comprise bypass surgery (e.g., coronary artery bypass).
- peptide compositions described herein are utilized in surgical methods that are performed to resect or dissect an organ in whole or in part.
- Virtually an organ may be a candidate in a given surgical procedure, however, without wishing to be bound by theory, exemplary organs may include, e.g., liver, spleen, gallbladder, pancreas, stomach or lung.
- peptide compositions described herein are utilized in surgical methods that are performed to remove cancerous or otherwise malignant tissue from an organ in whole or in part.
- peptide compositions described herein are utilized in surgical methods that are performed to resect benign tissue of an organ in whole or in part.
- peptide compositions described herein may be utilized in surgical methods performed to repair a fracture of one or more bone(s) of a subject.
- peptide compositions are utilized by injecting into a fracture site of one or more bones in a subject.
- peptide compositions are utilized by applying onto a fracture site of one or more bones in a subject.
- application of peptide composition described herein to a surgical site may vary, e.g., depending upon the application site, patient-specific factors, surgical procedure, application site conditions, route of administration, and the like.
- peptide compositions described herein are used for treating various bleeding sites associated with a given surgical procedure, including intrabody surgery in a subject, it is advantageous to administer directly, normally in an amount necessary to arrest bleeding (e.g., a therapeutically effective amount).
- the frequency and duration of administering peptide compositions as described herein can be adjusted depending on the severity of the condition(s) or application site.
- peptide compositions described herein utilized in a surgical method are provided in an injectable preparation.
- Such means for providing peptide compositions for use in arresting bleeding during a surgical procedure is advantageous over existing materials, which may require mixing or otherwise mechanical manipulation on the part of the administrator or surgeon.
- the injectable preparations may be used for any type of application to a bleeding site of a subject (human or non-human) in need of treatment.
- a pharmaceutical composition comprising the peptide compositions described herein may be delivered to a bleeding site or surgical site with a syringe and nozzle.
- a subject undergoing a surgical procedure, intrabody or otherwise may be administered a therapeutically effective amount of peptide compositions as described herein to a bleeding site using a pre-filled syringe.
- exemplary techniques include placing a nozzle fixed to the pre-filled syringe in close proximity to one or more bleeding sites as desired.
- Peptide compositions for use in accordance with the present invention comprise peptides as described herein, optionally together with one or more with suitable carriers, excipients, and/or other agents that are incorporated into formulations; in some embodiments, components of utilized compositions are selected to provide improved transfer, delivery, tolerance, performance, and the like.
- peptide compositions for use in the present invention comprise peptides in aqueous solution (i.e., in a water-based and/or water-miscible carrier).
- exemplary aqueous carriers for such compositions include, for example, pharmaceutical grade water, sucrose (e.g., sucrose water), and combinations thereof.
- peptide compositions for use in the present invention comprise peptides in aqueous solution, wherein the aqueous solution comprises a carrier that is an organic compound that is characterized by an ability to confer solubility and/or bodying effects to the peptides in aqueous solution.
- peptide compositions for use in accordance with the present invention are sterile and/or are prepared aseptically.
- peptide compositions for use in accordance with the present invention can be stored in an oxygen-deprived environment.
- Oxygen-deprived environments can be generated, for example, by storing the aqueous solution under an inert gas (e.g., nitrogen or argon).
- peptide compositions for use in accordance with the present invention may be stored in dry form, for example in dry powder form, for example as is achieved by lyophilization.
- peptide compositions for use in accordance with the present invention are suitably stored at a temperature within the range of about 0°C to about 10°C, inclusive, for example about 0.5°C, 1.0°C, 1.5°C, 2.0°C, 2.5°C, 3.0°C, 3.5°C, 4.0°C, 4.5°C, 5.0°C, 5.5°C, 6.0°C, 6.5°C, 7.0°C, 7.5°C, 8.0°C, 8.5°C, 9.0°C, 9.5°C, or 10.0°C; in some embodiments, such temperature is within the range of about 2.0°C to about 8.0°C, inclusive. In some embodiments, such temperature is above 0°C and lower than 10°C.
- peptide compositions for use in accordance with the present invention are provided in unit dose forms, for example together with a delivery system.
- an appropriate unit dose of a peptide composition in accordance with the present invention delivers an amount of peptide within the range of about 0.1% to about 10% (w/v) of peptide, inclusive; for example about 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3%, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9%, 4.0%, 4.1%, 4.2%, 4.3%, 4.4%, 4.5%, 4.6%, 4.7%, 4.8%, 4.9%, 5.0%, 5.1%, 5.2%, 5.3%, 5.4%, 5.5%, 5.6%, 5.7%, 5.8%, 5.9%, 6.0%, 6.1%, 6.2%, 6.3%, 6.4%, 6.5%, 6.6%, 6.
- delivering such an amount of peptide within the range of about 1.0% to about 5.0%. In some embodiments, within the range of about 1.0% to about 3%. In some embodiments, about 1.0%; in some embodiments, about 1.5%; in some embodiments, about 2.0%; in some embodiments, about 2.5%; in some embodiments, about 3.0%.
- an appropriate unit dose of a peptide composition that is a solution is within the range of about 1.0 mL to about 50.0 mL, inclusive, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 mL.
- an appropriate unit dose of a peptide composition that is a solution is within the range of about 1.0 mL to about 10 mL. In some embodiments, within a range of about 20 mL to about 30 mL.
- a peptide composition as described herein is provided together with (e.g., within) an appropriate storage or delivery container such as for example, a vial, bottle, beaker, bag, syringe, ampule, cartridge, reservoir or LYO-JECT®.
- an appropriate storage or delivery container such as for example, a vial, bottle, beaker, bag, syringe, ampule, cartridge, reservoir or LYO-JECT®.
- the amount of peptide composition included in such an appropriate storage or delivery container is at least a unit dose of the peptide composition. In some embodiments, the amount is a unit dose, or a multiple thereof.
- the storage or delivery container may be formed from a variety of materials such as glass or plastic.
- peptide compositions for use in accordance with the present invention are provided in a pre-filled syringe, and optionally together with one or more nozzles as described herein for delivery of a peptide solution from such a pre-loaded syringe or other storage container.
- Suitable pre-filled syringes include, but are not limited, to, borosilicate glass syringes with baked silicone coating, borosilicate glass syringes with prayed silicone, plastic resin syringes without silicone, or cyclo-olefin-polymer syringes, polypropylene syringes and polyethylene syringes.
- the form of peptide composition that is provided together with (e.g., within) an appropriate storage or delivery container is a solution as described herein; in some embodiments, the form is a dry form as described herein (e.g., a dry powder form).
- peptide compositions for use in accordance with the present invention are suitable for administration to a subject during a surgical procedure.
- surgical procedures are performed within the body of a subject, e.g., intrabody.
- Exemplary intrabody surgical procedures are procedures to correct vascular abnormalities (e.g., a bypass), resection or dissection (e.g., to remove damaged or diseased tissue from an organ in whole or in part), or to repair a damaged organ, tissue or bone (e.g., repair a lacerated spleen, repair a bone fracture, repair torn muscle or ligaments, etc.).
- surgical procedures are performed on the exterior of a body of a subject, e.g., topical.
- Exemplary topical surgical procedures are procedures to repair an opening in the skin of a subject (e.g., sutures to close an opening in the skin made from a puncture or other protrusion).
- the subject is a human.
- the subject is an non-human animal (e.g., a horse, dog, cat, etc.).
- the present invention provides storage and/or delivery systems particularly adapted for delivery of peptide compositions as described herein
- storage systems are separate from delivery systems for peptide compositions described herein.
- storage of peptide compositions described herein is provided in delivery systems.
- peptide compositions described herein may be stored in a delivery system, e.g., a pre-filled syringe, until time for application during a surgical method.
- storage and/or delivery systems as described herein can be utilized in one or more surgical methods. In some embodiments, storage and/or delivery systems as described herein may be utilized in methods for arresting bleeding so as to decrease the duration of a surgical method performed on a subject.
- provided storage and/or delivery systems are particularly adapted for delivery of peptide compositions as described herein to intrabody sites including for example surgical sites.
- the present invention provides nozzles and/or cannulas for delivery of compositions such as peptide compositions.
- such nozzles and/or cannulas are adapted for attachment to a syringe or other storage or delivery vessel, which may, for example, be pre-loaded with a composition for delivery. Examples of such nozzles and/or cannulas are depicted in Figures 7 and 8 .
- provided nozzles differ from traditional needles in one or more of a variety of features.
- exemplary nozzles are made from a non-metal material, in contrast to standard metal needles.
- provided nozzles and/or cannulas are formed from a plastic material (e.g., polypropylene). In certain embodiments, provided nozzles and/or cannulas are formed from a flexible material. In some embodiments, provided nozzles and/or cannulas are formed from a stiff (e.g., non-flexible) material. In some embodiments, provided nozzles and/or cannulas are formed from a material susceptible to sterilization, e.g., by autoclaving.
- a plastic material e.g., polypropylene
- provided nozzles and/or cannulas are formed from a flexible material. In some embodiments, provided nozzles and/or cannulas are formed from a stiff (e.g., non-flexible) material. In some embodiments, provided nozzles and/or cannulas are formed from a material susceptible to sterilization, e.g., by autoclaving.
- provided nozzles and/or cannulas have a blunt end, in contrast to many standard needles, which have a pointed end.
- standard hypodermic or suture needles typically have a pointed end, which may be further characterized by a bevel.
- Exemplary types of bevels include standard, short or true short bevels.
- provided nozzles and/or cannulas have a relatively wide bore as compared with many standard needles. In some embodiments, such nozzles and/or cannulas have an inner bore diameter, an outer bore diameter and a bore wall thickness.
- provided nozzles and/or cannulas have an inner bore diameter within the range of about 4.00 mm to about 0.05 mm, inclusive; for example about 4.00 mm, 3.90 mm, 3.80 mm, 3.70 mm, 3.60 mm, 3.50 mm, 3.40 mm, 3.30 mm, 3.20 mm, 3.10 mm, 3.00 mm, 2.90 mm, 2.80 mm, 2.70 mm, 2.60 mm, 2.50 mm, 2.40 mm, 2.30 mm, 2.20 mm, 2.10 mm, 2.00 mm, 1.90 mm, 1.80 mm, 1.70 mm, 1.60 mm, 1.50 mm, 1.40 mm, 1.30 mm, 1.20 mm, 1.10 mm, 1.00 mm, 0.90 mm, 0.80 mm, 0.70 mm, 0.60 mm, 0.50 mm, 0.40 mm, 0.30 mm, 0.20 mm, 0.10 mm, 0.10 mm, 0.09 mm, 0.08 mm, 0.
- such an outer bore diameter is within the range of about 5.00 mm to about 0.15 mm, inclusive; for example about 5.00 mm, 4.90 mm, 4.80 mm, 4.70 mm, 4.60 mm, 4.50 mm, 4.40 mm, 4.30 mm, 4.20 mm, 4.10 mm, 4.00 mm, 3.90 mm, 3.80 mm, 3.70 mm, 3.60 mm, 3.50 mm, 3.40 mm, 3.30 mm, 3.20 mm, 3.10 mm, 3.00 mm, 2.90 mm, 2.80 mm, 2.70 mm, 2.60 mm, 2.50 mm, 2.40 mm, 2.30 mm, 2.20 mm, 2.10 mm, 2.00 mm, 1.90 mm, 1.80 mm, 1.70 mm, 1.60 mm, 1.50 mm, 1.40 mm, 1.30 mm, 1.20 mm, 1.10 mm, 1.00 mm, 0.90 mm, 0.80 mm, 0.70 mm, 0.60 mm, 1.50
- such a bore wall thickness is within the range of about 0.400 mm to about 0.025 mm, inclusive; for example about 0.400 mm, 0.375 mm, 0.350 mm, 0.325 mm, 0.300 mm, 0.0275 mm, 0.250 mm, 0.225 mm, 0.200 mm, 0.175 mm, 0.150 mm, 0.125 mm, 0.100 mm, 0.075, 0.050 mm, or 0.025 mm; in some embodiments, such a bore wall thickness is about 0.381 mm, 0.356 mm, 0.330 mm, 0.305 mm, 0.254 mm, 0.229 mm, 0.203 mm, 0.216 mm, 0.191 mm, 0.1524 mm, 0.2826 mm, 0.1524 mm, 0.1270 mm, 0.1016 mm, 0.1734 mm, 0.1016 mm, 0.0889 mm, 0.0762 mm, 0.0635 mm, or 0.0508 mm; in some embodiments, such
- provided nozzles and/or cannulas may have a tapered bore. In some embodiments, such provided nozzles and/or cannulas taper substantially evenly between their large and small bore portions. In some embodiments, provided nozzles and/or cannulas taper to a small bore portion at their delivery end, which may for example be a blunt end as described herein.
- provided nozzles and/or cannulas have a length within a range of about 6 inches to about 0.25 inches; inclusive, for example, about 6.0 inches, 5.9 inches, 5.8 inches, 5.7 inches, 5.6 inches, 5.5 inches, 5.4 inches, 5.3 inches, 5.2 inches, 5.1 inches, 5.0 inches, 4.9 inches, 4.8 inches, 4.7 inches, 4.6 inches, 4.5 inches, 4.4 inches, 4.3 inches, 4.2 inches, 4.1 inches, 4.0 inches, 3.9 inches, 3.8 inches, 3.7 inches, 3.6 inches, 3.5 inches, 3.4 inches, 3.3 inches, 3.2 inches, 3.1 inches , 3.0 inches, 2.9 inches, 2.8 inches, 2.7 inches, 2.6 inches, 2.5 inches, 2.4 inches, 2.3 inches, 2.2 inches, 2.1 inches, 2.0 inches, 1.9 inches, 1.8 inches, 1.7 inches, 1.6 inches, 1.5 inches, 1.4 inches, 1.3 inches, 1.2 inches, 1.1 inches, 1.0 inch, 0.9 inches, 0.8 inches, 0.7 inches,
- provided nozzles and/or cannulas are specially adapted for application in a particular surgical procedure.
- nozzles may be engineered based on type of surgery for which they are used (e.g., endoscopy, laparoscopy, etc.); other factors consideration are size, length and flexibility (e.g., adapted for range of motion, ability to use such that surrounding tissue is not disrupted or damaged), geometry and other formats.
- the addition of or coupling with an optical system and/or light system thereby allowing for visual confirmation of application to a site otherwise occluded from a surgeon's view.
- nozzles and/or cannulas adapted for coupling to a catheter are provided. An example of such adaptor is provided in Figure 8 .
- provided nozzles and/or cannulas adapted for coupling to a catheter have a first connection end for connection to a catheter that has a diameter within the range of about one millimeter to about four millimeters. In some embodiments, a diameter within the range of about one millimeter to about 2 millimeters. In certain embodiments, a diameter of about 1.5 millimeters.
- provided nozzles and/or cannulas adapted for coupling to a catheter have a second connection end for connection to a storage and/or delivery device, e.g., a pre-filled syringe, that has a diameter within the range of about four millimeters to about 8 millimeters. In some embodiments, a diameter within the range of about five millimeters to about 7 millimeters. In certain embodiments, a diameter of about five millimeters. In a specific embodiment, a diameter of about 5.21 millimeters. In certain embodiments, a diameter of about seven millimeters. In a specific embodiment, a diameter of about 6.9 millimeters.
- provided nozzles and/or cannulas may be designed in the context of pressure when applying the compositions from a syringe.
- provided nozzles and/or cannulas are reusable, for example, being adapted to be removed from a first storage and/or delivery vehicle (e.g., after delivery of composition from the storage and/or delivery vehicle) and attached to a second (and/or subsequent) storage and/or delivery vehicle.
- provided nozzles and/or cannulas are single-use.
- pharmaceutical packages that contain a storage and/or delivery system described herein are provided. Suitable pharmaceutical packages are sterile and acceptable for use in a surgical setting. Examples of pharmaceutical packages are blister packs, bubble packs or clamshell packages. Pharmaceutically acceptable packages, for example, may be performed packaging and made from a various of materials, such as, e.g., cyclic olefin copolymers ( ), polychlorotrifluoroethylene, or polyvinyl chloride.
- An example of a pharmaceutical package e.g., a blister pack
- a storage and/or delivery device comprising peptide compositions (e.g., a pre-filled syringe) described herein and a nozzle/cannula is provided in Figure 9 .
- a blister pack in some embodiments, contains a cavity or pocket that provides a custom, formable location to accept a storage and/or delivery device comprising peptide compositions described herein. Additionally or optionally, in some embodiments, a blister pack is provided that contains a cavity or pocket that provides a custom, formable location to accept a nozzle or cannula described herein. Additionally or optionally, in some embodiments, a blister pack is provided that contains a cavity or pocket that provides a custom, formable location to accept an adaptor described herein. In various embodiments, individual blister packs contain a cover (e.g., a tyvek sheet) fixed to the cavity or pocket to maintain sterile conditions.
- a cover e.g., a tyvek sheet
- provided pharmaceutical packages e.g., blister packs
- Sterilization i.e. aseptic processing of storage and/or delivery devices described herein
- sterilization techniques for pharmaceutical packages described herein are pressurized steam, hot air, ionizing radiation (e.g., gama and/or electron beam), and gas (e.g., ethylene oxide or formaldehyde).
- multiple storage and/or delivery devices may be provided in a single pharmaceutical package.
- a unit or multiple doses provided in pre-filled syringes may be packaged in multiple blister packs, or optionally, in a clamshell-type container suitable for packaging multiple syringes.
- pre-filled syringes comprising a unit dose, or multiple doses are provided in blister packs.
- multiple pre-filled syringes are provided in clamshell-type packages and are acceptable for use in a surgical setting (i.e., sterile). Suitable sterilization techniques are employed as described above to ensure sterilized pharmaceutical products are provided in various surgical settings.
- peptide compositions described herein arrest bleeding in a surgical procedure by an entirely different mechanism than that of existing materials used to control and/or stop bleeding during surgery.
- coagulation factors are used.
- peptide compositions described herein block the bleeding site without the use of a coagulation factor and can stop bleeding without pharmacological action.
- the inventors have employed peptide compositions described herein in various surgical procedures on human and non-human subjects and discovered that peptide gels intertwine with blood cells at a given bleeding site at the superficial portion of the blood vessels thereby allowing blood coagulation to occur below the top layer of the gel.
- peptide compositions described herein include starting materials of an artificial synthetic peptide and water for injection without including any animal-derived materials. This drastically reduces, if not eliminates altogether, the risk of infection by using peptide compositions described herein in a surgical procedure. Further, because peptide compositions described herein are provided in an aqueous solution it can be supplied in pre-filled syringes and used directly on or within a surgical site. There is no need for special preparation before application, as is typically encountered with other materials, e.g., fibrin glue. Also, a large component of the aqueous solution is water, which allows for repeated use in an almost unlimited manner, unlike other materials, especially adhesive-based materials.
- composition 1 a particular peptide composition, referred to herein as "Composition 1" utilized in various surgical methods as described herein.
- Composition 1 is a bioabsorbable aqueous solution containing 2 - 2.5% of RADA-16 in water.
- Composition 1 is manufactured by preparing peptides consisting of chemically synthesized amino acids using solid-phase synthesis, dissolving the peptides in water for injection, filtering the solution with a bacterial filter (0.2 mm), and filling the resulting filtrate in a sterile manner into a syringe. As such, manufacture is completed without using any animal-derived materials, eliminating any risk of infection by biological materials.
- Composition 1 is a clear, colorless liquid and retains this transparent quality upon application to a surgical site upon which the peptide solution adopts a gelled state by the formation of a hydrogel and has the ability to stop bleeding during the performance of a surgical procedure.
- This transparent quality makes Composition 1 uniquely suited for use in surgical procedures over other materials in terms of its ease of use and ability to maintain a clear surgical field.
- Composition 1 can be provided in a pre-filled syringe and thus is unique compared to other materials, e.g., fibrin glue, which needs to be prepared and mixed from separate liquids. There is no such requirement with Composition 1 as it is made from peptides and can be completely broken down by washing.
- Composition 1 in surgical procedures: virtually unlimited frequency of application, faster and more efficient control and stoppage of bleeding, maintenance of clear surgical field and bleeding site due to transparent quality, easily removed by irrigation, shortens duration of bleeding control measures during surgery, overall shortening of time required to complete surgical procedure, and may improve the rate of patient recovery by contributing to overall decrease in blood loss during surgery.
- Composition 1 has demonstrated that Composition 1's main constituent peptide (CH 3 CO-(Arg-Ala-Asp-Ala) 4 -NH 2 , see below) does not exhibit bioactivity by acting on the signal transduction system of living organisms (data not shown).
- EMBL European Molecular Biology Laboratory
- EMBL European Molecular Biology Laboratory
- GenomeNet Database Resources for protein sequence motifs for all amino acid sequences in which the main constituent peptide can be generated by cleavage did not reveal any sequences indicating a high degree of homology with known motifs.
- Composition 1 Unlike other measures to control and/or stop bleeding during surgery, e.g., oxidized cellulose or starch-based absorbent topical preparations that stem blood flow by the formation of clots, the mechanism of action of Composition 1 is realized by modification of physical properties upon a change in pH to seal off the bleeding point.
- Example 2 Surgical procedures in non-human animals employing Composition 1
- This Example describes certain animal studies based on results of an efficacy validation study of an approved material for controlling bleeding during surgery.
- the oozing needle hole hemorrhage model of prosthetic vascular graft implantation in a beagle dog was designed to mimic the oozing needle hole hemorrhage from anastomotic sites at the autologous vascular.
- Rabbit abdominal aortic puncture Laparotomy was performed to expose approximately 10 cm of the abdominal aorta of each rabbit. Heparin sodium (500 IU) was administered intravenously. The bleeding model was established by puncturing the abdominal aorta using an injection needle (23-26G). After bleeding was confirmed, peripheral and central blood flow was stopped with clamps and Composition 1 was immediately applied to the wound site using a syringe. Blood flow was allowed to resume after 1-2 min, and the puncture site was visually inspected for bleeding. Rabbit abdominal aorta used in the present study was fixed in formalin, and vascular cross sections of both Composition 1-treated and untreated sites (control) were used to make pathology specimens that were then observed under a microscope.
- the abdominal aorta was exposed via laparotomy under general anesthesia. Heparin sodium was intravenously infused at 1000 IU. After confirmation that the active coagulation time (ACT) had exceeded 200 seconds, the abdominal aorta was clamped, and an end-to-end graft replacement procedure was performed. Exudative bleeding (an oozing-type bleeding) from the graft anastomosis and needle hole were observed. Composition 1 was applied to the needle hole to evaluate the efficacy and cessation of bleeding.
- ACT active coagulation time
- Composition 1 forms a gel as soon as it comes in contact with blood from a bleeding site. Through application at a bleeding site, it is possible for an amount of gelatinized Composition 1 to enter the blood stream. [[Note to client: what can we make of this: "There is also an undeniable risk of gelatinized Composition 1 entering the blood stream as a result of erroneous intravascular administration. To evaluate these risks, we carried out tests on mice and rabbits simulating accidental IV administration of Composition 1.”]] In this example, the safety of intravenous administration of Composition 1 was demonstrated using mice.
- gelatinized Composition 1 in suspension was dosed at a concentration that would presumed to have an adverse biological effect.
- guinea pigs were administered 0.2 mL of Composition 1 in a 160-fold diluted suspension. No abnormal behaviors were observed in any of the animals.
- composition 1 is a safe and effective solution to controlling bleeding in surgical models in various animals.
- Composition 1 exhibited efficacy at arresting bleeding in the exemplary animal surgical procedures described above. Further, from the intravenous administration experiments, a single dose of 5 mL Composition 1 via syringe is unlikely to cause pulmonary embolism or other adverse events resulting in death, even in the case of a mistaken administration, directly into a blood vessel.
- the present Example describes a Coronary Artery Bypass Graft surgery utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- An exemplary peptide composition provided is Composition 1 (described above).
- Coronary Artery Bypass Graft begins with exfoliating the internal thoracic artery or collecting the great saphenous vein, which are to be used as grafts.
- the internal thoracic artery is anastomosed to the outer area of the heart away from blocked coronary arteries.
- the collected great saphenous vein is anastomosed to the base of the coronary artery and to outer area in the heart away from lesion (blocked) coronary arteries.
- the internal thoracic artery as graft would be the first choice because of the historical success rate.
- the great saphenous vein can be used in the event more grafts are necessary. Bleeding can occur during multiple stages of CABG surgery, for example, exfoliating internal thoracic artery or collecting great saphenous vein, which are used as grafts, rebleeding on above areas due to heparinization, anastomosis sites of various heart arteries and grafts, and connection sites of the heart and the cannula (tube) of an oxygenator ( Figure 3 ).
- Bleeding at exfoliation or graft collection sites is performed using standard surgical instruments or an electrosurgical knife. Bleeding from collection sites are usually the result of using an electrosurgical knife and the patient undergoing this surgery is heparinized after this procedure to prevent blood from clotting in preparation for connecting an oxygenator. After heparinization, oozing type of rebleeding frequently occurs from collection sites, at which time an electrosurgical knife is usually applied to stop such rebleeding. This can take extra time that prolongs the CABG procedure and causes damage to tissues. This prolongs the healing process leading to a slower recovery following the procedure.
- Composition 1 can be applied at multiple steps during the procedure to control bleeding and decrease the overall time necessary to complete the surgery.
- Composition 1 can be applied to a collection site to effectively prevent bleeding. Due to its ease of use, Composition 1 can be applied before and during the collection procedure. Further, it can also be applied before heparinization. By preventing bleeding during the procedure and of rebleeding after heparinization, a surgeon can reduce the total amount of bleeding and shorten the overall time needed to complete the surgery. Further, this time savings is recognized in time required for anesthesia as well.
- Time per graft is decreased by 5 to 20 minutes and overall time for the surgery to be performed is decreased by 20 to 80 minutes. This decrease in time is due, in part, to the removal of or reduced need for the electrosurgical knife in the procedure. Further, a decrease risk of infection is observed. As a result in the decreased time for performance of the CABG procedure, a reduction of total hospitalization time is expected, e.g., one 24 hour period. In some cases, where the surgeon encounters difficult rebleeding during the procedure, additional 2 or 3 days of hospitalization are required.
- Peptide compositions such as Composition 1 are applied to bleeding sites during and after exfoliating or graft collection in a wide area around the target bleeding sites, and permitted to remain in the area untouched. This allows the solution to form into a gelled state on the target site. Manual manipulation of peptide compositions is not advised, e.g., by rubbing with one's fingers, as this lead to break down of the gel. Peptide compositions remain transparent despite the change in state from a solution to a gel. This unique property allows for the maintenance of a clear surgical field as well as improved and superior control of bleeding from multiple sites during the procedure.
- SURGICEL® is made of an oxidized cellulose polymer with a low pH and is used to control post-surgical bleeding by inducing clotting of blood. It has been associated with incidents of neurotoxicity.
- SURGICEL® is used extensively in oral and maxillofacial surgery to control intrabody arterial bleeds from the inferior alveolar artery. When placed in the mandibular canal with the inferior alveolar nerve exposed there have been reports of neurotoxic effects.
- SURGICEL® could be applied to bleeding sites, however, surgeons typically prefer an electrosurgical knife.
- Preferred use electrosurgical is due, in part, to the time needed to use SURGICEL® as it has a cotton-wool or sheet-type property and surgeons have to cut it using tweezers and subsequently apply it to bleeding sites after removing blood. This is a difficult task since it is easy SURGICEL® to stick to tweezers. It is necessary for SURGICEL® to absorb blood to become sticky and thereby control bleeding. Further, applied pressure may be needed or time for it to remain in place to allow for absorption of blood.
- SURGICEL® turns a black color and, as a consequence, makes arteries within the target sites black. This decreases the visibility of the surgical site. Since it has some adhesive properties, SURGICEL® must be removed by tweezers. after application. This step increases time for completion of the procedure and, on occasion, when it is removed, damage to the surrounding tissue may lead to rebleeding. Further, a surgeon is unable to confirm that bleeding is controlled and has stopped from all areas until the SURGICEL® is removed.
- Fibrin glue may be applied in the same manner as SURGICEL®, however, as stated above, surgeons prefer using an electrosurgical knife.
- fibrin glue When fibrin glue is applied in a CABG surgery, it is typically sprayed by attaching a spray nozzle. After removing blood on the target area, it is sprayed by a larger applied pressure or by using compressed air.
- Fibrin glue requires five to ten minutes to become sticky enough to remain in the location and stop any bleeding. Occasionally, fibrin glue requires pressure using gauze, etc. Fibrin glue does not possess the efficacy to heparinized blood and cannot be applied in advance against bleeding. If it is applied and does not control bleeding sufficiently, it must be removed in order to reapply.
- Bleeding from coronary arteries and after systemic circulation After exfoliating the internal thoracic artery, one end is anastomosed to the periphery end of a blocked coronary artery. To accomplish this, the targeted coronary artery needs to be identified from the surface of the heart. However, the heart is covered by adipose tissue and surgeons have to dig into the adipose tissue to find the coronary artery. This can lead to bleeding. If the point of bleeding can be identified, a hemo-clip is applied, and if not, bleeding is widely astricted by gauze, which must be pressed for around a minute and bleeding is controlled. The procedure has to be stopped during this time.
- peptide compositions described herein can be applied to the area of the coronary artery in advance to prevent bleeding, or when any bleeding is found on the area, since it is transparent and the applied area can be operated by surgical instruments.
- SURGICEL® and Fibrin glue cannot be applied in advance since they do not accept additional surgical procedures to the area once applied.
- SURGICEL® and fibrin glue are applied after bleeding is found, additional time is required due to the need to stop the procedure for application.
- Bleeding from anastomosed arteries When the great saphenous vein is anastomosed to a coronary artery, it is performed by thread and needle or by an auto-anastomosing device and bleeding is typically encountered. An electrosurgical knife cannot be used to control this type of bleeding since the burn causes damage to the anastomosed artery. If the bleeding is projectile in nature, additional sutures are made to the appropriate areas. If necessary, fibrin glue, SURGICEL®, or astriction with gauze are applied. SURGICEL® is typically applied to smaller bleeding sites than fibrin glue.
- Peptide compositions described herein are applied easily to the anastomosed arteries. It can be once applied to a finger or gauze then be pasted on the unseen area of anastomosed artery. In this case, instant astriction is possible, unlike fibrin glue, and rebleeding by blood pressure after the application is prevented. This minimizes time under astriction (to 2-5 minutes) and enhances the process of controlling bleeding.
- Bleeding at connecting sites of heart and cannula/tube of an oxygenator In CABG surgery when it is necessary to prevent the heart from beating, an oxygenator is connected through a cannula/tube to an artery and heart in order to circulate blood to the rest of the patient's body.
- the cannula is directly inserted and fixed by sutures. Bleeding is sometimes identified on the suture site during the circulation or on the removal site of cannula after it has been removed.
- Fibrin glue is typically not applied because it fixes the area and makes removal of cannula difficult.
- SURGICEL® is difficult to apply due to its sheet-like characteristics. Typically, gauze is pressed and placed on the bleeding point. If the bleeding remains or gest stronger, additional anastomosis is performed.
- the unique non-glue/non-sheet properties of peptide compositions described herein make it especially applicable to this situation and these types of bleeding encountered during surgery.
- composition 1 in the surgical procedure, e.g., blood-clotting drugs (blood coagulation accelerators; i.e., hemocoagulase) and antifibrinolytic agents (e.g., drugs with antifibrinolytic action; epsilon aminocaproic acid, tranexamic acid, aprotinin preparations, etc .), (4) individuals with child's classification of B or C, and (5) individuals otherwise deemed unsuitable for the study by the investigator.
- blood-clotting drugs blood coagulation accelerators; i.e., hemocoagulase
- antifibrinolytic agents e.g., drugs with antifibrinolytic action; epsilon aminocaproic acid, tranexamic acid, aprotinin preparations, etc .
- target sites designated for application of Composition 1 were vessel-to-vessel anastomotic sites.
- target sites for application of Composition 1 included the graft anastomotic site and autologous vein patch plasty site.
- Types of bleeding targeted for application were (1) blood oozing that typically would be arrested with fibrin glue and collagen materials, and (2) blood oozing during typical treatment using other methodology such as ligation, clips, and coagulation that were ineffective or could not be performed. If copious blood spurting or gushing bleeding was encountered, other treatment methodology were typically performed including ligation, clips, or coagulation. Composition 1 was not applied in these situations.
- Composition 1 was evenly applied gently without break down the gelated Composition1 and smeared into each of the target sites before the administration of protamine sulfate. Specifically, approximately 1 mL of 2.5% Composition 1 was applied to coronary anastomotic sites, approximately 2 mL was applied to aortic anastomotic sites, and approximately 1 mL was applied to other peripheral vascular anastomotic sites.
- the primary endpoint of Composition 1 that was evaluated was intraoperative bleeding. It was determined as follows: complete response (CR), total arresting of bleeding at the target site; partial response (PR), temporary total arresting of bleeding confirmed, but permanent stoppage of bleeding only observed after reapplying Composition 1 to application sites due to intraoperative secondary bleeding requiring treatment; minor response (MR), temporary stoppage of bleeding confirmed, but permanent stoppage of bleeding only observed after using a procedure other than Composition 1 due to intraoperative secondary bleeding from application sites requiring treatment; no response (NR), bleeding from target sites not reduced and stoppage of bleeding not achieved.
- complete response CR
- PR partial response
- MR temporary total arresting of bleeding confirmed, but permanent stoppage of bleeding only observed after reapplying Composition 1 to application sites due to intraoperative secondary bleeding requiring treatment
- minor response (MR) temporary stoppage of bleeding confirmed, but permanent stoppage of bleeding only observed after using a procedure other than Composition 1 due to intraoperative secondary bleeding from application sites requiring treatment
- no response (NR) bleeding from target sites not reduced and stoppage
- a secondary endpoint of post-operative bleeding was recorded and determined as follows: CR, no post-operative bleeding observed during post-operative examination; PR, post-operative bleeding from Composition 1 application sites inferred from the post-operative examination, without requiring reoperation; and NR, post-operative bleeding originating from Composition 1 application sites observed during the post-operative examination requiring reoperation.
- Adverse events including any abnormal findings or adverse reactions were recorded concerning symptoms, severity, duration, treatment, course and outcome, and association with the study drug (as well as the rationale for determining any association).
- Subjects comprised 25 patients (23 men, 2 women) with an age range of 54-80 years. Of these patients, 9 underwent CABG surgery, 4 underwent AAA surgery, and 12 underwent surgery for ASO.
- Mean area of the application was 3.03 cm 2 (ranging from 0.25-10 cm 2 ).
- Mean amount of Composition 1 applied was 1.5 mL (ranging from 0.5-3 mL).
- the efficacy rate observed was 87.9% for the primary end-point (intraoperative bleeding) and 100% for the secondary endpoint (occurrence of post-operative after bleeding; Table 4).
- the efficacy rate observed was 85.2% (23/27), and time for stoppage of bleeding was 153.6 ⁇ 38.7 seconds (mean ⁇ S.E.).
- the efficacy rate was 100% (6/6), and the time for stoppage of bleeding was 195.0 ⁇ 130.1 seconds (mean ⁇ SE). No adverse events (including serious adverse events) having a causal relationship to the application of Composition 1 were observed. TABLE 4 Application site No.
- Composition 1 Evaluation of the efficacy of Composition 1 in the clinical study described above was implemented as suggested by Stark et al. ( Stark J et al. 1984, Ann Thorac Surg 38:411-413 ). Previous have reported total stoppage of bleeding on oozing bleeding at rates of 23.1%-100%. As shown in this example, Composition 1 performs at the top end of this range. Further, what is not assessed in this number is the added benefit of the use of an infection-free material that does not include animal-derived products or human blood components. Because Composition 1 is entirely synthetic, it provides an alternative material that poses no risk of infection.
- Composition 1 was applied to 33 sites in 25 patients and exhibited an efficacy and safety rate of 87.9% (29/33; Table 1). No differences in the efficacy of Composition 1 in heparin- and protamine- treated individuals was observed (data not shown). No post-operative bleeding or other adverse events of any kind were observed. Based on these findings, Composition 1 provides a safe and useful alternative material that demonstrates excellent local stoppage of bleeding on oozing bleeding during cardiovascular surgery.
- This example illustrates the surgical procedure to replace the region of an aortic aneurysm from the arch to distal region of the aortic aneurysm by total replacement surgery utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- An exemplary peptide composition provided is Composition 1 (described above).
- the surgical procedure comprises five steps, (1) aortic cross-clamping and establishment of cardiopulmonary bypass (including cerebral protective reflux), (2) anastomosis of the descending aorta (peripheral side), (3) anastomosis of the ascending aorta (central side), (4) anastomosis of the left subclavian artery, left common carotid artery, and innominate artery, and (5) withdrawal of cardiopulmonary bypass.
- Aortic blockage and establishment of a heart-lung machine (including cerebral protective reflux). Median sternotomy and pericardiotomy are performed followed by the extirpation of the ascending aorta and heart. Heparin is then administrated. A tube is inserted into the right axillary artery, innominate artery, left common artery, left subclavian artery, and descending aorta in order to reflux blood between a heart-lung machine and the patient. Afterwards, reflux of blood by a heart-lung machine is started during the blockage of each vessel. The heart is stopped by injection of a myocardial protection liquid.
- Descending aortic anastomosis (peripheral side).
- the descending aorta is cut by electric scalpel and is anastomosed with a vessel graft with 3-0 or 4-0 Proline thread.
- Certainty of anastomosis is required as the field view is limited in deep area and it is difficult to stop bleeding after starting reflux.
- Ascending aortic anastomosis central side.
- the ascending aorta is cut by electric scalpel and is anastomosed with a vessel graft with 3-0 or 4-0 Proline thread.
- the vent tube is inserted into the vessel graft in order to remove air bubbles prior to the restart of blood reflux.
- fibrin glue on the entire region of anastomosis prior to declamping would decrease the risks of exudative and gushing hemorrhage, however, this procedure may cause bleeding from between the fibrin glue and anastomosed region. In this case, the reapplication of fibrin glue will be required instead of stripping of fibrin glue, since there is a risk of increased bleeding.
- compositions described herein can be applied by swab and/or injection on the region where bleeding has not stopped with fibrin glue and the particular site of anastomosis.
- Application of, e.g., Composition 1 prior to clamping allows for Composition 1 to blend into a shallow layer of blood vessels on the site of anastomosis.
- a suitable volume of Composition 1 is applied and kept at the site so as not to fall off due to gravity or pushed away from the site due to blood pressure after declamping. During declamping, forceps are slowly removed and about 30 to 60 seconds is elapsed to allow for Composition 1 to gelatinize with blood.
- Composition 1 is a transparent material both in solution and once gelatinized. If Composition 1 is washed or pushed away due to blood pressure, it can be reapplied in repeated fashion until bleeding is stopped while the clamp is retained. Once bleeding is stopped completely, declamping is performed.
- composition 1 may be used during this procedure as described above.
- the present Example describes a lymph node dissection utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- An exemplary peptide composition provided is Composition 1 (described above).
- Lymph node dissection of pulmonary hilum and mediastinum is known to be a standard treatment of lung cancer and requires the dissection of the lymph node and surrounding tissue within the anatomical site.
- the mediastinal pleura is incised on the site of left main pulmonary artery into the top of the aortic arch by an electric scalpel.
- the mediastinal pleura with surrounding tissue is stripped off by using an electric scalpel, scissors and forceps with gauze ball.
- Lymph node is dissected from the top site of aortic hiatus.
- pulmonary artery is exteriorized, the lymph node around the tissue is dissected.
- the entire lymph node is wrapped with Alice forceps and pulled out.
- the surrounding vascular and connective tissues are stripped off by electric scalpel, scissors and forceps with a gauze ball.
- the lymph node is then incised and extirpated by electric scalpel.
- the lymph node In cases when the lymph node is adhering to vascular wall or invasively integrating into vascular wall, it remains difficult to follow standard dissection procedure.
- the lymph node should be detached under the circumstance that has oozing and gushing hemorrhage, after the astriction for 5-15 minutes and the ligature suture. Otherwise, the lymph node is extracted by clamping blood vessels that would require the reconstruction of blood vessels.
- the surgery procedures should be converted for the cases such as total extirpation of lung. The conversion of these surgical procedures would f the time of surgery but also increase the risk of postoperative bleeding. Thus, it is ideal to follow standard procedure of dissection.
- composition 1 peptide compositions described herein (e.g., Composition 1) for the prevention of hemorrhage on the stripped surface.
- Composition 1 has physical specificity that the gravity slowly pulls it downward, so it is possible to apply Composition 1 not only on the stripped surface but also specifically on the entire lymph node. If desired, a large amount may be used. It is not suitable to use fibrin glue which is solidified. Likewise, SURGICEL®, which covers entire stripped surface in advance of the dissection, is not optimal.
- the dissection can commence immediately after application of Composition 1. If fibrin glue is applied to the region, it is hard to detach and might promote bleeding when stripped off. SURGICEL® cannot be used in this instance since it hides the application site and thus detachment cannot be performed. Further SURGICEL® requires an extend period of time completely stop bleeding.
- composition 1 peptide compositions described herein, e.g., Composition 1, in a surgery to repair an intertrochanteric hip fracture ( Figure 4 ).
- the site of fracture is fixed by metal nail plate or gamma nail that can bear 3 to 5 times of weight.
- the compression forces on the fracture site are made by screws and plates (or triangular nail) that are introduced into fractured bone to prevent the fracture site on the plane from sliding.
- Gamma Nail for intertrochanteric fracture with application of Composition 1 First, a skin incision is made at the fracture site. A small incision is made deep through the fascia lata, splitting the abductor muscle to reach the targeted femur. When encountering bleeding during incision, normally, astriction by gauze is performed. Five to ten minutes is necessary for to stop the bleeding and the procedure should be stagnant. Also, control of bleeding via additional coagulation by high frequency wave electro device needs substantial procedure time to apply frequent times. Alternatively, Composition 1 presents an advantage for faster control of bleeding by application over a wide area of bleeding, which may include multiple bleeding points. Further, due to the transparent nature of Composition 1, there is no obstacle or impairment in the surgical field and thus the procedure can proceed as normal without any delay.
- a guide wire is introduced into the canal of femur from the top of the great trochanter before the introduction of a gamma nail into the appropriate position. Then, a hole is made by a reamer along with the guide wire with a suitable diameter for introduction of the nail.
- bone wax is typically used for controlling any bleeding from the femoral canal. Bone wax is a clay-like material that requires kneading and/or warming prior to use. Typically this can be accomplished manually by the surgeon's fingers.
- Composition 1 can be used instead of bone wax. Preparation before application such as for bone wax is not necessary for Composition 1 and faster control of bleeding is achieved.
- Composition 1 can be applied by a pre-filled syringe with a nozzle adapted for the hole in the bone or fracture depending upon the type of fracture or repair made to the bone. Further, Composition 1 provides the added benefit of not stopping the procedure for its transparent quality in maintaining a clear surgical field and easy removal by irrigation.
- both bone wax and Composition 1 are similar regarding their application on a given bone or bone fracture site, bone wax tends to delay bone synostosis, whereas Composition 1 promotes bone synostosis and is expected to have higher efficacy of healing than bone wax. Further, bone wax can cause inflammation whereas Composition 1 does not, due, in part, to its high biocompatibility.
- a gamma nail is introduced into the femoral canal opened by the reamer. Bone wax is used when bleeding from the canal during this procedure. Alternatively, Composition 1 is applied at this point and no stoppage in the surgical procedure is incurred. Further, control of bleeding is achieved application of Composition 1 onto the surface of the gamma nail before introduction.
- the entry point at the lateral femur is determined by a dedicated instrument. Then, a skin incision is made at the entry point through the fascia lata, splitting the abductor muscle to reach the targeted bone. When bleeding occurs, typically astriction by gauze or coagulation is performed onto the bleeding sites. Alternatively, Composition 1 is applied to achieve faster control and stoppage of bleeding. This application is suitable for a pre-filled syringe which can be used for targeted application. This decreases overall time to complete the surgical procedure which leads to a faster recovery for patients.
- the lag screw is selected by considering the size of the bone and position of the fracture site. Then an appropriate diameter and length for the hole to accept the lag screw is determined and the hole for lag screw is made by reaming from the lateral side of the femur toward just below the center of the femoral head. Next, a lag screw is inserted into this hole and the nail and the lag screw is fixed. This results in fixation between fracture of the intertrochanteric part and core of femoral bone.
- typically bone wax is placed into the hole manually to control the bleeding.
- Composition 1 can be placed or injected in the same manner as the bone wax which will provide more effective bone synostosis.
- Composition 1 can replace the astriction by gauze and can be applied in a targeted manner, if desired, by using, e.g., a pre-filled syringe with an special nozzle to control the flow onto the desired location.
- Standard techniques employ methods for controlling bleeding separately depending on site (e.g., skin, muscle and bone).
- Composition 1 can be applied to different sites regardless of tissue with a single procedure or methodology, which can eliminate complicated procedures and decrease the overall time required for surgery.
- Composition 1 can be used effectively at this point in the procedure by direct application on the incision site by a syringe, which can shorten the procedure time and reduces the number of sutures required.
- the surgical field at which the sutures are being made is not hindered due to the transparent nature of Composition 1. This application will not add any additional time to the procedure and can expedite closing the surgical site appropriately.
- the present Example describes surgical resection of a liver utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- An exemplary peptide composition provided is Composition 1 (described above).
- Hepatectomy is typically performed using an ultrasonic surgery suction unit, an ultrasonic solidification incision equipment and an electric scalpel.
- the blood circulatory system and funicular objects in the liver are exposed by an ultrasonic surgery suction unit.
- the hemorrhage from a bile duct portal vein or a thick vein are normally litigated, and from funicular objects thinner than 3-0 thread are arrested by a ultrasonic solidification incision equipment.
- Ischemia-reperfusion of the liver is also performed to reduce the amount of bleeding by repeating the clamp and release of the blood circulatory system of the liver.
- Composition 1 provides the opportunity for additional treatments to be performed onto the site of application, and little to no damage is caused to the vascular system. Thus, total surgery time is decreased.
- SURGICEL® can be applied to oozing if a bleeding point is clearly identified, however, it must be removed, unlike peptide compositions, before carrying out additional treatments. This increases the time required to control bleeding significantly.
- Peptide compositions described herein are superior since additional treatments can be performed onto the application site and the operation is not interrupted by to process of stopping bleeding. Fibrin glue cannot be used during liver separation due to the difficulty of removing it after the stoppage of bleeding.
- Peptide compositions described herein may be applied repeatedly until complete stoppage of bleeding is achieved.
- Composition 1 it is preferable to apply Composition 1, more than 1mL to one bleeding site.
- Composition 1 On wet surfaces, Composition 1 may not remain stationary and collapse if manually manipulated, e.g., rubbed with fingers.
- Composition 1 is be applied to a larger area than the bleeding site itself. Surplus of Composition 1 is neglected during liver separation because it is easily washed out after completion of the surgical procedure.
- Composition 1 can be injected into the gap to achieve more effective stoppage of bleeding during the surgical procedure. Fibrin glue is usually sprayed onto the section to stop minor bleeding and prevent post-hemorrhage at the end of the liver separation procedure. Composition 1 is suited for this step in the surgical procedure and can be applied onto the section after liver separation is completed. Typically, SURGICEL® is not used effectively in liver separation due to the effect of peeling off the section.
- the present Example describes a laparoscopic surgical procedure of a liver utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- An exemplary peptide composition provided is Composition 1 (described above).
- PHL Laparoscopic Hepatectomy
- a camera-port is inserted into the umbilical region and 2-3 ports are inserted near the tumor after the tumor location is confirmed. Then, 3-4 ports are employed for the surgical procedure.
- the relationship of the tumor and the vascular system is typically identified by ultrasonography. This is due to the fact that direct contact to the tumor is not made in a PLH procedure.
- the resection line is determined and marked by electric scalpel. In an effort to reduce bleeding during the resection, pre-coagulation is performed (e.g., microwave coagulation and radiofrequency ablation).
- the resection of the shallow layer is performed by an ultrasonically activated scalpel.
- the large vascular in the deep zone of the liver is exposed by the ultrasonic surgical aspirator that is used in the rupture and suction of hepatic parenchyma.
- the oozing-type bleeding that that can be clearly identified during the hepatectomy is cauterized by utilizing an electrosurgical knife. Any additional bleeding is stopped by ligation.
- Peptide compositions for example Composition 1
- Composition 1 can be applied to the back side and wide range of the bleeding area since it can quickly spread out in one application through a tube. This is a unique advantage of Composition 1 as it is applied as a liquid and adopts a gelled state once on the tissue or surgical site. Conversely, fibrin glue is not suitable during the resection because of the hardened effect it has on the section and further makes it difficult for the surgeon to perform the resection.
- the bleeding points should be identified thoroughly in the sections of the vascular and hepatic parenchyma after hepatectomy.
- the exudative bleeding is stopped by coagulation using an ultrasonically activated scalpel and by swabbing with fibrin glue.
- the coagulation delays the hepatic regeneration due to the carbonization of the tissue. It is difficult for the fibrin glue to remain on the sections and tends to flow downward. Further, since the fibrin glue solidifies and persists at the surgical site, an enhanced risk of infection at the site of surgery occurs.
- application of Composition 1 reduces such risk due to, at least, Composition 1 is easily washed away due to the gelled state that results after application to the bleeding sites.
- the present Example describes intrabody surgical procedure of a lung utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- An exemplary peptide composition provided is Composition 1 (described above).
- a surgeon first identifies an excision site and inserts a trocar and thoracoscope into the chest between ribs through a small incision ( Figure 5 ). The surgeon then checks the area to be resected through a thoracoscope and sets the direction for autosuture. Next, an autosuture is inserted into the chest through a small incision. Typically, an area about 1.5 to 2 cm away from the resected area is gripped by forceps in order to indicate the line to be resected by autosuture. Lung tissue needs to be gripped carefully because it can be easily torn off if gripped too tightly and pulled in a strong manner.
- the resected area is reinforced by suture, absorbent mesh or collagen sheet.
- suture For suturing, a suture thread of 2.0 or thicker is generally used.
- ligation tying is conducted outside the body and ligature is sent using a knot pusher inside the chest.
- gauze astriction is first used to stop bleeding. If bleeding is not stopped by gauze astriction, fibrin glue, is applied to the bleeding site. When liquid form fibrin glue is applied, surgical field may be blocked because fibrin glue is not colorless or transparent.
- Fibrin glue and poly-glycolic acid (PGA) sheets are used concurrently as a standard method to control and stop bleeding, although the use of these materials takes added time and can be burdensome for the surgeon. Under this procedure, a PGA sheet is first attached to the bleeding site, and then fibrin glue is applied onto the area. Subsequently, a surgeon is required to wait for at least five minutes and check the status of the bleeding.
- a thoracotomy tube is inserted to check the status of bleeding. If bleeding is detected, a draining procedure is first taken to remove blood remaining inside the chest. Then, the other measures (as described above) are also performed. If fibrin glue was applied for the first attempt to stop the bleeding, a second application cannot be performed easily because tissue can be torn and additional bleeding sites can occur or the original bleeding site can expand when it is removed. When bleeding is not recovered under thoracoscopy with draining and the other methods described above, the chest is opened for additional measures.
- a sealing test is also performed to reveal air leaks. This test is conducted by using an airway pressure of 5 to 10 cm H 2 O. Any major air leakage is stopped with suturing. Main adjuncts to prevent air leak are bovine pericardium, Gore-Tex or autologous pleura. Although buttressing of the staple line has been shown to reduce the duration of an air leak, associated staples of buttressing sometimes results in tissue trauma.
- Composition 1 stops bleeding without blocking the surgical field due to its transparent qualities, which is direct contrast to fibrin glue. Because Composition 1 is administered in liquid form, it can also be directly injected, e.g., by syringe, into the bleeding site easily through the tube and applied well onto the surface of lung unlike any sheet-type material. Further, application of Composition 1 does not require astriction nor does it hinder the surgical procedure. Composition 1 can also be left after being applied and surgeon can check the status of bleeding at any time.
- Composition 1 shows sufficient control and stoppage of bleeding for a lung artery with low pressure. Again, because Composition 1 is transparent, excess can be removed easily by draining after treatment. Any volume can be applied to the area around the bleeding site without hindering the surgical field at any time, thereby allowing the surgeon to resume the surgical procedure swiftly.
- Composition 1 can be removed easily from the bleeding site and applied any number of times to the same site.
- Composition 1 can be applied to the site of leaking air easily through the tube and applied well to the surface of lung unlike sheet type products.
- Application of Composition 1 can shorten duration of surgical operation compared to buttressing. Unlike buttressing, application of Composition 1 does not harm lung tissue by needle. If air leakage is detected again after leakage site is treated, Composition 1 can be removed easily and applied any number of times to the same site quickly.
- the present Example describes endoscopic surgical procedure of the gastrointestinal system utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- An exemplary peptide composition provided is Composition 1 (described above).
- EMR endoscopic mucosal resection
- an EMR procedure is conducted as follows: (a) superficial elevated early gastric cancer is identified on the lesser curvature of the lower body after spraying with indigo carmine dye, (b) marking dots are made using a precut knife on the circumference of the target lesion to clarify the margin, (c) after injection of saline or hyaluronic acid with epinephrine (0.025 mg/mL) into the sub mucosal layer, an initial cut is made with a conventional needle knife outside of the dots and an IT knife is inserted into this cut and employed to cut around the lesion, (d) the marked tumor is separated from the surrounding normal mucosa, (e) the tumor is removed by standard polypectomy with a combination of cutting and coagulation current in a single fragment, and (f) the resected specimen shows well differentiated adenocarcinoma (20 x 25 mm) with a clear lateral margin.
- a low efficacy for controlling bleeding and risk of enlargement of an ulcerated area can result if too much is injected onto the bleeding site via a syringe through the endoscope.
- clipping sufficient time and skill are required of the surgeon, and with more time spent on the surgical procedure more unseen errors can occur, e.g., rupture of muscle walls.
- spraying a thrombin solution low efficacy for controlling bleeding is seen especially for exposed vessels with an obscured vision of the treatment field due to its opacity. This is due to it being sprayed at the bleeding site through a catheter through an endoscope.
- Peptide compositions such as, Composition 1 is applied first through a catheter after the initial cut around the lesion is made by the IT knife. This is due to prevention of bleeding at the time of resection by polypectomy. This is suitable for Composition 1 as it is a solution and gels upon contact with the bleeding site. This application does not hinder the time of the surgery and the surgeon can quickly proceed due, in part, to clear treatment field created by application of Composition 1. Further, due to its ability to adopt a gelled state once applied, it remains around the lesion site to prevent bleeding. Thus, application of Composition 1 before resection may largely reduce the risk of bleeding and this may enable the elimination of the use of coagulation during resection.
- Composition 1 is applied liberally to the bleeding site after irrigation. This is not only to stop bleeding but to keep the surgical field clear in order to identify the bleeding site.
- the application of Composition 1 eliminates the need for conventional methods such as ethanol injection, endoscopic clipping or spraying of thrombin solution. Control of bleeding during surgical procedures by these methods needs substantial procedure time to apply to multiple points. Conversely, application of Composition 1 in surgical procedures described herein provides better stoppage and control of bleeding over a wide area that includes multiple bleeding sites.
- Composition 1 can supplement these methods in an efficient manner to prevent further bleeding and decrease times spent by surgeons addressing such situations.
- Composition 1 is applied just after removal of tumor to prevent post operating bleeding at the site of resection. This procedure eliminates the need for clipping and shortens the time of procedure for about 10 minutes.
- Composition 1 eliminates the need for combination of the procedures described above for controlling bleeding during tumor resection before, during and after the resection as mentioned above and can shorten the total time of procedure. It is projected that tumor resection can be decrease on average of at least 20 minutes. Also, patient safety is increased as compared to the other techniques, due to the decreased bleeding and damage to surrounding tissues throughout the procedure. Thus, faster patient recovery is expected.
- the present Example describes an endoscopic surgical procedure of a colon utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- An exemplary peptide composition provided is Composition 1 (described above).
- ESD is applied to patients with early cancers larger than 20 mm in diameter that are hardly resected by EMRs.
- a team of a surgeon and an assistant perform the procedure using a colonoscope (PCF-Q260AI; Olympus, Tokyo, Japan) in addition to other surgical instruments.
- PCF-Q260AI colonoscope
- Olympus Tokyo, Japan
- Indigo carmine dye is sprayed to identify the lesion margins of the colon, followed by an injection into the sub mucosa to lift the lesion.
- a mixture of 10% glycerin and hyaluronic acid containing 0.5% indigo carmine and 0.1% epinephrine is used as the injection fluid.
- a circumferential incision is performed using an instrument such as needle knife, insulated-tip knife (KD-610L, 611L; Olympus, Tokyo, Japan), or flush knife (DK2618JN20; Fujinon, Tokyo, Japan) that is connected to an electro surgical unit, according to the surgeons preference.
- Continuous sub mucosal dissection along the circumference of the target lesion is performed using one of the above mentioned instruments.
- Bleeding is controlled by specialized forceps or an insulated-tip knife during the procedure. Once ESD is completed, coagulation of visible vessels in the dissection area is also performed using specialized forceps or an insulated-tip knife to prevent delayed bleeding. Despite this measure, post-ESD bleeding cannot typically be controlled in an efficient manner. If vomiting or discharge of blood occurs after operation, emergency endoscopic efforts to control bleeding are performed using specialized forceps or an or insulated-tip. Typically, post-operative bleeding is relatively minor, however, bleeding by tissue necrosis caused by excessive coagulation is often encountered during the surgical procedure.
- compositions described herein are applied first on the circumference of the target lesion through a catheter after the marginal incision is made.
- Composition 1 is poured or injected (e.g., by a syringe) into the inner tissue from the circumference of the incision. This is to prevent bleeding at the time of dissection typically encountered by usage of an insulated-tip knife or flush knife.
- This application of Composition 1 establishes a clear surgical field due to its transparent qualities and allows the surgeon to proceed quicker to the next step of the procedure. Further, due to the gelled state that results from contact with the tissues and fluids, it remains on the circumference of the incision thereby preventing bleeding from occurring.
- Composition 1 application before dissection can reduce the risk of bleeding. As a result, this further reduces the frequency of using specialized forceps for coagulation during dissection.
- Composition 1 is applied liberally at the bleeding site after irrigation of blood. This not only stops the bleeding but also keeps the surgical field clear in order to identify the point of bleeding.
- the application of Composition 1 eliminates the coagulation treatment by specialized forceps or an insulated-tip knife. Stoppage of bleeding during the surgical procedure by such instruments requires substantial procedure time to apply to multiple points.
- control of bleeding by Composition 1 provides a better alternative by controlling bleeding in a more efficient manner by enabling application over a wide area that includes multiple bleeding points and simultaneously maintains a clear surgical field allowing the surgeon to more efficiently complete the surgical procedure.
- Composition 1 In cases where the bleeding is more severe than oozing, such as spouting, gushing, typically coagulation by specialized forceps or insulated-tip knife is applied. When coagulation is done by an instrument, Composition 1 can be applied onto the operating field to prevent further bleeding. Unlike the treatment by these instruments, Composition 1 does not render any damage to the tissue surface whereas specialized forceps or an insulated-tip knife tend to lead to tissue necrosis and complicates patient recovery. Further, extensive coagulation yields severe tissue necrosis that leads to further delayed bleeding.
- Composition 1 in this procedure is as follows: faster stoppage of bleeding just after application that shortens the procedure time by at least about five to ten minutes, a clear surgical field that enables the visualization of the point of bleeding due to its transparent quality, renders no damage to tissue surface by application.
- Composition 1 is applied just after completion of ESD to prevent post-operative bleeding at the site of dissection. This procedure eliminates the use of specialized forceps. This can further shorten this part of the surgical procedure time by at least about five to ten minutes. Composition 1 is applied liberally on the lesion site if bleeding by vomiting or discharge occurs after the procedure. This application eliminates the need for coagulation by specialized forceps or an insulated-tip knife. This again leads to a shorten procedure time and benefit to the patient.
- Composition 1 can largely reduce the frequency of coagulation by instruments during and after dissection and will shorten the time of the surgical procedure on average by at least about 20 minutes (this may vary based on situation present by each patient). Further, as compared to the coagulation techniques, patient recovery is observed to be faster due to the less projected bleeding and no tissue necrosis during the procedure and preserving tissue on the surface of the dissected tissue.
- the present Example describes an intrabody surgical procedure of a kidney utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- An exemplary peptide composition provided is Composition 1 (described above).
- the following example describes the steps of an open partial nephrectomy. Briefly, a patient is laid at half lateral position and skin incision is performed (celiotomy). The retroperitoneum is then stripped and extended, the lateroconal fascia is exposed and incised by using an electrical scalpel. Gauze astriction is applied when oozing or gushing bleeding is encountered. The renal artery, renal vein and urinary duct must be identified before proceeding further.
- Gerota's fascia a smooth capsule membrane of kidney is then decapsulated by using a harmonic scalpel. Since Gerota's fascia consists of numerous capillary vessels, decapsulation is performed in a careful manner and small oozing bleeding is typically cauterized. Gauze astriction is also applied to any massive bleeding. Complete decapsulation is sometimes performed for identifying the tumor location. Connective tissue between peritoneum and anterior surface of the kidney is also stripped thoroughly. In case of a subsequent follow-up surgery, fusion fascia must be stripped, which most often invokes oozing bleeding and cauterization is required to stop such bleeding. This adds considerable time to the surgical procedure. The location of the tumor is identified by using an ultrasonic probe.
- the kidney is cooled with ice for about five minutes to avoid ischemia-reperfusion injury.
- a mannitol solution is applied onto the kidney surface, and blood flow of renal artery is shut off using clamping forceps.
- the clamping of the renal artery is not performed. However, this can cause a larger amount of bleeding.
- Normal renal tissue of 0.5 to 1 cm outside the tumor location is dissected with coagulotomy by harmonic scalpel or by Metzenbaum.
- Gauze astriction is applied to the dissected surface and oozing or gushing bleeding is stopped by using an electrical scalpel, argon beam coagulator, fibrin glue or ligation. Control of bleeding is important at this point in the procedure, so continuous astriction by finger is often performed. In case the renal calyx is opened, ligation and Z-suture is performed to close the renal calyx. If major bleeding is not identified, continuous suturing with a suturing clip or only renal parenchyma suturing is performed instead of ligation. Then leakage of urine is checked by applying indigo carmine solution.
- Blood flow is reperfused within 30 minutes by releasing the clamping forceps. Stoppage of bleeding is confirmed at this time. If identified, additional cauterization, SURGICEL®, fibrin glue or thrombin is applied. Sometimes bleeding site is covered by adipose tissue or SURGICEL® and is sutured as a whole (mattress suture).
- compositions described herein can be applied liberally in advance or just after bleeding occurs to the large blood vessels, which are not desired to be coagulated or ultrasonically coagulated. This application retains a clear surgical field due to the transparent quality of Composition 1 and remains washable.
- Composition 1 enables efficient control of bleeding from the perinephria, thereby allowing for complete stripping.
- the fusion fascia is stripped by electric scalpel with applying tension by hand. The risk of oozing or major bleeding is increased by this procedure.
- Control of bleeding can be achieved by applying Composition 1 in advance or just after bleeding occurs as desired. This does not affect the following procedures due to the transparent and washable qualities of Composition 1.
- the application of Composition 1 is not restricted. Fibrin glue or other bleeding control measures are not typically applied at the step of stripping the perinephria as an ultrasonic probe is typically used.
- Composition 1 can be applied to the connecting tissue of renal artery unlike fibrin glue that may cause damage to the artery when removing it.
- SURGICEL® can be applied to the renal artery, however, it must be removed before proceeding to the next step in the procedure.
- Composition 1 can be removed by washing with saline. Thorough stripping of connective tissue is achieved by applying a liberal amount of Composition 1 in advance. This enables the exact detection of the tumor location. If the tumor location is obscure, a larger margin must be dissected for secure extirpation of the tumor. The application of Composition 1 does not prevent identification of the tumor location due to its transparent and washable qualities.
- Composition 1 in advance prevents such bleeding, and, concomitantly ensures a clear surgical field. Complete control and stoppage of bleeding can be confirmed by removing an excess amount of Composition 1 by washing with saline before closing the abdominal cavity.
- Composition 1 reduces the surgical time spent controlling bleeding and avoidance of artery clamping, it provides more secure surgical environment during partial nephrectomy.
- the milder dissection method can be chosen by bleeding control by the prior application of Composition 1. However, even if it applies, use of a harmonic scalpel is not restricted. Application of Composition 1 in advance or instantly to an oozing bleeding site will attain prevention of bleeding and a clear field of view. Operation time is saved by substituting application of Composition 1 for gauze astriction. The pressure arrest of bleeding with fingers is continued in many cases, and when sufficient arrest of bleeding is not obtained, fibrin sheet and fibrin glue may be used. Composition 1 can be substituted over the above procedures, and since the surgeon can shift to other procedure of operation, the operation time will be significantly saved.
- Composition 1 there is also an opportunity to apply Composition 1 to the circumference after the suture of the renal calyx. This contributes to the prevention of post-bleeding. Since Composition 1 is washable, it does not prevent checking for a urine leak. A minute leak hole can be prevented by Composition 1, and perhaps only by Composition 1, which makes ligation unnecessary and further reduces time performing the surgical procedure.
- Composition 1 has an advantage of being able to advance the procedure without flushing the surgical field to maintain a clear view point.
- Blood flow can be reperfused for a while in the situation where bleeding remains by applying Composition 1 to the dissection area. Additional bleeding control measures may be performed under blood flow.
- the application of fibrin glue here is restricted as it must be peeled off to remove, while Composition 1 can be removed simply by washing. Although the method of mattress suture is also taken, Composition 1 can be substituted as well.
- Composition 1 has the potential to operate as a prevention of post-surgical bleeding control without the need for washing after application.
- the postoperative complications associate with open partial nephrectomy include urine leak (0-9%) and postoperative bleeding (1-9%) and the requirement for a positive arrest of bleeding is high.
- Example 12 illustrates a laparoscopic surgical procedure for partial nephrectomy, some steps of which are described above in Example 12, utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- An exemplary peptide composition provided is Composition 1 (described above).
- a patient is laid at half lateral position and holes (at least four) for torocar are made. Because of the need to cut off blood flow, a flexible port for clamping forceps is typically prepared.
- the retroperitoneum is stripped and extended, and the lateroconal fascia is exposed and incised by using an electrical scalpel while controlling any bleeding.
- the locations of the renal artery, renal vein and urinary duct must be identified in order to proceed.
- Gerota's fascia which is a smooth capsule membrane of kidney, is decapsulated by using a harmonic scalpel. Since Gerota's fascia consists of numerous capillary vessels, decapsulation is performed in a careful manner so as not to trigger bleeding. Complete decapsulation is sometimes preferred for identifying the tumor location. Connective tissue between the peritoneum and anterior surface of the kidney is also stripped thoroughly. The location of the tumor is identified by using an ultrasonic probe.
- Arterial clamping should be released within 30 minutes. Connective tissues around the renal artery and urinary duct are stripped. Typically, SURGICEL® is applied to minimize bleeding (oozing or gushing) from the stripping area. After stripping, the kidney is cooled with ice for about five minutes, and blood flow of the renal artery is shut off by clamping with forceps. Because the operative field often becomes less visible due to bleeding from the transected renal surface, the renal vein is also stripped and blood flow of renal vein is often shut off in laparoscopic partial nephrectomy.
- Normal renal tissue of 0.5 to 1 cm outside of the tumor location is dissected with coagulotomy by a harmonic scalpel. To prevent major bleeding, dissection is performed while simultaneously controlling any bleeding. While lifting the tumor, coagulotomy of the root mass is performed. If bleeding occurs, an electric scalpel, fibrin glue or ligation is employed to arrest the bleeding. If the renal calyx is opened, ligation and Z-suture is performed to close the renal calyx followed by confirmation of no leakage of urine by application of indigo carmine solution.
- Blood flow is reperfused within 30 minutes by releasing the clamping forceps. Confirmation of no bleeding is made. If bleeding is identified, additional procedures such as cauterization, SURGICEL®, fibrin glue or thrombin is employed.
- Composition 1 can be applied to the connecting tissue of the renal artery unlike fibrin glue. This is because fibrin glue can lead to damage to the artery when removing it.
- SURGICEL® can be applied to the renal artery as well, however, it must be removed before proceeding to the next step in the procedure.
- Composition 1 can be removed as described above by washing with saline.
- Composition 1 also can be applied for preventing bleeding, so stripping can be performed in an efficient and uninterrupted manner.
- Composition 1 is a transparent material, even after it adopts a gelled state, thus it does not hinder the identification of the location of the tumor.
- exudative bleeding can be prevented and maintain a clear surgical field for the surgeon.
- Composition 1 decreases the requirement for clamping the renal vein.
- Composition 1 in advance or instantly to an oozing bleeding site will attain arrest of bleeding and prevent further bleeding, all of which contributes to a clear view of the surgical field.
- Surgical procedure time is decreased by the substitution of Composition 1 for traditional, and often complicated, bleeding control measures such as SURGICEL® and fibrin glue.
- SURGICEL® bleeding control measures
- fibrin glue fibrin glue
- Composition 1 has an advantage of being able to decrease the overall time required to complete the procedure by its use throughout the procedure, all the while maintaining a clear surgical field of view due to its transparent quality.
- Composition 1 If bleeding cannot be controlled during laparoscopy, the surgeon must change to open surgery. However, prevention of exudative bleeding by application of Composition 1 is likely to reduce this risk significantly. It is difficult to arrest bleeding by gauze astriction in laparoscopy, so application of Composition 1 is uniquely suited for this surgical procedure. Due to the possibilities of bleeding partial renal resection after laparoscopy (three to eight percent), the need for reliable measures to control bleeding are high.
- Example 14 Clinical study of application of Composition 1 in multiple surgical procedures
- the present Example describes various intrabody surgical procedures utilizing peptide compositions described herein and, in particular, steps of the surgical method at which peptide compositions described herein can be applied.
- Hemorrhages in various surgical and endoscopic procedures were designated as target sites for application of Composition 1.
- the primary endpoint was intraoperative bleeding, while the secondary endpoint was postoperative bleeding.
- Other objectives of the study included verification of safety (occurrence of adverse events).
- the protocol established for this study was an open-label, non-controlled, multicenter collaborative study, which was approved by the company Institutional Review Board (IRB) and communicated to the regulatory authority, Pharmaceuticals and Medical Devices Agency (PMDA). Once the protocol approved by the PMDA was discussed and approved by the IRB of each study facility, the study was initiated.
- IRS Institutional Review Board
- PMDA Pharmaceuticals and Medical Devices Agency
- Composition 1 was manufactured by dissolving the starting peptide, CH 3 CO-(Arg-Ala-Asp-Ala) 4 -NH 2 , in water for injection at a concentration of 2.5% (w/v). Syringes were pre-filled in an aseptic manner and packaged into blister-packaging. The exterior of both packaging and the syringes were sterilized with ethylene oxide.
- the target surgical procedures chosen for this clinical study were endoscopic mucosal resection (EMR), endoscopic sub mucosal dissection (ESD), angiostomy (vessel-to-vessel anastomosis or vessel-to-artificial vessel anastomosis in coronary bypass or other vascular surgery), and hepatectomy (hepatic lobectomy, hepatic segmentectomy or partial liver resection including laparoscopic hepatectomy and laparoscopically assisted hepatectomy).
- EMR endoscopic mucosal resection
- ESD endoscopic sub mucosal dissection
- angiostomy vessel-to-vessel anastomosis or vessel-to-artificial vessel anastomosis in coronary bypass or other vascular surgery
- hepatectomy hepatic lobectomy, hepatic segmentectomy or partial liver resection including laparoscopic hepatectomy and laparoscopically assisted hepatectomy.
- the study was conducted as an open-label, non-controlled study at 10 facilities (two facilities performing endoscopic surgery of the upper GI tract, four facilities performing cardiovascular surgery, and four facilities performing gastrointestinal surgery). The study was divided into an investigational phase and a validation phase; the Independent Data Monitoring Committee (IDMC) performed an interim review of the first three cases in the feasibility phase, and in the pivotal phase, the study was continued until the target number of enrolled patients was reached.
- IMC Independent Data Monitoring Committee
- the primary endpoint for efficacy was occurrence of complete stoppage of bleeding upon application of Composition 1 and intraoperative maintenance of the same in exudative hemorrhages suitable for application of Composition 1 without use of standard means such as ligation or cauterization. Hemorrhages were excluded from the target sites of the material application in the study if they were heavier than exudative hemorrhages and the first choice treatment would usually be ligation, cauterization, or other such means.
- Composition 1 was applied to hemorrhages occurring during resection or dissection of the involved site in standard EMR or ESD, after the surgeon visually determined whether the hemorrhage was an exudative hemorrhage suitable for application with Composition 1.
- Composition 1 was applied to hemorrhages occurring at vascular anastomosis sites when blood flow was restarted after standard angiostomy, after the surgeon visually determined whether the hemorrhage was an exudative hemorrhage suitable for application with Composition 1.
- Composition 1 was applied after the surgeon determined visually whether a hemorrhage occurring during or after standard hepatectomy (including open and laparoscopic surgeries) was an exudative hemorrhage suitable for application with Composition 1. Visual inspection by the surgeon to determine if application of Composition 1 had achieved the endpoints at the application site(s). If needed, video or photographic imaging data that could be obtained was used to aid confirmation and evaluation of effect.
- the secondary endpoint for evaluation of efficacy was occurrence of secondary hemorrhage on postoperative Day 1 and on postoperative Days 5 to 7 (if a patient was discharged before Day 5, the day preceding discharge or the discharge day); this endpoint ascertained postoperative maintenance at the application site of Composition 1 application.
- operation time distributed, mean value, and standard error of bleeding time were calculated for application sites allowing measurement of time from the point of application to evaluation of complete arrest of bleeding
- Safety and efficacy analyses were conducted on a safety analysis set (SAS) and full analysis set (FAS) respectively.
- the SAS consisted of all subjects to which Composition 1 was applied.
- the efficacy analysis set was the FAS, defined to exclude subjects enrolled in the study who contravened inclusion criteria. Because the study included patients to whom Composition 1 was applied at multiple points, data were tabulated and analyzed for each hemorrhage site. At some hemorrhage sites, application was deemed inappropriate according to the study the protocol; these were excluded from the FAS and also analyzed as a per protocol set (PPS).
- PPS per protocol set
- Each patient was also evaluated for postoperative secondary hemorrhage, and some patients receiving postoperative treatment which may have affected secondary hemorrhage evaluation were also excluded from the FAS and analyzed in the PPS. The validity of the PPS designations was confirmed by the IDMC.
- Operation time and Operability ( Figure 10 ).
- This study represents the first clinical evaluation of Composition 1 in various surgical settings.
- the efficacy rate of Composition 1 for arrest of bleeding at a surgical site was 82.5% (160/194 sites) in the FAS.
- the efficacy may be higher due to the inclusion of some application sites judged unsuitable according to the application procedure specified by the study protocol.
- the efficacy rate was 88.8% (158/178 sites), which exceeds the 85% target efficacy rate of the study.
- Composition 1 provides an effective alternative against exudative hemorrhage following each of the studied surgical procedures. Although a lower trend in the efficacy rate was demonstrated in hepatectomy, the result was nevertheless clinically effective. The range of bleeding sites targeted for treatment was wider in hepatectomy, and the number of hemorrhaging points at each site was greater than in other surgical procedures, indicating that the application of Composition 1 in hepatectomy represents a more difficult surgical situation as compared to other surgical procedures. In the early period of the study, some cases of hepatectomy presented sites where an appropriate application method could not be applied. Thus, hepatectomy may require additional training with respect to application of Composition 1.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Surgery (AREA)
- Materials Engineering (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hematology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Dermatology (AREA)
- Diabetes (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Materials For Medical Uses (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Medicinal Preparation (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361773359P | 2013-03-06 | 2013-03-06 | |
PCT/IB2014/059496 WO2014136081A1 (en) | 2013-03-06 | 2014-03-06 | Surgical methods employing purified amphiphilic peptide compositions |
EP14759745.4A EP2964246A4 (de) | 2013-03-06 | 2014-03-06 | Chirurgische verfahren unter verwendung aufgereinigter amphiphiler peptidzusammensetzungen |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14759745.4A Division EP2964246A4 (de) | 2013-03-06 | 2014-03-06 | Chirurgische verfahren unter verwendung aufgereinigter amphiphiler peptidzusammensetzungen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3777875A1 true EP3777875A1 (de) | 2021-02-17 |
Family
ID=51490700
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14759745.4A Withdrawn EP2964246A4 (de) | 2013-03-06 | 2014-03-06 | Chirurgische verfahren unter verwendung aufgereinigter amphiphiler peptidzusammensetzungen |
EP20172555.3A Pending EP3777875A1 (de) | 2013-03-06 | 2014-03-06 | Chirurgische verfahren unter verwendung aufgereinigter amphiphiler peptidzusammensetzungen |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14759745.4A Withdrawn EP2964246A4 (de) | 2013-03-06 | 2014-03-06 | Chirurgische verfahren unter verwendung aufgereinigter amphiphiler peptidzusammensetzungen |
Country Status (11)
Country | Link |
---|---|
US (2) | US20160015855A1 (de) |
EP (2) | EP2964246A4 (de) |
JP (4) | JP2016514108A (de) |
KR (3) | KR20190102101A (de) |
CN (2) | CN112402587A (de) |
AU (1) | AU2014224200A1 (de) |
BR (1) | BR112015021446A2 (de) |
CA (1) | CA2900621A1 (de) |
HK (1) | HK1220116A1 (de) |
SG (2) | SG10201804746WA (de) |
WO (1) | WO2014136081A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD1035436S1 (en) | 2022-08-26 | 2024-07-16 | Regeneron Pharmaceuticals, Inc. | Packaging |
USD1042107S1 (en) | 2022-08-26 | 2024-09-17 | Regeneron Pharmaceuticals, Inc. | Packaging |
USD1047700S1 (en) | 2022-08-26 | 2024-10-22 | Regeneron Pharmaceuticals, Inc. | Packaging |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3238749B1 (de) | 2008-10-06 | 2018-09-19 | 3-D Matrix Ltd. | Gewebestecker |
EP3466964A1 (de) | 2012-07-06 | 2019-04-10 | 3-D Matrix Ltd. | Füllabschlussverfahren für peptidlösungen |
BR112015021446A2 (pt) * | 2013-03-06 | 2017-10-10 | 3D Matrix Ltd | métodos cirúrgicos empregando composições de peptídeo amfifílico purificado |
JP6545727B2 (ja) | 2014-03-10 | 2019-07-17 | 株式会社スリー・ディー・マトリックス | 肺大気胞を治療するための自発組織化ペプチド |
EP3116551B1 (de) | 2014-03-10 | 2022-09-07 | 3-D Matrix Ltd. | Sterilisation von peptidzusammensetzungen |
WO2015138514A1 (en) | 2014-03-10 | 2015-09-17 | 3-D Matrix, Ltd. | Self-assembling peptide compositions |
WO2017120092A1 (en) | 2016-01-06 | 2017-07-13 | 3-D Matrix, Ltd. | Combination compositions |
EP3463496A1 (de) * | 2016-06-01 | 2019-04-10 | 3-D Matrix Ltd. | Hämostatische pulver mit selbstanordnenden peptid-hydrogelen |
JP2019517299A (ja) * | 2016-06-01 | 2019-06-24 | 株式会社スリー・ディー・マトリックス | 自己集合性ペプチドヒドロゲルを有する止血用包帯 |
US10537225B2 (en) | 2016-11-28 | 2020-01-21 | Olympus Corporation | Marking method and resecting method |
CN117085140A (zh) | 2017-12-15 | 2023-11-21 | 立美基股份有限公司 | 表面活性剂肽纳米结构及在药物递送中的用途 |
US10561489B2 (en) * | 2018-03-05 | 2020-02-18 | Olympus Corporation | Gastrointestinal-tract constricting method |
CN108744021A (zh) * | 2018-06-29 | 2018-11-06 | 廖蕴华 | 一种动物肾切除止血的药物 |
US11617778B2 (en) | 2018-07-03 | 2023-04-04 | 3-D Matrix, Ltd. | Ionic self-assembling peptides |
CN110974777B (zh) * | 2019-04-08 | 2022-03-18 | 徐州医科大学 | 一种具响应释放和营养神经功能的颅脑外伤术后可注射水凝胶 |
JP7461758B2 (ja) | 2020-02-26 | 2024-04-04 | 日東電工株式会社 | 高温環境下で劣化した偏光板の光学特性の回復方法 |
EP4125995A4 (de) | 2020-03-31 | 2024-04-10 | 3-D Matrix, Ltd. | Sterilisation von selbstanordnenden peptiden durch bestrahlung |
BR102020017697A2 (pt) * | 2020-08-31 | 2022-03-15 | Fundação Universidade Federal De São Carlos | Processo de preparação de enxertos ósseos e enxertos ósseos obtidos |
KR102647642B1 (ko) * | 2021-05-04 | 2024-03-15 | (주)케어젠 | 혈액 응고 활성을 갖는 펩타이드와 이의 용도 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5670483A (en) | 1992-12-28 | 1997-09-23 | Massachusetts Insititute Of Technology | Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor |
US5955343A (en) | 1992-12-28 | 1999-09-21 | Massachusetts Institute Of Technology | Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor |
WO2006116524A1 (en) * | 2005-04-25 | 2006-11-02 | Massachusetts Institute Of Technology | Compositions and methods for promoting hemostasis and other physiological activities |
EP2345433A1 (de) * | 2008-10-06 | 2011-07-20 | 3-D Matrix, Ltd. | Gewebestecker |
WO2012008967A1 (en) * | 2010-07-16 | 2012-01-19 | Massachusetts Institute Of Technology | Self-assembling peptides incorporating modifications and methods of use thereof |
WO2013030673A2 (en) * | 2011-09-02 | 2013-03-07 | 3-D Matrix, Ltd. | Amphiphilic peptides for thoracic air leakage occlusion |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4023240A1 (de) * | 2004-07-06 | 2022-07-06 | 3D Matrix, Inc. | Gereinigte amphile peptid-zusammensetzungen und ihre verwendung |
JP2009011341A (ja) * | 2007-06-29 | 2009-01-22 | Yuka Denshi Co Ltd | ペースト状材料充填容器 |
BR112015021446A2 (pt) * | 2013-03-06 | 2017-10-10 | 3D Matrix Ltd | métodos cirúrgicos empregando composições de peptídeo amfifílico purificado |
-
2014
- 2014-03-06 BR BR112015021446A patent/BR112015021446A2/pt not_active IP Right Cessation
- 2014-03-06 CA CA2900621A patent/CA2900621A1/en not_active Abandoned
- 2014-03-06 SG SG10201804746WA patent/SG10201804746WA/en unknown
- 2014-03-06 WO PCT/IB2014/059496 patent/WO2014136081A1/en active Application Filing
- 2014-03-06 SG SG11201506232VA patent/SG11201506232VA/en unknown
- 2014-03-06 US US14/773,262 patent/US20160015855A1/en not_active Abandoned
- 2014-03-06 KR KR1020197024938A patent/KR20190102101A/ko not_active IP Right Cessation
- 2014-03-06 EP EP14759745.4A patent/EP2964246A4/de not_active Withdrawn
- 2014-03-06 CN CN202011308977.1A patent/CN112402587A/zh active Pending
- 2014-03-06 KR KR1020207028906A patent/KR20200120751A/ko not_active IP Right Cessation
- 2014-03-06 AU AU2014224200A patent/AU2014224200A1/en not_active Abandoned
- 2014-03-06 EP EP20172555.3A patent/EP3777875A1/de active Pending
- 2014-03-06 KR KR1020157027514A patent/KR20150126394A/ko active Application Filing
- 2014-03-06 CN CN201480025688.7A patent/CN105392493A/zh active Pending
- 2014-03-06 JP JP2015560838A patent/JP2016514108A/ja active Pending
-
2016
- 2016-07-12 HK HK16108133.3A patent/HK1220116A1/zh unknown
-
2018
- 2018-07-03 JP JP2018126802A patent/JP6709826B2/ja active Active
-
2019
- 2019-11-11 US US16/679,881 patent/US20200164100A1/en active Pending
-
2020
- 2020-05-25 JP JP2020090312A patent/JP7012779B2/ja active Active
-
2022
- 2022-01-17 JP JP2022004913A patent/JP7333425B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5670483A (en) | 1992-12-28 | 1997-09-23 | Massachusetts Insititute Of Technology | Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor |
US5955343A (en) | 1992-12-28 | 1999-09-21 | Massachusetts Institute Of Technology | Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor |
WO2006116524A1 (en) * | 2005-04-25 | 2006-11-02 | Massachusetts Institute Of Technology | Compositions and methods for promoting hemostasis and other physiological activities |
EP2345433A1 (de) * | 2008-10-06 | 2011-07-20 | 3-D Matrix, Ltd. | Gewebestecker |
WO2012008967A1 (en) * | 2010-07-16 | 2012-01-19 | Massachusetts Institute Of Technology | Self-assembling peptides incorporating modifications and methods of use thereof |
WO2013030673A2 (en) * | 2011-09-02 | 2013-03-07 | 3-D Matrix, Ltd. | Amphiphilic peptides for thoracic air leakage occlusion |
Non-Patent Citations (2)
Title |
---|
"Guide for the Care and Use of Laboratory Animals", 1996, NATIONAL SOCIETY FOR MEDICAL RESEARCH |
STARK J ET AL., ANN THORAC SURG, vol. 38, 1984, pages 411 - 413 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD1035436S1 (en) | 2022-08-26 | 2024-07-16 | Regeneron Pharmaceuticals, Inc. | Packaging |
USD1042107S1 (en) | 2022-08-26 | 2024-09-17 | Regeneron Pharmaceuticals, Inc. | Packaging |
USD1047700S1 (en) | 2022-08-26 | 2024-10-22 | Regeneron Pharmaceuticals, Inc. | Packaging |
Also Published As
Publication number | Publication date |
---|---|
CN112402587A (zh) | 2021-02-26 |
WO2014136081A1 (en) | 2014-09-12 |
CN105392493A (zh) | 2016-03-09 |
KR20190102101A (ko) | 2019-09-02 |
US20200164100A1 (en) | 2020-05-28 |
SG10201804746WA (en) | 2018-07-30 |
KR20150126394A (ko) | 2015-11-11 |
EP2964246A1 (de) | 2016-01-13 |
JP6709826B2 (ja) | 2020-06-17 |
JP2016514108A (ja) | 2016-05-19 |
JP7333425B2 (ja) | 2023-08-24 |
CA2900621A1 (en) | 2014-09-12 |
BR112015021446A2 (pt) | 2017-10-10 |
JP2022064909A (ja) | 2022-04-26 |
US20160015855A1 (en) | 2016-01-21 |
KR20200120751A (ko) | 2020-10-21 |
JP7012779B2 (ja) | 2022-02-14 |
HK1220116A1 (zh) | 2017-04-28 |
JP2018184418A (ja) | 2018-11-22 |
SG11201506232VA (en) | 2015-09-29 |
JP2020158511A (ja) | 2020-10-01 |
AU2014224200A1 (en) | 2015-08-27 |
EP2964246A4 (de) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7333425B2 (ja) | 精製された両親媒性ペプチド組成物を用いた、外科的方法 | |
US20240115652A1 (en) | Tissue occluding agent comprising an ieikieikieiki peptide | |
JP6893074B2 (ja) | 生体組織損傷の修復又は止血に用いる試薬及びその応用 | |
US9833541B2 (en) | Hemostatic compositions | |
EP2146733B1 (de) | Behandlung von leckenden oder beschädigten engen verbindungen und verstärkung der extrazellulären matrix | |
CN109200331B (zh) | 一种肺部封合医用凝胶及其制备方法与应用 | |
JP2010521495A5 (de) | ||
US20090011043A1 (en) | Tissue sealant made from whole blood | |
JP7389418B2 (ja) | 止血剤 | |
CN107349462B (zh) | 一种可吸收半流动性交联多肽生物外科止血物 | |
US11951229B2 (en) | Liquid hemostatic medical material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2964246 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210817 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MATSUDA, NORIAKI Inventor name: KOBAYASHI, SATORU Inventor name: NOHARA, MASAHIRO |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230403 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |