EP3775331A1 - Procédé de fabrication d'une couche monocristalline de matériau lno et substrat pour croissance par épitaxie d'une couche monocristalline de matériau lno - Google Patents
Procédé de fabrication d'une couche monocristalline de matériau lno et substrat pour croissance par épitaxie d'une couche monocristalline de matériau lnoInfo
- Publication number
- EP3775331A1 EP3775331A1 EP19721697.1A EP19721697A EP3775331A1 EP 3775331 A1 EP3775331 A1 EP 3775331A1 EP 19721697 A EP19721697 A EP 19721697A EP 3775331 A1 EP3775331 A1 EP 3775331A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- monocrystalline
- substrate
- layer
- support substrate
- lno
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 109
- 239000000758 substrate Substances 0.000 title claims abstract description 105
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000002210 silicon-based material Substances 0.000 claims abstract description 29
- 238000012546 transfer Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 26
- 238000000407 epitaxy Methods 0.000 claims description 12
- 238000003486 chemical etching Methods 0.000 claims description 7
- 238000002513 implantation Methods 0.000 claims description 7
- 230000010070 molecular adhesion Effects 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 230000003313 weakening effect Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 229910052710 silicon Inorganic materials 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- 229910052594 sapphire Inorganic materials 0.000 description 7
- 239000010980 sapphire Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- -1 hydrogen ions Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 210000001654 germ layer Anatomy 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 238000001657 homoepitaxy Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/025—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/30—Niobates; Vanadates; Tantalates
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/06—Joining of crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
Definitions
- the present invention relates to a method for manufacturing a monocrystalline layer of lithium Niobate material (LNO) and a substrate for the epitaxial growth of such a monocrystalline layer of LNO material.
- LNO lithium Niobate material
- Some materials are not currently available as a monocrystalline wafer substrate in large diameter. And some materials are possibly available in large diameter but not according to certain characteristics or specifications in terms of quality, particularly vis-à-vis the density of defects or the electrical or optical properties required.
- the present invention aims to overcome these limitations of the state of the art by proposing a method of manufacturing a monocrystalline layer of LNO material and a substrate for the epitaxial growth of such a monocrystalline layer of LNO material. By this it is possible to overcome the size problem of currently available monocrystalline LNO material substrates.
- the invention relates to a method for manufacturing a monocrystalline layer of LNO material comprising the transfer of a monocrystalline seed layer of YSZ material to a material support substrate. silicon followed by epitaxial growth of the monocrystalline layer of LNO material.
- the monocrystalline seed layer has a thickness of less than 10 ⁇ m, preferably less than 2 ⁇ m, and more preferably less than 0.2 ⁇ m.
- the transfer of the monocrystalline seed layer of YSZ material onto the silicon material support substrate comprises a step of assembling a monocrystalline substrate of YSZ material on the support substrate followed by a step of thinning said substrate.
- Monocrystalline substrate of YSZ material Monocrystalline substrate of YSZ material.
- the thinning step comprises forming an embrittlement zone delimiting a portion of the monocrystalline substrate of YSZ material intended to be transferred onto the support substrate of silicon material.
- the formation of the embrittlement zone is obtained by implantation of atomic and / or ionic species.
- the thinning step comprises a detachment at the weakening zone so as to transfer said portion of the monocrystalline substrate of YSZ material to the silicon material support substrate, in particular the detachment comprises the application a thermal and / or mechanical stress.
- the assembly step is a molecular adhesion step.
- the monocrystalline seed layer of YSZ material is in the form of a plurality of blocks each transferred to the silicon material support substrate.
- the silicon material support substrate comprises a removable interface configured to be disassembled by laser peeling and / or chemical etching and / or mechanical biasing.
- the invention also relates to a substrate for epitaxial growth of a monocrystalline layer of LNO material, characterized in that it comprises a monocrystalline seed layer of YSZ material on a support substrate of silicon material.
- the monocrystalline seed layer of YSZ material is in the form of a plurality of cobblestones.
- the silicon material support substrate comprises a removable interface configured to be disassembled by laser peeling and / or chemical etching and / or mechanical biasing.
- the invention also relates to a method for manufacturing a monocrystalline layer of Li x K y Na 2 Ti material
- the invention also relates to a method for manufacturing a monocrystalline layer of Li x K y Na 2 Ti material
- FIG. 1 illustrates a method for manufacturing a monocrystalline layer of LNO material according to one embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of LNO material according to this embodiment. of the invention
- FIG. 2 illustrates a method of manufacturing a monocrystalline layer of LNO material according to another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of LNO material according to this other mode. embodiment of the invention
- FIG. 3 illustrates a method of manufacturing a monocrystalline layer of LNO material according to yet another embodiment of the invention as well as a substrate for growth by epitaxy of such a monocrystalline layer of LNO material according to this other embodiment of the invention;
- FIG. 4 illustrates a method for manufacturing a monocrystalline layer of LNO material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of LNO material according to this other embodiment of the invention;
- FIG. 5 illustrates a method of manufacturing a monocrystalline layer of LNO material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of LNO material according to this other embodiment of the invention;
- FIG. 1 illustrates a support substrate 100 of silicon material on which a monocrystalline seed layer 200 of YSZ material is transferred.
- Other materials of the monocrystalline seed layer 200 may be envisaged, such as SrTiO 3 , CeO 2 , MgO or Al 2 O 3 , the latter having a mesh parameter close to that of the LNO material.
- the support substrate 100 of silicon material may also be replaced by a support substrate 100 of sapphire, Ni or Cu material.
- the use of silicon has the advantage of opening the field of application of LNO material layers not only to large 300 mm equipment but also to make it compatible the microelectronics industry for which the requirements in terms of acceptance on the production line of exotic material other than silicon, in particular LNO, are high.
- the assembly step 1 'of the monocrystalline seed layer 200 of YSZ material on the support substrate 100 of silicon material is preferentially done by a molecular adhesion step.
- This molecular adhesion step comprises a bonding step, preferably at ambient temperature, and is followed by a consolidation annealing of the bonding interface which is usually carried out at elevated temperatures up to 900 ° C. or even 1100 ° C. C for a period of minutes to hours.
- the assembly step 1 'of the monocrystalline seed layer on the support substrate is also preferentially by a molecular adhesion step using typical conditions of the same order of magnitude as mentioned. above.
- the assembly step 1 'of the monocrystalline seed layer on the support substrate is replaced by a step of depositing the Ni or Cu material on the monocrystalline seed layer, for example via a deposition by electroplating or electroforming (electroplating (ECD) according to the English terminology).
- ECD electroforming
- This technique usually includes the use of tie layer and stripping and is known per se and will not be described in more detail here.
- FIG. 1 schematically represents the assembly step 1 'of a monocrystalline substrate 20 of YSZ material on the support substrate 100 of silicon material. It follows a thinning step 2 'of the monocrystalline substrate 20 of YSZ material after being assembled on the support substrate 100 of silicon material.
- FIG. 1 schematically represents the thinning step 2 'which can be implemented for example by chemical and / or mechanical etching (polishing, grinding, milling, etc.).
- the monocrystalline seed layer 200 of YSZ material which will serve as a monocrystalline seed of a 3 'growth stage.
- a monocrystalline layer of LNO material usually used during homoepitaxy or heteroepitaxy on a monocrystalline bulk substrate in order to optimize the 3 'epitaxial growth step of the monocrystalline layer 300 of LNO material made on the substrate for growth by epitaxial growth.
- a monocrystalline layer of LNO material 10 of the present invention is therefore MOCVD at usual temperatures between 650 and 850 ° C using precursors known to those skilled in the art.
- the present invention is also not limited to an epitaxy of the LNO material but extends to certain composites of trigonal crystalline structure of Li x K y Na z Ti type
- the thermal expansion coefficient of the support substrate 100 predominates the thermal behavior of the substrate for epitaxial growth of a monocrystalline layer of LNO material 10 during the step of. 3 'growth by epitaxy of the monocrystalline layer 300 of LNO material. This is due to the thin thickness, preferably less than 1 ⁇ m, of the monocrystalline seed layer 200 of YSZ material with respect to the total thickness of the substrate for epitaxial growth of a monocrystalline layer of LNO material which is the order of several tens to hundreds of pm.
- the YSZ material is also chosen to provide a monocrystalline seed layer having a mesh parameter as close as possible to the mesh parameter chosen for the monocrystalline layer 300 of LNO material, preferably the mesh parameter in the relaxed state in order to allow a epitaxial growth inducing the least possible defects in the monocrystalline layer 300 of LNO material.
- the material of the support substrate 100 advantageously also has a coefficient thermal expansion particularly close to the thermal expansion coefficient of the LNO material for the same reasons of reducing defects in the monocrystalline layer 300 obtained by epitaxy.
- a support substrate 100 of sapphire material for the present invention would be used.
- FIG. 2 diagrammatically represents an embodiment of the method for manufacturing a monocrystalline layer of LNO material which differs from the embodiment described with reference to FIG. 1 in that the single-crystal substrate 20 'of material YSZ undergoes a step of "implantation 0" of atomic and / or ionic species in order to form an embrittlement zone delimiting a portion 200 'of the single crystal substrate 20' of material YSZ intended to be transferred onto the support substrate 100 'of silicon material, and in that the thinning step 2 "comprises a detachment at this weakened zone so as to transfer said portion 200 'of the monocrystalline substrate 20' of material YSZ to the support substrate 100 'of silicon material, in particular this detachment comprises application of a thermal and / or mechanical stress.
- the advantage of this embodiment is thus to be able to recover the remaining portion 201 of the monocrystalline substrate 20 'of YSZ starting material that can be used again to undergo the same process again and thus reduce costs.
- the substrate for growth by epitaxy of a monocrystalline layer of LNO material 10 'thus illustrated in FIG. 2 serves for the growth step 3 "of the monocrystalline layer 300' of LNO material as already described during the process described in connection with Figure 1.
- the implantation step 0 is done with hydrogen ions.
- An interesting alternative well known to those skilled in the art is to replace all or part of the hydrogen ions with helium ions.
- a hydrogen implantation dose will typically be between 6x10 16 cm 2 and 1 x 10 17 cm 2 .
- the implantation energy will typically be between 50 to 170 keV. So the detachment is done typically at temperatures between 300 and 600 ° C. Thicknesses of the monocrystalline seed layer of the order of 200 nm to 1.5 ⁇ m are thus obtained.
- additional technological steps are advantageously added in order either to reinforce the bonding interface, or to recover a good roughness, or to heal the defects possibly generated during the implantation step or else to prepare the seed layer surface for resumption of epitaxy. These steps are, for example, polishing, chemical etching (wet or dry), annealing, chemical cleaning. They can be used alone or in combination that those skilled in the art can adjust.
- FIG. 3 differs from the embodiments described with reference to FIG. 1 and FIG. 2 in that the substrate for epitaxial growth of a monocrystalline layer of LNO material (10, 10 ') comprises a demountable interface 40' configured to to be dismantled.
- a support substrate 100 of silicon material it may be a rough surface, for example silicon material assembled with the monocrystalline seed layer during the assembly step. Or a rough interface may be present within the support substrate 100 of silicon material, the latter for example obtained by assembling two silicon wafers.
- Another embodiment would be to introduce at the level of the face to be assembled with the monocrystalline seed layer a porous silicon layer capable of fracturing during the application of a mechanical and / or thermal stress, for example by insertion of a plate edge blade known to those skilled in the art or by the application of annealing.
- this interface is chosen so as to withstand the other mechanical and / or thermal stresses undergone during the process of the present invention (eg detachment, growth by epitaxy, etc.).
- a sapphire material support substrate it may be a stack of silicon oxide, silicon nitride and silicon oxide (so-called ONO type structure) made on the face of the sapphire to assemble with the monocrystalline seed layer.
- Such a stack is susceptible to detachment at the level of the silicon nitride layer during a laser application passing through the sapphire support substrate (detachment or detachment type "laser lift off”).
- detachment or detachment type "laser lift off” The skilled person will identify other methods of making this removable interface.
- FIG. 4 schematically represents an embodiment of the method for manufacturing a monocrystalline layer of LNO material which differs from the embodiments described in connection with FIG. 1, FIG. 2 and FIG. 3 in that the seed layer 2000 'monocrystalline material YSZ is in the form of a plurality of blocks (2001', 2002 ', 2003) each transferred to the support substrate 100 "of silicon material.
- the different pavers can be in any form (square, hexagonal, strips, ...) and with different sizes ranging from a few mm 2 to several cm 2 .
- the spacing between the chips may also vary significantly depending on whether a maximum density of coverage is sought (in this case preferentially a spacing of less than 0.2 mm will be chosen) or, on the contrary, maximum dissemination of the blocks within the substrate ( in this case the spacing may be several millimeters and even centimeters).
- a maximum density of coverage in this case preferentially a spacing of less than 0.2 mm will be chosen
- maximum dissemination of the blocks within the substrate in this case the spacing may be several millimeters and even centimeters.
- the skilled person could apply the transfer he wants and is not limited to a particular method. Thus one could consider applying the technical information described in connection with the method illustrated schematically in Figure 1 or the technical information described in connection with the method illustrated schematically in Figure 2, see even a combination of both.
- FIGS. 1 to 4 thus open the possibility of cointegration of components made in the monocrystalline layer of LNO material with components made in the support substrate of silicon material.
- the latter may simply be a silicon substrate, but it may also be an SOI type substrate comprising a silicon oxide layer separating a silicon substrate from a thin layer of silicon.
- access to the support substrate can be done simply by lithography and etching known to those skilled in the art.
- FIG. 5 diagrammatically represents an embodiment that differs from the embodiment described with reference to FIG. 4 in that the support substrate 100 "as well as subsequently the substrate for growth by epitaxy of a monocrystalline layer of LNO material 10 "comprises a removable interface 40 configured to be disassembled, for example by a laser lift off technique and / or chemical etching and / or mechanical stressing. This would make it possible to remove a portion of the support substrate 100 "as already mentioned in connection with FIG. 3.
- An example would be the use of a support substrate 100 of the SOI type comprising a silicon oxide layer separating a silicon substrate. a thin layer of silicon.
- This oxide layer could be used as a removable interface 40 by selective etching of this layer oxide, for example by immersion in a bath of hydrofluoric acid (HF).
- HF hydrofluoric acid
- This option of dismantling by chemical etching of a buried layer is particularly advantageous when it comes in combination with the treatment of a plurality of small substrates. Indeed, the radius of action of the under-engraving is generally limited to a few centimeters or even a few millimeters if it is desired to maintain conditions and processing times that are industrially reasonable.
- the treatment of a plurality of small substrates allows the start of several chemical etching fronts thanks to possible access of the buried layer between each block, and no longer only on the extreme edges of the substrates which can be up to 300mm in diameter . In the case of an SOI support substrate it is thus possible to partially remove the thin layer of silicon between the blocks to allow the start of several etching fronts.
- the thin silicon layer having a predetermined thickness (which can vary between 5 nm and 600 nm, or even thicker depending on the intended application) could thus be used to form microelectronic components and thus enable the co-integration of components with base of LNO materials in the same substrate.
- the monocrystalline layer (3001, 3002, 3003) one could also imagine an assembly of this structure on a final substrate and dismount at the demountable interface 40 a portion of the support substrate 100 ".
- the final substrate can thus provide additional functionalities that are, for example, incompatible with growth parameters previously performed (for example, flexible plastic type end substrate or final substrate comprising metal lines).
- the removable interface is not necessarily located inside the support substrate but can also be at the interface with the germ layer of material YSZ assembled on this support substrate (for example a stack of a silicon nitride layer between two silicon oxide layers allows a laser detachment, particularly suitable for a sapphire-type support substrate) as already described in connection with the figure 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1800256A FR3079533B1 (fr) | 2018-03-28 | 2018-03-28 | Procede de fabrication d'une couche monocristalline de materiau lno et substrat pour croissance par epitaxie d'une couche monocristalline de materiau lno |
PCT/IB2019/000200 WO2019186263A1 (fr) | 2018-03-28 | 2019-03-26 | Procédé de fabrication d'une couche monocristalline de matériau lno et substrat pour croissance par épitaxie d'une couche monocristalline de matériau lno |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3775331A1 true EP3775331A1 (fr) | 2021-02-17 |
Family
ID=63834054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19721697.1A Pending EP3775331A1 (fr) | 2018-03-28 | 2019-03-26 | Procédé de fabrication d'une couche monocristalline de matériau lno et substrat pour croissance par épitaxie d'une couche monocristalline de matériau lno |
Country Status (8)
Country | Link |
---|---|
US (2) | US11828000B2 (zh) |
EP (1) | EP3775331A1 (zh) |
JP (1) | JP7355289B2 (zh) |
KR (1) | KR102636118B1 (zh) |
CN (1) | CN111902572A (zh) |
FR (1) | FR3079533B1 (zh) |
SG (1) | SG11202009412QA (zh) |
WO (1) | WO2019186263A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4414482A1 (en) * | 2023-02-07 | 2024-08-14 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Composite substrates for the epitaxial growth of thin films and method for fabricating such substrates |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH082998A (ja) * | 1994-06-15 | 1996-01-09 | Sumitomo Electric Ind Ltd | 酸化物誘電体薄膜及びその製造方法 |
FR2817395B1 (fr) * | 2000-11-27 | 2003-10-31 | Soitec Silicon On Insulator | Procede de fabrication d'un substrat notamment pour l'optique, l'electronique ou l'optoelectronique et substrat obtenu par ce procede |
US7407869B2 (en) * | 2000-11-27 | 2008-08-05 | S.O.I.Tec Silicon On Insulator Technologies | Method for manufacturing a free-standing substrate made of monocrystalline semiconductor material |
US8507361B2 (en) * | 2000-11-27 | 2013-08-13 | Soitec | Fabrication of substrates with a useful layer of monocrystalline semiconductor material |
KR100476901B1 (ko) * | 2002-05-22 | 2005-03-17 | 삼성전자주식회사 | 소이 반도체기판의 형성방법 |
DE60336543D1 (de) * | 2003-05-27 | 2011-05-12 | Soitec Silicon On Insulator | Verfahren zur Herstellung einer heteroepitaktischen Mikrostruktur |
US9564320B2 (en) * | 2010-06-18 | 2017-02-07 | Soraa, Inc. | Large area nitride crystal and method for making it |
US8860005B1 (en) * | 2013-08-08 | 2014-10-14 | International Business Machines Corporation | Thin light emitting diode and fabrication method |
FR3034569B1 (fr) | 2015-04-02 | 2021-10-22 | Soitec Silicon On Insulator | Electrolyte solide avance et sa methode de fabrication |
FR3041364B1 (fr) | 2015-09-18 | 2017-10-06 | Soitec Silicon On Insulator | Procede de transfert de paves monocristallins |
-
2018
- 2018-03-28 FR FR1800256A patent/FR3079533B1/fr active Active
-
2019
- 2019-03-26 SG SG11202009412QA patent/SG11202009412QA/en unknown
- 2019-03-26 EP EP19721697.1A patent/EP3775331A1/fr active Pending
- 2019-03-26 JP JP2020549801A patent/JP7355289B2/ja active Active
- 2019-03-26 WO PCT/IB2019/000200 patent/WO2019186263A1/fr unknown
- 2019-03-26 CN CN201980021529.2A patent/CN111902572A/zh active Pending
- 2019-03-26 US US17/042,737 patent/US11828000B2/en active Active
- 2019-03-26 KR KR1020207030190A patent/KR102636118B1/ko active IP Right Grant
-
2023
- 2023-10-18 US US18/489,345 patent/US20240044043A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20240044043A1 (en) | 2024-02-08 |
JP2021518323A (ja) | 2021-08-02 |
CN111902572A (zh) | 2020-11-06 |
FR3079533B1 (fr) | 2021-04-09 |
FR3079533A1 (fr) | 2019-10-04 |
KR102636118B1 (ko) | 2024-02-13 |
US20210095391A1 (en) | 2021-04-01 |
SG11202009412QA (en) | 2020-10-29 |
JP7355289B2 (ja) | 2023-10-03 |
US11828000B2 (en) | 2023-11-28 |
KR20200136431A (ko) | 2020-12-07 |
WO2019186263A1 (fr) | 2019-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1324385B1 (fr) | Procédé de report de couches minces semi-conductrices à partir d'une plaquette donneuse. | |
EP3775329A1 (fr) | Procédé de fabrication d'une couche monocristalline de matériau diamant ou iridium et substrat pour croissance par épitaxie d'une couche monocristalline de matériau diamant ou iridium | |
EP1938362B1 (fr) | Procede de fabrication d'un element en couches minces | |
WO2002037556A1 (fr) | Procede de fabrication d'une structure empilee comprenant une couche mince adherant a un substrat cible | |
FR2857982A1 (fr) | Procede de fabrication d'une couche epitaxiee | |
FR2857983A1 (fr) | Procede de fabrication d'une couche epitaxiee | |
FR2840731A1 (fr) | Procede de fabrication d'un substrat comportant une couche utile en materiau semi-conducteur monocristallin de proprietes ameliorees | |
FR2817394A1 (fr) | Procede de fabrication d'un substrat notamment pour l'optique, l'electronique ou l'optoelectronique et substrat obtenu par ce procede | |
WO2010049657A1 (fr) | Procede de formation d'une couche monocristalline dans le domaine micro-electronique | |
EP1966821A2 (fr) | Procede de relaxation d'une couche mince contrainte | |
EP1631982B1 (fr) | Procede d'obtention d'une couche tres mince par amincissement par auto-portage provoque | |
WO2019186266A2 (fr) | Procédé de fabrication d'une couche monocristalline de matériau ain et substrat pour croissance par épitaxie d'une couche monocristalline de matériau ain | |
EP3775331A1 (fr) | Procédé de fabrication d'une couche monocristalline de matériau lno et substrat pour croissance par épitaxie d'une couche monocristalline de matériau lno | |
WO2019186268A1 (fr) | Procédé de fabrication d'une couche monocristalline de matériau gaas et substrat pour croissance par épitaxie d'une couche monocristalline de matériau gaas | |
WO2020128245A1 (fr) | Procede de fabrication d'un dispositif comprenant une membrane surplombant une cavite | |
FR3073083B1 (fr) | Procede de fabrication d'un film sur un feuillet flexible | |
WO2019186264A1 (fr) | Procede de fabrication d'une couche cristalline de materiau pzt et substrat pour croissance par epitaxie d'une couche cristalline de materiau pzt | |
EP1861873A1 (fr) | Procede de fabrication d'une hetero-structure comportant au moins une couche epaisse de materiau semi-conducteur | |
FR2866982A1 (fr) | Procede de fabrication de composants electroniques | |
FR2849714A1 (fr) | Recyclage par des moyens mecaniques d'une plaquette comprenant une structure multicouches apres prelevement d'une couche mince | |
WO2024134078A1 (fr) | Procédé de fabrication de deux substrats dits pseudo-substrats donneurs comprenant chacun au moins deux pavés sur un substrat support | |
WO2024074797A1 (fr) | Procede de fabrication d'une structure composite comprenant des paves | |
WO2024134102A1 (fr) | Procede de fabrication d'une structure comprenant au moins deux paves sur un substrat | |
WO2024200627A1 (fr) | Procede de fabrication d'un substrat en carbure de silicium | |
EP4315396A1 (fr) | Procede de fabrication d'une structure composite comprenant une couche mince en semi-conducteur monocristallin sur un substrat support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200810 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240402 |