EP3766109B1 - Ferroelektrisches material, mems-bauteil mit diesem material, mems-vorrichtung, sowie herstellungsverfahren - Google Patents

Ferroelektrisches material, mems-bauteil mit diesem material, mems-vorrichtung, sowie herstellungsverfahren Download PDF

Info

Publication number
EP3766109B1
EP3766109B1 EP19711863.1A EP19711863A EP3766109B1 EP 3766109 B1 EP3766109 B1 EP 3766109B1 EP 19711863 A EP19711863 A EP 19711863A EP 3766109 B1 EP3766109 B1 EP 3766109B1
Authority
EP
European Patent Office
Prior art keywords
ferroelectric
layer
electrode
mems
ferroelectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19711863.1A
Other languages
English (en)
French (fr)
Other versions
EP3766109A1 (de
Inventor
Bernhard Wagner
Fabian LOFINK
Dirk Kaden
Simon FICHTNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Christian Albrechts Universitaet Kiel
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Christian Albrechts Universitaet Kiel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Christian Albrechts Universitaet Kiel filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3766109A1 publication Critical patent/EP3766109A1/de
Application granted granted Critical
Publication of EP3766109B1 publication Critical patent/EP3766109B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators

Definitions

  • Embodiments according to the invention relate to a ferroelectric material, a MEMS device with a ferroelectric material, a MEMS device with a first MEMS device, a method for manufacturing a MEMS device and a method for manufacturing a CMOS-compatible MEMS component.
  • piezoelectric MEMS actuators offer significantly higher forces. Nevertheless, these forces are often insufficient, especially for non-resonant movements. Using piezoelectric multilayers, however, forces of any magnitude could theoretically be coupled into the respective components.
  • the piezoelectric materials available to date such as lead zirconate titanate (PZT) or aluminum nitride (AIN), are only suitable to a limited extent for piezoelectric MEMS multilayer systems, so that the transfer to commercial utilization of corresponding components is not yet promising.
  • Ferroelectric materials are a variant of piezoelectric materials characterized by a spatially rotatable electric polarization P, whose direction can be determined by an external electric field E. Depending on the orientation of the polarization in relation to the applied electric field, there is also an expansion or contraction of the material (piezoelectric effect). This effect can be used in actuators.
  • a plate capacitor with a ferroelectric dielectric is deposited and structured on a passive layer.
  • the passive layer can be the membrane of an ultrasonic transducer or that of a loudspeaker.
  • One way to increase the power for a fixed electrical voltage is to use a multi-layer system.
  • the resulting force can be increased by up to a factor of n [2].
  • the force that can actually be achieved depends crucially on the respective alignment of the material polarization relative to the applied electric field.
  • the electric field and polarization in all piezoelectric layers are aligned either parallel or anti-parallel to each other on the same side of the neutral plane (also called neutral fiber) of the layer system. In this case, all layers contribute in the same direction to the total force, which is therefore maximum.
  • Macroscopic ferroelectric multilayer actuators are already being used industrially in fuel injection pumps [3].
  • ferroelectric multilayer systems have so far only been studied academically, despite their obvious advantages (e.g. [4], [5]).
  • PZT ferroelectric layer
  • AIN is a pyroelectric material, which means that, like ferroelectrics, it exhibits spontaneous electrical polarization.
  • ferroelectric materials however, the polarization in AIN cannot be spatially rotated by an external electric field.
  • ferroelectric mixed crystals based on AlN and the nitrides of transition metals enables piezoelectric multilayer components without having to accept the disadvantages of classic ferroelectrics or pyroelectrics.
  • AIScN mixed crystals for improving piezoelectric properties have already been described in [24] and [25], although there is no indication of how a ferroelectric mixed crystal can be produced using scandium.
  • ferroelectric multilayers Another conceivable application of ferroelectric multilayers is a component-intrinsic charge amplification, which is important for sensor concepts that convert their input variable piezoelectrically into electrical charges (as an alternative to converting them into electrical voltages). As a result, the requirements for an external charge amplifier can be reduced. Such a charge amplification can also be advantageous in microgenerators.
  • the solution approaches for actuators presented below can also be applied directly to the charge amplification mentioned. The dualism of the two concepts reflects the two directions of the piezoelectric effect (direct and inverse).
  • Classic ferroelectrics such as PZT
  • PZT can be assembled into effective multi-layer actuators without additional insulation layers, since this class of materials inherently aligns its electrical polarization along the field direction of external electrical fields.
  • the position of the neutral plane must be taken into account when choosing a suitable polarization. Layers above this level must each couple their force with the opposite sign to those below if bending motion is to be induced.
  • Purely pyroelectric, i. H. explicitly non-ferroelectric materials such as pure AlN can be deposited in a CMOS-compatible manner. They can be manufactured in such a way that the electrical breakdown field strength reaches significantly higher values than in classic ferroelectrics and, in addition, only low electrical losses occur. In addition, the relationship between the electric field and the resulting force is linear to a good approximation. In particular, this allows efficient excitation with bipolar electrical voltages. However, since the polarization cannot be changed afterwards, it is only defined during the production of the material. In multilayer systems manufactured using one and the same process, the polarization of all layers therefore points in the same direction, ideally perpendicular to the substrate.
  • a bimorph enables the use of a non-ferroelectric double layer without additional electrical insulation.
  • a prerequisite for an efficient drive is that the two piezoelectric layers are on opposite sides of the neutral plane of the actuator.
  • the layers can share an electrode layer or be spatially separated by an intermediate passive layer.
  • the polarization in non-ferroelectric pyroelectrics such as AlN is hardwired during the fabrication of the material.
  • Optimum piezoelectric behavior occurs when the electrical polarization is exclusively aligned perpendicular to the substrate.
  • An irreversible adjustment of the polarization required for this could be achieved by providing a suitable intermediate layer or starting layer [8].
  • doping for example with oxygen or germanium [9, 10] also enables the direction of polarization to be adjusted.
  • these approaches are still a long way from being ready for application.
  • the pamphlet EP3216894A1 discloses a thin film X y Al (1-y) N that is preferably deposited with an intrinsic tensile stress.
  • the alloy contains y percent of compound XN, where X is selected from the group consisting of Yb, Ho, Dy, Lu, Tm, Tb, and Gd.
  • the percentage of XN is preferably in the range of 10-60% and the stress is preferably in the range of 200MPa - 1.5GPa.
  • ferroelectric layers are also referred to as piezoelectric layers.
  • the layers according to the exemplary embodiments do not necessarily all have to be ferroelectric - it is sufficient, for example, if some of the piezoelectric Layers (e.g. every second) contain a ferroelectric material and all others only a piezoelectric material. It is conceivable, for example, that some layers have a different TM content or a different mechanical stress and are therefore not ferroelectric.
  • One embodiment relates to a ferroelectric material with a mixed crystal that includes AlN and at least one nitride of a transition metal.
  • the proportion of the nitride of the Transition metal must be increased until a direction of an initial or spontaneous polarity of the ferroelectric material can be switched by applying a switching voltage and the switching voltage is below a breakdown voltage of the ferroelectric material.
  • the proportion of the nitride of the transition metal must be increased until a direction of an initial or spontaneous polarity of the ferroelectric material can be switched by applying a switching voltage and the switching voltage is below a breakdown voltage of the ferroelectric material.
  • This embodiment of the ferroelectric material with a mixed crystal is based on the finding that an increase in the proportion of the nitride of the transition metal in the mixed crystal of the ferroelectric material results in that the initial or spontaneous polarity of the ferroelectric material can be switched by the application of a switching voltage and thus the Direction of the initial or spontaneous polarity of the ferroelectric material is not determined by the manufacturing process, but can still be changed afterwards.
  • the mixed crystal initially has an initial or spontaneous polarity, the direction of which can be changed by means of the switching voltage.
  • the direction of the polarity can be rotated by 180° or a direction of an initial polarity can be aligned parallel to an electric field caused by the switching voltage.
  • the ferroelectric layers of the multilayer can be deposited with a single process, for example, since one does not have to rely on in situ manipulation of the polarization direction, but all ferroelectric layers can first be deposited with the same polarization and subsequently, for example, the polarization of individually selected ferroelectric layers can be switched by applying a switching voltage.
  • the possibility of being able to switch the polarity of the ferroelectric material after the manufacturing process by applying a switching voltage means that the number of insulation layers and electrode layers required in a multilayer system of the ferroelectric material can be minimized, since the polarization of the individual layers of the ferroelectric material can be switched using a switching voltage can be set in such a way that, for example, only one electrode layer has to be between two layers of the ferroelectric material, which both layers with the ferroelectric material share.
  • ferroelectric material when using a multilayer system can mean that the ferroelectric layers of the multilayer can be deposited in a single process and the necessary number of insulation layers and electrode layers can be minimized by switching the polarity of individual ferroelectric layers.
  • the ferroelectric material exhibits a mechanical stress.
  • the mechanical stress can be adjusted, for example, by the composition of a gas used during production or by applying an electrical voltage during production.
  • the mechanical stress is between a first value of compressive stress and a second value of tensile stress, with an absolute value of the first value being lower than an absolute value of the second value.
  • the TM content (proportion of the transition metal) and the mech. Voltage can be set independently of each other over a wide range - but both have an influence on the magnitude of the switching voltage.
  • the necessary proportion of the nitride of the transition metal decreases, for example for an increase in the tensile stress of ferroelectric layers with the ferroelectric material, and in the case of an increase in the compressive stress, for example, the increase the necessary proportion of the nitride of the transition metal.
  • the mechanical stress lies in an interval from -600 MPa (first value of a compressive stress) to 2000 MPa (second value of a tensile stress), with negative values denoting compressive stress and positive values denoting tensile stress.
  • the stress is in the interval from -600MPa to 2000MPa, such as in an interval from -550MPa to 1500MPa, from -500MPa to 1000MPa or from -450MPa to 900MPa, provided that the proportion of TM (proportion of the transition metal) exceeds a certain limit, for example reaches that the switching voltage is below the breakdown voltage and thus the ferroelectric material is not damaged when the switching voltage is applied.
  • the range from -600 MPa to 2000 MPa covers the range in which the ratio between the compressive stress and the tensile stress is optimized against that the direction of polarity of the ferroelectric material is switched upon application of a switching voltage.
  • the direction of polarity of the ferroelectric material is retained for a large period of time after removal of the applied switching voltage. This means, for example, that after this change in the direction of polarity of the ferroelectric material, the direction of polarization remains constant for a long time. If the original direction of polarization of the ferroelectric material is desired before the switching voltage is applied, the switching voltage must be applied again to the ferroelectric material with the opposite electric field than the previous switching voltage. The direction of polarity of the ferroelectric material aligns with the electric field that penetrates the ferroelectric material and is caused by the switching voltage.
  • the selected proportion of the transition metal nitride causes the solid solution to become ferroelectric.
  • the polarity of the mixed crystal can be electrically controlled, e.g. B. be switched by applying a switching voltage. Switching the polarity means, for example, that the polarity of the mixed crystal is switched before a switching voltage is applied, e.g. B. points in a direction within the mixed crystal and after applying a switching voltage, the polarity of the mixed crystal is directed in the opposite direction relative to the polarization direction before applying the switching voltage. Thus, for example, the polarity is inverted.
  • switching the polarity of the ferroelectric material can also mean that, for example, a large part of the dipole moments of the mixed crystal (e.g. between 50% and 100% of the dipoles, between 70% and 100% of the dipoles or between 80% and 100% of the Dipoles (e.g. 90% of the dipoles) are oriented along an electric field direction, generated by applying a switching voltage to the mixed crystal, with a large part of the dipole moments of the mixed crystal in the opposite direction with respect to the field direction of the mixed crystal before the switching voltage is applied to the mixed crystal subsequently applied switching voltage was aligned.
  • a large part of the dipole moments of the mixed crystal e.g. between 50% and 100% of the dipoles, between 70% and 100% of the dipoles or between 80% and 100% of the Dipoles (e.g. 90% of the dipoles) are oriented along an electric field direction, generated by applying a switching voltage to the mixed crystal, with a large part of the dipole moments of the mixed crystal in the opposite direction with respect to the field
  • the ratio between a number of transition metal atoms to a sum of the number of transition metal atoms and a number of aluminum atoms is in a range of ⁇ 0.2 and ⁇ 0.5.
  • the ratio between the number of transition metal atoms to the sum of the number of transition metal atoms and the number of aluminum atoms in a range between 0.25 and 0.43 or according to the invention between 0.30 and 0.36 such as e.g. B. be at 0.36.
  • the ratio depends, for example, on the transition metal. However, the ratio can also depend on the mechanical strain of the ferroelectric material.
  • the necessary proportion of the nitride of the transition metal would be reduced for layers of the ferroelectric material under tensile stress, and increased in the case of compressive stress.
  • the ferroelectric material can be used at temperatures below 500°C (for example, at a temperature between 0°C and 500°C, such as 200°C, 240°C, 300°C, 360°C, 400°C or 470°C C) and, among other things, be deposited lead-free, which makes it CMOS-compatible.
  • the transition metal includes scandium, yttrium, titanium, chromium, niobium, or any combination thereof. With the help of these special transition metals, it is possible, for example, to switch the polarity of the ferroelectric material by applying a switching voltage to the mixed crystal.
  • One embodiment relates to a method including the step of providing a mixed crystal having an initial or spontaneous polarity.
  • the mixed crystal comprises AlN and at least one nitride of a transition metal.
  • the proportion of the nitride of the transition metal is z. B. selected so that a direction of the initial or spontaneous polarity of the ferroelectric material is switchable by applying a switching voltage.
  • the switching voltage is z. B. is below a breakdown voltage of the ferroelectric material.
  • the method further comprises the step of applying a switching voltage to the mixed crystal so that the direction of the initial or spontaneous polarity of the mixed crystal is reversed.
  • An embodiment relates to a MEMS device with a ferroelectric material.
  • the ferroelectric material for example according to one of the exemplary embodiments, a variety of MEMS components can be manufactured in which the property of the ferroelectric material that the polarity can be switched by applying a switching voltage can be used.
  • the production of MEMS components for example consisting of several layers of the ferroelectric material, is simplified by the ferroelectric material, since all layers can be produced using the same process and then by applying a Switching voltage, the polarity of individual layers can be switched simultaneously or sequentially by several layers.
  • the MEMS device includes a first ferroelectric layer including the ferroelectric material, a first electrode disposed on a first surface of the first ferroelectric layer, and a second electrode disposed on a second surface of the first ferroelectric layer is.
  • the second surface lies opposite the first surface, for example.
  • a switching voltage can be applied to the first ferroelectric layer via the first electrode and the second electrode.
  • the polarity of the first ferroelectric layer can be switched by applying a switching voltage. If this MEMS device is operated at a voltage lower than the switching voltage, the direction of polarity of the first ferroelectric layer does not change.
  • the MEMS component can, for example, have the function of an actuator and, for example, convert the supplied electrical current into mechanical movement by applying the voltage to the first and the second electrode and, for example, its expansion into either shorten or lengthen a direction in space.
  • the MEMS device includes a second ferroelectric layer disposed on the first electrode opposite the first ferroelectric layer and a third electrode disposed on a first surface of the second ferroelectric layer.
  • the first surface of the second ferroelectric layer is arranged facing away from the first electrode. i.e. the second electrode and the third electrode delimit a block consisting of a first ferroelectric layer, a first electrode and a second ferroelectric layer, on opposite sides, the first electrode being arranged between the first ferroelectric layer and the second ferroelectric layer such that the second ferroelectric layer separates the first electrode from the third electrode and the first ferroelectric layer separates the first electrode from the second electrode.
  • the first ferroelectric layer and the second ferroelectric layer include ferroelectric material as described herein.
  • the deposition of the first ferroelectric layer and the second ferroelectric layer for the multilayer MEMS device can be performed with a single process.
  • the second electrode can first be produced in the form of a cuboid made of conductive material and then the first ferroelectric layer is applied to a surface of the second electrode in such a way that the polarity of the first ferroelectric layer is perpendicular to the touching surface of the second electrode.
  • the polarity of the first ferroelectric layer can point either towards the surface of the second electrode, which lies between the second electrode and the first ferroelectric layer, or away from this surface.
  • the first ferroelectric layer can have the shape of a cuboid, for example.
  • the first electrode in the form of a cuboid made of electrically conductive material can be applied, for example, and a cuboid made of ferroelectric material can be applied on a surface of the first electrode opposite the surface in contact with the first ferroelectric layer be, which represents, for example, the second ferroelectric layer.
  • the polarity of this second ferroelectric layer should be perpendicular to the area between the first electrode and the second ferroelectric layer. Because the second ferroelectric layer can be deposited using the same process or in the same process as the first ferroelectric layer, the second ferroelectric layer has the same polarity as the first ferroelectric layer, for example.
  • a third electrode is deposited on a surface of the second ferroelectric layer opposite the first electrode.
  • a voltage can be applied to the first ferroelectric layer and/or second ferroelectric layer with the aid of the first electrode, second electrode and/or third electrode.
  • This has the advantage that the polarity of the second ferroelectric layer can be switched, for example by applying a switching voltage to the first electrode and to the third electrode.
  • the polarity of the second ferroelectric layer points in the opposite direction to the polarity of the first ferroelectric layer.
  • both ferroelectric layers can contract or expand at the same time.
  • first ferroelectric layer and the second ferroelectric layer increases the force with which, for example, a MEMS component can bend.
  • only one electrode e.g. the first electrode
  • an additional electrode is required and the two electrodes through an insulating layer have to be separated. The number of insulation layers and electrodes can thus be minimized with this MEMS component.
  • the first electrode of the MEMS device has a first electrode layer and a second electrode layer.
  • An insulation layer is arranged between the first and the second electrode layer, in which there is a neutral plane.
  • the first ferroelectric layer and the second ferroelectric layer can be deposited in one process, and the multilayer system increases the strength of the MEMS component.
  • the isolation layer the first ferroelectric layer can be driven independently of the second ferroelectric layer.
  • the first ferroelectric layer can be driven by applying a voltage to the second electrode and the second electrode layer and the second ferroelectric layer can be driven by applying a voltage to the third electrode and the first electrode layer.
  • the additional layer isolation layer
  • the first electrode of the MEMS device has a first electrode layer and a second electrode layer.
  • a passive layer in which a neutral plane lies, is arranged between the first and the second electrode layer. Due to the passive layer, for example, the second ferroelectric layer on one side of the neutral plane can have a different force effect on the MEMS component than the first ferroelectric layer on the other side of the neutral plane. Thus, for example, bending of the MEMS component and thus the bending force of the MEMS component can be increased.
  • the MEMS device has a third ferroelectric layer disposed on the third electrode opposite the second ferroelectric layer, a fourth electrode disposed on a first surface of the third ferroelectric layer, the first surface of the third ferroelectric layer opposite to the third electrode, a fourth ferroelectric layer disposed on the second electrode opposite the first ferroelectric layer, and a fifth electrode disposed on a first surface of the fourth ferroelectric layer.
  • the first surface of the fourth ferroelectric layer faces away from the second electrode.
  • This MEMS device has four ferroelectric layers. The more layers the MEMS component has, the larger it becomes power of the MEMS device.
  • the polarity of the individual ferroelectric layers can thus be switched by applying a switching voltage such that the forces of the individual ferroelectric layers interact in such a way that the total force of the MEMS component becomes very large.
  • the first electrode, second electrode and third electrode can each be used by two ferroelectric layers. Because the polarity of individual ferroelectric layers can still be changed after the MEMS component has been manufactured, the ferroelectric layers of the multilayer can be deposited with a single process or in a single process.
  • a passive layer is arranged on the second electrode of the MEMS device.
  • the combined force from the individual forces of the individual ferroelectric layers can be coupled to the passive layer. This can cause the passive layer to deflect.
  • the passive layer of the MEMS device is connected to a substrate on at least one side.
  • the passive layer is firmly anchored on one side and freely movable on the opposite side.
  • This structure further increases the effectiveness of the MEMS component, since the MEMS component can now only be deflected on the freely movable side of the passive layer and a higher deflection can therefore be achieved on this side than if the MEMS Component is deflected on both sides.
  • the anchoring connection of the MEMS component to the substrate causes, for example, a spatial fixation of the component.
  • the MEMS device includes a multi-layer MEMS actuator, a multi-layer MEMS sensor, or a multi-layer MEMS generator.
  • a multilayer MEMS actuator By using the ferroelectric material in a multilayer MEMS actuator, a multilayer MEMS sensor or a multilayer MEMS generator, they can be manufactured more cheaply and efficiently because the ferroelectric layers are deposited in a single process or with a single process can and subsequently the desired polarity of the individual ferroelectric layers can be adjusted.
  • the MEMS device is a multi-layer MEMS actuator, comprises a multi-layer MEMS sensor or a multi-layer MEMS generator
  • the MEMS component can, for example, also have various construction and connection techniques ("packaging"), such as at least one suspension, at least one connection to a substrate, at least one connection to a membrane, etc. and/or combinations of these.
  • a MEMS device in one embodiment, includes a substrate and a first MEMS part.
  • a passive layer of the MEMS component is arranged on the substrate so that it can be deflected.
  • the passive layer is firmly anchored on one side and freely movable on the opposite side.
  • the MEMS device includes a second MEMS component.
  • the first and the second passive layer form a community and the electrodes and the ferroelectric layers of the first and the second MEMS component are arranged in parallel.
  • the common passive layer of the first MEMS device and the second MEMS device is more deflected because in this MEMS device the first MEMS device and the second MEMS device arranged parallel to each other work together like this , that a stronger bending force is exerted on the common passive layer, whereby the deflectable side of the MEMS device is strongly deflected.
  • this structure can cause a torsion of the common passive layer, for example, when the first MEMS component is excited by applying a voltage in phase opposition to the second MEMS component, to which a voltage is also applied.
  • the method includes stacking a first electrode, a first ferroelectric layer, a second electrode, a second piezoelectric layer, and a third electrode in that order.
  • the first ferroelectric layer and the second piezoelectric layer have the same polarization direction, and the first ferroelectric layer comprises ferroelectric material with a mixed crystal comprising AlN and at least one nitride of a transition metal.
  • the proportion of the nitride of the transition metal is chosen so that the polarity of the ferroelectric material through Applying a switching voltage is switchable.
  • the switching voltage is below a breakdown voltage of the ferroelectric material.
  • the method further includes the following step: applying a switching voltage to the first electrode and to the second electrode.
  • the polarization direction of the first ferroelectric layer is thereby reversed, so that the polarization direction of the first ferroelectric layer is reversed (for example, opposite the polarization direction of the second piezoelectric layer).
  • Another embodiment provides a method of manufacturing a MEMS device in which the first electrode, the first ferroelectric layer, the second electrode, the second piezoelectric layer and the third electrode are stacked on a substrate, and the method further comprises the step of : Integrating one or more circuit components of an integrated circuit using a CMOS process in the substrate before or after stacking the first electrode, the first ferroelectric layer, the second electrode, the second piezoelectric layer and the third electrode.
  • the methods are based on the same consideration as for the ferroelectric material, MEMS component, and MEMS device described above.
  • the methods can be supplemented by all features and functionalities that are also described herein with regard to the ferroelectric material according to the invention, the MEMS component and the MEMS device.
  • Fig. 1a shows a schematic representation of a ferroelectric material 100 with a mixed crystal 110 according to an embodiment of the present invention.
  • the mixed crystal 110 comprises AIN 120 and at least one nitride of a transition metal TMN 130.
  • the AIN 120 forms a chemical compound AITMN with the nitride of a transition metal TMN 130.
  • Fig. 1a is only a schematic sketch, although in the Fig. 1a the AIN 120 and the nitride of a transition metal TMN 130 are shown spatially separated, this is in fact not the case.
  • the chemical compound AITMN is homogeneously distributed in the mixed crystal 110 .
  • the proportion of the TMN 130 transition metal nitride can be adjusted.
  • a ratio of a number of transition metal atoms TM of the transition metal nitride TMN 130 to a sum of the number of transition metal atoms of the transition metal nitride TMN 130 and a number of aluminum atoms of the AIN 120 is in a range ⁇ 0.2, for example and ⁇ 0.5, the ratio also being in a range ⁇ 0.25 and ⁇ 0.43, in a range ⁇ 0.30 and ⁇ 0.38 or according to one embodiment in a range ⁇ 0.32 and ⁇ 0, 36, such as e.g. 0.36.
  • the chemical bond between AIN 120 and the transition metal nitride TMN 130 can be represented as Al 1-x TM x N, where x is the ratio of a number of transition metal atoms TM of the transition metal nitride TMN 130 to a sum of the number of Transition metal atoms from the nitride of the transition metal TMN 130 and a number of aluminum atoms of the AIN 120 is.
  • x is the ratio of a number of transition metal atoms TM of the transition metal nitride TMN 130 to a sum of the number of Transition metal atoms from the nitride of the transition metal TMN 130 and a number of aluminum atoms of the AIN 120 is.
  • increasing the proportion of the TMN nitride 130 causes the mixed crystal 110 to become ferroelectric.
  • the transition metal TM of the TMN transition metal nitride 130 may be, for example, scandium SC, yttrium Y, titanium Ti, n
  • the intrinsic mechanical stress can be set for the ferroelectric material 100 .
  • the dielectric losses of the mixed crystal 110 are lower than in classic ferroelectrics such as PZT.
  • the ferroelectric material can, using the example of Al 1-x Sc x N, already be produced at deposition temperatures of 400 °C and is therefore, like pure AlN, CMOS-compatible.
  • the high dielectric strength of pure AlN (> 400 V/ ⁇ m) is also retained in Al 1-x Sc x N.
  • the low dielectric losses of usually well below 1% [12] and the possibility of adjusting the intrinsic mechanical stress of the ferroelectric material are also retained [11].
  • the ferroelectric material is CMOS compatible.
  • Fig. 1b 10 shows the ferroelectric material 100 according to an embodiment of the present invention according to the ferroelectric material 100.
  • FIG Fig. 1a The ferroelectric material 100 comprises a mixed crystal 110.
  • the mixed crystal 110 comprises AlN 120 and at least one nitride of a transition metal 130.
  • a switching voltage 150 is applied to the ferroelectric material 100, as a result of which the polarity 142 is set. That is, by applying the switching voltage 150, for example, the original polarity 140 (see Fig. 1a ) can be switched so that the new polarity 142 is opposite to the old polarity 140.
  • the switching voltage 150 must be below a breakdown voltage of the ferroelectric material 100 . If a lower voltage than the switching voltage 140 is applied to the ferroelectric material 100, the direction of the polarity 140 does not change.
  • the ferroelectric material 100 has now been changed by increasing the proportion of the nitride of the transition metal 130 and adjusting the mechanical stress towards less compressive stress or more tensile stress so that the polarity 140 of the ferroelectric material 100 can be switched by applying a switching voltage 140.
  • the MEMS component comprises a first electrode 230 arranged on a first surface 220 of the first ferroelectric layer 210 and a second electrode 232 arranged on a second surface 221 of the first ferroelectric layer 210 .
  • the second surface 221 faces the first surface 220 .
  • the first electrode 230 and the second electrode 232 consist of electrically conductive material, for example.
  • a voltage can be applied to the ferroelectric layer 210 via the first electrode 230 and the second electrode 232 . If the applied voltage is lower than the switching voltage, the direction of polarity of the ferroelectric layer 210 does not change.
  • the polarity of the ferroelectric layer can change 210 can be switched. If this MEMS component is operated at a voltage lower than the switching voltage, then, for example, the extent of the ferroelectric layer 210 changes in one of the three spatial directions. This conversion of the supplied electrical voltage into mechanical movement can be used in a variety of ways with this MEMS component. However, it is also possible that an inverse conversion can be detected. For example, the extent of the ferroelectric layer 210 can be changed in at least one spatial direction and a resulting electrical signal can then be measured via the first electrode 230 together with the second electrode 232 .
  • FIG. 3 shows a MEMS component 200 with a first ferroelectric layer 210, a second ferroelectric layer 212, a first electrode 230 lying between the first ferroelectric layer 210 and the second ferroelectric layer 212, a second electrode 232 which is bonded to the second surface 221 of the first ferroelectric layer 210 and a third electrode 234 attached to a first surface 222 of the second ferroelectric layer 212 in accordance with an embodiment of the present invention.
  • the first electrode 230 is arranged on the first surface 220 of the first ferroelectric layer 210 .
  • the second surface 221 of the first ferroelectric layer 210 faces the first surface 220 of the first ferroelectric layer 210 .
  • the second ferroelectric layer 212 disposed on the first electrode 230 opposite the first ferroelectric layer 210 comprises the ferroelectric material.
  • the third electrode 234 is arranged on the surface 222 of the second ferroelectric layer 212 .
  • the first surface 222 of the second ferroelectric layer 212 faces away from the first electrode 230 .
  • the first ferroelectric layer 210 also includes the ferroelectric material.
  • multilayer actuators such as, for example, the MEMS component 200
  • MEMS component 200 multilayer actuators
  • the material and its integration, and thus the MEMS device are CMOS compatible since the ferroelectric material can be deposited at temperatures below 500°C.
  • the ferroelectric layers of the multilayer can be deposited with a single process since one does not have to rely on in situ manipulation of the polarization direction but the polarization of the individual layers can still be changed after production by applying a switching voltage.
  • Additional layers that set a specific direction of polarization during the deposition process are therefore not required.
  • the number of insulation layers and electrode layers required is minimized since the polarization reversal of the individual ferroelectric layers (e.g. the first ferroelectric layer 210 and the second ferroelectric layer 212) is reversible and controllable.
  • the ferroelectric material is easy to integrate into MEMS process flows just like AIN (e.g. no process renewal may be necessary), but the range of applications is massively expanded by the ferroelectric property of the ferroelectric material.
  • Ferroelectrically actuated MEMS components such as loudspeakers, ultrasonic transducers, switches or mirrors would benefit from increased performance compared to the prior art. Especially when these are to be integrated with CMOS structures. The same applies to sensor systems such as microphones or accelerometers, which can benefit from intrinsic charge amplification, and to microgenerators.
  • the first ferroelectric layer 210 and the second ferroelectric layer 212 have the same polarity.
  • the polarity should be arranged, for example, perpendicular to the second surface 221 of the first ferroelectric layer. If a switching voltage is now applied to the first electrode 230 and to the second electrode 232 on the first ferroelectric layer 210, then the polarity of the first ferroelectric layer 210 is switched. Thus, the polarity of the first ferroelectric layer 210 points in the opposite direction than the polarity of the second ferroelectric layer 212.
  • the MEMS device 200 is operated with the same voltage (for example, the second electrode 232 and the third electrode 234 have the same voltage level and the first Electrode 230 has the same voltage level with opposite sign).
  • the electric fields point in opposite directions. Because the polarity and direction of the electric field applied to each ferroelectric layer (first ferroelectric layer 210 and second ferroelectric layer 212) are in opposite directions with respect to the other ferroelectric layer, both ferroelectric layers have the same force response to the electrical signal .
  • the MEMS component 200 are operated with high bipolar voltages, ie voltages which are positive at one point in time and negative at another point in time.
  • the first electrode 230 of the MEMS device 200 has a first electrode layer 231a and a second electrode layer 231b.
  • the first electrode layer 231a contacts the second ferroelectric layer 212 and the second electrode layer 231b contacts e.g. B. the first ferroelectric layer 210.
  • the first electrode layer 231a is separated from the second electrode layer 231b by an intervening layer 231c.
  • a neutral plane that divides the MEMS device 200 lies, for example, in the middle of the layer 231c.
  • the first electrode layer 231a, the second ferroelectric layer 212 and the third electrode 234 are thus located on one side of the neutral plane.
  • the second electrode layer 231b, the first ferroelectric layer 210 and the second electrode 232 are thus located on the other side of the neutral plane.
  • the layer 231c can be, for example, an insulating layer or a passive layer.
  • the layer 231c makes it possible for the first ferroelectric layer 210 to be able to be used independently of the second ferroelectric layer 212 .
  • the layer 231c can also serve as a carrier material for the electrodes and the ferroelectric layers during their deposition.
  • figure 5 12 shows a MEMS device 200 having a first ferroelectric layer 210, a second ferroelectric layer 212, a first electrode 230, a second electrode 232 and a third electrode 234 according to an embodiment of the present invention, such as the MEMS device 200.
  • FIG 3 shows a MEMS device 200 having a first ferroelectric layer 210, a second ferroelectric layer 212, a first electrode 230, a second electrode 232 and a third electrode 234 according to an embodiment of the present invention, such as the MEMS device 200.
  • FIG 3 shows a MEMS device 200 having a first ferroelectric layer 210, a second ferroelectric layer 212, a first electrode 230, a second electrode 232 and a third electrode 234 according to an embodiment of the present invention, such as the MEMS device 200.
  • FIG 3 shows a MEMS device 200 having a first ferroelectric layer 210, a second ferroelectric layer 212, a first electrode 230, a second electrode 232 and a
  • the MEMS device has 200 off figure 5 a third ferroelectric layer 214 disposed on the third electrode 234 opposite the second ferroelectric layer 212, a fourth electrode 236 disposed on a first surface 223 of the third ferroelectric layer 214, a fourth ferroelectric layer 216 disposed on the second electrode 232, opposite the first ferroelectric layer 210, and a fifth electrode 238 disposed on a first surface 224 of the fourth ferroelectric layer 216 is arranged.
  • the first surface 223 of the third ferroelectric layer 214 is arranged facing away from the third electrode 234 .
  • the first surface 224 of the fourth ferroelectric layer 216 faces away from the second electrode 232 .
  • the MEMS device 200 has four ferroelectric layers (the first ferroelectric layer 210, the second ferroelectric layer 212, the third ferroelectric layer 214, and the fourth ferroelectric layer 216), thereby forming a multilayer MEMS device.
  • 6 1 shows a MEMS device 200 with electrodes 230 1 to 230 n , ferroelectric layers 210 1 to 210 n-1 , a substrate 240 and a power supply 250 according to an embodiment of the present invention.
  • the substrate 240 is arranged on a first electrode 230 1 .
  • the power supply 250 is connected to the electrodes 230 1 to 230 1 .
  • Each ferroelectric layer 210 1 to 210 n-1 has a polarity of 260 1 to 260 n-1 .
  • the voltage source 250 is connected to the ferroelectric layers 210 1 to 210 n-1 via the electrodes 230 1 to 230 n in such a way that the direction of the electric field (which penetrates the individual ferroelectric layers 210 1 to 210 n-1 and for each ferroelectric layer 210 1 to 210 n-1 may have a different direction) either parallel and pointing in the same direction to the respective polarization 260 1 to 260 n-1 of each ferroelectric layer 210 1 to 210 n-1 or parallel and pointing in the opposite direction is aligned with the respective polarization 260 1 to 260 n-1 of the respective ferroelectric layers 210 1 to 210 n-1 .
  • each ferroelectric layer 210 1 to 210 n-1 for example, the direction of polarity 260 1 to 260 n-1 is rectified to the direction of the electric field provided by the voltage source 250, or the polarization direction 260 1 to 260 n- 1 is opposite to the direction of the electric field provided by the voltage supply 250 in each ferroelectric layer 210 1 to 210 n-1 .
  • all ferroelectric layers 210 1 to 210 n-1 have the same force effect and the force of the MEMS device 200 is thus stronger than with fewer layers (such as with n/8 layers, n/4 layers or even n/ 2 layers).
  • the voltage provided by the voltage supply 250 is less than the switching voltage.
  • the direction of the polarity 260 1 to 260 n-1 of each ferroelectric layer 210 1 to 210 n-1 is not changed.
  • the voltage supply 250 can provide a switching voltage.
  • at least two electrodes, which enclose a ferroelectric layer between them, must be supplied with the switching voltage. So e.g. B.
  • the switching voltage can be applied to the electrode 230 1 and the electrode 230 2 , whereby the polarity 260 1 of the ferroelectric layer 210 1 is reversed and thus points in the opposite direction to the previously set polarity 260 1 .
  • the polarity can be set to be reversible and controllable from 260 1 to 260 n-1 .
  • the simplest possible multilayer actuators can be built based on the ferroelectric material.
  • the ferroelectric material used for each ferroelectric layer 210 1 to 210 n-1 has a high breakdown electric field strength, which can generate large forces.
  • the ferroelectric layers of the multilayer can be deposited with a single process, since one does not have to rely on in situ manipulation of the polarization direction. Additional layers or the addition of other chemical elements that set a specific direction of polarization during the deposition process are not required. The number of necessary insulation layers and electrode layers is minimized.
  • Figure 7a 1 shows a MEMS device 200 with electrodes 230 -j to 230 n , ferroelectric layers 210 1-j to 210 n-1 , a substrate 240 and a power supply 250 according to an embodiment of the present invention.
  • the index n and j can be any natural number ⁇ 2.
  • Each ferroelectric layer 210 1-j to 210 n-1 has a polarity of 260 1-j to 260 n-1 .
  • the substrate 240 lies a neutral plane.
  • ferroelectric layers 210 1-j to 210 n-1 are shown on both sides of the substrate 240 in this exemplary embodiment does not mean that that this is a necessary condition for the function of the MEMS device. It is also possible that more ferroelectric layers can be found on one side of the substrate 240 than on the other side of the substrate (on the opposite side) (e.g. n>j or n ⁇ j). As an extreme example, MEMS device 200 is off 6 can be seen in which no ferroelectric layers can be found on one side of the substrate 240 but any number of ferroelectric layers 210 1 to 210 n-1 can be found on the other side of the substrate 240 .
  • the MEMS device 200 in Figure 7b features the same components as MEMS device 200.
  • the substrate 240 can represent a passive layer or an insulating layer, for example.
  • Figure 7a is it e.g. For example, it does not matter whether the substrate 240 is an insulating layer or a passive layer, since the two electrodes 230 -1 and 230 1 are connected to the same voltage level of the voltage supply 250 .
  • the substrate 240 z. B.
  • the electrodes 230 -1 and 230 1 are connected to different voltage levels of the voltage supply 250, whereby the substrate 240 z. B. must be an insulating layer so that no short circuit is caused between the electrodes 230 -1 and 230 1 .
  • the ferroelectric layers 210 1 to 210 n-1 decrease in size in one spatial direction and the ferroelectric layers 210 -1 to 210 1-j increase in the same spatial direction, causing the MEMS device 200 to bend.
  • lateral actuators are conceivable in which the forces lie on one side of the neutral plane in relation to the other side of the neutral plane (from one side of the substrate 240 to the other side of the substrate 240).
  • Layer systems (the respective ferroelectric layers 210 1-j to 210 n-1 and the electrodes 230 -j to 230 n ) are rectified.
  • the MEMS device 200 turns off Figure 7a and the MEMS device 200 Figure 7b Versions with a passive layer (substrate 240) that is actively coated on both sides Figure 7a makes no demands on the insulator properties of the passive layer (of the substrate 240).
  • the electrode 230 1 can be regarded as a first electrode layer and the electrode 230 -1 as a second electrode layer of the electrode 230a.
  • a further layer (substrate 240) between the first electrode layer and the second electrode layer this layer e.g. B. can be a passive layer or an insulating layer.
  • FIG. 7c 1 shows a MEMS device 200 with ferroelectric layers 210 1-j to 210 n-1 , electrodes 230 -j to 230 n and a voltage supply 250 according to an embodiment of the present invention.
  • Each ferroelectric layer 210 1-j to 210 n-1 has a polarity of 260 1-j to 260 n-1 .
  • the electrode 230 1 comprises a neutral plane that divides the MEMS device 200 into a first multi-layer system (all ferroelectric layers 210 1 to 210 n-1 ) and a second multi-layer system (consisting of the ferroelectric layers 210 -1 to 210 1-j ) splits.
  • the MEMS device 200 turns off Figure 7c represents an embodiment of a MEMS device 200 without a passive layer.
  • the ferroelectric layers 210 1 to 210 n-1 above the neutral plane (the electrode 230 1 ) expand in the opposite direction to the underlying one (ferroelectric layers 210 -1 to 210 1-j ) .
  • a passive layer this can also be the substrate itself
  • three general versions are conceivable: a passive layer that is actively coated on one side (see the MEMS component 200 from 6 ), a passive layer coated on both sides (see the MEMS device 200 in FIG Figure 7a and the MEMS device 200 Figure 7b ) as well as a purely active multilayer system without a passive layer (see the MEMS device 200 from Figure 7c ).
  • All exemplary embodiments could generally also be realized with an inverse material polarization.
  • AITMN stands for a ferroelectric mixed crystal based on AlN and the nitride of transition metals (TM), which is the basis for adjusting the material polarization.
  • At least one of the layers of the MEMS device 200 referred to here as ferroelectric comprises the ferroelectric material.
  • ferroelectric can also be purely piezoelectric, since they do not contain the ferroelectric material, for example.
  • the function of the device 200 may not change.
  • the embodiments are relevant to both actuation and intrinsic charge amplification (in the latter case, for example, without the power supply 250).
  • FIG 8a 1 shows a schematic representation of a MEMS device 300 with a substrate 310 and a first MEMS component 200 according to an embodiment of the present invention.
  • the MEMS device 200 has a passive layer 240 and ferroelectric multilayers 320 .
  • the passive layer 240 of the MEMS component 200 is arranged on the substrate 310 such that it can be deflected, for example.
  • the passive layer 240 can be arranged on one side of the substrate 310 .
  • the surface with which the passive layer 240 touches the substrate 310 is, for example, opposite the surface with which the passive layer 240 is arranged on the ferroelectric multilayers 320 .
  • ferroelectric multilayers 320 are arranged on the same surface with which the passive layer 240 touches the substrate 310, or on both surfaces with which the passive layer 240 (the surface with which the passive layer 240 touches the Substrate 310 touches and her opposite) are arranged.
  • the MEMS device 300 off Figure 8a Figure 12 is one embodiment of a vertical flexure actuator.
  • Figure 8b 12 shows a MEMS device 300 with a first MEMS component 200 and a second MEMS component 201 according to an embodiment of the present invention.
  • the first MEMS device 200 has a first passive layer and the second MEMS device 201 has a second passive layer, where the first passive layer and the second passive layer are common and labeled as passive layer 240 .
  • the first MEMS device 200 and the second MEMS device 201 may have the same embodiment and function.
  • a first ferroelectric multilayer 320 of the first MEMS component 200 is arranged parallel to a second ferroelectric multilayer 322 of the second MEMS component 201 .
  • FIG. 12 is an exemplary embodiment of a lateral or torsional actuator (the two multilayers (the first ferroelectric multilayer 320 and the second ferroelectric multilayer 322) are excited in antiphase, for example).
  • the ferroelectric multilayer 320 off Figure 8a and the ferroelectric multilayer 320 and 322 from Figure 8b include the ferroelectric material.
  • a step of the method for example, a first electrode, a first ferroelectric layer, a second electrode, a second piezoelectric layer and a third electrode are stacked 400 in this order.
  • This step produces, for example, a MEMS device such as the MEMS Component 200 off 3 or the MEMS device 200 off 4 .
  • the first ferroelectric layer and the second piezoelectric layer have the same polarization direction, and the first ferroelectric layer comprises a ferroelectric material.
  • the ferroelectric material comprises a mixed crystal comprising AlN and at least one nitride of a transition metal.
  • the proportion of the nitride of the transition metal is selected, for example, so that a direction of a polarity of the ferroelectric material is switchable by applying a switching voltage.
  • the switching voltage is below a breakdown voltage of the ferroelectric material.
  • the method also has the following step: applying 410 a switching voltage to the first electrode and to the second electrode, wherein the polarization direction of the first ferroelectric layer is reversed, so that the polarization direction of the first ferroelectric layer is reversed (for example, opposite the polarization direction of the second piezoelectric layer).
  • FIG. 12 shows a block diagram of a method for manufacturing a MEMS device connected to an integrated circuit substrate using a CMOS process, according to an embodiment of the present invention.
  • the method comprises stacking 400 the first electrode, the first ferroelectric layer, the second electrode, the second piezoelectric layer and the third electrode on a substrate.
  • a second step of the method comprises applying 410 a switching voltage to the first electrode and to the second electrode, wherein the polarization direction of the first ferroelectric layer is reversed, so that the polarization direction of the first ferroelectric layer is reversed.
  • one or more circuit components of an integrated circuit are integrated in the substrate using a CMOS process 420.
  • the stacking 400 and applying 410 steps are analogous to the stacking 400 and applying 410 steps from the method shown in FIG 9 .
  • FIG. 12 shows a block diagram of a method for manufacturing a MEMS device connected to an integrated circuit substrate using a CMOS process, according to an embodiment of the present invention.
  • the method comprises integrating 420 one or more circuit components of an integrated circuit using a CMOS process in the substrate.
  • a second step of the method includes stacking 400 the first electrode, the first ferroelectric layer, the second electrode, the second piezoelectric layer and the third electrode on a substrate.
  • a switching voltage is applied to the first electrode and to the second electrode 410, whereby the polarization direction of the first ferroelectric layer is reversed, so that the polarization direction of the first ferroelectric layer is reversed.
  • the stacking 400 and applying 410 steps are analogous to the stacking 400 and applying 410 steps from the method shown in 9 .
  • the MEMS device in Figure 10a as in Figure 10b consisting of the first electrode, the first ferroelectric layer, the second electrode, the second piezoelectric layer and the third electrode, the MEMS device 200 is made of, for example 3 or the MEMS device 200 off 4 . It is also possible that more than three electrode layers and two ferroelectric layers are stacked by this method, thereby making the MEMS device 200, for example figure 5 , the MEMS device 200 off 6 , the MEMS device 200 off Figure 7a , the MEMS device 200 off Figure 7b , the MEMS device 200 off Figure 7c , the MEMS device 200 off Figure 8a and/or the MEMS device 200 Figure 8b stacked on the substrate. Furthermore, for example, additional non-ferroelectric layers can be stacked on the substrate by means of this method and/or in the case of more than just the first ferroelectric layer, the direction of polarity can be switched by applying a switching voltage.
  • the first ferroelectric layer comprises a ferroelectric material as described herein (the second piezoelectric layer may or may not comprise a ferroelectric material).
  • the ferroelectric material can, using the example of Al 1-x Sc x N, already be produced at deposition temperatures of 400 °C and is therefore, like pure AlN, CMOS-compatible.
  • the high dielectric strength of pure AlN (> 400 V/ ⁇ m) is also retained in Al 1-x Sc x N.
  • the low dielectric losses of generally well below 1% [12] and the possibility of adjusting the intrinsic mechanical strain of the ferroelectric layers are also retained [11].
  • the ferroelectric material and its integration, and therefore the MEMS device is CMOS compatible.
  • Figure 11a 12 shows a diagram showing the electric polarization versus the electric field (PE loop) measured on the ferroelectric Al 0.57 Sc 0.43 N and PZT 52/48 according to an example.
  • the polarization is shown on the ordinate and the electric field on the abscissa.
  • a first PE loop 600 represents the electric field dependence of polarization for the ferroelectric material Al 0.57 Sc 0.43 N and a second PE loop 610 represents the electric polarization dependence on an electric field for PZT 52/48.
  • the ferroelectric material Al 0.57 Sc 0.43 N is an example of the ferroelectric material consisting of a mixed crystal comprising AlN and at least one nitride of a transition metal, in which case the transition metal is scandium.
  • ferroelectric materials on the one hand, by the ratio of the number of Al atoms to the number of transition metal atoms ( please refer 11c ) and on the other hand it is important to what extent the ferroelectric layer is under compressive or tensile stress (see Figure 11b ).
  • FIG 11b shows the average value of the measured coercive field E c over the mechanical stress of an Al 0.73 Sc 0.27 N layer according to an embodiment of the present invention.
  • the ordinate of the diagram represents the mean value of the measured coercive field ((E e , + ⁇ E c , ⁇ )/2) and the mechanical stress is represented on the abscissa.
  • the necessary Sc content the proportion of the transition metal
  • the Al 0.73 Sc 0.27 N ferroelectric material is an example of a ferroelectric material having a mixed crystal comprising AlN and at least one nitride of a transition metal.
  • 11c shows in a diagram the mean value of the measured coercive field over the Sc content of the AIScN layer according to an embodiment of the present invention.
  • the mean value of the measured coercive field ((E c , + -E c , - )/2 ) and on the abscissa x is represented in Al 1-x Sc x N.
  • the mechanical strain of the ferroelectric layers is within the interval [0 200 MPa] (however, the interval can also go from -1000 MPa to 600 MPa, from -400 MPa to +400 MPa, or from -200 MPa to 200 MPa) and is comparable to it.
  • figure 12 shows a diagram in which the piezoelectric force acting perpendicular to the substrate with an electrode area of 1 mm 2 for ferroelectric Al 0.57 Sc 0.43 N (example of a ferroelectric material) and PZT (example of a ferroelectric material according to the prior art Technology which is not CMOS compatible and is highly non-linear and also has a low breakdown voltage) is shown in comparison according to an embodiment of the present invention.
  • the force is plotted on the ordinate and the electric field on the abscissa.
  • the ferroelectric force was calculated from the strain of the layers measured by laser double beam interferometry.
  • a first curve 620 represents the force versus electric field behavior of the ferroelectric AlScN and a second curve 630 represents the force versus electric field dependence for the PZT material.
  • ferroelectric material Another outstanding property of ferroelectric material is a very large range in which the force resulting from an applied electric field is linear with that field (see the first curve 620 in Fig 12 ). As a result, a linear, bipolar drive with high field strengths of > 50 V/ ⁇ m is possible.
  • the ferroelectric material has a large region where the relationship between electric field and resultant force is linear (thus the same is true for n-layer actuators based on the material). This allows operation with bipolar electrical voltages in the very wide range between the coercive fields E c- and E c+ .
  • Figures 13a and 13c show a schematic representation of a unit cell of a wurtzite using the example of Al 1-x Sc x N and Figure 13b shows a schematic representation of a Unit cell of a hexagonal structure using the example of Al 1-x Sc x N according to an embodiment of the present invention.
  • the electrical polarization P 640 is arranged parallel to the c-axis (optical axis) of the crystal. Depending on the relative position of the metal 650 and nitrogen 652 planes to one another, the sign of the polarization 640 changes.
  • the unit cell has a negative polarization 640
  • both planes metal 650 and nitrogen 652 plane
  • are congruent hexagonal structure
  • the electric polarization disappears and in 13c the polarization 640 is positive.
  • Ferroelectric materials are characterized by a spatially rotatable electric polarization P, the direction of which can be determined by an external electric field E. Depending on the orientation of the polarization in relation to the applied electrical field, the material is also expanded or contracted (piezoelectric Effect). This effect can be used in actuators.
  • a plate capacitor with a ferroelectric dielectric is deposited and structured on a passive layer (see Fig 14a ).
  • FIG 14a shows a substrate 700 on which a passive layer 710 with a first electrode 720 is applied according to an embodiment of the present invention.
  • a ferroelectric layer 730 with a second electrode 722 is arranged on the first electrode 720 .
  • the layer 730 has a polarity 740. This construction can also be realized with the ferroelectric material in the ferroelectric layer 730 described herein.
  • FIG. 14a shows 14a a sketch of a piezoelectric actuator consisting of a parallel-plate capacitor with ferroelectric dielectric (ferroelectric layer 730) on a passive layer 710.
  • the passive layer 710 can be, for example, the membrane of an ultrasonic transducer or that of a loudspeaker.
  • Figures 14b and 14c also show an example for the use of a ferroelectric layer as an actuator according to an embodiment of the present invention.
  • the structure is the same as in 14a (substrate 700, passive layer 710, first electrode 720, ferroelectric layer 730 and second electrode 722).
  • Both the ferroelectric layer 730 from Figure 14b as well as the ferroelectric layer 730 Figure 14c have a positive polarity 740.
  • different voltages are applied to the first electrode 720 and the second electrode 722 than to the first electrode 720 and the second electrode 722 of FIG Figure 14c , making in Figure 14b another electric field 750 with an electric field direction 752 arises than in Figure 14c the electric field 750 with the electric field direction 752.
  • Figures 14b and 14c show examples of the use of a ferroelectric layer as an actuator according to the prior art, which can also be used for the ferroelectric material described herein.
  • the ferroelectric layer 730 deforms.
  • the ferroelectric layer 730 is coupled to the passive layer 710 .
  • One way to increase the power for a fixed electrical voltage is to use a multi-layer system.
  • the resulting force can be increased by a factor of up to n [2].
  • FIGS 15a and 15b 1 shows a ferroelectric multilayer system according to an embodiment of the present invention.
  • the ferroelectric multilayer system comprises a substrate 700, a passive layer 710, a first electrode 720, a second electrode 722, a third electrode 724, a first ferroelectric layer 730 and a second ferroelectric layer 732.
  • Figures 15a and 15b a schematic of a simple piezoelectric double layer actuator consisting of two plate capacitors with a common electrode 722.
  • the neutral plane is assumed to be within the passive layer 710.
  • the two ferroelectric layers (the first ferroelectric layer 730 and the second ferroelectric layer 732) are oppositely polarized 740. Thus both are compressed as a result of the external electric field. Assuming the same electrical voltage, twice the force of a single layer acts on the passive layer.
  • first ferroelectric layer 730 and the second ferroelectric layer 732 can be made of Figure 15a as well as off Figure 15b include the ferroelectric material.
  • the multi-layer actuator 800 has a passive layer 710, ferroelectric layers 730 j to 730 n , electrodes 720 j-1 to 720 n+1 and a power supply 770.
  • FIG. 16 shows a possible layer sequence of a ferroelectric multilayer actuator with alternatingly aligned polarization 780 j to 780 n (n to j ferroelectric layers, j ⁇ 0, n>0).
  • polarization 780 j to 780 n After applying a sufficiently large electric field, all active polarization domains (polarization 780 j to 780 n ) are aligned along the applied electric field.
  • An implementation with active ferroelectric layers 730 j to 730 n on both sides of a passive layer 710 is shown.
  • the force acting on ferroelectric layers 730 j to 730 n above the neutral plane must have the opposite sign to the layers below in order to avoid a possible compensation of the respective forces.
  • An example of a classic ferroelectric that can be used in this embodiment is z. B.PZT.
  • the embodiment of a multilayer actuator 800 described can also be realized for the ferroelectric material described herein (consisting of a mixed crystal comprising AlN and at least one nitride of a transition metal) by at least one of the ferroelectric layers 730 j to 730 n comprising the ferroelectric material.
  • Ferroelectrics such as Al 1-x Sc x N can be synthesized as in Figure 16 outlined, without additional insulation layers to form effective multilayer actuators, as this class of materials inherently aligns its electrical polarization along the field direction of external electrical fields. According to the Figure 16 In the illustrated electrical contacting of the individual electrodes 720 j-1 to 720 n+1, all ferroelectric layers 730 j to 730 n thus contribute to the total force with the ideal sign.
  • the multilayer actuator 800 has a passive layer 710, piezoelectric layers 730 1 to 730 n , electrodes 720 1 to 720 2n , insulators 790 1 to 790 n-1 and a voltage supply 770.
  • the insulation with the insulator 790 1 to 790 n- 1 allows the efficient use of non-ferroelectric pyroelectrics (e.g. AIN) whose polarization 780 1 to 780 n points in the same direction.
  • non-ferroelectric pyroelectrics e.g. AIN
  • polarization 780 1 to 780 n points in the same direction.
  • a passive layer 710 coated on one side is shown. In principle, all the principles discussed (passive layer coated on both sides, without passive layer) can be implemented with additional insulators 790 1 to 790 n-1 .
  • the multi-layer actuator 800 can nevertheless also be an embodiment of the invention described herein. This is accomplished by the at least one of the piezoelectric layers 730 1 to 730 n comprising the ferroelectric material.
  • the bimorph 900 has a passive layer 710, a first piezoelectric layer 730, a second piezoelectric layer 732, a first electrode 720, a second electrode 722, a third electrode 724, a fourth electrode 726 and a voltage supply 770.
  • the passive layer 710 is optional.
  • This layer sequence of a piezoelectric bimorph is z. B. according to the prior Technique already used for AIN.
  • the Bimorph 900 from 18 can also be an embodiment according to the invention described herein, in that at least one of the two piezoelectric layers (the first piezoelectric layer 730 and/or the second piezoelectric layer 732) comprises the ferroelectric material having a mixed crystal containing AlN and at least one nitride of a transition metal includes.
  • aspects have been described in the context of a device, it is understood that these aspects also represent a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Similarly, aspects described in connection with or as a method step also constitute a description of a corresponding block or detail or feature of a corresponding device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Micromachines (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

    Technisches Gebiet
  • Ausführungsbeispiele gemäß der Erfindung beziehen sich auf ein ferroelektrisches Material, ein MEMS-Bauteil mit einem ferroelektrischen Material, eine MEMS-Vorrichtung mit einem ersten MEMS-Bauteil, ein Verfahren zur Herstellung eines MEMS-Bauteils und ein Verfahren zur Herstellung eines CMOS-kompatiblen MEMS-Bauteils.
  • Hintergrund der Erfindung
  • Piezoelektrische MEMS Aktuatoren bieten, etwa gegenüber elektrostatisch angetriebenen Bauteilen, deutlich höhere Kräfte. Nichts desto trotz sind auch diese Kräfte, insbesondere für nicht-resonante Bewegungen, oftmals unzureichend. Mittels piezoelektrischen Multilagen ließen sich jedoch theoretisch beliebig große Kräfte in die jeweiligen Bauteile einkoppeln. Die bislang zur Verfügung stehenden Piezoelektrika, wie etwa Blei-Zirkonat-Titanat (PZT) oder Aluminiumnitrid (AIN) eignen sich allerdings nur eingeschränkt für piezoelektrische MEMS-Mehrlagensysteme, so dass die Überführung in eine kommerzielle Verwertung entsprechender Bauteile aktuell noch nicht erfolgsversprechend ist.
  • Ferroelektrische Materialien sind eine Variante von piezoelektrischen Materialen, welche sich durch eine räumlich drehbare elektrische Polarisation P auszeichnet, deren Richtung durch ein externes elektrisches Feld E bestimmt werden kann. Je nach Ausrichtung der Polarisation gegenüber dem wirkenden elektrischen Feld geht zudem eine Ausdehnung oder Kontraktion des Materials einher (piezoelektrischer Effekt). Dieser Effekt lässt sich in der Aktuatorik einsetzen. In der Mikrosystemtechnik wird dazu beispielsweise ein Plattenkondensator mit ferroelektrischem Dielektrikum auf einer passiven Schicht abgeschieden und strukturiert. Die passive Schicht kann etwa die Membran eines Ultraschallwandlers oder die eines Lautsprechers sein. Als Folge der Querkontraktion bzw. -Expansion des ferroelektrischen Materials bei angelegter elektrischer Spannung U wird hierbei, je nach Polarisationsrichtung, eine Druck- oder Zugspannung innerhalb des Substrats erzeugt und dieses damit verformt. Die der Verformung zugrunde liegende mechanische Kraft ist durch die piezoelektrischen Koeffizienten des Materials, dessen Polarisationsrichtung sowie durch die zur Verfügung stehende elektrische Spannung gegeben [1].
  • Eine Möglichkeit die Kraft für eine feste elektrische Spannung zu steigern besteht in der Verwendung eines Mehrlagensystems. Bei Verwendung von n-Lagen piezoelektrischen Materials mit betragsweise identischen piezoelektrischen Koeffizienten, über denen jeweils die verfügbare elektrische Spannung angelegt ist, lässt sich die resultierende Kraft um bis zu einem Faktor n steigern [2]. Die tatsächlich erreichbare Kraft hängt dabei entscheidend von der jeweiligen Ausrichtung der Materialpolarisation relativ zum angelegten elektrischen Feld ab. Idealerweise sind elektrisches Feld und Polarisation in allen piezoelektrischen Schichten auf derselben Seite der neutralen Ebene (auch neutrale Faser genannt) des Schichtsystems entweder parallel oder anti-parallel zueinander ausgerichtet. In diesem Fall tragen alle Schichten gleichgerichtet zur Gesamtkraft bei, diese ist damit maximal.
  • Makroskopische ferroelektrische Multilagenaktuatoren werden etwa bereits in KraftstoffEinspritzpumpen industriell angewendet [3]. In der mikrosystemtechnischen Aktuatorik werden ferroelektrische Mehrlagensysteme, trotz ihrer offensichtlichen Vorteile, bisher weitestgehend nur von akademischer Seite untersucht (z. B. [4], [5]). Dies liegt daran, dass bereits die Integration einer ferroelektrischen Einzellage (i.d.R. aus PZT) in die MEMS-Produktion eine nur mit großem technologischem Aufwand zu meisternde Herausforderung ist - etwa hinsichtlich Diffusion, Temperaturbudget und Strukturierung des Materials. Selbst wenn eine Integration von Mehrlagen-PZT in die MEMS-Technologie in Zukunft zur Verfügung stünde, bliebe das Material, neben weiterer Nachteile, nicht CMOS-kompatibel und nicht geeignet für eine elektrisch bipolare Aktuation.
  • Trotz deutlich geringerer piezoelektrischer Koeffizienten werden daher mitunter nichtferroelektrische Materialien wie AIN für eine Anwendung in piezoelektrischen Aktuatoren untersucht (z. B. [6], [7], [20], [21], [22], [23]). AIN ist ein pyroelektrisches Material, das heißt es zeigt, wie die Ferroelektrika, eine spontane elektrische Polarisation. Im Unterschied zu ferroelektrischen Materialien ist die Polarisation in AIN jedoch nicht durch ein externes elektrisches Feld räumlich drehbar. Für die Anwendung des Materials in piezoelektrischen Multilagen bedeutet dies aber einen nur schwer vertretbaren Mehraufwand in der Fertigung durch die Notwendigkeit zusätzlicher Isolationsschichten und Elektroden.
  • Alternativ besteht theoretisch die Möglichkeit einer einmaligen Einstellung der Materialpolarisation. Methoden dafür existieren zwar in Ansätzen, jedoch ist auch hier ein deutlicher fertigungstechnischer Mehraufwand zu betreiben, etwa durch die Notwendigkeit zusätzlicher Abscheideprozesse.
  • Im Folgenden werden diese kurz eingeführten bisherigen Lösungsansätze vertieft und abschließend motiviert, inwieweit die Entwicklung von ferroelektrischen Mischkristallen basierend auf AIN und den Nitriden von Übergangsmetallen piezoelektrische Multilagen-Bauteile ermöglicht, ohne dabei die Nachteile klassischer Ferroelektrika oder Pyroelektrika in Kauf nehmen zu müssen. In [24] und [25] sind bereits AIScN-Mischkristalle zur Verbesserung von piezoelektrischen Eigenschaften beschrieben, wobei kein Hinweis zu finden ist, wie mittels Scandium ein ferroelektrischer Mischkristall hergestellt werden kann.
  • Eine weitere denkbare Anwendung ferroelektrischer Multilagen ist eine Bauteilintrinsische Ladungsverstärkung, wie sie für Sensorkonzepte von Bedeutung ist, welche ihre Eingangsgröße piezoelektrisch in elektrische Ladungen umsetzen (alternativ zur Umsetzung in elektrische Spannungen). Dadurch können die Anforderungen an einen externen Ladungsverstärker reduziert werden. Ebenso von Vorteil kann eine solche Ladungsverstärkung in Mikrogeneratoren sein. Die im Folgenden vorgestellten Lösungsansätze für Aktuatoren ließen sich direkt ebenso auf die angesprochene Ladungsverstärkung anwenden. Der Dualismus der beiden Konzepte spiegelt dabei die beiden Richtungen des piezoelektrischen Effekts (direkt und invers) wieder.
  • Zur Umsetzung von piezoelektrischen Mehrlagensystemen für Aktuatoren in der Mikrosystemtechnik sind vier allgemeine, in wesentlichen Aspekten verschiedene Ansätze, denkbar. Ziel ist dabei jeweils, über jeder Einzellage die maximal zur Verfügung stehende elektrische Feldstärke (= UE/Dicke einer Einzellage) wirken zu lassen sowie alle Schichten auf derselben Seite der neutralen Ebene mit demselben Vorzeichen zur Kraft beitragen zu lassen. Die im Folgenden vorgestellten bisherigen Lösungsansätze folgen direkt aus z. B. in [2] gemachten Überlegungen.
  • Für piezoelektrische Sensoren und Generatoren gibt es die Möglichkeit einer Spannungsverstärkung durch eine Reihenschaltung mehrerer gleicher piezoelektrischer Kondensatorstrukturen oder durch eine Erhöhung der Schichtdicke des Piezoelektrikums. Beispielsweise für Messkonzepte, welche das Ausgangssignal eines Sensors mittels Ladungsverstärker auslesen, hätte dieser Ansatz jedoch keinen direkten Vorteil. Genauso, wie eine Reihenschaltung für eine bauteilintrinsische Spannungsverstärkung sorgt, lässt sich allerdings mittels parallel geschalteten piezoelektrischen Kondensatoren eine intrinsische Ladungsverstärkung realisieren. Um dies in einem Mehrlagensystem zu realisieren, müssten beispielsweise allerdings die im Folgenden vorgestellten Lösungsansätze zur Anwendung kommen, mit den jeweiligen Nachteilen. Ziel ist hierbei stets eine Ladungskompensation zwischen benachbarten Kondensatoren zu vermeiden. Dies stellt wiederum Ansprüche an die Polarisationsrichtung des piezoelektrischen Materials.
  • Klassische Ferroelektrika, etwa PZT, lassen sich ohne zusätzliche Isolationsschichten zu effektiven Multilagenaktuatoren zusammenfügen, da dieser Materialklasse eine Ausrichtung seiner elektrischen Polarisation entlang der Feldrichtung externer elektrischer Felder inhärent ist. Neben der Möglichkeit, beide Seiten einer passiven Schicht mit aktiven piezoelektrischen Schichten zu versehen, kann es der Einfachheit halber von Vorteil sein, diese nur einseitig zu beschichten oder die Struktur ausschließlich aus einer piezoelektrischen Multilage nebst Elektroden zu konstruieren, d. h. ohne passive Schicht. In jedem Fall muss für die Wahl einer geeigneten Polarisation die Lage der neutralen Ebene beachtet werden. Schichten oberhalb dieser Ebene müssen ihre Kraft jeweils mit dem entgegengesetzten Vorzeichen einkoppeln, wie darunterliegende, wenn eine Biegebewegung induziert werden soll.
  • Trotz dieses möglichst einfachen Aufbaus besitzen die bisher in der Mikrosystemtechnik eingesetzten Ferroelektrika, welche im Wesentlichen PZT-basiert sind, einige entscheidende Nachteile:
    • Notwendige Abscheidetemperaturen von größer 500°C und das enthaltene Blei machen das Material inkompatibel mit der CMOS-Fertigung.
    • Die Gefahr elektrischer Durchbrüche begrenzt die maximal einsetzbare elektrische Feldstärke und damit die resultierende Kraft.
    • Der Zusammenhang zwischen Kraft und angelegtem elektrischen Feld ist um den Nullpunkt des Feldes stark nicht-linear. Die Kraft bzw. Dehnung zeigt zudem über weite Strecken dasselbe Vorzeichen. Um dennoch eine näherungsweise harmonische Oszillation der antreibenden Kraft zu gewährleisten ist daher ein Spannungsoffset notwendig. Im Zusammenhang mit einer geringen Durchbruchfeldstärke schränkt dies die maximal zur Verfügung stehende Amplitude der antreibenden Kraft weiter ein.
    • Die intrinsische mechanische Verspannung der ferroelektrischen Schichten ist nur bedingt beeinflussbar.
    • Die dielektrischen Verluste und die während des Betriebs auftretenden Leckströme sind deutlich größer als in einigen anderen Dielektrika, wie etwa AIN.
  • Rein pyroelektrische, d. h. explizit nicht ferroelektrische Materialien wie reines AIN lassen sich CMOS kompatibel abscheiden. Sie können so hergestellt werden, dass die elektrische Durchbruchsfeldstärke deutlich höhere Werte als in klassischen Ferroelektrika erreicht und zudem nur geringe elektrische Verluste wirken. Darüber hinaus ist der Zusammenhang zwischen elektrischem Feld und resultierender Kraft in guter Näherung linear. Dies erlaubt insbesondere eine effiziente Anregung mit bipolaren elektrischen Spannungen. Da die Polarisation jedoch nachträglich nicht geändert werden kann, wird diese allein während der Herstellung des Materials definiert. In mittels ein und desselben Prozesses hergestellten Mehrlagensystemen zeigt die Polarisation aller Schichten somit in die gleiche Richtung, idealerweise senkrecht zum Substrat. Um einen effektiven Antrieb zu gewährleisten, muss daher auch das anregende elektrische Feld für alle Einzellagen in dieselbe Richtung zeigen. Daher ist es notwendig, die einzelnen Kondensatorstrukturen der Multilagen elektrisch zu trennen. Der wesentliche dadurch entstehende Nachteil gegenüber dem Einsatz von Ferroelektrika besteht in der Notwendigkeit mindestens zweier zusätzlicher Schichten, nämlich eines Isolators und einer weiteren Elektrode pro piezoelektrischer Schicht. Deren Abscheidung und Strukturierung bedeutet einen deutlich höheren Fertigungsaufwand. Der Verzicht auf eine entsprechende Isolationsschicht oder ein möglicher Kurzschluss über die Isolationsschicht hinweg hätten ein vollständiges Bauteilversagen zur Folge. Prinzipiell lassen sich mithilfe dieses Ansatzes auch beidseitig aktiv beschichtete passive Schichten oder Schichtsysteme ohne passive Schicht herstellen.
  • Ein Bimorph ermöglicht den Einsatz einer nicht-ferroelektrischen Doppellage ohne zusätzliche elektrische Isolation. Voraussetzung für einen effizienten Antrieb ist dabei, dass sich die beiden piezoelektrischen Schichten auf gegenüberliegenden Seiten der neutralen Ebene des Aktuators befinden. Die Schichten können sich dabei eine Elektrodenlage teilen oder durch eine dazwischenliegende passive Schicht räumlich getrennt sein. Die Anzahl der piezoelektrischen Schichten ist auf n = 2 begrenzt.
  • Die Polarisation in nicht-ferroelektrischen Pyroelektrika, wie etwa AIN, wird während der Herstellung des Materials fest eingeprägt. Optimales piezoelektrisches Verhalten liegt vor, wenn die elektrische Polarisation ausschließlich senkrecht zum Substrat ausgerichtet ist. Die Notwendigkeit einer Isolationsschicht zwischen den einzelnen Kondensatoreinheiten einer Multilage fällt dann weg, wenn Schichten mit zueinander antiparalleler Polarisation alternierend hergestellt und verwendet werden können. Eine dafür notwendige irreversible Einstellung der Polarisation könnte etwa durch die Bereitstellung einer geeigneten Zwischenschicht oder Startschicht erfolgen [8]. Des Weiteren konnte gezeigt werden, dass auch eine Dotierung, etwa mit Sauerstoff oder Germanium [9, 10], die Einstellung der Polarisationsrichtung ermöglicht. Diese Ansätze sind jedoch noch weit entfernt von der Anwendungsreife. Zudem muss für eine optimale Funktion sichergestellt werden, dass eine vollständige Polarisationsinversion gelingt, da diese nachträglich nicht mehr einstellbar ist. Die damit verbundene Komplexität sowie die Notwendigkeit zusätzlich zu entwickelnder Prozesse für Mehrlagensysteme müssen als gewichtiger Nachteil dieses Ansatzes aufgefasst werden. Im Gegensatz zu PZT bleibt die räumliche Ausrichtung der Polarisation jedoch, auch bei hohen elektrischen Feldstärken, konstant.
  • Die Druckschrift EP3216894A1 offenbart eine Dünnschicht XyAl(1-y)N, die vorzugsweise mit einer intrinsischen Zugspannung abgeschieden wird. Die Legierung enthält y Prozent der Verbindung XN, wobei X aus der Gruppe ausgewählt ist, die aus Yb, Ho, Dy, Lu, Tm, Tb und Gd besteht. Der Prozentsatz von XN liegt vorzugsweise im Bereich von 10-60%, und die Spannung liegt vorzugsweise im Bereich von 200MPa - 1,5GPa.
  • In Anbetracht dessen besteht ein Bedarf nach einem Konzept, das einen besseren Kompromiss zwischen größerer resultierender Kraft, Minimierung der Anzahl der notwendigen Isolationslagen und Elektrodenschichten sowie einer Reduzierung der benötigten Prozesse für das Abscheiden von piezoelektrischen Schichten einer Multilage bietet und darüber hinaus CMOS-Kompatibilität und einen linearen Zusammenhang zwischen elektrischer Spannung und resultierender Kraft ermöglicht.
  • Zusammenfassung der Erfindung
  • Im folgenden werden ferroelektrische Schichten auch als piezoelektrische Schichten bezeichnet. Die Schichten gemäß der Ausführungsbeispiele müssen aber nicht notwendigerweise alle ferroelektrisch sein - es reicht, zum Beispiel, wenn einige der piezoelektrischen Schichten (z.B. jede zweite) ein ferroelektrisches Material enthalten und alle anderen nur ein piezoelektrisches Material. Denkbar ist z.B., dass einige Schichten einen abweichenden TM-Anteil oder eine abweichende mechanische Verspannung aufweisen, und damit nicht ferroelektrisch sind.
  • Ein Ausführungsbeispiel betrifft ein ferroelektrisches Material mit einem Mischkristall, der AIN und mindestens ein Nitrid eines Übergangsmetalls umfasst. Der Anteil des Nitrids des Übergangsmetalls muss so lange erhöht werden, bis eine Richtung einer anfänglichen oder spontanen Polarität des ferroelektrischen Materials durch Anlegen einer Umschaltspannung umgeschaltet werden kann und die Umschaltspannung unterhalb einer Durchbruchspannung des ferroelektrischen Materials liegt. In anderen Worten muss der Anteil des Nitrids des Übergangsmetalls so lange erhöht werden, bis eine Richtung einer anfänglichen oder spontanen Polarität des ferroelektrischen Materials durch Anlegen einer Umschaltspannung umgeschaltet werden kann und die Umschaltspannung unterhalb einer Durchbruchspannung des ferroelektrischen Materials liegt.
  • Dieses Ausführungsbeispiel des ferroelektrischen Materials mit einem Mischkristall basiert auf der Erkenntnis, dass eine Erhöhung des Anteils des Nitrids des Übergangsmetalls in dem Mischkristall des ferroelektrischen Materials dazu führt, dass die anfängliche oder spontane Polarität des ferroelektrischen Materials durch Anlegen einer Umschaltspannung umgeschaltet werden kann und somit die Richtung der anfänglichen oder spontanen Polarität des ferroelektrischen Materials nicht durch den Herstellungsprozess bestimmt wird, sondern noch nachträglich abgeändert werden kann. So weist der Mischkristall beispielsweise zunächst eine anfängliche oder spontane Polarität auf, deren Richtung mittels der Umschaltspannung geändert werden kann. So kann beispielsweise die Richtung der Polarität um 180° gedreht werden oder eine Richtung einer anfänglichen Polarität parallel zu einem elektrischen Feld, hervorgerufen mittels der Umschaltspannung, ausgerichtet werden.
  • Wird das ferroelektrische Material in einem Mehrlagensystem verwendet, so können beispielsweise die ferroelektrischen Schichten der Multilage mit einem einzigen Prozess abgeschieden werden, da man nicht auf eine in situ Manipulation der Polarisationsrichtung angewiesen ist, sondern zunächst alle ferroelektrischen Schichten mit der gleichen Polarisation abgeschieden werden können und nachträglich beispielsweise die Polarisation einzelner ausgewählter ferroelektrischer Schichten durch Anlegen einer Umschaltspannung umgeschaltet werden können. Durch die Möglichkeit, die Polarität des ferroelektrischen Materials durch Anlegen einer Umschaltspannung noch nach dem Herstellungsprozess umschalten zu können, kann die notwendige Anzahl an Isolationslagen und Elektrodenschichten in einem Mehrlagensystem des ferroelektrischen Materials minimiert werden, da die Polarisation der einzelnen Schichten des ferroelektrischen Materials mithilfe einer Umschaltspannung so eingestellt werden kann, dass beispielsweise zwischen zwei Schichten des ferroelektrischen Materials nur eine Elektrodenschicht liegen muss, die sich beide Schichten, mit dem ferroelektrischen Material, teilen.
  • Somit ist festzuhalten, dass das ferroelektrische Material in der Verwendung eines Mehrlagensystems dazu führen kann, dass die ferroelektrischen Schichten der Mehrlage in einem einzigen Prozess abgeschieden werden können und die notwendige Anzahl an Isolationslagen und Elektrodenschichten durch ein Umschalten der Polarität einzelner ferroelektrischer Schichten minimiert werden kann.
  • Bei einem Ausführungsbeispiel weist das ferroelektrische Material eine mechanische Spannung auf. Die mechanische Spannung kann zum Beispiel durch die Zusammensetzung eines während der Herstellung verwendeten Gases eingestellt werden oder durch das Anlegen einer elektrischen Spannung während der Herstellung. Die mechanische Spannung liegt zwischen einem ersten Wert einer Druckspannung und einem zweiten Wert einer Zugspannung, wobei ein Absolutwert des ersten Wertes niedriger ist als ein Absolutwert des zweiten Wertes. Das bedeutet beispielsweise, dass die mechanische Spannung innerhalb einer ferroelektrischen Schicht mit dem ferroelektrischen Material hin zu mehr Zugspannung oder weniger Druckspannung eingestellt wird, damit die Umschaltspannung unterhalb der Durchbruchsspannung des ferroelektrischen Materials liegt. Der TM-Anteil (Anteil des Übergangsmetalls) und die mech. Spannung können über weite Strecken unabhängig voneinander eingestellt werden - haben aber beide einen Einfluss auf den Betrag der Umschaltspannung. Durch das Zusammenspiel zwischen TM-Anteil und der mechanischen Spannung verringert sich, zum Beispiel für eine Erhöhung der Zugspannung von ferroelektrischen Schichten mit dem ferroelektrischen Material der notwendige Anteil des Nitrids des Übergangsmetalls und im Fall von einer Erhöhung der Druckspannung kann sich, zum Beispiel, der notwendige Anteil des Nitrids des Übergangsmetalls vergrößern.
  • Bei einem Ausführungsbeispiel liegt die mechanische Spannung in einem Intervall von -600 MPa (erster Wert einer Druckspannung) bis 2000 MPa (zweiter Wert einer Zugspannung), wobei negative Werte Druckspannung und positive Werte Zugspannung bedeuten. Liegt die mechanische Spannung in dem Intervall von -600 MPa bis 2000 MPa, wie zum Beispiel in einem Intervall von -550 MPa bis 1500 MPa, von -500 MPa bis 1000 MPa oder von -450 MPa bis 900MPa, so wird, unter der Voraussetzung der TM-Anteil (Anteil des Übergangsmetalls) überschreitet eine gewisse Grenze, beispielsweise erreicht, dass die Umschaltspannung unterhalb der Durchbruchspannung liegt und somit das ferroelektrische Material bei Anlegen der Umschaltspannung nicht beschädigt wird. Der Bereich von -600 MPa bis 2000 MPa deckt, zum Beispiel, den Bereich ab, indem das Verhältnis zwischen der Druckspannung und der Zugspannung dahingegen optimiert ist, dass die Richtung der Polarität des ferroelektrische Materials bei Anlegen einer Umschaltspannung umgeschalten wird.
  • Bei einem Ausführungsbeispiel bleibt die Richtung der Polarität des ferroelektrischen Materials nach einem Entfernen der angelegten Umschaltspannung für eine große Zeitspanne erhalten. Das bedeutet, zum Beispiel, dass nach dieser Änderung der Richtung der Polarität des ferroelektrischen Materials die Richtung der Polarisation über lange Zeit konstant bleibt. Ist die ursprüngliche Richtung der Polarisation des ferroelektrischen Materials, vor dem Anlegen der Umschaltspannung, gewünscht, so muss an des ferroelektrische Material erneut die Umschaltspannung mit entgegengesetztem elektrischen Feld, als bei der vorrangegangenen Umschaltspannung, angelegt werden. Die Richtung der Polarität des ferroelektrischen Materials richtet sich entlang des elektrischen Feldes, das das ferroelektrische Material durchdringt und durch die Umschaltspannung hervorgerufen wird, aus.
  • Bei einem Ausführungsbeispiel bewirkt der gewählte Anteil des Nitrids des Übergangsmetalls, dass der Mischkristall ferroelektrisch wird. Durch die ferroelektrische Eigenschaft des Mischkristalls kann unter anderem die Polarität des Mischkristalls elektrisch z. B. durch Anlegen einer Umschaltspannung umgeschaltet werden. Das Umschalten der Polarität bedeutet beispielsweise, dass die Polarität des Mischkristalls vor Anlegen einer Umschaltspannung z. B. in eine Richtung innerhalb des Mischkristalls zeigt und nach Anlegen einer Umschaltspannung die Polarität des Mischkristalls in die entgegengesetzte Richtung bezogen auf die Polarisationsrichtung vor Anlegen der Umschaltspannung gerichtet ist. Somit wird die Polarität beispielsweise invertiert. Ein Umschalten der Polarität des ferroelektrischen Materials kann aber auch bedeuten, dass beispielsweise ein Großteil von Dipolmomenten des Mischkristalls (z. B. zwischen 50 % und 100 % der Dipole, zwischen 70 % und 100 % der Dipole oder zwischen 80 % und 100 % der Dipole wie z. B. 90 % der Dipole) sich entlang einer elektrischen Feldrichtung, erzeugt durch das Anlegen einer Umschaltspannung an den Mischkristall, orientiert, wobei vor Anlegen der Umschaltspannung an den Mischkristall ein Großteil der Dipolmomenten des Mischkristalls in entgegengesetzter Richtung bezüglich der Feldrichtung der nachträglich angelegten Umschaltspannung ausgerichtet war.
  • In einem Beispiel liegt das Verhältnis zwischen einer Anzahl an Übergangsmetall-Atomen zu einer Summe aus der Anzahl an Übergangsmetall-Atomen und einer Anzahl an Aluminiumatomen in einem Bereich ≥ 0,2 und ≤ 0,5. So kann beispielsweise das Verhältnis zwischen der Anzahl an Übergangsmetall-Atom zu der Summe aus der Anzahl an Übergangsmetall-Atomen und der Anzahl an Aluminiumatomen in einem Bereich zwischen 0,25 und 0,43 oder erfindungsgemäß zwischen 0,30 und 0,36 wie z. B. bei 0,36 liegen. Das Verhältnis hängt beispielsweise von dem Übergangsmetall ab. Das Verhältnis kann aber auch von der mechanischen Verspannung des ferroelektrischen Materials abhängen. Für unter Zugspannung stehende Schichten des ferroelektrischen Materials würde sich beispielsweise der notwendige Anteil des Nitrids des Übergangsmetalls verringern, im Falle von Druckspannung vergrößern. Außerdem kann das ferroelektrische Material bei Temperaturen unter 500°C (zum Beispiel, bei einer Temperatur zwischen 0°C und 500°C, wie 200°C, 240°C, 300°C, 360°C, 400°C oder 470°C) und unter anderem bleifrei abgeschieden werden, wodurch es CMOS-kompatibel ist.
  • In einem Ausführungsbeispiel umfasst das Übergangsmetall Scandium, Yttrium, Titan, Chrom, Niob oder eine beliebige Kombination dieser. Mithilfe dieser speziellen Übergangsmetalle kann beispielsweise erzielt werden, dass durch Anlegen einer Umschaltspannung an den Mischkristall die Polarität des ferroelektrischen Materials umgeschaltet wird.
  • Ein Ausführungsbeispiel betrifft ein Verfahren, mit dem Schritt Bereitstellen eines Mischkristalls mit einer anfänglichen oder spontanen Polarität. Der Mischkristall umfasst AIN und mindestens ein Nitrid eines Übergangsmetalls. Der Anteil des Nitrids des Übergangsmetalls ist z. B. so gewählt, dass eine Richtung der anfänglichen oder spontanen Polarität des ferroelektrischen Materials durch Anlegen einer Umschaltspannung umschaltbar ist. Die Umschaltspannung liegt z. B. unterhalb einer Durchbruchspannung des ferroelektrischen Materials liegt. Das Verfahren weist ferner den Schritt Anlegen einer Umschaltspannung an den Mischkristall auf, so dass die Richtung der anfänglichen oder spontanen Polarität des Mischkristalls umgekehrt wird.
  • Ein Ausführungsbeispiel betrifft ein MEMS-Bauteil mit einem ferroelektrischen Material. Durch die Verwendung des ferroelektrischen Materials, beispielsweise gemäß einem der Ausführungsbeispiele, können vielfältige MEMS-Bauteile gefertigt werden, bei denen die Eigenschaft des ferroelektrischen Materials, dass durch Anlegen einer Umschaltspannung die Polarität umgeschaltet werden kann, genutzt werden kann. Des Weiteren wird die Fertigung von MEMS-Bauteilen, beispielsweise bestehend aus mehreren Schichten des ferroelektrischen Materials, durch das ferroelektrische Material vereinfacht, da alle Schichten mit dem selben Prozess hergestellt werden können und anschließend durch Anlegen einer Umschaltspannung die Polarität einzelner, gleichzeitig oder nacheinander auch von mehreren, Schichten umgeschaltet werden kann.
  • Bei einem Ausführungsbeispiel umfasst das MEMS-Bauteil eine erste ferroelektrische Schicht, die das ferroelektrische Material umfasst, eine erste Elektrode, die auf einer ersten Oberfläche der ersten ferroelektrischen Schicht angeordnet ist, und eine zweite Elektrode, die auf einer zweiten Oberfläche der ersten ferroelektrischen Schicht angeordnet ist. Die zweite Oberfläche liegt dabei beispielsweise der ersten Oberfläche gegenüber. Dies ist ein Beispiel für ein Mehrlagensystem aus dem ferroelektrischen Material. Über die erste Elektrode und die zweite Elektrode kann eine Umschaltspannung an die erste ferroelektrische Schicht angelegt werden. Durch das Anlegen einer Umschaltspannung kann die Polarität der ersten ferroelektrischen Schicht umgeschaltet werden. Wird dieses MEMS-Bauteil bei einer Spannung geringer als die Umschaltspannung betreiben, so ändert sich die Richtung der Polarität der ersten ferroelektrischen Schicht nicht. Wird das MEMS-Bauteil mit einer geringeren Spannung als der Umschaltspannung betrieben, so kann es beispielsweise die Funktion eines Aktuators haben und beispielsweise den zugeführten elektrischen Strom durch das Anlegen der Spannung an der ersten und der zweiten Elektrode in mechanische Bewegung umwandeln und beispielsweise seine Ausdehnung in eine Raumrichtung entweder verkürzen oder verlängern.
  • Bei einem Ausführungsbeispiel weist das MEMS-Bauteil eine zweite ferroelektrische Schicht, die auf der ersten Elektrode gegenüber der ersten ferroelektrischen Schicht angeordnet ist, und eine dritte Elektrode, die auf einer ersten Oberfläche der zweiten ferroelektrischen Schicht angeordnet ist, auf. Die erste Oberfläche der zweiten ferroelektrischen Schicht ist dabei der ersten Elektrode abgewandt angeordnet. D. h. die zweite Elektrode und die dritte Elektrode begrenzen einen Block, bestehend aus einer ersten ferroelektrischen Schicht einer ersten Elektrode und einer zweiten ferroelektrischen Schicht, auf gegenüberliegenden Seiten, wobei die erste Elektrode zwischen der ersten ferroelektrischen Schicht und der zweiten ferroelektrischen Schicht so angeordnet ist, dass die zweite ferroelektrische Schicht die erste Elektrode von der dritten Elektrode trennt und die erste ferroelektrische Schicht die erste Elektrode von der zweiten Elektrode trennt. Die erste ferroelektrische Schicht und die zweite ferroelektrische Schicht weisen ferroelektrisches Material wie hierin beschrieben auf. Das Abscheiden der ersten ferroelektrischen Schicht und der zweiten ferroelektrischen Schicht für das Multilagen-MEMS-Bauteil kann mit einem einzigen Prozess durchgeführt werden. So kann beispielsweise zunächst die zweite Elektrode in Form eines Quaders aus leitfähigem Material hergestellt werden und anschließend auf eine Oberfläche der zweiten Elektrode die erste ferroelektrische Schicht so aufgebracht werden, dass die Polarität der ersten ferroelektrischen Schicht senkrecht zu der berührenden Oberfläche der zweiten Elektrode zeigt. Die Polarität der ersten ferroelektrischen Schicht kann beispielsweise entweder zu der Oberfläche der zweiten Elektrode, die zwischen der zweiten Elektrode und der ersten ferroelektrischen Schicht liegt, zeigen oder von dieser Oberfläche weg. Die erste ferroelektrische Schicht kann beispielsweise die Form eines Quaders haben. Auf einer Oberfläche der ersten ferroelektrischen Schicht, gegenüber der zweiten Elektrode, kann beispielsweise die erste Elektrode in Form eines Quaders aus elektrisch leitfähigem Material aufgebracht werden und auf einer Oberfläche der ersten Elektrode gegenüber der berührenden Oberfläche zur ersten ferroelektrischen Schicht kann ein Quader aus ferroelektrischem Material aufgebracht werden, der beispielsweise die zweite ferroelektrische Schicht darstellt. Die Polarität dieser zweiten ferroelektrischen Schicht sollte dabei senkrecht zu der Fläche zwischen der ersten Elektrode und der zweiten ferroelektrischen Schicht stehen. Dadurch, dass die zweite ferroelektrische Schicht mit dem gleichen Prozess oder im gleichen Prozess wie die erste ferroelektrische Schicht abgeschieden werden kann, hat die zweite ferroelektrische Schicht beispielsweise die gleiche Polarität wie die erste ferroelektrische Schicht. Auf einer Oberfläche der zweiten ferroelektrischen Schicht gegenüber der ersten Elektrode wird eine dritte Elektrode aufgebracht. Mithilfe der ersten Elektrode, zweiten Elektrode und/oder dritten Elektrode kann beispielsweise eine Spannung an die erste ferroelektrische Schicht und/oder zweite ferroelektrische Schicht angelegt werden. Hierdurch entsteht der Vorteil, dass beispielsweise durch Anlegen einer Umschaltspannung an die erste Elektrode und an die dritte Elektrode die Polarität der zweiten ferroelektrischen Schicht umgeschaltet werden kann. Durch das Umschalten der Polarität der zweiten ferroelektrischen Schicht zeigt die Polarität der zweiten ferroelektrischen Schicht in entgegengesetzte Richtung zu der Polarität der ersten ferroelektrischen Schicht. Wird in diesem Fall an die erste Elektrode, zweite Elektrode und dritte Elektrode eine Spannung angelegt, die geringer ist als die Umschaltspannung, so können sich beide ferroelektrischen Schichten gleichzeitig zusammenziehen oder ausdehnen. Durch die gegensätzliche Polarität der ersten ferroelektrischen Schicht und der zweiten ferroelektrischen Schicht erhöht sich die Kraft, mit der sich zum Beispiel ein MEMS-Bauteil verbiegen kann. Zudem wird zwischen der ersten ferroelektrischen Schicht und der zweiten ferroelektrischen Schicht nur eine Elektrode (z. B. die erste Elektrode) benötigt und nicht wie in bekannten Ausführungsbeispielen eines Mehrlagensystems mit rein piezoelektrischem Material, bei denen eine weitere Elektrode benötigt wird und dabei die beiden Elektroden durch eine Isolationsschicht getrennt werden müssen. Somit kann mit diesem MEMS-Bauteil die Anzahl an Isolationsschichten und Elektroden minimiert werden.
  • Bei einem Ausführungsbeispiel weist die erste Elektrode des MEMS-Bauteils eine erste Elektrodenschicht und eine zweite Elektrodenschicht auf. Zwischen der ersten und der zweiten Elektrodenschicht ist eine Isolationsschicht angeordnet, in der eine neutrale Ebene liegt. Bei diesem MEMS-Bauteil kann die erste ferroelektrische Schicht sowie die zweite ferroelektrische Schicht mit einem Prozess abgeschieden werden und durch das Multilagensystem erhöht sich die Kraft des MEMS-Bauteils. Durch die Einführung der Isolationsschicht kann die erste ferroelektrische Schicht unabhängig von der zweiten ferroelektrischen Schicht angesteuert werden. Hierfür kann beispielsweise die erste ferroelektrische Schicht durch Anlegen einer Spannung an die zweite Elektrode und die zweite Elektrodenschicht angesteuert werden und die zweite ferroelektrische Schicht durch Anlegen einer Spannung an die dritte Elektrode und die erste Elektrodenschicht. Weiter kann die zusätzliche Schicht (Isolationsschicht) z.B. als Trägermaterial während der Herstellung dienen.
  • Bei einem Ausführungsbeispiel weist die erste Elektrode des MEMS-Bauteils eine erste Elektrodenschicht und eine zweite Elektrodenschicht auf. Zwischen der ersten und der zweiten Elektrodenschicht ist eine passive Schicht angeordnet, in der eine neutrale Ebene liegt. Durch die passive Schicht kann beispielsweise die zweite ferroelektrische Schicht auf der einen Seite der neutralen Ebene eine andere Krafteinwirkung auf das MEMS-Bauteil haben als die erste ferroelektrische Schicht auf der anderen Seite der neutralen Ebene. Somit kann beispielsweise ein Biegen des MEMS-Bauteils und damit die Biegekraft des MEMS-Bauteils verstärkt werden.
  • Bei einem Ausführungsbeispiel hat das MEMS-Bauteil eine dritte ferroelektrische Schicht, die auf der dritten Elektrode, gegenüber der zweiten ferroelektrischen Schicht, angeordnet ist, eine vierte Elektrode, die auf einer ersten Oberfläche der dritten ferroelektrischen Schicht angeordnet ist, wobei die erste Oberfläche der dritten ferroelektrischen Schicht der dritten Elektrode abgewandt angeordnet ist, eine vierte ferroelektrische Schicht, die auf der zweiten Elektrode, gegenüber der ersten ferroelektrischen Schicht, angeordnet ist, und eine fünfte Elektrode, die auf einer ersten Oberfläche der vierten ferroelektrischen Schicht angeordnet ist. Die erste Oberfläche der vierten ferroelektrischen Schicht ist der zweiten Elektrode abgewandt angeordnet. Dieses MEMS-Bauteil weist vier ferroelektrische Schichten auf. Je mehr Lagen das MEMS-Bauteil aufweist, desto größer wird die Kraft des MEMS-Bauteils. Durch die Verwendung des speziell hier beschriebenen ferroelektrischen Materials kann die Polarität der einzelnen ferroelektrischen Schichten somit durch Anlegen einer Umschaltspannung umgeschaltet werden, dass die Kräfte der einzelnen ferroelektrischen Schichten so zusammenwirken, dass die Gesamtkraft des MEMS-Bauteils sehr groß wird. Zudem werden bei diesem Mehrlagensystem keine zusätzlichen Isolationsschichten benötigt. Die erste Elektrode, zweite Elektrode und dritte Elektrode können jeweils von zwei ferroelektrischen Schichten verwendet werden. Dadurch, dass die Polarität einzelner ferroelektrischer Schichten nach der Herstellung des MEMS-Bauteils noch verändert werden kann, können die ferroelektrischen Schichten der Multilage mit einem einzigen Prozess oder in einem einzigen Prozess abgeschieden werden.
  • Bei einem Ausführungsbeispiel ist eine passive Schicht an die zweite Elektrode des MEMS-Bauteils angeordnet. Durch Verwendung dieses Mehrlagensystems kann die zusammenwirkende Kraft aus den einzelnen Kräften der einzelnen ferroelektrischen Schichten auf die passive Schicht gekoppelt werden. Dies kann dazu führen, dass die passive Schicht ausgelenkt wird.
  • Bei einem Ausführungsbeispiel ist die passive Schicht des MEMS-Bauteils mindestens auf einer Seite mit einem Substrat verbunden. Somit ist die passive Schicht beispielsweise auf einer Seite fest verankert und auf der gegenüberliegenden Seite frei beweglich. Durch diesen Aufbau wird die Wirkung des MEMS-Bauteils weiter erhöht, da nun die Auslenkung des MEMS-Bauteils nur noch auf der frei beweglichen Seite der passiven Schicht erfolgen kann und somit auf dieser Seite eine höhere Auslenkung erzielt werden kann, als wenn das MEMS-Bauteil auf beiden Seiten ausgelenkt wird. Weiter bewirkt die Verankerung (Verbindung des MEMS-Bauteils mit dem Substrat) z.B. eine räumliche Fixierung des Bauteils.
  • Bei einem Ausführungsbeispiel umfasst das MEMS-Bauteil einen Mehrlagen-MEMS-Aktuator, einen Mehrlagen-MEMS-Sensor oder einen Mehrlagen-MEMS-Generator. Durch die Verwendung des ferroelektrischen Materials in einem Mehrlagen-MEMS-Aktuator, einem Mehrlagen-MEMS-Sensor oder einem Mehrlagen-MEMS-Generator können diese kostengünstiger und effizienter hergestellt werden, da die ferroelektrischen Schichten in einem einzigen Prozess oder mit einem einzigen Prozess abgeschieden werden können und nachträglich die gewünschte Polarität der einzelnen ferroelektrischen Schichten eingestellt werden kann. Wenn das MEMS-Bauteil einen Mehrlagen-MEMS-Aktuator, einen Mehrlagen-MEMS-Sensor oder einen Mehrlagen-MEMS-Generator umfasst, so kann das MEMS-Bauteil zum Beispiel auch verschiedene Aufbau- und Verbindungstechniken ("packaging") aufweisen, wie zum Beispiel mindestens eine Aufhängung, mindestens eine Verbindung zu einem Substrat, mindestens eine Verbindung zu einer Membran, etc. und/oder Kombinationen dieser.
  • Bei einem Ausführungsbeispiel weist eine MEMS-Vorrichtung ein Substrat und ein erstes MEMS-Bauteil auf. Eine passive Schicht des MEMS-Bauteils ist dabei auslenkbar an dem Substrat angeordnet. Somit ist die passive Schicht beispielsweise auf einer Seite fest verankert und auf der gegenüberliegenden Seite frei beweglich. Durch diesen Aufbau wird die Wirkung des MEMS-Bauteils weiter erhöht, da nun die Auslenkung des MEMS-Bauteils nur noch auf der frei beweglichen Seite der passiven Schicht erfolgen kann und somit auf dieser Seite eine höhere Auslenkung erzielt werden kann, als wenn das MEMS-Bauteil auf beiden Seiten ausgelenkt wird.
  • Bei einem Ausführungsbeispiel weist die MEMS-Vorrichtung ein zweites MEMS-Bauteil auf. Die erste und die zweite passive Schicht bilden hierbei eine Gemeinschaft und die Elektroden und die ferroelektrischen Schichten des ersten und des zweiten MEMS-Bauteils sind parallel angeordnet. Mithilfe dieser MEMS-Vorrichtung wird die gemeinsame passive Schicht des ersten MEMS-Bauteils und des zweiten MEMS-Bauteils stärker ausgelenkt, da in dieser MEMS-Vorrichtung das erste MEMS-Bauteil und das zweite MEMS-Bauteil, die parallel zueinander angeordnet sind, so zusammenwirken, dass auf die gemeinsame passive Schicht eine stärkere Biegekraft ausgeübt wird, wodurch die auslenkbare Seite der MEMS-Vorrichtung stark ausgelenkt wird. Des Weiteren kann durch diesen Aufbau beispielsweise eine Torsion der gemeinsamen passiven Schicht hervorgerufen werden, wenn das erste MEMS-Bauteil, durch Anlegen einer Spannung, gegenphasig zu dem zweiten MEMS-Bauteil, an das ebenfalls eine Spannung angelegt ist, angeregt wird.
  • Ein weiteres Ausführungsbeispiel schafft ein Verfahren zur Herstellung eines MEMS-Bauteils. Das Verfahren umfasst ein Stapeln einer ersten Elektrode, einer ersten ferroelektrischen Schicht, einer zweiten Elektrode, einer zweiten piezoelektrischen Schicht und einer dritten Elektrode in dieser Reihenfolge. Die erste ferroelektrische Schicht und die zweite piezoelektrische Schicht weisen die gleiche Polarisationsrichtung auf und die erste ferroelektrische Schicht umfasst ferroelektrisches Material mit einem Mischkristall, der AIN und mindestens ein Nitrid eines Übergangsmetalls umfasst. Der Anteil des Nitrids des Übergangsmetalls ist so gewählt, dass die Polarität des ferroelektrischen Materials durch Anlegen einer Umschaltspannung umschaltbar ist. Die Umschaltspannung liegt unterhalb einer Durchbruchspannung des ferroelektrischen Materials. Das Verfahren weist ferner den folgenden Schritt auf: Anlegen einer Umschaltspannung an die erste Elektrode und an die zweite Elektrode. Die Polarisationsrichtung der ersten ferroelektrischen Schicht wird dadurch umgekehrt, so dass die Polarisationsrichtung der ersten ferroelektrischen Schicht umgekehrt wird (zum Beispiel, entgegengesetzt der Polarisationsrichtung der zweiten piezoelektrischen Schicht).
  • Ein weiteres Ausführungsbeispiel schafft ein Verfahren zur Herstellung eines MEMS-Bauteils, bei dem die erste Elektrode, die erste ferroelektrische Schicht, die zweite Elektrode, die zweite piezoelektrische Schicht und die dritte Elektrode auf einem Substrat gestapelt werden, und das Verfahren weist ferner folgenden Schritt auf:
    Integrieren einer oder mehrerer Schaltungskomponenten einer integrierten Schaltung unter Verwendung eines CMOS-Prozesses in dem Substrat vor oder nach dem Stapeln der ersten Elektrode, der ersten ferroelektrischen Schicht, der zweiten Elektrode, der zweiten piezoelektrischen Schicht und der dritten Elektrode.
  • Die Verfahren basieren auf derselben Überlegung wie für das ferroelektrische Material, das MEMS-Bauteil, und die MEMS-Vorrichtung wie oben beschrieben.
  • Die Verfahren können im Übrigen durch alle Merkmale und Funktionalitäten ergänzt werden, die hierin auch im Hinblick auf das erfindungsgemäße ferroelektrische Material, das MEMS-Bauteil und die MEMS-Vorrichtung beschrieben sind.
  • Bevor nachfolgend Ausführungsbeispiele der vorliegenden Erfindung im Detail anhand der Zeichnungen näher erläutert werden, wird darauf hingewiesen, dass identische, funktionsgleiche oder gleichwirkende Elemente, Objekte und/oder Strukturen in den unterschiedlichen Figuren mit den gleichen Bezugszeichen versehen sind, so dass die in unterschiedlichen Ausführungsbeispielen dargestellte Beschreibung dieser Elemente untereinander austauschbar ist bzw. aufeinander angewendet werden kann.
  • Figurenkurzbeschreibung
  • Ausführungsbeispiele gemäß der vorliegenden Erfindung werden nachfolgend Bezug nehmend auf die beiliegenden Figuren näher erläutert. Es zeigen:
  • Fig. 1a
    eine schematische Darstellung eines ferroelektrischen Materials gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 1b
    eine schematische Darstellung eines ferroelektrischen Materials mit angelegter Umschaltspannung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 2
    eine schematische Darstellung eines MEMS-Bauteils gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 3
    eine schematische Darstellung eines MEMS-Bauteils mit zwei ferroelektrischen Schichten gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 4
    eine schematische Darstellung eines MEMS-Bauteils, bei dem die erste Elektrode eine erste Elektrodenschicht und eine zweite Elektrodenschicht aufweist gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 5
    eine schematische Darstellung eines MEMS-Bauteils mit vier ferroelektrischen Schichten gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 6
    eine schematische Darstellung eines MEMS-Bauteils mit Substrat gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 7a
    eine schematische Darstellung eines MEMS-Bauteils mit beliebiger Anzahl an ferroelektrischen Schichten und einem Substrat gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 7b
    eine schematische Darstellung eines MEMS-Bauteils mit beliebiger Anzahl ferroelektrischer Schichten, einem Substrat und elektrischer Kontaktierung der Elektroden gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 7c
    eine schematische Darstellung eines MEMS-Bauteils mit einer beliebigen Anzahl an ferroelektrischen Schichten gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 8a
    eine schematische Darstellung einer MEMS-Vorrichtung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 8b
    eine schematische Darstellung einer MEMS-Vorrichtung mit zwei MEMS-Bauteilen gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 9
    ein Blockdiagramm eines Verfahrens zur Herstellung eines MEMS-Bauteils gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 10a
    ein Blockdiagramm eines Verfahrens zur Herstellung eines MEMS-Bauteils, verbunden mit einem Substrat mit einer integrierten Schaltung unter Verwendung eines CMOS-Prozesses, gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 10b
    ein Blockdiagramm eines Verfahrens zur Herstellung eines MEMS-Bauteils, verbunden mit einem Substrat mit einer integrierten Schaltung unter Verwendung eines CMOS-Prozesses, gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 11a
    ein Diagramm über die elektrische Polarisation eines ferroelektrischen Materials gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 11b
    ein Diagramm zu dem mittleren Betrag des gemessenen Koerzitivfeldes über der mechanischen Verspannung einer ferroelektrischen Schicht gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 11c
    ein Diagramm zu dem mittleren Betrag des gemessenen Koerzitivfeldes über den Sc Gehalt einer AIScN-Schicht gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 12
    ein Diagramm zur ferroelektrischen Kraft einer ferroelektrischen Schicht mit einer Elektrodenfläche gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 13a
    eine schematische Darstellung einer Einheitszelle eines Wurtzits eines ferroelektrischen Materials mit einer negativen Polarität gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 13b
    eine schematische Darstellung einer Einheitszelle einer hexagonalen Struktur eines ferroelektrischen Materials mit keiner Polarität gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 13c
    eine schematische Darstellung einer Einheitszelle eines Wurtzits eines ferroelektrischen Materials mit einer positiven Polarität gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 14a
    schematische Darstellung eines ferroelektrischen Aktuators gemäß dem Stand der Technik;
    Fig. 14b
    eine schematische Darstellung eines ferroelektrischen Aktuators mit angelegtem positivem externem elektrischem Feld gemäß dem Stand der Technik;
    Fig. 14c
    eine schematische Darstellung eines ferroelektrischen Aktuators mit einem angelegten negativen externen elektrischen Feld gemäß dem Stand der Technik;
    Fig. 15a
    eine schematische Darstellung eines ferroelektrischen Doppellagenaktuators ohne Auslenkung gemäß dem Stand der Technik;
    Fig. 15b
    eine schematische Darstellung eines ferroelektrischen Doppellagenaktuators, der ausgelenkt ist gemäß dem Stand der Technik;
    Fig. 16
    eine schematische Darstellung eines Mehrlagen-Aktuators, hergestellt mittels klassischen Ferroelektrika gemäß dem Stand der Technik;
    Fig. 17
    eine schematische Darstellung eines Mehrlagen-Aktuators bei Verwendung von nicht ferroelektrischen Pyroelektrika gemäß dem Stand der Technik; und
    Fig. 18
    eine schematische Darstellung einer Schichtabfolge eines ferroelektrischen Bimorphs gemäß dem Stand der Technik.
    Detaillierte Beschreibung der Ausführungsbeispiele gemäß den Figuren
  • Fig. 1a zeigt eine schematische Darstellung eines ferroelektrischen Materials 100 mit einem Mischkristall 110 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Der Mischkristall 110 umfasst AIN 120 und mindestens ein Nitrid eines Übergangsmetalls TMN 130. Das AIN 120 bildet mit dem Nitrid eines Übergangsmetalls TMN 130 eine chemische Verbindung AITMN. Fig. 1a ist nur eine schematische Skizze, auch wenn in der Fig. 1a das AIN 120 und das Nitrid eines Übergangsmetalls TMN 130 räumlich getrennt dargestellt sind ist dies in Wirklichkeit nicht der Fall. In dem Mischkristall 110 ist, zum Beispiel, die chemische Verbindung AITMN homogen verteilt. Der Anteil des Nitrids des Übergangsmetalls TMN 130 kann angepasst werden. Ein Verhältnis einer Anzahl an Übergangsmetall-Atomen TM des Nitrids des Übergangsmetalls TMN 130 zu einer Summe aus der Anzahl an Übergangsmetall-Atomen aus dem Nitrid des Übergangsmetalls TMN 130 und einer Anzahl an Aluminiumatomen des AIN 120 liegt zum Beispiel in einem Bereich ≥ 0,2 und ≤ 0,5, wobei das Verhältnis auch in einem Bereich ≥ 0,25 und ≤ 0,43, in einem Bereich ≥ 0,30 und ≤ 0,38 oder gemäß einem Ausführungsbeispiel in einem Bereich ≥ 0,32 und ≤ 0,36, wie z. B. bei 0,36, liegen kann. Somit kann die chemische Verbindung zwischen AIN 120 und dem Nitrid eines Übergangsmetalls TMN 130 als Al1-xTMxN dargestellt werden, wobei x das Verhältnis einer Anzahl an Übergangsmetall-Atomen TM des Nitrids des Übergangsmetalls TMN 130 zu einer Summe aus der Anzahl an Übergangsmetall-Atomen aus dem Nitrid des Übergangsmetalls TMN 130 und einer Anzahl an Aluminiumatomen des AIN 120 ist. Ein Erhöhen des Anteils des Nitrids des Übergangsmetalls TMN 130 bewirkt beispielsweise, dass der Mischkristall 110 ferroelektrisch wird. Das Übergangsmetall TM des Nitrids des Übergangsmetalls TMN 130 kann beispielsweise Scandium SC, Yttrium Y, Titan Ti, Niob Nb oder Chrom Cr sein. Der Mischkristall 110 hat eine Polarität 140.
  • Für das ferroelektrische Material 100 lässt sich beispielsweise die intrinsische mechanische Spannung einstellen. Des Weiteren sind die dielektrischen Verluste des Mischkristalls 110 geringer als in klassischen Ferroelektrika wie PZT.
  • Das ferroelektrische Material kann, am Beispiel von Al1-xScxN, bereits bei Abscheidetemperaturen von 400 °C hergestellt werden und ist damit, wie reines AIN, CMOS-kompatibel. Die hohe elektrische Spannungsfestigkeit von reinem AIN (> 400 V/µm) bleibt auch in Al1-xScxN erhalten. Ebenso erhalten bleiben die niedrigen dielektrischen Verluste von in der Regel deutlich unter 1 % [12] und die Möglichkeit, die intrinsische mechanische Verspannung des ferroelektrischen Materials einzustellen [11]. Das ferroelektrische Material ist CMOS-kompatibel.
  • Fig. 1b zeigt das ferroelektrische Material 100 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung gemäß dem ferroelektrischen Material 100 aus Fig. 1a. Das ferroelektrische Material 100 umfasst einen Mischkristall 110. Der Mischkristall 110 umfasst AIN 120 und mindestens ein Nitrid eines Übergangsmetalls 130. An das ferroelektrische Material 100 wird eine Umschaltspannung 150 angelegt, wodurch die Polarität 142 eingestellt wird. D. h., durch das Anlegen der Umschaltspannung 150 kann beispielsweise die ursprüngliche Polarität 140 (siehe Fig. 1a) so umgeschaltet werden, dass die neue Polarität 142 der alten Polarität 140 entgegengesetzt ist. Die Umschaltspannung 150 muss dafür unterhalb einer Durchbruchspannung des ferroelektrischen Materials 100 liegen. Wird an das ferroelektrische Material 100 eine geringere Spannung als die Umschaltspannung 140 angelegt, so ändert sich die Richtung der Polarität 140 nicht.
  • Die Existenz von ferroelektrischen Materialien basierend auf AIN 120 konnte, nach aktuellem Wissenstand, zuvor noch nie experimentell gezeigt werden. Experimentelle wissenschaftliche Veröffentlichungen und Patente zu Mischkristallen 110 aus AIN 120 und den Nitriden von Übergangsmetallen 130, wie etwa zu AlScN [13, 14], AIYN [15, 16], oder Al-TiN [17, 18] betreffen lediglich Materialeigenschaften wie piezoelektrische Koeffizienten und Elastizität in Abhängigkeit des Übergangsmetallanteils. Es wurde durch die jeweiligen Autoren kein Anzeichen für Ferroelektrizität veröffentlicht. Das ferroelektrische Material 100 wurde nun so verändert, durch eine Erhöhung des Anteils des Nitrids des Übergangsmetalls 130 und Anpassung der mechanischen Verspannung hin zu weniger Druckspannung oder mehr Zugspannung, so dass die Polarität 140 des ferroelektrischen Materials 100 durch Anlegen einer Umschaltspannung 140 umgeschaltet werden kann.
  • Fig. 2 zeigt ein MEMS-Bauteil 200 mit einer ersten ferroelektrischen Schicht 210, die das ferroelektrische Material umfasst gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Des Weiteren umfasst das MEMS-Bauteil eine erste Elektrode 230, die auf einer ersten Oberfläche 220 der ersten ferroelektrischen Schicht 210 angeordnet ist, und eine zweite Elektrode 232, die auf einer zweiten Oberfläche 221 der ersten ferroelektrischen Schicht 210 angeordnet ist. Die zweite Oberfläche 221 liegt der ersten Oberfläche 220 gegenüber. Die erste Elektrode 230 sowie die zweite Elektrode 232 bestehen beispielsweise aus elektrisch leitendem Material. Über die erste Elektrode 230 und die zweite Elektrode 232 kann eine Spannung an die ferroelektrische Schicht 210 angelegt werden. Ist die angelegte Spannung geringer als die Umschaltspannung so ändert sich die Richtung der Polarität der ferroelektrischen Schicht 210 nicht. Ist die Spannung jedoch so groß wie die benötige Umschaltspannung so kann die Polarität der ferroelektrischen Schicht 210 umgeschaltet werden. Wird dieses MEMS-Bauteil bei einer Spannung geringer als die Umschaltspannung betrieben, so ändert sich beispielsweise die Ausdehnung der ferroelektrischen Schicht 210 in eine der drei Raumrichtungen. Diese Umwandlung der zugeführten elektrischen Spannung in mechanische Bewegung kann mit diesem MEMS-Bauteil auf vielfältige Weise genutzt werden. Es ist allerdings auch möglich, dass eine umgekehrte Wandlung detektiert werden kann. So kann beispielsweise die Ausdehnung der ferroelektrischen Schicht 210 in mindestens eine Raumrichtung verändert werden und daraufhin über die erste Elektrode 230 gemeinsam mit der zweiten Elektrode 232 ein resultierendes elektrisches Signal gemessen werden.
  • Fig. 3 zeigt ein MEMS-Bauteil 200 mit einer ersten ferroelektrischen Schicht 210, einer zweiten ferroelektrischen Schicht 212, einer zwischen der ersten ferroelektrischen Schicht 210 und der zweiten ferroelektrischen Schicht 212 liegenden ersten Elektrode 230, eine zweite Elektrode 232, die an die zweite Oberfläche 221 der ersten ferroelektrischen Schicht 210 angebracht ist und eine dritte Elektrode 234, die an eine erste Oberfläche 222 der zweiten ferroelektrischen Schicht 212 angebracht ist gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die erste Elektrode 230 ist auf der ersten Oberfläche 220 der ersten ferroelektrischen Schicht 210 angeordnet. Die zweite Oberfläche 221 der ersten ferroelektrischen Schicht 210 liegt der ersten Oberfläche 220 der ersten ferroelektrischen Schicht 210 gegenüber. Die zweite ferroelektrische Schicht 212, die auf der ersten Elektrode 230, gegenüber der ersten ferroelektrischen Schicht 210 angeordnet ist, umfasst das ferroelektrische Material. Die dritte Elektrode 234 ist auf der Oberfläche 222 der zweiten ferroelektrischen Schicht 212 angeordnet. Die erste Oberfläche 222 der zweiten ferroelektrischen Schicht 212 ist der ersten Elektrode 230 abgewandt angeordnet. Die erste ferroelektrische Schicht 210 umfasst ebenfalls das ferroelektrische Material.
  • Basierend auf dem erfindungsgemäßen ferroelektrischen Mischkristallen (ferroelektrisches Material) lassen sich damit möglichst einfach aufgebaute Mehrlagen-Aktuatoren (wie z. B. das MEMS-Bauteil 200) realisieren, ohne jedoch die spezifischen Nachteile klassischer Ferroelektrika in Kauf nehmen zu müssen. Ebenso ohne diese Nachteile umsetzen lassen sich möglichst einfache Konzepte für eine intrinsische Ladungsverstärkung. Diese ließen sich ebenfalls mit dem MEMS-Bauteil 200 realisieren. Das Material sowie seine Integration, und damit das MEMS-Bauteil, sind CMOS-kompatibel, da das ferroelektrische Material bei Temperaturen unter 500°C abgeschieden werden kann. Die ferroelektrischen Schichten der Multilage können mit einem einzigen Prozess abgeschieden werden, da man nicht auf eine in situ Manipulation der Polarisationsrichtung angewiesen ist, sondern die Polarisation der einzelnen Schichten noch nach der Herstellung, durch Anlegen einer Umschaltspannung, geändert werden kann. Zusätzliche Schichten, die eine bestimmte Polarisationsrichtung während des Abscheideprozesses einstellen, sind somit nicht erforderlich. Die Anzahl der notwendigen Isolationslagen und Elektrodenschichten wird minimiert, da die Polarisationsumkehr der einzelnen ferroelektrischen Schichten (z. B. der ersten ferroelektrische Schicht 210 und der zweiten ferroelektrischen Schicht 212) reversibel und kontrollierbar ist.
  • Das ferroelektrische Material ist genauso wie AIN einfach in MEMS-Prozess-Flows integrierbar (es kann z.B. keine Prozesserneuerung notwendig sein), aber das Anwendungsspektrum wird durch die ferroelektrische Eigenschaft des ferroelektrischen Materials massiv erweitert. Ferroelektrische aktuierte MEMS-Bauteile wie beispielsweise Lautsprecher, Ultraschallwandler, Schalter oder Spiegel würden von einer gegenüber dem Stand der Technik gesteigerten Arbeitsleistung profitieren. Insbesondere, wenn diese mit CMOS-Strukturen integriert werden sollen. Gleiches gilt für Sensorsysteme wie Mikrofone oder Accelerometer, welche Vorteile aus einer intrinsischen Ladungsverstärkung ziehen können sowie für Mikrogeneratoren.
  • Bei der Herstellung des MEMS-Bauteils 200 haben beispielsweise die erste ferroelektrische Schicht 210 und die zweite ferroelektrische Schicht 212 dieselbe Polarität. Dabei sollte die Polarität beispielsweise senkrecht zur zweiten Oberfläche 221 der ersten ferroelektrischen Schicht angeordnet sein. Wird nun an die erste Elektrode 230 und an die zweite Elektrode 232 eine Umschaltspannung an die erste ferroelektrische Schicht 210 angelegt, so wird die Polarität der ersten ferroelektrischen Schicht 210 umgeschaltet. Somit zeigt die Polarität der ersten ferroelektrischen Schicht 210 in entgegengesetzte Richtung als die Polarität der zweiten ferroelektrischen Schicht 212. Wird das MEMS-Bauteil 200 beispielsweise mit derselben Spannung betrieben (die zweite Elektrode 232 und die dritte Elektrode 234 haben beispielsweise das gleiche Spannungsniveau und die erste Elektrode 230 hat das gleiche Spannungsniveau mit umgekehrten Vorzeichen). So zeigen die elektrischen Felder (ein erstes elektrisches Feld, das die erste ferroelektrische Schicht 210 durchdringt und ein zweites elektrisches Feld, das die zweite ferroelektrische Schicht 212 durchdringt) in entgegengesetzte Richtungen. Da die Polarität sowie die Richtung des elektrischen Feldes angelegt an die jeweilige ferroelektrische Schicht (erste ferroelektrische Schicht 210 und zweite ferroelektrische Schicht 212) in entgegengesetzte Richtungen, bezüglich der jeweils anderen ferroelektrischen Schicht, weisen, haben beide ferroelektrische Schichten die gleiche Kraftantwort auf das elektrische Signal. So zeigt Beispielsweise sowohl die Polarität als auch die Richtung des elektrischen Feldes der ersten ferroelektrischen Schicht in eine selbe erste Richtung und die Polarität als auch die Richtung des elektrischen Feldes der zweiten ferroelektrischen Schicht zeigen in eine selbe zweite Richtung, wobei die erste Richtung der zweiten Richtung entgegengesetzt ist. Somit erhöht sich die Kraft des MEMS-Bauteils 200. Weiter kann bei einer hohen Umschaltspannung an der ferroelektrischen Schicht (zum Beispiel, an der ersten ferroelektrischen Schicht 210 und/oder an der zweiten ferroelektrischen Schicht 212), welche aus dem ferroelektrischen Material besteht, das MEMS Bauteil 200 mit hohen bipolaren Spannungen betrieben werden, also Spannungen, welche zu einem Zeitpunkt positiv und zu einem anderen Zeitpunkt negativ sind.
  • Fig. 4 zeigt ein MEMS-Bauteil 200 mit einer ersten ferroelektrischen Schicht 210, einer zweiten ferroelektrischen Schicht 212, einer ersten Elektrode 230, einer zweiten Elektrode 232 und einer dritten Elektrode 234 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die erste Elektrode 230 des MEMS-Bauteils 200 weist eine erste Elektrodenschicht 231a und eine zweite Elektrodenschicht 231b auf. Die erste Elektrodenschicht 231a berührt beispielsweise die zweite ferroelektrische Schicht 212 und die zweite Elektrodenschicht 231b berührt z. B. die erste ferroelektrische Schicht 210. Die erste Elektrodenschicht 231a ist von der zweiten Elektrodenschicht 231b durch eine dazwischenliegende Schicht 231c getrennt. In der Schicht 231c liegt eine neutrale Ebene, die das MEMS-Bauteil 200 teilt, beispielsweise mittig. Somit befindet sich auf einer Seite der neutralen Ebene die erste Elektrodenschicht 231a, die zweite ferroelektrische Schicht 212 und die dritte Elektrode 234. Auf der anderen Seite der neutralen Ebene befindet sich somit die zweite Elektrodenschicht 231b, die erste ferroelektrische Schicht 210 und die zweite Elektrode 232. Die Schicht 231c kann beispielsweise eine Isolationsschicht oder eine passive Schicht sein. Durch die Schicht 231c wird ermöglicht, dass die erste ferroelektrische Schicht 210 unabhängig von der zweiten ferroelektrischen Schicht 212 genutzt werden kann. Die Schicht 231c kann zudem als Trägermaterial für die Elektroden und die ferroelektrischen Schichten bei deren Abscheidung dienen.
  • Fig. 5 zeigt ein MEMS-Bauteil 200 mit einer ersten ferroelektrischen Schicht 210, einer zweiten ferroelektrischen Schicht 212, einer ersten Elektrode 230, einer zweiten Elektrode 232 und einer dritten Elektrode 234 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung, wie das MEMS-Bauteil 200 aus Fig. 3. Zusätzlich hat das MEMS-Bauteil 200 aus Fig. 5 eine dritte ferroelektrische Schicht 214, die auf der dritten Elektrode 234, gegenüber der zweiten ferroelektrischen Schicht 212 angeordnet ist, eine vierte Elektrode 236, die auf einer ersten Oberfläche 223 der dritten ferroelektrischen Schicht 214 angeordnet ist, eine vierte ferroelektrische Schicht 216, die auf der zweiten Elektrode 232, gegenüber der ersten ferroelektrischen Schicht 210, angeordnet ist, und eine fünfte Elektrode 238, die auf einer ersten Oberfläche 224 der vierten ferroelektrischen Schicht 216 angeordnet ist. Die erste Oberfläche 223 der dritten ferroelektrischen Schicht 214 ist der dritten Elektrode 234 abgewandt angeordnet. Die erste Oberfläche 224 der vierten ferroelektrischen Schicht 216 ist der zweiten Elektrode 232 abgewandt angeordnet. Das MEMS-Bauteil 200 hat vier ferroelektrische Schichten (die erste ferroelektrische Schicht 210, die zweite ferroelektrische Schicht 212, die dritte ferroelektrische Schicht 214 und die vierte ferroelektrische Schicht 216), wodurch es ein Mehrlagen-MEMS-Bauteil bildet. Je mehr ferroelektrische Schichten ein MEMS-Bauteil 200 aufweist, desto größer ist die Kraft des MEMS-Bauteils 200 oder die intrinsische Ladungsverstärkung.
  • Fig. 6 zeigt ein MEMS-Bauteil 200 mit Elektroden 2301 bis 230n, ferroelektrischen Schichten 2101 bis 210n-1, ein Substrat 240 und eine Spannungsversorgung 250 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Der Index n ist hierbei eine natürliche Zahl größer oder gleich 2 (beispielsweise, n≥10, n≥100 oder n≥1000, wie z. B n=1253). Das Substrat 240 ist an eine erste Elektrode 2301 angeordnet. Die Spannungsversorgung 250 ist an die Elektroden 2301 bis 230, angeschlossen. Jede ferroelektrische Schicht 2101 bis 210n-1 weist eine Polarität 2601 bis 260n-1 auf. Die Spannungsquelle 250 ist über die Elektroden 2301 bis 230n so an die ferroelektrischen Schichten 2101 bis 210n-1 angeschlossen, dass die Richtung des elektrischen Feldes (das die einzelnen ferroelektrischen Schichten 2101 bis 210n-1 durchdringt und für jede ferroelektrische Schicht 2101 bis 210n-1 eine andere Richtung aufweisen kann) entweder parallel und in gleicher Richtung zeigend zu der jeweiligen Polarisation 2601 bis 260n-1 jeder ferroelektrischen Schicht 2101 bis 210n-1 gerichtet ist oder parallel und in entgegengesetzte Richtung zu der jeweiligen Polarisation 2601 bis 260n-1 der jeweiligen ferroelektrischen Schichten 2101 bis 210n-1 ausgerichtet ist. Somit ist in jeder ferroelektrischen Schicht 2101 bis 210n-1 beispielsweise die Richtung der Polarität 2601 bis 260n-1 gleichgerichtet zu der Richtung des elektrischen Feldes, das von der Spannungsquelle 250 bereitgestellt wird, oder die Polarisationsrichtung 2601 bis 260n-1 ist in jeder ferroelektrischen Schicht 2101 bis 210n-1 entgegengerichtet zu der Richtung des elektrischen Feldes, das von der Spannungsversorgung 250 bereitgestellt wird. Somit haben alle ferroelektrischen Schichten 2101 bis 210n-1 die gleiche Kraftwirkung und die Kraft des MEMS-Bauteils 200 ist somit stärker als mit weniger Schichten (wie z. B. mit n/8 Schichten, n/4 Schichten oder sogar n/2 Schichten).
  • Während des Betriebs des MEMS-Bauteils 200 ist die Spannung bereitgestellt durch die Spannungsversorgung 250 geringer als die Umschaltspannung. Somit wird im Betrieb des MEMS-Bauteils 200 die Richtung der Polarität 2601 bis 260n-1 jeder ferroelektrischen Schicht 2101 bis 210n-1 nicht verändert. Falls die Polarität 2601 bis 260n-1 einer oder mehrerer ferroelektrischer Schichten 2101 bis 210n-1 umgeschaltet werden soll, kann die Spannungsversorgung 250 eine Umschaltspannung bereitstellen. Hierfür müssen mindestens zwei Elektroden, die eine ferroelektrische Schicht zwischen sich einschließen, mit der Umschaltspannung versorgt werden. So kann z. B. an die Elektrode 2301 und die Elektrode 2302 die Umschaltspannung angelegt werden, wodurch die Polarität 2601 der ferroelektrischen Schicht 2101 umgekehrt wird und somit in entgegengesetzte Richtung zur voran eingestellten Polarität 2601 zeigt. Je nach Anwendungsgebiet kann somit die Polarität 2601 bis 260n-1 reversibel und kontrollierbar eingestellt werden.
  • Es besteht die Möglichkeit mittels polarisationsinvertierten Multilagen eine Ladungsverstärkung in Sensor- und Mikrogeneratoranwendungen zu realisieren. Es lassen sich basierend auf dem ferroelektrischen Material möglichst einfache Multilagen-Aktuatoren aufbauen. Das ferroelektrische Material, das für jede ferroelektrische Schicht 2101 bis 210n-1 verwendet wird, weist eine hohe elektrische Durchbruchfeldstärke auf, wodurch große Kräfte erzeugt werden können.
  • Die ferroelektrischen Schichten der Multilage können mit einem einzigen Prozess abgeschieden werden, da man nicht auf eine in situ Manipulation der Polarisationsrichtung angewiesen ist. Zusätzliche Schichten oder die Hinzugabe weiterer chemischer Elemente, die eine bestimmte Polarisationsrichtung während des Abscheideprozesses einstellen, sind nicht erforderlich. Die Anzahl der notwendigen Isolationslagen und Elektrodenschichten wird minimiert.
  • Fig. 7a zeigt ein MEMS-Bauteil 200 mit Elektroden 230-j bis 230n, ferroelektrischen Schichten 2101-j bis 210n-1, ein Substrat 240 und eine Spannungsversorgung 250 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Der Index n und j kann dabei eine beliebige natürliche Zahl ≥ 2 sein. Jede ferroelektrische Schicht 2101-j bis 210n-1 weist eine Polarität 2601-j bis 260n-1 auf. In dem Substrat 240 liegt eine neutrale Ebene. Die neutrale Ebene kann beispielsweise das MEMS-Bauteil 200 mittig teilen, das bedeutet, dass gleich viele identische Schichten auf beiden Seiten der neutralen Ebene aufzufinden sind (z. B. wenn n=j). Nur weil in diesem Ausführungsbeispiel auf beiden Seiten des Substrats 240 gleich viele ferroelektrische Schichten 2101-j bis 210n-1 dargestellt sind, heißt das nicht, dass dies eine notwendige Bedingung für die Funktion des MEMS-Bauteils ist. Es ist ebenso möglich, dass auf einer Seite des Substrats 240 mehr ferroelektrische Schichten als auf der anderen Seite des Substrats (auf der gegenüberliegenden Seite) aufzufinden sind (z. B. n>j oder n<j). Als Extrembeispiel ist das MEMS-Bauteil 200 aus Fig. 6 zu sehen, bei dem auf einer Seite des Substrats 240 keine ferroelektrischen Schichten aber auf der anderen Seite des Substrats 240 eine beliebige Anzahl an ferroelektrischen Schichten 2101 bis 210n-1 aufzufinden ist.
  • Das MEMS-Bauteil 200 in Fig. 7b weist dieselben Komponenten wie das MEMS-Bauteil 200 aus Fig. 7A auf, nur die Polarität 2601-j bis 260-1 der ferroelektrischen Schichten 2101-j bis 210-1 zeigt in eine entgegengesetzte Richtung und die Spannungsversorgung 250 ist auf andere Weise an die Elektroden 230-j bis 230, angeschlossen, gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das Substrat 240 kann beispielsweise eine passive Schicht oder eine Isolationsschicht darstellen. In Fig. 7a ist es z. B. egal, ob das Substrat 240 eine Isolationsschicht ist oder eine passive Schicht, da die beiden Elektroden 230-1 und 2301 an das gleiche Spannungsniveau der Spannungsversorgung 250 angeschlossen sind. Somit kann das Substrat 240 z. B. auch aus elektrisch leitendem Material bestehen. Hingegen bei dem MEMS-Bauteil 200 aus Fig. 7b sind die Elektroden 230-1 und 2301 an unterschiedliche Spannungsniveaus der Spannungsversorgung 250 angeschlossen, wodurch das Substrat 240 z. B. eine Isolationsschicht sein muss, damit kein Kurzschluss zwischen den Elektroden 230-1 und 2301 hervorgerufen wird.
  • Da sich zwischen dem MEMS-Bauteil 200 aus Fig. 7a und dem MEMS-Bauteil 200 aus Fig. 7b sowohl die Richtung der Polarität 2601-j bis 260-1 als auch die Anschlüsse der Elektroden 230-j bis 230-1 an die Spannungsversorgung 250 umgekehrt haben, haben das MEMS-Bauteil 200 aus Fig 7a und das MEMS-Bauteil 200 aus Fig. 7b dieselbe Funktionsweise. Bei den beiden Ausführungsformen des MEMS-Bauteils 200 aus Fig. 7a und des MEMS-Bauteils 200 aus Fig. 7b sind die Kräfte auf der einen Seite des Substrats 240 entgegengesetzt zu den Kräften auf der anderen Seite des Substrats 240 gerichtet. So kann es z. B. passieren, dass sich die ferroelektrischen Schichten 2101 bis 210n-1 in einer Raumrichtung verkleinern und die ferroelektrischen Schichten 210-1 bis 2101-j in der gleichen Raumrichtung vergrößern, wodurch es zu einem Biegen des MEMS-Bauteils 200 kommt. Es sind darüber hinaus laterale Aktuatoren denkbar, bei denen die Kräfte von der einen Seite der neutralen Ebene gegenüber der anderen Seite der neutralen Ebene (von einer Seite des Substrats 240 zu der anderen Seite des Substrats 240) liegenden Schichtsysteme (die jeweiligen ferroelektrischen Schichten 2101-j bis 210n-1 und die Elektroden 230-j bis 230n) gleichgerichtet sind.
  • In anderen Worten stellt das MEMS-Bauteil 200 aus Fig. 7a und das MEMS-Bauteil 200 aus Fig. 7b Ausführungen mit beidseitig aktiv beschichteter passiver Schicht (Substrat 240) dar. Gezeigt sind zwei Realisierungen der elektrischen Kontaktierung, wobei das MEMS-Bauteil 200 aus Fig. 7a keine Ansprüche an die Isolator Eigenschaften der passiven Schicht (des Substrats 240) stellt.
  • Des Weiteren kann die Elektrode 2301 als eine erste Elektrodenschicht und die Elektrode 230-1 als eine zweite Elektrodenschicht der Elektrode 230a angesehen werden. Zwischen der ersten Elektrodenschicht und der zweiten Elektrodenschicht befindet sich eine weitere Schicht (Substrat 240), wobei diese Schicht z. B. eine passive Schicht oder eine Isolationsschicht sein kann.
  • In Fig. 7c ist ein MEMS-Bauteil 200 mit ferroelektrischen Schichten 2101-j bis 210n-1, Elektroden 230-j bis 230n und einer Spannungsversorgung 250 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung dargestellt. Jede ferroelektrische Schicht 2101-j bis 210n-1 weist eine Polarität 2601-j bis 260n-1 auf. Die Elektrode 2301 umfasst eine neutrale Ebene, die das MEMS-Bauteil 200 in ein erstes Mehrlagenschichtsystem (alle ferroelektrischen Schichten 2101 bis 210n-1) und ein zweites Mehrlagenschichtsystem (bestehend aus den ferroelektrischen Schichten 210-1 bis 2101-j) aufteilt. Wird eine Spannung geringer als die Umschaltspannung an die Spannungsversorgung 150 angelegt, so dehnen sich im Falle dieses Beispiels beispielsweise die ferroelektrischen Schichten 2101 bis 210n-1 aus und die ferroelektrischen Schichten 210-1 bis 2101-j (auf der anderen Seite der neutralen Ebene) ziehen sich zusammen. Durch diesen Mechanismus kommt es zu einer Verbiegung des MEMS-Bauteils 200. Je mehr ferroelektrische Schichten das MEMS-Bauteil 200 aufweist, desto größer ist die biegende Kraft im MEMS-Bauteil 200 bei Anlegen einer Spannung an die Elektroden 230-j bis 230n durch die Spannungsversorgung 250.
  • In anderen Worten stellt das MEMS-Bauteil 200 aus Fig. 7c eine Ausführung eines MEMS-Bauteils 200 ohne passive Schicht dar. Die ferroelektrischen Schichten 2101 bis 210n-1 oberhalb der neutralen Ebene (der Elektrode 2301) dehnen sich beispielsweise gegensinnig zu darunterliegenden (ferroelektrischen Schichten 210-1 bis 2101-j).
  • Hinsichtlich der Rolle einer passiven Schicht (diese kann auch das Substrat selber sein) sind drei generelle Ausführungen denkbar: eine einseitig aktiv beschichtete passive Schicht (siehe das MEMS-Bauteil 200 aus Fig. 6), eine beidseitig beschichtete passive Schicht (siehe das MEMS-Bauteil 200 aus Fig. 7a und das MEMS-Bauteil 200 aus Fig. 7b) sowie ein rein aktives Mehrlagensystem ohne passive Schicht (siehe das MEMS-Bauteil 200 aus Fig. 7c). Sämtliche Ausführungsbeispiele ließen sich generell auch mit einer inversen Materialpolarisation realisieren. AITMN steht dabei für einen ferroelektrischen Mischkristall basierend auf AIN und dem Nitrid von Übergangsmetallen (TM), welcher Grundlage für die Einstellung der Materialpolarisation ist. Mindestens eine der der hier als ferroelektrisch bezeichneten Schichten des MEMS-Bauteils 200 (aus Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 3, Fig. 7a, Fig. 7b und Fig. 7c) weist das ferroelektrische Material auf. Einzelne der hier als ferroelektrisch bezeichneten Schichten können jedoch auch rein piezoelektrisch sein, da sie z.B. nicht das ferroelektrische Material enthalten. So lange eine Mindestanzahl an ferroelektrischen Schichten, welche das ferroelektrische Material enthalten, vorhanden ist (z.B. jede zweite Schicht) kann es sein, dass sich die Funktion des Bauteils 200 nicht ändert. Die Ausführungsbeispiele sind sowohl für Aktuation als auch für intrinsische Ladungsverstärkung relevant (in letzterem Fall, zum Beispiel, ohne die Spannungsversorgung 250).
  • Fig. 8a zeigt eine schematische Darstellung einer MEMS-Vorrichtung 300 mit einem Substrat 310 und einem ersten MEMS-Bauteil 200 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das MEMS-Bauteil 200 weist eine passive Schicht 240 und ferroelektrische Multilagen 320 auf. Die passive Schicht 240 des MEMS-Bauteils 200 ist beispielsweise an dem Substrat 310 auslenkbar angeordnet. Wie in Fig. 8a dargestellt, kann die passive Schicht 240 einseitig an das Substrat 310 angeordnet sein. Die Fläche, mit der die passive Schicht 240 das Substrat 310 berührt, befindet sich beispielsweise gegenüber der Fläche, mit der die passive Schicht 240 an die ferroelektrischen Mehrlagen 320 angeordnet ist. Es ist aber auch möglich, dass die ferroelektrischen Mehrlagen 320 auf der gleichen Fläche, mit der die passive Schicht 240 das Substrat 310 berührt, angeordnet sind, oder auf beiden Flächen der die passive Schicht 240 (die Fläche, mit der die passive Schicht 240 das Substrat 310 berührt und die ihr gegenüberliegende) angeordnet sind.
  • Die MEMS-Vorrichtung 300 aus Fig. 8a ist ein Ausführungsbeispiel eines vertikalen Biegeaktuators.
  • Fig. 8b zeigt eine MEMS-Vorrichtung 300 mit einem ersten MEMS-Bauteil 200 und einem zweiten MEMS-Bauteil 201 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das erste MEMS-Bauteil 200 weist eine erste passive Schicht auf und das zweite MEMS-Bauteil 201 weist eine zweite passive Schicht auf, wobei die erste passive Schicht und die zweite passive Schicht eine Gemeinschaft sind und als passive Schicht 240 gekennzeichnet sind. Das erste MEMS-Bauteil 200 und das zweite MEMS-Bauteil 201 können beispielsweise die gleiche Ausführungsform und Funktion aufweisen. Eine erste ferroelektrische Multilage 320 des ersten MEMS-Bauteils 200 ist parallel zu einer zweiten ferroelektrischen Multilage 322 des zweiten MEMS-Bauteils 201 angeordnet. In anderen Worten, die ferroelektrischen Schichten (die erste ferroelektrische Multilage 320 und die zweite ferroelektrische Multilage 322) des ersten MEMS-Bauteils 200 und des zweiten MEMS-Bauteils 201 sind parallel angeordnet. Die passive Schicht 240 ist auslenkbar an das Substrat 310 angeordnet. Die MEMS-Vorrichtung 300 aus Fig. 8b ist ein Ausführungsbeispiel eines lateralen oder torsionalen Aktuators (die beiden Multilagen (die erste ferroelektrische Multilage 320 und die zweite ferroelektrische Multilage 322) werden beispielsweise gegenphasig angeregt).
  • Die ferroelektrische Multilage 320 aus Fig. 8a sowie die ferroelektrische Multilage 320 und 322 aus Fig. 8b umfassen das ferroelektrische Material.
  • Fig. 9 zeigt ein Blockdiagramm eines Verfahrens zur Herstellung eines MEMS-Bauteils gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. In einem Schritt des Verfahrens werden, zum Beispiel, eine erste Elektrode, eine erste ferroelektrische Schicht, eine zweite Elektrode, eine zweite piezoelektrische Schicht und eine dritte Elektrode in dieser Reihenfolge gestapelt 400. Durch diesen Schritt entsteht beispielsweise ein MEMS-Bauteil wie das MEMS-Bauteil 200 aus Fig. 3 oder das MEMS-Bauteil 200 aus Fig. 4. Die erste ferroelektrische Schicht und die zweite piezoelektrische Schicht weisen, zum Beispiel, die gleiche Polarisationsrichtung auf und die erste ferroelektrische Schicht weist ein ferroelektrisches Material auf. Das ferroelektrische Material umfasst einen Mischkristall, der AIN und mindestens ein Nitrid eines Übergangsmetalls umfasst. Der Anteil des Nitrids des Übergangsmetalls ist, zum Beispiel, so gewählt, dass eine Richtung einer Polarität des ferroelektrischen Materials durch Anlegen einer Umschaltspannung umschaltbar ist. Die Umschaltspannung liegt unterhalb einer Durchbruchspannung des ferroelektrischen Materials. Das Verfahren weist ferner folgenden Schritt auf: Anlegen 410 einer Umschaltspannung an die erste Elektrode und an die zweite Elektrode, wobei die Polarisationsrichtung der ersten ferroelektrischen Schicht umgekehrt wird, so dass die Polarisationsrichtung der ersten ferroelektrischen Schicht umgekehrt wird (zum Beispiel, entgegengesetzt der Polarisationsrichtung der zweiten piezoelektrischen Schicht).
  • Fig. 10a zeigt ein Blockdiagramm eines Verfahrens zur Herstellung eines MEMS-Bauteils, verbunden mit einem Substrat mit einer integrierten Schaltung unter Verwendung eines CMOS-Prozesses, gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das Verfahren umfasst in einem ersten Schritt ein Stapeln 400 der ersten Elektrode, der ersten ferroelektrischen Schicht, der zweiten Elektrode, der zweiten piezoelektrische Schicht und der dritten Elektrode auf einem Substrat. Ein zweiter Schritt des Verfahrens umfasst ein Anlegen 410 einer Umschaltspannung an die erste Elektrode und an die zweite Elektrode, wobei die Polarisationsrichtung der ersten ferroelektrischen Schicht umgekehrt wird, so dass die Polarisationsrichtung der ersten ferroelektrischen Schicht umgekehrt wird. In einem weiteren Schritt des Verfahrens wird eine oder mehrere Schaltungskomponenten einer integrierten Schaltung unter Verwendung eines CMOS-Prozesses in dem Substrat integriert 420. Der Schritt Stapeln 400 und Anlegen 410 sind analog zu den Schritten Stapeln 400 und Anlegen 410 aus dem Verfahren dargestellt in Fig. 9.
  • Fig. 10b zeigt ein Blockdiagramm eines Verfahrens zur Herstellung eines MEMS-Bauteils, verbunden mit einem Substrat mit einer integrierten Schaltung unter Verwendung eines CMOS-Prozesses, gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das Verfahren umfasst in einem ersten Schritt ein Integrieren 420 einer oder mehrerer Schaltungskomponenten einer integrierten Schaltung unter Verwendung eines CMOS-Prozesses in dem Substrat. Ein zweiter Schritt des Verfahrens umfasst ein Stapeln 400 der ersten Elektrode, der ersten ferroelektrischen Schicht, der zweiten Elektrode, der zweiten piezoelektrische Schicht und der dritten Elektrode auf einem Substrat. In einem weiteren Schritt des Verfahrens wird eine Umschaltspannung an die erste Elektrode und an die zweite Elektrode angelegt 410, wobei die Polarisationsrichtung der ersten ferroelektrischen Schicht umgekehrt wird, so dass die Polarisationsrichtung der ersten ferroelektrischen Schicht umgekehrt wird. Der Schritt Stapeln 400 und Anlegen 410 sind anaolg zu den Schritten Stapeln 400 und Anlegen 410 aus dem Verfahren dargestellt in Fig. 9.
  • Das MEMS-Bauteil in Fig. 10a sowie in Fig. 10b, bestehend aus der ersten Elektrode, der ersten ferroelektrischen Schicht, der zweiten Elektrode, der zweiten piezoelektrische Schicht und der dritten Elektrode, ist beispielsweise das MEMS-Bauteil 200 aus Fig. 3 oder das MEMS-Bauteil 200 aus Fig. 4. Es ist auch möglich, dass mehr als drei Elektrodenschichten und zwei ferroelektrische Schichten mittels dieses Verfahrens gestapelt werden, wodurch beispielsweise das MEMS-Bauteil 200 aus Fig. 5, das MEMS-Bauteil 200 aus Fig. 6, das MEMS-Bauteil 200 aus Fig. 7a, das MEMS-Bauteil 200 aus Fig. 7b, das MEMS-Bauteil 200 aus Fig. 7c, das MEMS-Bauteil 200 aus Fig. 8a und/oder das MEMS-Bauteil 200 aus Fig. 8b auf dem Substrat gestapelt wird. Desweiteren können, zum Beispiel, zusätzlich nicht ferroelektrische Schichten mittels dieses Verfahrens auf dem Substrat gestapelt werden und/oder bei mehr als nur der ersten ferroelektrischen Schicht durch Anlegen einer Umschaltspannung die Richtung der Polarität umgeschaltet werden.
  • Die erste ferroelektrische Schicht umfasst ein ferroelektrisches Material, wie hierin beschrieben (die zweite piezoelektrische Schicht kann muss aber nicht ein ferroelektrisches Material umfassen). Das ferroelektrische Material kann, am Beispiel von Al1-xScxN, bereits bei Abscheidetemperaturen von 400 °C hergestellt werden und ist damit, wie reines AIN, CMOS-kompatibel. Die hohe elektrische Spannungsfestigkeit von reinem AIN (> 400 V/µm) bleibt auch in Al1-xScxN erhalten. Ebenso erhalten bleiben die niedrigen dielektrischen Verluste von in der Regel deutlich unter 1 % [12] und die Möglichkeit, die intrinsische mechanische Verspannung der ferroelektrischen Schichten einzustellen [11]. Das ferroelektrische Material sowie seine Integration, und damit das MEMS-Bauteil, ist CMOS-kompatibel.
  • Fig. 11a zeigt ein Diagramm, in dem die elektrische Polarisation über dem elektrischen Feld (P-E Loop), gemessen am ferroelektrischen Al0,57Sc0,43N und PZT 52/48, gemäß einem Beispiel dargestellt wird. Auf der Ordinate wird die Polarisation dargestellt und auf der Abszisse das elektrische Feld. Ein erster P-E Loop 600 stellt die Abhängigkeit der Polarisation vom elektrischen Feld für das ferroelektrische Material Al0,57Sc0,43N dar und ein zweiter P-E Loop 610 stellt die Abhängigkeit der elektrischen Polarisation von einem elektrischen Feld für PZT 52/48 dar. Das ferroelektrische Material Al0,57Sc0,43N ist ein Beispiel für das ferroelektrische Material bestehend aus einem Mischkristall, der AIN und mindestens ein Nitrid eines Übergangsmetalls umfasst, wobei das Übergangsmetall in diesem Fall Scandium ist.
  • Am Beispiel von Al1-xScxN (Mischkristall aus AIN und dem Nitrid des Übergangsmetalls ScN, ein Beispiel für das ferroelektrische Material) wurde entdeckt, dass aus AIN und den Nitriden von Übergangsmetallen bestehende Mischkristalle unter bestimmten Bedingungen ferroelektrisch sind. Ferroelektrizität tritt dann ein, wenn mithilfe eines externen elektrischen Feldes die Energiebarriere zwischen zwei Polarisationszuständen eines Materials überwunden werden kann, ohne zuvor die Durchbruchfeldstärke des Materials (des ferroelektrischen Materials) zu überschreiten. Die gemessene Durchbruchfeldstärke für reines AIN variiert in der Literatur stark, mit Werten zwischen 50 V/µm und 600 V/µm. Untersuchungen ergaben, dass elektrische Durchbrüche bei Feldstärken > 400 V/µm einsetzen. Die Feldstärke, bei der eine räumliche Änderung der Polarisation eintritt, kann durch die Koerzitivfeldstärke Ec eines P-E Loops bestimmt werden. P-E Loops stellen die Polarisation P des Materials in Abhängigkeit eines anregenden elektrischen Feldes E dar.
  • Ob eine räumliche Änderung der Polarisation unterhalb einer Feldstärke von 400 V/µm möglich ist, wird für die betrachteten Materialien (ferroelektrische Materialien) vor allem durch zwei Faktoren bestimmt: zum einen durch das Verhältnis der Anzahl von Al Atomen zur Anzahl an Übergangsmetall-Atomen (siehe Fig. 11c) und zum anderen ist von Bedeutung, inwieweit die ferroelektrische Schicht unter Druck- bzw. Zugspannung steht (siehe Fig. 11b).
  • In Fig. 11b wird der mittlere Betrag des gemessenen Koerzitivfeldes Ec über der mechanischen Verspannung einer Al0,73Sc0,27N Schicht gemäß einem Ausführungsbeispiel der vorliegenden Erfindung dargestellt. Die Ordinate des Diagramms stellt den mittleren Betrag des gemessenen Koerzitivfeldes dar ((Ee,+-Ec,-)/2) und auf der Abszisse wird die mechanische Spannung dargestellt. Für unter starker Zugspannung stehende Schichten (des ferroelektrischen Materials) würde sich der notwendige Sc Anteil (der Anteil des Übergangsmetalls) verringern, im Falle von Druckspannung vergrößern. Die Methode zum Einstellen des Sc Gehalts, der mechanischen Verspannung sowie die Herstellung der Schichten allgemein wurde von den Autoren in [11, 12] beschrieben. Das ferroelektrische Material Al0,73Sc0,27N ist ein Beispiel für ein ferroelektrisches Material mit einem Mischkristall, der AIN und mindestens ein Nitrid eines Übergangsmetalls umfasst.
  • Fig. 11c stellt in einem Diagramm den mittleren Betrag des gemessenen Koerzitivfeldes über dem Sc Gehalt der AIScN-Schicht gemäß einem Ausführungsbeispiel der vorliegenden Erfindung dar. Auf der Ordinate wird der mittlere Betrag des gemessenen Koerzitivfeldes ((Ec,+-Ec,-)/2) dargestellt und auf der Abszisse wird x in Al1-xScxN dargestellt. Die mechanische Verspannung der ferroelektrischen Schichten liegt jeweils innerhalb des Intervalls [0 200 MPa] (das Intervall kann aber auch von -1000 MPa bis 600 MPa gehen, von -400 MPa bis +400 MPa, oder von -200 MPa bis 200 MPa) und ist damit vergleichbar.
  • Messungen an Al1-xScxN in diesem Zusammenhang ergaben, dass ferroelektrisches Schalten der Polarisation beispielsweise ab einem Sc Gehalt von etwa x = 0,27 möglich wird, unter der Voraussetzung, dass die mechanische Verspannung der Schichten (der ferroelektrischen Schichten) nahe dem Übergang von Zug- auf Druckspannung liegt. Für unter stärkerer Zugspannung stehende ferroelektrische Schichten würde sich der notwendige Sc Anteil analog zu Fig. 11b verringern, im Fall von Druckspannung vergrößern. Für eine Al0,73Sc0,27N Schicht sollte die mechanische Spannung zum Beispiel in einem Intervall von -300 MPa bis 2000 MPa liegen, oder von -200 MPa bis 1000 MPa, wobei negative Werte einer Druckspannung entsprechen und positive Werte einer Zugspannung. Für Al0,64Sc0,36N könnte aufgrund des Zusammenhangs in Fig. 11c mehr Druckspannung zugelassen werden, z. B. also mechanische Spannungen in einem Intervall von -600 MPa bis 2000 MPa oder von -500 MPa bis 1000 MPa.
  • Fig 12 zeigt ein Diagramm, in dem die senkrecht zum Substrat wirkende piezoelektrische Kraft bei einer Elektrodenfläche von 1 mm2 für ferroelektrisches Al0,57Sc0,43N (Beispiel für ein ferroelektrisches Material) und PZT (Beispiel für ein ferroelektrisches Material nach dem Stand der Technik, welches nicht CMOS kompatibel und stark nicht-linear ist sowie darüber hinaus eine geringe Durchbruchsspannung hat) im Vergleich gemäß einem Ausführungsbeispiel der vorliegenden Erfindung dargestellt wird. Auf der Ordinate ist die Kraft aufgetragen und auf der Abszisse das elektrische Feld. Die ferroelektrische Kraft wurde aus der per Laserdoppelstrahl-Interferometrie gemessenen Dehnung der Schichten berechnet. Eine erste Kurve 620 stellt das Kraftverhalten gegenüber dem elektrischen Feld des ferroelektrischen AlScN dar und eine zweite Kurve 630 stellt die Abhängigkeit der Kraft vom elektrischen Feld für das Material PZT dar.
  • Eine weitere herausragende Eigenschaft des ferroelektrischen Materials ist ein sehr großer Bereich, in welchem die aus einem angelegten elektrischen Feld resultierende Kraft linear zu diesem Feld ist (siehe die erste Kurve 620 aus Fig. 12). Als Folge dessen ist ein linearer, bipolarer Antrieb mit hohen Feldstärken von > 50 V/µm möglich. Das ferroelektrische Material hat einen großen Bereich, in dem der Zusammenhang zwischen elektrischem Feld und resultierender Kraft linear ist (Gleiches gilt damit für auf dem Material basierende n-Lagenaktuatoren). Damit ist ein Betrieb mit bipolaren elektrischen Spannungen in dem sehr breiten Bereich zwischen den Koerzitivfeldern Ec- und Ec+ möglich.
  • Fig. 13a und Fig. 13c zeigen eine schematische Darstellung einer Einheitszelle eines Wurtzits am Beispiel von Al1-xScxN und Fig. 13b zeigt eine schematische Darstellung einer Einheitszelle einer hexagonalen Struktur am Beispiel von Al1-xScxN gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die elektrische Polarisation P 640 ist dabei parallel zur c-Achse (optische Achse) des Kristalls angeordnet. Je nach der relativen Lage der Metall- 650 und Stickstoff 652-Ebenen zueinander ändert sich das Vorzeichen der Polarisation 640. In Figur 13a hat die Einheitszelle eine negative Polarisation 640, in Fig. 13b sind beide Ebenen (Metall- 650 und Stickstoff 652-Ebene) deckungsgleich (hexagonale Struktur), wodurch die elektrische Polarisation verschwindet und in Fig. 13c ist die Polarisation 640 positiv.
  • Die Ursache für das entdeckte ferroelektrische Verhalten kann anhand publizierter theoretischer Berechnungen nachvollzogen werden [19]: Infolge eines steigenden Anteils, etwa von Sc in Al1-xScxN, nähert sich die Wurtzit Kristallstruktur des AINs energetisch einer hexagonalen Phase, d. h. einer Struktur, in welcher Metall- und Stickstoffatome in einer Ebene angeordnet sind (siehe Fig. 13b). Diese Struktur kann als Übergangsstruktur zwischen den beiden möglichen Polarisationsrichtungen (siehe Fig. 13a und Fig. 13c) der Wurtzit Struktur dienen.
  • Voraussetzung dafür ist, dass durch Wahl eines entsprechenden Übergangsmetall-Anteils sowie einer entsprechenden mechanischen Verspannung des Materials die beiden Kristallstrukturen energetisch hinreichend nahe beinander liegen, um mittels eines elektrischen Feldes entgegen der Polarisationsrichtung das Energiemaximum der hexagonalen Struktur zu überwinden. Es erfolgt daraufhin ein unmittelbares Schalten der Polarisation in Feldrichtung. Dieser Schaltvorgang ist durch Umkehr des elektrischen Feldes reversibel. Das Material ist damit ferroelektrisch.
  • Dieser Mechanismus wurde zuvor lediglich für GaScN theoretisch berechnet [19]. Es ist jedoch sehr wahrscheinlich, dass derselbe Effekt auch bei den untersuchten AINbasierten Mischkristallen für das ferroelektrische Verhalten verantwortlich ist. Neben Mischkristallen aus AIN und ScN sind ebenfalls Zusammensetzungen mit den Nitriden anderer Übergangsmetallelemente denkbar, wie YN, TiN, NbN oder CrN bzw. Mischungen dieser.
  • Ferroelektrische Materialien zeichnen sich durch eine räumlich drehbare elektrische Polarisation P aus, deren Richtung durch ein externes elektrisches Feld E bestimmt werden kann. Je nach Ausrichtung der Polarisation gegenüber dem wirkenden elektrischen Feld geht zudem eine Ausdehnung oder Kontraktion des Materials einher (piezoelektrischer Effekt). Dieser Effekt lässt sich in der Aktuatorik einsetzen. In der Mikrosystemtechnik wird dazu beispielsweise ein Plattenkondensator mit ferroelektrischem Dielektrikum auf einer passiven Schicht abgeschieden und strukturiert (siehe Fig. 14a).
  • Fig. 14a zeigt ein Substrat 700, auf das eine passive Schicht 710 mit einer ersten Elektrode 720 aufgebracht ist gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Auf die erste Elektrode 720 ist eine ferroelektrische Schicht 730 mit einer zweiten Elektrode 722 angeordnet. Die Schicht 730 hat eine Polarität 740. Dieser Aufbau kann auch mit dem hierin beschriebenen ferroelektrischen Material in der ferroelektrischen Schicht 730 realisiert werden.
  • In anderen Worten zeigt Fig. 14a eine Skizze eines piezoelektrischen Aktuators bestehend aus einem Parallel-Plattenkondensator mit ferroelektrischem Dielektrikum (ferroelektrische Schicht 730) auf einer passiven Schicht 710. Die passive Schicht 710 kann etwa die Membran eines Ultraschallwandlers oder die eines Lautsprechers sein.
  • Fig. 14b und Fig. 14c zeigen ebenfalls ein Beispiel für den Einsatz einer ferroelektrischen Schicht als Aktuator gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Dabei wird der gleiche Aufbau wie aus Fig. 14a (Substrat 700, passive Schicht 710, erste Elektrode 720, ferroelektrische Schicht 730 und zweite Elektrode 722) verwendet. Sowohl die ferroelektrische Schicht 730 aus Fig. 14b als auch die ferroelektrische Schicht 730 aus Fig. 14c weisen eine positive Polarität 740 auf. In Fig. 14b werden allerdings an die erste Elektrode 720 und an die zweite Elektrode 722 andere Spannungen angelegt als bei der ersten Elektrode 720 und der zweiten Elektrode 722 von Fig. 14c, wodurch in Fig. 14b ein anderes elektrisches Feld 750 mit einer elektrischen Feldrichtung 752 entsteht, als in Fig. 14c das elektrische Feld 750 mit der elektrischen Feldrichtung 752.
  • In Fig. 14b ist die Polarität 740 der ferroelektrischen Schicht 730 der elektrischen Feldrichtung 752 gleichgerichtet, wodurch das ferroelektrische Material 730 eine Stauchung 760 erfährt.
  • In Fig. 14c ist die Polarität 740 der ferroelektrischen Schicht 730 der elektrischen Feldrichtung 752 gegengerichtet, wodurch die ferroelektrische Schicht 730 eine Dehnung 762 erfährt.
  • Als Folge der Querkontraktion (Stauchung) bzw. Expansion (Dehnung) des ferroelektrischen Materials bei angelegter Spannung U wird hierbei, je nach Polarisationsrichtung 740, eine Druck- oder Zugspannung innerhalb des Substrats 700 erzeugt und dieses damit verformt (siehe Fig. 14b und Fig. 14c). Die der Verformung zugrundeliegende mechanische Kraft ist durch die piezoelektrischen Koeffizienten des Materials (des ferroelektrischen Materials), dessen Polarisationsrichtung 740 sowie durch die zur Verfügung stehende elektrische Spannung gegeben [1].
  • Fig. 14b und Fig. 14c zeigen Beispiele für den Einsatz einer ferroelektrischen Schicht als Aktuator gemäß dem Stand der Technik, der ebenfalls für das hierin beschriebene ferroelektrische Material angewendet werden kann. In anderen Worten wird in Fig. 14b und Fig. 14c beschrieben, dass infolge eines externen elektrischen Feldes 750 sich die ferroelektrische Schicht 730 verformt. Je nach Ausrichtung des elektrischen Feldes 750 (elektrische Feldrichtung 752) zur Materialpolarisation, kommt es entweder zu einer Dehnung (siehe Fig. 14c, Dehnung 762) oder einer Stauchung (siehe Fig. 14b, Stauchung 760) der aktiven Schicht (der ferroelektrischen Schicht 730), welche als Folge die passive Schicht 710 staucht oder dehnt, da beide mechanisch gekoppelt sind. Die ferroelektrische Schicht 730 ist mit der passiven Schicht 710 gekoppelt.
  • Eine Möglichkeit die Kraft für eine feste elektrische Spannung zu steigern, besteht in der Verwendung eines Mehrlagensystems. Bei der Verwendung von n-Lagen ferroelektrischen Materials mit betragsweise identischen ferroelektrischen Koeffizienten, über denen jeweils die verfügbare elektrische Spannung angelegt ist, lässt sich die resultierende Kraft um bis zu den Faktor n steigern [2].
  • In Fig. 15a und Fig. 15b ist ein ferroelektrisches Mehrlagensystem abgebildet gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das ferroelektrische Mehrlagensystem umfasst ein Substrat 700, eine passive Schicht 710, eine erste Elektrode 720, eine zweite Elektrode 722, eine dritte Elektrode 724, eine erste ferroelektrische Schicht 730 und eine zweite ferroelektrische Schicht 732.
  • In Fig. 15a ist in der ersten ferroelektrischen Schicht 730 die Polarisation 740 der elektrischen Feldrichtung 752 gleichgerichtet, wodurch die erste ferroelektrische Schicht 730 eine Stauchung 760 erfährt und in der zweiten ferroelektrischen Schicht 732 ist die Polarisation 740 der elektrischen Feldrichtung 752 entgegengerichtet, wodurch die zweite ferroelektrische Schicht 732 eine Dehnung 762 erfährt. Somit hebt sich die Dehnung 762 der zweiten ferroelektrischen Schicht 732 mit der Stauchung 760 der ersten ferroelektrischen Schicht 730 so auf, dass es zu keiner Veränderung der passiven Schicht 710 kommt. Fig. 15a illustriert damit die Notwendigkeit einer Polarisationskontrolle der ferroelektrischen Schichten in der dargestellten Ausführung.
  • In Fig. 15b ist sowohl die Polarisation 740 der ersten ferroelektrischen Schicht 730 der elektrischen Feldrichtung 752 gleichgerichtet als auch die Polarisation 740 der zweiten ferroelektrischen Schicht 732 der elektrischen Feldrichtung 752. Somit erfährt sowohl die erste ferroelektrische Schicht 730 als auch die zweite ferroelektrische Schicht 732 eine Stauchung 760.
  • In anderen Worten zeigen Fig. 15a und Fig. 15b ein Schema eines einfachen piezoelektrischen Doppellagenaktuators, bestehend aus zwei Plattenkondensatoren mit einer gemeinsamen Elektrode 722. Es wird angenommen, dass die neutrale Ebene innerhalb der passiven Schicht 710 liegt.
  • In Fig. 15a weisen beide ferroelektrischen Schichten eine identische Polarisationsrichtung 740 auf. Als Folge der wirkenden Kräfte F (Stauchung 760 und Dehnung 762) sollte sich die obere Schicht (die zweite ferroelektrische Schicht 732) dehnen und die untere Schicht (die erste ferroelektrische Schicht 730) stauchen. In Summe heben sich die beiden Effekte (Stauchen 760 und Dehnen 762) weitgehend auf, es wird keine Bewegung induziert.
  • In Fig. 15b sind die beiden ferroelektrischen Schichten (die erste ferroelektrische Schicht 730 und die zweite ferroelektrische Schicht 732) entgegengesetzt polarisiert 740. Damit werden beide infolge des externen elektrischen Feldes gestaucht. Die gleiche elektrische Spannung vorausgesetzt, wirkt damit die doppelte Kraft einer Einzellage auf die passive Schicht.
  • Die beiden Ausführungsformen eines Doppellagenaktuators wie in Fig. 15a und Fig. 15b gezeigt, sind zwar aus dem Stand der Technik bekannt, aber können auch auf die hierin beschriebene Erfindung angewendet werden. So kann beispielsweise die erste ferroelektrische Schicht 730 sowie die zweite ferroelektrische Schicht 732 aus Fig. 15a sowie aus Fig. 15b das ferroelektrische Material umfassen.
  • Fig. 16 zeigt eine mögliche Umsetzung eines ferroelektrischen Mehrlagen-Aktuators gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Der Mehrlagen-Aktuator 800 hat eine passive Schicht 710, ferroelektrische Schichten 730j bis 730n, Elektroden 720j-1 bis 720n+1 und eine Spannungsversorgung 770.
  • Fig. 16 zeigt eine mögliche Schichtabfolge eines ferroelektrischen Mehrlagen-Aktuators mit alternierend ausgerichteter Polarisation 780j bis 780n (n bis j ferroelektrische Lagen, j<0, n>0). Im Falle von Ferroelektrika sind nach Anlegen eines ausreichend großen elektrischen Feldes alle aktiven Polarisationsdomänen (Polarisation 780j bis 780n) entlang des angelegten elektrischen Feldes ausgerichtet. Gezeigt ist eine Realisierung mit aktiven ferroelektrischen Lagen 730j bis 730n auf beiden Seiten einer passiven Schicht 710. Allgemein kann auf die passive Schicht 710 auch verzichtet werden oder diese nur einseitig beschichtet werden (das heißt z. B. j = 0). In jedem Fall muss die wirkende Kraft von ferroelektrischen Schichten 730j bis 730n oberhalb der neutralen Ebene (liegt innerhalb der passive Schicht 710) vom Vorzeichen her entgegengesetzt zu darunterliegenden Schichten wirken, um eine mögliche Kompensation der jeweiligen Kräfte zu vermeiden. Ein Beispiel für ein klassisches Ferroelektrika, das in dieser Ausführungsform genutzt werden kann, ist z. B. PZT. Die in Fig. 16 beschriebene Ausführungsform eines Mehrlagen-Aktuators 800 kann auch für das hierin beschriebene ferroelektrische Material (bestehend aus einem Mischkristall, der AIN und mindestens ein Nitrid eines Übergangsmetalls umfasst) realisiert werden, indem mindestens eine der ferroelektrischen Schichten 730j bis 730n das ferroelektrische Material umfasst.
  • Ferroelektrika, wie etwa Al1-xScxN, lassen sich wie in Abbildung 16 skizziert, ohne zusätzliche Isolationsschichten zu effektiven Multilagen-Aktuatoren zusammenfügen, da dieser Materialklasse eine Ausrichtung seiner elektrischen Polarisation entlang der Feldrichtung externer elektrischer Felder inhärent ist. Gemäß der in Abbildung 16 dargestellten elektrischen Kontaktierung der einzelnen Elektroden 720j-1 bis 720n+1 tragen somit sämtliche ferroelektrischen Lagen 730j bis 730n mit dem idealen Vorzeichen zur Gesamtkraft bei. Neben der Möglichkeit, beide Seiten einer passiven Schicht 710 mit aktiven ferroelektrischen Schichten 730j bis 730n zu versehen, kann es der Einfachheit halber von Vorteil sein, diese nur einseitig zu beschichten (j = 0) oder die Struktur ausschließlich aus einer ferroelektrischen Multilage nebst Elektroden 720j-1 bis 720n+1 zu konstruieren, d. h. ohne passive Schicht 710. In jedem Fall muss für die Wahl einer geeigneten Polarisation 780j bis 780n die Lage der neutralen Ebene beachtet werden. Schichten oberhalb dieser Ebene müssen ihre Kraft jeweils mit dem entgegengesetzten Vorzeichen einkoppeln, wie darunterliegende.
  • Fig. 17 zeigt eine Umsetzung einer möglichen Schichtabfolge eines piezoelektrischen Mehrlagen-Aktuators 800 mittels elektrisch isolierten Einzellagen gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Der Mehrlagen-Aktuator 800 hat eine passive Schicht 710, piezoelektrische Schichten 7301 bis 730n, Elektroden 7201 bis 7202n, Isolatoren 7901 bis 790n-1 und eine Spannungsversorgung 770. Die Isolation mit dem Isolator 7901 bis 790n-1 erlaubt den effizienten Einsatz von nicht ferroelektrischen Pyroelektrika (wie z. B. AIN), deren Polarisation 7801 bis 780n jeweils in dieselbe Richtung zeigt. Der Einfachheit halber ist nur der Fall mit einer einseitig beschichteten passiven Schicht 710 dargestellt. Prinzipiell lassen sich alle diskutierten Prinzipien (beidseitig beschichtete passive Schicht, ohne passive Schicht) mit zusätzlichen Isolatoren 7901 bis 790n-1 realisieren.
  • Da die Polarisation 7801 bis 780n von nicht ferroelektrischen Pyroelektrika, wie z. B. AIN, nicht nachträglich geändert werden kann, wird diese allein während der Herstellung des Materials definiert. In mittels ein und desselben Prozesses hergestellten Mehrlagensystemen zeigt die Polarisation aller Schichten (aller piezoelektrischer Schichten 7301 bis 730n) somit in die gleiche Richtung, idealerweise senkrecht zum Substrat (zur passiven Schicht 710). Um einen effektiven Antrieb zu gewährleisten, muss daher auch das anregende elektrische Feld für alle Einzellagen in dieselbe Richtung zeigen. Daher ist es notwendig, die einzelnen Kondensatorstrukturen der Multilagen elektrisch zu trennen (siehe Fig. 17). Auch wenn der Mehrlagen-Aktuator 800 aus Fig. 17, wie bekannt aus dem Stand der Technik, Nachteile gegenüber dem Einsatz von Ferroelektrika besitzt (wie z. B. die Notwendigkeit mindestens zweier zusätzlicher Schichten, nämlich die eines Isolators und einer weiteren Elektrode pro ferroelektrischer Schicht), kann der Mehrlagen-Aktuator 800 trotzdem auch ein Ausführungsbeispiel der hierin beschriebenen Erfindung sein. Dies wird bewerkstelligt, indem die mindestens eine der piezoelektrischen Schichten 7301 bis 730n das ferroelektrische Material umfasst.
  • Fig. 18 zeigt eine Umsetzung einer möglichen Schichtabfolge eines piezoelektrischen Bimorphs 900 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das Bimorph 900 hat eine passive Schicht 710, eine erste piezoelektrische Schicht 730, eine zweite piezoelektrische Schicht 732, eine erste Elektrode 720, eine zweite Elektrode 722, eine dritte Elektrode 724, eine vierte Elektrode 726 und eine Spannungsversorgung 770. Die passive Schicht 710 ist optional. Die Anzahl der piezoelektrischen Schichten ist auf n = 2 begrenzt und sowohl die erste piezoelektrische Schicht 730 weist eine Polarität 740a auf als auch die zweite piezoelektrische Schicht 732 weist eine Polarität 740b auf. Diese Schichtabfolge eines piezoelektrischen Bimorphs wird z. B. gemäß dem Stand der Technik bereits für AIN verwendet. Es ist aber auch möglich, dass das ferroelektrische Material, wie hierin beschrieben, verwendet wird. Somit kann das Bimorph 900 aus Fig. 18 auch ein Ausführungsbeispiel gemäß der hierin beschriebenen Erfindung sein, indem zumindest eine der beiden piezoelektrischen Schichten (die erste piezoelektrischen Schicht 730 und/oder die zweite piezoelektrische Schicht 732) das ferroelektrische Material umfassen, das einen Mischkristall hat, der AIN und mindestens ein Nitrid eines Übergangsmetalls umfasst.
  • Obwohl manche Aspekte im Zusammenhang mit einer Vorrichtung beschrieben wurden, versteht es sich, dass diese Aspekte auch eine Beschreibung des entsprechenden Verfahrens darstellen, sodass ein Block oder ein Bauelement einer Vorrichtung auch als ein entsprechender Verfahrensschritt oder als ein Merkmal eines Verfahrensschrittes zu verstehen ist. Analog dazu stellen Aspekte, die im Zusammenhang mit einem oder als ein Verfahrensschritt beschrieben wurden, auch eine Beschreibung eines entsprechenden Blocks oder Details oder Merkmals einer entsprechenden Vorrichtung dar.
  • Referenzen

Claims (15)

  1. Ferroelektrisches Material (100); mit
    einem Mischkristall (110), der AIN (120) und mindestens ein Nitrid eines Übergangsmetalls (130) umfasst;
    wobei der Anteil des Nitrids des Übergangsmetalls (130) so gewählt ist, dass eine Richtung einer anfänglichen oder spontanen Polarität (140, 142, 260, 640, 740, 740a, 740b, 780) des ferroelektrischen Materials (100) durch Anlegen einer Umschaltspannung (150) umschaltbar ist, wobei die Umschaltspannung (150) unterhalb einer Durchbruchspannung des ferroelektrischen Materials (100) liegt,
    wobei das Verhältnis zwischen einer Anzahl an Übergangsmetall-Atomen zu einer Summe aus der Anzahl an Übergangsmetall-Atomen und einer Anzahl an Aluminium Atomen in einem Bereich größer oder gleich 0,3 und kleiner oder gleich 0,36 liegt.
  2. Ferroelektrisches Material (100) nach Anspruch 1, wobei das ferroelektrische Material (100) eine mechanische Spannung aufweist, die zwischen einem ersten Wert einer Druckspannung und einem zweiten Wert einer Zugspannung liegt, wobei ein Absolutwert des ersten Wertes niedriger ist als ein Absolutwert des zweiten Wertes.
  3. Ferroelektrisches Material (100) nach einem der Ansprüche 1 bis 2, wobei die Richtung der Polarität (140, 142, 260, 640, 740, 740a, 740b, 780) des ferroelektrischen Materials (100) nach einem Entfernen der angelegten Umschaltspannung (150) erhalten bleibt.
  4. Verfahren, mit folgenden Schritten:
    Bereitstellen eines Mischkristalls (110) mit einer anfänglichen oder spontanen Polarität, wobei der Mischkristall (110) AIN (120) und mindestens ein Nitrid eines Übergangsmetalls (130) umfasst,
    wobei der Anteil des Nitrids des Übergangsmetalls (130) so gewählt ist, dass eine Richtung der anfänglichen oder spontanen Polarität (140, 142, 260, 640, 740, 740a, 740b, 780) des ferroelektrischen Materials (100) durch Anlegen einer Umschaltspannung (150) umschaltbar ist, wobei die Umschaltspannung (150) unterhalb einer Durchbruchspannung des ferroelektrischen Materials (100) liegt; und
    Anlegen einer Umschaltspannung (150) an den Mischkristall, so dass die Richtung der anfänglichen oder spontanen Polarität (140, 142, 260, 640, 740, 740a, 740b, 780) des Mischkristalls (110) umgekehrt wird.
  5. Verfahren nach Anspruch 4, wobei
    das Bereitstellen folgendes umfasst: Bereitstellen eines MEMS-Bauteils (200) mit zumindest einer ferroelektrischen Schicht (210), die den Mischkristall umfasst, und mit zumindest zwei Elektroden (230, 232), zwischen denen die ferroelektrische Schicht (210) angeordnet ist, und
    das Anlegen der Umschaltspannung (150) an den Mischkristall ein Anlegen der Umschaltspannung an die Elektroden umfasst.
  6. MEMS-Bauteil (200) mit einem ferroelektrischen Material (100) nach einem der Ansprüche 1 bis 3.
  7. MEMS-Bauteil (200) nach Anspruch 6, mit
    einer ersten ferroelektrischen Schicht (210, 730), die das ferroelektrische Material (100) umfasst,
    einer ersten Elektrode (230, 722), die auf einer ersten Oberfläche (220) der ersten ferroelektrischen Schicht (210, 730) angeordnet ist, und
    einer zweiten Elektrode (232, 720), die auf einer zweiten Oberfläche (221) der ersten ferroelektrischen Schicht (210, 730) angeordnet ist, wobei die zweite Oberfläche (221) der ersten Oberfläche (220) gegenüber liegt; und
    zum Beispiel einer passiven Schicht (231c, 240, 710), die an der zweiten Elektrode (232, 720) angeordnet ist.
  8. MEMS-Bauteil (200) nach Anspruch 7, mit
    einer zweiten ferroelektrischen Schicht (212, 732), die das ferroelektrische Material (100) umfasst und die auf der ersten Elektrode (230, 722), gegenüber der ersten ferroelektrischen Schicht (210, 730), angeordnet ist, und
    einer dritten Elektrode (234), die auf einer ersten Oberfläche (222) der zweiten ferroelektrischen Schicht (212, 732) angeordnet ist, wobei die erste Oberfläche (222) der zweiten ferroelektrischen Schicht (212, 732) der ersten Elektrode (230, 722) abgewandt angeordnet ist,
    wobei die Polarität der ersten ferroelektrischen Schicht 210 in entgegengesetzte Richtung als die Polarität der zweiten ferroelektrischen Schicht 212 zeigt.
  9. MEMS-Bauteil (200) nach Anspruch 8, wobei die erste Elektrode (230, 722) eine erste Elektrodenschicht (231a, 724) und eine zweite Elektrodenschicht (231b, 722) aufweist, und
    wobei zwischen der ersten (231a, 724) und der zweiten Elektrodenschicht (231b, 722) eine Isolationsschicht (231c, 240, 710) angeordnet ist, in der eine neutrale Ebene liegt; oder
    wobei die erste Elektrode (230, 722) eine erste Elektrodenschicht (231a, 724) und eine zweite Elektrodenschicht (231b, 722)aufweist, und
    wobei zwischen der ersten (231a, 724) und der zweiten Elektrodenschicht (231b, 722) eine passive Schicht (231c, 240, 710) angeordnet ist, in der eine neutrale Ebene liegt.
  10. MEMS-Bauteil (200) nach Anspruch 8 oder Anspruch 9, mit
    einer dritten ferroelektrischen Schicht (214), die auf der dritten Elektrode (234), gegenüber der zweiten ferroelektrischen Schicht (212, 732), angeordnet ist,
    einer vierten Elektrode (236), die auf einer ersten Oberfläche (223) der dritten ferroelektrischen Schicht (214) angeordnet ist, wobei die erste Oberfläche (223) der dritten ferroelektrischen Schicht (214) der dritten Elektrode (234) abgewandt angeordnet ist,
    einer vierten ferroelektrischen Schicht (216), die auf der zweiten Elektrode (232, 720), gegenüber der ersten ferroelektrischen Schicht (210, 730), angeordnet ist, und
    einer fünften Elektrode (238), die auf einer ersten Oberfläche (224) der vierten ferroelektrischen Schicht (216) der zweiten Elektrode (232, 720) abgewandt angeordnet ist.
  11. MEMS-Bauteil (200) nach einem der Ansprüche 6 bis 10, wobei das MEMS-Bauteil (200) einen Mehrlagen-MEMS Aktuator, einen Mehrlagen-MEMS Sensor oder einen Mehrlagen-MEMS Generator umfasst, und
    wobei das MEMS-Bauteil eine Schichtabfolge mit alternierend ausgerichteter Polarisation aufweist.
  12. MEMS-Vorrichtung (300), mit
    einem Substrat (310), und
    einem ersten MEMS-Bauteil (200) nach einem der Ansprüche 7 bis 11, wobei die passive Schicht (231c, 240, 710) des MEMS-Bauteils (200) an dem Substrat (310) auslenkbar angeordnet ist.
  13. MEMS-Vorrichtung (300) nach Anspruch 12, mit
    einem zweiten MEMS-Bauteil (200) nach einem der Ansprüche 7 bis 11, wobei die erste und die zweite passive Schicht (231c, 240, 710) eine Gemeinschaft sind und die Elektroden und die ferroelektrischen Schichten des ersten und des zweiten MEMS-Bauteils (200) parallel angeordnet sind.
  14. Verfahren zur Herstellung eines MEMS-Bauteils (200), mit folgenden Schritten:
    Stapeln einer ersten Elektrode (232, 720), einer ersten ferroelektrischen Schicht (210, 730), einer zweiten Elektrode (230, 722), einer zweiten piezoelektrischen Schicht (212, 732) und einer dritten Elektrode (234) in dieser Reihenfolge, wobei die erste ferroelektrische Schicht (210, 730) und die zweite piezoelektrische Schicht (212, 732) die gleiche Polarisationsrichtung (140, 142, 260, 640, 740, 740a, 740b, 780) aufweisen und wobei zumindest die erste ferroelektrische Schicht (210, 730) ferroelektrisches Material (100) mit
    einem Mischkristall (110), der AIN (120) und mindestens ein Nitrid eines Übergangsmetalls (130) umfasst, umfassen;
    wobei der Anteil des Nitrids des Übergangsmetalls (130) so gewählt ist, dass eine Richtung einer Polarität (140, 142, 260, 640, 740, 740a, 740b, 780) des ferroelektrischen Materials (100) durch Anlegen einer Umschaltspannung (150) umschaltbar ist, wobei die Umschaltspannung (150) unterhalb einer Durchbruchspannung des ferroelektrischen Materials (100) liegt; und
    wobei das Verfahren ferner folgenden Schritt aufweist:
    Anlegen einer Umschaltspannung (150) an die erste Elektrode (232, 720) und an die zweite Elektrode (230, 722), wobei die Polarisationsrichtung (140, 142, 260, 640, 740, 740a, 740b, 780) der ersten ferroelektrischen Schicht (210, 730) umgekehrt wird, so dass die Polarisationsrichtung (140, 142, 260, 640, 740, 740a, 740b, 780) der ersten ferroelektrischen Schicht (210, 730) umgekehrt wird.
  15. Verfahren nach Anspruch 14,
    bei dem die erste Elektrode (232, 720), die erste ferroelektrische Schicht (210, 730), die zweite Elektrode (230, 722), die zweite piezoelektrische Schicht (212, 732) und die dritte Elektrode (234) auf einem Substrat (310) gestapelt werden, und
    wobei das Verfahren ferner folgenden Schritt aufweist:
    Integrieren einer oder mehrerer Schaltungskomponenten einer integrierten Schaltung unter Verwendung eines CMOS-Prozesses in dem Substrat (310) vor oder nach dem Stapeln der ersten Elektrode (232, 720), der ersten ferroelektrischen Schicht (210, 730), der zweiten Elektrode (230, 722), der zweiten piezoelektrischen Schicht (212, 732) und der dritten Elektrode (234) und
    wobei das Substrat zum Beispiel entweder an die erste Elektrode oder die dritte Elektrode anschließt.
EP19711863.1A 2018-03-13 2019-03-13 Ferroelektrisches material, mems-bauteil mit diesem material, mems-vorrichtung, sowie herstellungsverfahren Active EP3766109B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018203812.0A DE102018203812A1 (de) 2018-03-13 2018-03-13 Ferroelektrisches material, mems-bauteil mit einem ferroelektrischen material, mems-vorrichtung mit einem ersten mems-bauteil, verfahren zur herstellung eines mems-bauteils und verfahren zur herstellung eines cmos-kompatiblen mems-bauteils
PCT/EP2019/056275 WO2019175236A1 (de) 2018-03-13 2019-03-13 Ferroelektrisches material, mems-bauteil mit diesem material, mems-vorrichtung, sowie herstellungsverfahren

Publications (2)

Publication Number Publication Date
EP3766109A1 EP3766109A1 (de) 2021-01-20
EP3766109B1 true EP3766109B1 (de) 2023-08-30

Family

ID=65817990

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19711863.1A Active EP3766109B1 (de) 2018-03-13 2019-03-13 Ferroelektrisches material, mems-bauteil mit diesem material, mems-vorrichtung, sowie herstellungsverfahren

Country Status (7)

Country Link
US (2) US11744158B2 (de)
EP (1) EP3766109B1 (de)
JP (1) JP7090753B2 (de)
KR (1) KR102650928B1 (de)
CN (1) CN112088440B (de)
DE (1) DE102018203812A1 (de)
WO (1) WO2019175236A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086982A (ja) * 2019-11-29 2021-06-03 Tdk株式会社 圧電薄膜素子
US11411125B2 (en) * 2020-10-06 2022-08-09 Applied Materials, Inc. Ferroelectric-assisted tunneling selector device
CN113286222B (zh) * 2021-07-26 2021-10-01 成都纤声科技有限公司 Mems芯片、耳机和电子设备
WO2023039570A1 (en) * 2021-09-10 2023-03-16 Akoustis, Inc. Methods of forming piezoelectric layers having alternating polarizations and related bulk acoustic wave filter devices
JP2024052272A (ja) * 2022-09-30 2024-04-11 富士フイルム株式会社 圧電素子及びアクチュエータ
JP2024052270A (ja) * 2022-09-30 2024-04-11 富士フイルム株式会社 圧電素子及びアクチュエータ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644184A (en) 1996-02-15 1997-07-01 Thermodyne, Inc. Piezo-pyroelectric energy converter and method
WO2002045181A1 (en) 2000-11-28 2002-06-06 Sae Magnetics (H.K.) Ltd. Head gimbal assembly with piezoelectric microactuator
ES2398525T3 (es) 2003-09-03 2013-03-19 Sri International Transductores de polímero electroactivo para la deformación de superficies
DE102008025691B4 (de) * 2007-05-31 2011-08-25 National Institute Of Advanced Industrial Science And Technology Piezoelektrischer Dünnfilm, piezoelektrisches Material und Herstellungsverfahren für piezoelektrischen Dünnfilm
JP5190841B2 (ja) * 2007-05-31 2013-04-24 独立行政法人産業技術総合研究所 圧電体薄膜、圧電体およびそれらの製造方法、ならびに当該圧電体薄膜を用いた圧電体共振子、アクチュエータ素子および物理センサー
EP2304758A1 (de) 2008-06-19 2011-04-06 Nxp B.V. Piezoelektrischer bimorph-schalter
JP5394451B2 (ja) * 2011-07-26 2014-01-22 株式会社アドバンテスト アクチュエータの製造方法、スイッチ装置、伝送路切替装置、および試験装置
JP5815329B2 (ja) * 2011-08-22 2015-11-17 太陽誘電株式会社 弾性波デバイス
JP5843198B2 (ja) * 2012-01-23 2016-01-13 国立研究開発法人産業技術総合研究所 圧電素子およびその製造方法、ならびに圧電センサ
DE102013114826A1 (de) * 2013-12-23 2015-06-25 USound GmbH Mikro-elektromechanischer Schallwandler mit schallenergiereflektierender Zwischenschicht
US9656859B2 (en) * 2015-04-16 2017-05-23 The United States Of America, As Represented By The Secretary Of The Navy Method for fabricating suspended MEMS structures
DE102015213714B4 (de) * 2015-07-21 2020-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanisches Bauteil und Verfahren zur Herstellung eines piezoelektrischen mikromechanischen Bauteils
JP6644501B2 (ja) * 2015-09-02 2020-02-12 大日本印刷株式会社 発電デバイス及び発電方法
DE102015116640A1 (de) * 2015-10-01 2017-04-06 USound GmbH MEMS-Leiterplattenmodul mit integrierter piezoelektrischer Struktur sowie Schallwandleranordnung
US10669152B2 (en) * 2015-10-14 2020-06-02 Agency For Science, Technology And Research Device arrangement
US20170263847A1 (en) * 2016-03-09 2017-09-14 Teledyne Dalsa Semiconductor, Inc. Piezoelectric Alloy Films
JP6819002B2 (ja) 2016-08-10 2021-01-27 新日本無線株式会社 圧電素子

Also Published As

Publication number Publication date
US20230354713A1 (en) 2023-11-02
US11744158B2 (en) 2023-08-29
DE102018203812A1 (de) 2019-09-19
KR20200135392A (ko) 2020-12-02
JP7090753B2 (ja) 2022-06-24
US20200411747A1 (en) 2020-12-31
JP2021520074A (ja) 2021-08-12
CN112088440B (zh) 2024-02-09
KR102650928B1 (ko) 2024-03-22
EP3766109A1 (de) 2021-01-20
CN112088440A (zh) 2020-12-15
WO2019175236A1 (de) 2019-09-19

Similar Documents

Publication Publication Date Title
EP3766109B1 (de) Ferroelektrisches material, mems-bauteil mit diesem material, mems-vorrichtung, sowie herstellungsverfahren
Salazar et al. Fatigue in piezoelectric ceramic vibrational energy harvesting: A review
DE4202650C2 (de) Piezoelektrische bimorphe Einrichtung und Verfahren zum Treiben einer piezoelektrischen bimorphen Einrichtung
CN107093664B (zh) 一种周期性正交极化的大应变压电陶瓷致动器及制备方法
DE10232954A1 (de) Ein longitudinales, piezoelektrisches Verriegelungsrelais
EP2297798A1 (de) Verfahren zur abstimmung einer resonanzfrequenz eines piezoelektrischen bauelementes
JP6818130B2 (ja) 圧電アクチュエータ、可変形状ミラー及び可変形状ミラーの製造方法
EP2126992A1 (de) Piezoelektrisches bauelement
EP3365926B1 (de) Verfahren zur ansteuerung eines elektromechanischen elements
Herdier et al. Piezoelectric thin films for MEMS applications—A comparative study of PZT, 0.7 PMN–0.3 PT and 0.9 PMN–0.1 PT thin films grown on Si by RF magnetron sputtering
Zhu et al. Microstructures of the monomorph piezoelectric ceramic actuators with functional gradients
EP1527485B1 (de) Piezoaktor und verfahren zum herstellen des piezoaktors
KR102050954B1 (ko) 온오프 액추에이터
WO2021256370A1 (ja) 駆動方法、駆動回路及び変位駆動装置
EP2644740A2 (de) Verfahren zum Herstellen einer Dünnschicht auf einem Substrat
DE4325167C1 (de) Verfahren zur Herstellung von PZT-Schichten
DE102013203836B4 (de) Piezoelektrisches Ultraschall-Vibrationselement und seine Verwendung
DE102004047696B4 (de) Piezoelektrischer Biegewandler
Lynch et al. Micromechanical theory of the nonlinear behavior of ferroelectric ceramics
EP1917668A2 (de) Piezoelektrisches bauelement mit magnetischer schicht
Sakai et al. Preparation of Ba (Ti, Zr) O3 thick-film microactuators on silicon substrates by screen printing
CN100418243C (zh) 压电材料及其制造方法以及非线性压电元件
Kadota et al. Fatigue and retention properties of shape memory piezoelectric actuator with non-180° domain switching
WO2006136504A1 (de) Piezoaktor mit gesteigertem hubvermögen
RU2443033C1 (ru) Способ управления емкостью электрического конденсатора и конденсатор переменной емкости на основе этого способа

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CHRISTIAN-ALBRECHTS-UNIVERSITAET ZU KIEL

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019009140

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01L0041187000

Ipc: H10N0030853000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H01L0041187000

Ipc: H10N0030853000

RIC1 Information provided on ipc code assigned before grant

Ipc: B81B 3/00 20060101ALI20230131BHEP

Ipc: H10N 30/20 20230101ALI20230131BHEP

Ipc: H10N 30/50 20230101ALI20230131BHEP

Ipc: H10N 30/87 20230101ALI20230131BHEP

Ipc: H10N 30/045 20230101ALI20230131BHEP

Ipc: H10N 30/853 20230101AFI20230131BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230313

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009140

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 6

Ref country code: GB

Payment date: 20240320

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240327

Year of fee payment: 6

Ref country code: FR

Payment date: 20240321

Year of fee payment: 6