EP3752675B1 - Machine for stabilizing a track - Google Patents

Machine for stabilizing a track Download PDF

Info

Publication number
EP3752675B1
EP3752675B1 EP19701584.5A EP19701584A EP3752675B1 EP 3752675 B1 EP3752675 B1 EP 3752675B1 EP 19701584 A EP19701584 A EP 19701584A EP 3752675 B1 EP3752675 B1 EP 3752675B1
Authority
EP
European Patent Office
Prior art keywords
machine
track
masses
phase shift
imbalance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19701584.5A
Other languages
German (de)
French (fr)
Other versions
EP3752675C0 (en
EP3752675A1 (en
Inventor
Samuel WOLLANEK
Nikolaus MATZINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Original Assignee
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasser und Theurer Export Von Bahnbaumaschinen GmbH filed Critical Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Publication of EP3752675A1 publication Critical patent/EP3752675A1/en
Application granted granted Critical
Publication of EP3752675C0 publication Critical patent/EP3752675C0/en
Publication of EP3752675B1 publication Critical patent/EP3752675B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/20Compacting the material of the track-carrying ballastway, e.g. by vibrating the track, by surface vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/12Tamping devices
    • E01B2203/127Tamping devices vibrating the track surface

Definitions

  • the invention relates to a machine for stabilizing a track, with a machine frame supported on rail undercarriages and a height-adjustable stabilization unit that can be rolled on rails of the track by unit rollers, which has a vibration exciter with rotating unbalanced masses for generating an impact force that acts dynamically in a track plane perpendicular to a longitudinal direction of the track, and a Height drive for generating an effective load on the track includes.
  • the invention relates to a method for operating such a machine.
  • Machines for stabilizing a track are already known several times from the prior art.
  • a so-called dynamic track stabilizer stabilization units located between two rail chassis are lowered onto a track to be stabilized via a height adjustment and subjected to a vertical load.
  • a transverse vibration of the stabilization aggregates is transmitted to the track via aggregate rollers and pincer rollers lying on the outside of the rail heads with continuous advance.
  • the stabilization unit includes adjustable unbalanced masses in order to quickly reduce the impact force to a reduced value or to zero (e.g. in the case of bridges or tunnels) and raise it to the original value immediately after reaching a track section to be stabilized.
  • a disadvantage here is the complex structure of the moving parts.
  • a targeted setting of the required impact force is complex in terms of control technology.
  • Another stabilization unit is off the FR 1347335 A known.
  • transversely vibrating exciters can be driven out of phase with one another in order to vary the vibration effect on the track.
  • the CN 106592349A discloses a stabilization unit with an adjustable vibration exciter. This vibration exciter includes rotatable unbalanced masses, the phase position of which can be changed in relation to one another. In this way, the impact force of the vibration exciter can be adjusted.
  • the invention is based on the object of specifying an improvement over the prior art for a machine of the type mentioned at the outset. Another object is to present a method for operating such a machine.
  • the invention provides that the vibration exciter has at least four imbalance masses that can be driven with variably adjustable phase shifts. Due to the variably adjustable phase shift, the impact force acting on the track can be changed in a targeted manner. Depending on the arrangement of the unbalanced masses, a changed phase shift changes both the direction and the strength of the impact force.
  • a counterclockwise unbalanced mass and a clockwise rotating unbalanced mass form an unbalanced mass pair, wherein at least one unbalanced mass of this respective unbalanced mass pair can be driven with a first phase shift that can be variably adjusted compared to an initial position.
  • the unbalanced masses move against each other so that their centrifugal forces cancel each other out in one direction and an undesirable directional component of the impact force is thus eliminated.
  • each imbalance mass is assigned an angle sensor.
  • the respective angle encoder are the positions of Imbalance masses are always precisely known.
  • a predefined phase shift can be set by means of a control device. This is particularly useful for mechanical drives such as hydraulic motors.
  • the respective unbalanced mass is arranged on the stabilization unit with an axis of rotation aligned in the longitudinal direction of the track.
  • This orientation is particularly suitable for use in a stabilization unit, since the resulting impact force acts on the track to be stabilized perpendicular to the longitudinal direction of the track. In this way, an optimal energy input into the track is given.
  • each unbalanced mass is assigned its own drive.
  • a separate drive for each unbalanced mass offers a structurally simple solution for being able to control each unbalanced mass in a targeted manner with its own angular position.
  • a simplified further development of the invention provides that a common drive is assigned to two unbalanced masses in each case.
  • This solution is particularly suitable for compact stabilization units, with the phase shift being adjusted, for example, by means of a variable coupling.
  • the respective drive is designed as an electric drive.
  • brushless electric motors or torque motors are particularly well suited for activation in an angle loop to achieve the desired phase shift.
  • the electric drives are controlled by means of a common control device.
  • the individual drives can be optimally coordinated and precisely controlled.
  • data previously stored in the control device can be accessed in order to automatically adapt the electric drives and a phase shift to local conditions and an actual condition of the track.
  • the respective drive is designed as a hydraulic drive. Through this the drives can be integrated into an existing hydraulic system of the machine.
  • an adjusting device for a variable phase shift is assigned to the respective drive.
  • the adjusting device is particularly suitable for mechanical drives in order to set an exact phase shift.
  • the respective unbalanced mass is rotated in a simple manner relative to the drive at the required angle.
  • the adjustment device for setting the phase shift can also be used when driving two unbalanced masses with a common drive.
  • the vibration exciter has at least four rotatable unbalanced masses, of which two unbalanced masses can be driven in a clockwise direction and two unbalanced masses can be driven in a counter-clockwise direction.
  • the two counterclockwise unbalanced masses can be driven relative to one another with a variably adjustable second phase shift
  • the two clockwise unbalanced masses can be driven relative to one another with a variably adjustable second phase shift.
  • the impact force resulting from all unbalanced masses can be optimally adjusted in relation to the track level in order to precisely adapt the stabilization of the track to local conditions.
  • the method according to the invention for operating a machine provides that the stabilization unit is set down on the track via the vertical drive and subjected to an additional load and that at least four rotatable unbalanced masses are driven relative to one another with variably adjustable phase shifts. This ensures track stabilization that can be precisely adapted to the local conditions with a changeable impact force.
  • an unbalanced mass pair an unbalanced mass is driven counterclockwise and an unbalanced mass is driven clockwise, with at least one of these unbalanced masses is driven with a first phase shift that can be variably adjusted in relation to an initial position.
  • the sinking of the track during stabilization can be increased if necessary.
  • two counterclockwise unbalanced masses are driven relative to one another with a variably adjustable second phase shift, and two right-hand rotating unbalanced masses driven to each other with a variably adjustable second phase shift. This ensures a quick and precise adjustment of the impact force in the preferred direction of action.
  • ballast 1 shows a machine 1 for stabilizing a track 3 resting on ballast 2, which comprises a machine frame 6 supported on rails 5 by rail chassis 4.
  • Two stabilization units 7 are arranged one behind the other in the longitudinal direction 8 of the track between the two end-positioned rail carriages 4 . These are each connected to the machine frame 6 in a height-adjustable manner by height drives 9 .
  • each stabilization unit 7 can be positively engaged with the track 3 in order to cause it to vibrate at a desired vibration frequency.
  • the aggregate rollers 10 comprise two wheel flange rollers, which roll on the inside of the rail 5, and a pincer roller which, during operation, is pressed against the rail 5 from the outside by means of a pincer mechanism 33.
  • a static vertical load is applied to the track 3 by the height drives 9 .
  • the stabilization units 7 are controlled by means of a common control device 31 .
  • Drives 19 arranged in the stabilization unit 7 are connected to a common supply device 32 .
  • this is a motor-generator unit with an electric storage device.
  • An overhead line can also be used to supply electric drives if the machine has 1 pantograph and corresponding converter.
  • the supply device 32 is usefully integrated into a hydraulic system of the machine 1.
  • a vibration exciter 12 is arranged inside a housing 11 and comprises four rotary shafts 13 with unbalanced masses 14 arranged thereon. Two rotary shafts 13 are arranged on each of two rotary axes 15 . An unbalanced mass 14 is arranged on each rotary shaft 13 . Each rotary shaft 13 is rotatably mounted on both sides next to the unbalanced mass 14 in the housing 11 via roller bearings 16 .
  • a toothing 17 is milled into one end of the respective rotary shaft 13 protruding from the housing 11 , on which a rotor 18 of a drive 19 designed as a torque motor is positively connected to the associated rotary shaft 13 .
  • a stator 20 is arranged around the rotor 18 of the respective torque motor and is connected to the housing 11 of the vibration exciter 12 via a motor housing 21 . Cooling fins 22 are arranged outside of the motor housing 21 . As a result, heat generated during operation can be reliably dissipated.
  • the stabilization unit 7 is connected to a stabilization unit frame 23 in order to transmit vibration to the unit/pincer rollers 10 and thus to the track 3 reliably.
  • Unbalanced masses 14 shown can be driven independently of one another with freely definable phase shifts between the individual unbalanced masses 14.
  • the use of four identical drives 19, rotary shafts 13 and unbalanced masses 14 leads to easier exchangeability and spare parts supply in the event of maintenance or damage.
  • Both unbalanced masses 14 can be driven at a predetermined speed, which determines the vibration frequency transmitted to the track 3. In exceptional cases, it can make sense for the two unbalanced masses 14 to be able to be driven at different speeds in order to bring about a continuous change in impact force. Otherwise, all unbalanced masses 14 rotate at the same speed. A change in impact force is only achieved by phase shifts ⁇ 1 , ⁇ 2 , ie by one unbalanced mass 14 running ahead of the other.
  • the four unbalanced masses 14 are shown side by side and with the letters A, B, C and D denoted.
  • Two unbalanced masses A, B or C, D form an unbalanced mass pair 34 which is driven by a common drive 19 .
  • the directions of rotation 30 of the two unbalanced masses A, B or C, D are opposite.
  • the unbalanced masses A and C can be driven counterclockwise and the unbalanced masses B and D can be driven in a clockwise direction.
  • two unbalanced masses A, C or B, D can be arranged on a common axis of rotation 15 .
  • a reversing gear 24 is arranged in each case.
  • the two unbalanced masses A, C and B, D rotating in the same direction can be driven by means of a common drive 19 .
  • no reversing gear 24 is required.
  • An adjusting device 25 is arranged for setting a phase shift between the unbalanced masses 14 driven by means of a common drive 19 ( figure 5 ).
  • a first phase shift ⁇ 1 can be set in relation to an initial position in the case of the imbalance masses 14 which can be driven in opposite directions of rotation.
  • a second phase shift ⁇ 2 can be set for the unbalanced masses 14 rotating in the same direction.
  • each drive 19 can be controlled as a function of the angle of rotation, or an adjusting device 25 is arranged between each drive 19 and the associated unbalanced mass 14 .
  • figure 5 shows, for example, a mechanical adjusting device 25 for rotating the rotary shaft 13 of the unbalanced mass 14 relative to a drive shaft 26 of the drive 19.
  • the rotary shaft 13 has at least one helically running groove 28, in which an inner counterpart of the sleeve 27 is engaged.
  • the sleeve 27 and the rotary shaft 13 are rotatably connected to one another via a hydraulic cylinder 29 . If a longitudinal displacement of the sleeve 27 relative to the rotary shaft 13 is brought about by means of the hydraulic cylinder 29, the rotary shaft 13 together with the unbalanced mass 14 rotates at the desired angle relative to the drive shaft 26. By twisting the rotary shaft 13 relative to the drive shaft 26, a phase shift occurs relative to another unbalanced mass 14 ⁇ 1 , ⁇ 2 is reached.
  • the mechanical adjusting device 25 is particularly suitable in combination with uniformly driven hydraulic motors.
  • An angle sensor 35 is advantageously used here in order to receive feedback on the angular position of the respective drive shaft 26 or rotary shaft 13 .
  • Even with a simplified solution as in 3 the arrangement of an adjusting device 25 between the unbalanced masses 14 provided with a common drive 19 makes sense in order to achieve a phase shift ⁇ 1 , ⁇ 2 between the two unbalanced masses 14 .
  • a rotary shaft 13 is formed with an outer unbalanced mass 14 as a hollow shaft.
  • a free end of the other rotary shaft 13 with an inner unbalanced mass 14 is mounted within the hollow shaft.
  • the rotary shafts 13 are mounted in a housing 11 via additional roller bearings 16 and are driven by their own drives 19 .
  • the centrifugal forces of the rotating unbalanced masses 14 act in a common plane, so that no potentially disruptive tilting moments occur.
  • This storage variant is particularly suitable for a vibration exciter 12 with only two unbalanced masses 14.
  • a second phase shift ⁇ 2 of 60° is set for the second unbalanced mass 14 in the direction of rotation, so that the second unbalanced mass 14 leads the first unbalanced mass 14 by a total of 240°.
  • the maximum impact force Fs is achieved when a second phase shift ⁇ 2 of 180° in the direction of rotation is set for the second unbalanced mass 14 compared to the starting position. Then both unbalanced masses 14 rotate synchronously, so that the centrifugal forces add up ( 9 ).
  • FIG. 10 and 11 Corresponding illustrations are in Figures 10 and 11 shown for two unbalanced masses 14 driven in opposite directions.
  • the impact force component F y in the y-direction is eliminated and the greatest impact force (Fs) occurs in the x-direction ( 10 ).
  • a change in the impact force Fs occurs when a first phase shift ⁇ 1 is set for an unbalanced mass 14 in relation to the starting position.
  • the first phase shift ⁇ 1 of the second unbalanced mass 14 is, for example, 60° in the direction of rotation.
  • the impact force Fs is then reduced.
  • the effective direction of the impact force Fs has an angle of inclination relative to the x-axis which corresponds to half the first phase shift ⁇ 1 .
  • a maximum impact force Fs parallel to the y-axis thus results with a first phase shift ⁇ 1 of 180°.
  • FIGS 12 to 16 are different phase shifts ⁇ 1 , ⁇ 2 for four unbalanced masses A, B, C and D according to Figures 3 and 4 shown.
  • courses of the impact forces F AB , F CD of the pairs of unbalanced masses 34 and the resulting impact force Fs are shown over a common phase angle ⁇ .
  • the positions of the unbalanced masses 14 are shown at a phase angle ⁇ of 90°, 180° and 270°.
  • the set second phase shift ⁇ 2 is equal to 180° ( 7 ).
  • the imbalance masses A, C or B, D that can be driven in the same direction of rotation run synchronously, so that the centrifugal forces add up in the x-direction.
  • the variably adjustable second phase shift ⁇ 2 in the range from 0° to 180°, the resulting impact force Fs in the direction of the x-axis can be precisely adjusted from zero to a maximum.
  • the setting of the impact force Fs in the direction of the y-axis is based on the figures 14 and 15 explained.
  • an unbalanced mass B or D is in relative to the starting position 12 out of phase.
  • a first phase shift ⁇ 1 equal to 180° is set for both pairs of unbalanced masses 34, so that a there is complete cancellation of the resulting impact force Fs ( 14 ).
  • a second phase shift ⁇ 2 equal to 180° is set compared to this new starting position ( 15 ).
  • the control device 31 includes a computing unit in order to set the optimum impact force Fs as a function of a local track condition. Corresponding sensor signals from sensors arranged on the machine 1 or previously determined track data are fed to the control device 31 for this optimization process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Railway Tracks (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Description

Gebiet der Technikfield of technology

Die Erfindung betrifft eine Maschine zum Stabilisieren eines Gleises, mit einem auf Schienenfahrwerken abgestützten Maschinenrahmen und einem höhenverstellbaren, durch Aggregatrollen auf Schienen des Gleises abrollbaren Stabilisationsaggregat, das einen Schwingungserreger mit rotierenden Unwuchtmassen zur Erzeugung einer dynamisch in einer Gleisebene normal zu einer Gleislängsrichtung wirkenden Schlagkraft sowie einen Höhenantrieb zur Erzeugung einer auf das Gleis wirksamen Auflast umfasst. Zudem betrifft die Erfindung ein Verfahren zum Betreiben einer solchen Maschine.The invention relates to a machine for stabilizing a track, with a machine frame supported on rail undercarriages and a height-adjustable stabilization unit that can be rolled on rails of the track by unit rollers, which has a vibration exciter with rotating unbalanced masses for generating an impact force that acts dynamically in a track plane perpendicular to a longitudinal direction of the track, and a Height drive for generating an effective load on the track includes. In addition, the invention relates to a method for operating such a machine.

Stand der TechnikState of the art

Maschinen zum Stabilisieren eines Gleises sind aus dem Stand der Technik bereits mehrfach bekannt. Bei einem sogenannten dynamischen Gleisstabilisator werden zwischen zwei Schienenfahrwerken befindliche Stabilisationsaggregate über eine Höhenverstellung auf ein zu stabilisierendes Gleis abgesenkt und mit einer vertikalen Auflast beaufschlagt. Über Aggregatrollen und an Außenseiten der Schienenköpfe anliegenden Zangenrollen wird unter kontinuierlicher Vorfahrt eine Querschwingung der Stabilisationsaggregate auf das Gleis übertragen.Machines for stabilizing a track are already known several times from the prior art. In a so-called dynamic track stabilizer, stabilization units located between two rail chassis are lowered onto a track to be stabilized via a height adjustment and subjected to a vertical load. A transverse vibration of the stabilization aggregates is transmitted to the track via aggregate rollers and pincer rollers lying on the outside of the rail heads with continuous advance.

Eine solche Maschine ist beispielsweise aus der WO 2008/009314 A1 bekannt. Dabei umfasst das Stabilisationsaggregat verstellbare Unwuchtmassen, um bedarfsweise die Schlagkraft rasch auf einen reduzierten Wert oder auf null zu reduzieren (z.B. bei Brücken oder Tunnels) und sofort nach Erreichen eines zu stabilisierenden Gleisabschnitts auf den ursprünglichen Wert anzuheben.Such a machine is, for example, from WO 2008/009314 A1 known. The stabilization unit includes adjustable unbalanced masses in order to quickly reduce the impact force to a reduced value or to zero (e.g. in the case of bridges or tunnels) and raise it to the original value immediately after reaching a track section to be stabilized.

Ein Nachteil ist hier der komplexe Aufbau der sich in Bewegung befindlichen Teile. Zudem ist eine gezielte Einstellung der benötigten Schlagkraft steuerungstechnisch aufwändig. Ein anderes Stabilisationsaggregat ist aus der FR 1347335 A bekannt. Dabei sind querschwingende Erreger zueinander phasenverschoben antreibbar, um die Schwingungswirkung auf das Gleis zu variieren. Die CN 106592349 A offenbart ein Stabilisationsaggregat mit einem verstellbaren Schwingungserreger. Dieser Schwingungserreger umfasst rotierbare Unwuchtmassen, deren Phasenlage zueinander veränderbar ist. Auf diese Weise ist die Schlagkraft des Schwingungserregers einstellbar.A disadvantage here is the complex structure of the moving parts. In addition, a targeted setting of the required impact force is complex in terms of control technology. Another stabilization unit is off the FR 1347335 A known. In this case, transversely vibrating exciters can be driven out of phase with one another in order to vary the vibration effect on the track. The CN 106592349A discloses a stabilization unit with an adjustable vibration exciter. This vibration exciter includes rotatable unbalanced masses, the phase position of which can be changed in relation to one another. In this way, the impact force of the vibration exciter can be adjusted.

Zusammenfassung der ErfindungSummary of the Invention

Der Erfindung liegt die Aufgabe zugrunde, für eine Maschine der eingangs genannten Art eine Verbesserung gegenüber dem Stand der Technik anzugeben. Eine weitere Aufgabe besteht darin, ein Verfahren zum Betreiben einer solchen Maschine darzulegen.The invention is based on the object of specifying an improvement over the prior art for a machine of the type mentioned at the outset. Another object is to present a method for operating such a machine.

Erfindungsgemäß werden diese Aufgaben gelöst durch eine Maschine gemäß Anspruch 1 und ein Verfahren gemäß Anspruch 10. Abhängige Ansprüche geben vorteilhafte Ausgestaltungen der Erfindung an.According to the invention, these objects are achieved by a machine according to claim 1 and a method according to claim 10. Dependent claims specify advantageous refinements of the invention.

Die Erfindung sieht vor, dass der Schwingungserreger zumindest vier mit variabel einstellbaren Phasenverschiebungen antreibbare Unwuchtmassen aufweist. Durch die variabel einstellbare Phasenverschiebung ist die auf das Gleis einwirkende Schlagkraft gezielt veränderbar. Abhängig von der Anordnung der Unwuchtmassen verändert eine geänderte Phasenverschiebung sowohl die Richtung als auch die Stärke der Schlagkraft.The invention provides that the vibration exciter has at least four imbalance masses that can be driven with variably adjustable phase shifts. Due to the variably adjustable phase shift, the impact force acting on the track can be changed in a targeted manner. Depending on the arrangement of the unbalanced masses, a changed phase shift changes both the direction and the strength of the impact force.

Dabei bilden jeweils eine linksdrehende Unwuchtmasse und eine rechtsdrehende Unwuchtmasse ein Unwuchtmassepaar, wobei zumindest eine Unwuchtmasse dieses jeweiligen Unwuchtmassepaares mit einer gegenüber einer Ausgangsstellung variabel einstellbaren ersten Phasenverschiebung antreibbar ist. Die Unwuchtmassen bewegen sich gegeneinander, sodass sich ihre Fliehkräfte in einer Richtung gegenseitig aufheben und somit eine nicht gewünschte Richtungskomponente der Schlagkraft getilgt wird.A counterclockwise unbalanced mass and a clockwise rotating unbalanced mass form an unbalanced mass pair, wherein at least one unbalanced mass of this respective unbalanced mass pair can be driven with a first phase shift that can be variably adjusted compared to an initial position. The unbalanced masses move against each other so that their centrifugal forces cancel each other out in one direction and an undesirable directional component of the impact force is thus eliminated.

In einer vorteilhaften Ausprägung ist jeder Unwuchtmasse ein Winkelgeber zugeordnet. Durch den jeweiligen Winkelgeber sind die Positionen der Unwuchtmassen immer genau bekannt. Dadurch kann mittels einer Steuerungseinrichtung eine vorgegebene Phasenverschiebung eingestellt werden. Dies ist besonders bei mechanischen Antrieben wie beispielsweise Hydraulikmotoren sinnvoll.In an advantageous embodiment, each imbalance mass is assigned an angle sensor. By the respective angle encoder are the positions of Imbalance masses are always precisely known. As a result, a predefined phase shift can be set by means of a control device. This is particularly useful for mechanical drives such as hydraulic motors.

Zudem ist es günstig, wenn die jeweilige Unwuchtmasse mit einer in Gleislängsrichtung ausgerichteten Rotationsachse am Stabilisationsaggregat angeordnet ist. Diese Ausrichtung eignet sich besonders für den Einsatz in einem Stablisationsaggregat, da die resultierende Schlagkraft normal zur Gleislängsrichtung auf das zu stabilisierende Gleis wirkt. Auf diese Weise ist eine optimale Energieeinbringung in das Gleis gegeben.In addition, it is favorable if the respective unbalanced mass is arranged on the stabilization unit with an axis of rotation aligned in the longitudinal direction of the track. This orientation is particularly suitable for use in a stabilization unit, since the resulting impact force acts on the track to be stabilized perpendicular to the longitudinal direction of the track. In this way, an optimal energy input into the track is given.

Des Weiteren ist es von Vorteil, wenn jeder Unwuchtmasse ein eigener Antrieb zugeordnet ist. Ein eigener Antrieb für jede Unwuchtmasse bietet eine konstruktiv einfache Lösung, um jede Unwuchtmasse gezielt mit einer eigenen Drehwinkelstellung ansteuern zu können.Furthermore, it is advantageous if each unbalanced mass is assigned its own drive. A separate drive for each unbalanced mass offers a structurally simple solution for being able to control each unbalanced mass in a targeted manner with its own angular position.

Eine vereinfachte Weiterbildung der Erfindung sieht vor, dass jeweils zwei Unwuchtmassen ein gemeinsamer Antrieb zugeordnet ist. Diese Lösung eignet sich besonders für kompakte Stabilisationsaggregate, wobei die Phasenverschiebung beispielsweise mittels einer variablen Kuppelung eingestellt wird.A simplified further development of the invention provides that a common drive is assigned to two unbalanced masses in each case. This solution is particularly suitable for compact stabilization units, with the phase shift being adjusted, for example, by means of a variable coupling.

Für die Einstellung der variablen Phasenverschiebung ist es besonders günstig, wenn der jeweilige Antrieb als elektrischer Antrieb ausgebildet ist. Beispielsweise eignen sich bürstenlose Elektromotoren oder Torque-Motoren hier besonders gut für die Ansteuerung in einer Winkelschleife zum Erreichen der gewünschten Phasenverschiebung.For setting the variable phase shift, it is particularly favorable if the respective drive is designed as an electric drive. For example, brushless electric motors or torque motors are particularly well suited for activation in an angle loop to achieve the desired phase shift.

In einer Ausprägung der Erfindung ist vorgesehen, dass die elektrischen Antriebe mittels einer gemeinsamen Steuerungseinrichtung angesteuert sind. Dadurch sind die einzelnen Antriebe optimal aufeinander abstimmbar und präzise ansteuerbar. Während eines Arbeitseinsatzes kann auf vorab in der Steuerungseinrichtung abgelegte Daten zurückgegriffen werden, um die elektrischen Antriebe und eine Phasenverschiebung automatisiert auf örtliche Gegebenheiten und einen Ist-Zustand des Gleises anzupassen.In one embodiment of the invention, it is provided that the electric drives are controlled by means of a common control device. As a result, the individual drives can be optimally coordinated and precisely controlled. During a work assignment, data previously stored in the control device can be accessed in order to automatically adapt the electric drives and a phase shift to local conditions and an actual condition of the track.

In einer anderen Ausprägung der Erfindung kann es vorteilhaft sein, wenn der jeweilige Antrieb als hydraulischer Antrieb ausgebildet ist. Dadurch können die Antriebe in ein bereits bestehendes Hydrauliksystem der Maschine miteingebunden werden.In another embodiment of the invention, it can be advantageous if the respective drive is designed as a hydraulic drive. Through this the drives can be integrated into an existing hydraulic system of the machine.

In einer vorteilhaften Ausprägung ist dem jeweiligen Antrieb eine Verstellvorrichtung für eine variable Phasenverschiebung zugeordnet. Besonders für mechanische Antriebe eignet sich die Verstellvorrichtung, um eine exakte Phasenverschiebung einzustellen. Dadurch wird die jeweilige Unwuchtmasse auf einfache Weise gegenüber dem Antrieb im benötigten Winkel verdreht. Auch beim Antreiben zweier Unwuchtmassen mit einem gemeinsamen Antrieb ist die Verstellvorrichtung für die Einstellung der Phasenverschiebung einsetzbar.In an advantageous embodiment, an adjusting device for a variable phase shift is assigned to the respective drive. The adjusting device is particularly suitable for mechanical drives in order to set an exact phase shift. As a result, the respective unbalanced mass is rotated in a simple manner relative to the drive at the required angle. The adjustment device for setting the phase shift can also be used when driving two unbalanced masses with a common drive.

Erfindungsgemäß ist des Weiteren vorgesehen, dass der Schwingungserreger zumindest vier rotierbare Unwuchtmassen aufweist, von denen jeweils zwei Unwuchtmassen rechtsdrehend und zwei Unwuchtmassen linksdrehend antreibbar sind. Durch eine gezielte Anordnung von mindestens vier Unwuchtmassen ist eine exakte und schnelle Schlagkraftverstellung bis hin zu einer vollständigen Tilgung möglich.According to the invention, it is further provided that the vibration exciter has at least four rotatable unbalanced masses, of which two unbalanced masses can be driven in a clockwise direction and two unbalanced masses can be driven in a counter-clockwise direction. By carefully arranging at least four unbalanced masses, it is possible to adjust the impact force quickly and precisely, up to and including complete cancellation.

Zudem sind die beiden linksdrehenden Unwuchtmassen zueinander mit einer variabel einstellbaren zweiten Phasenverschiebung antreibbar und die beiden rechtsdrehenden Unwuchtmassen sind zueinander mit einer variabel einstellbaren zweiten Phasenverschiebung antreibbar. Auf diese Weise ist die aus allen Unwuchtmassen resultierende Schlagkraft in optimaler Weise gegenüber der Gleisebene einstellbar, um die Stabilisation des Gleises präzise an örtliche Gegebenheiten anzupassen.In addition, the two counterclockwise unbalanced masses can be driven relative to one another with a variably adjustable second phase shift, and the two clockwise unbalanced masses can be driven relative to one another with a variably adjustable second phase shift. In this way, the impact force resulting from all unbalanced masses can be optimally adjusted in relation to the track level in order to precisely adapt the stabilization of the track to local conditions.

Das erfindungsgemäße Verfahren zum Betreiben einer Maschine sieht vor, dass das Stabilisationsaggregat über den Höhenantrieb auf das Gleis abgesetzt und mit einer Auflast beaufschlagt wird und dass zumindest vier rotierbare Unwuchtmassen zueinander mit variabel einstellbaren Phasenverschiebungen angetrieben werden. Dadurch wird eine an die örtlichen Gegebenheiten präzise anpassbare Gleisstabilisation mit einer veränderbaren Schlagkraft gewährleistet.The method according to the invention for operating a machine provides that the stabilization unit is set down on the track via the vertical drive and subjected to an additional load and that at least four rotatable unbalanced masses are driven relative to one another with variably adjustable phase shifts. This ensures track stabilization that can be precisely adapted to the local conditions with a changeable impact force.

Dabei werden bei einem Unwuchtmassepaar eine Unwuchtmasse linksdrehend und eine Unwuchtmasse rechtsdrehend angetrieben, wobei zumindest eine dieser Unwuchtmassen mit einer gegenüber einer Ausgangstellung variabel einstellbaren ersten Phasenverschiebung angetrieben wird. Mit der sich dabei ändernden Richtung der Schlagkraft kann bei Bedarf das Einsinken des Gleises während des Stabilisierens verstärkt werden.With an unbalanced mass pair, an unbalanced mass is driven counterclockwise and an unbalanced mass is driven clockwise, with at least one of these unbalanced masses is driven with a first phase shift that can be variably adjusted in relation to an initial position. With the changing direction of the impact force, the sinking of the track during stabilization can be increased if necessary.

Zudem werden beim erfindungsgemäßen Verfahrens zwei linksdrehende Unwuchtmasse zueinander mit einer variabel einstellbaren zweiten Phasenverschiebung angetrieben und zwei rechtsdrehende Unwuchtmassen zueinander mit einer variabel einstellbaren zweiten Phasenverschiebung angetrieben. Dies gewährleistet eine schnelle und exakte Schlagkraftverstellung in der bevorzugten Wirkrichtung.In addition, in the method according to the invention, two counterclockwise unbalanced masses are driven relative to one another with a variably adjustable second phase shift, and two right-hand rotating unbalanced masses driven to each other with a variably adjustable second phase shift. This ensures a quick and precise adjustment of the impact force in the preferred direction of action.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen:

Fig. 1
Seitenansicht einer Maschine zum Stabilisieren eines Gleises
Fig. 2
Detailansicht eines Stabilisationsaggregats
Fig. 3
Antriebskonzept mit zwei Motoren
Fig. 4
Antriebskonzept mit vier Motoren
Fig. 5
Verstelleinrichtung für variable Phasenverschiebung
Fig. 6
Schwingungserreger mit Hohlwelle
Fig. 7
gleichdrehende Unwuchtmassen mit Schwingungstilgung
Fig. 8
gleichdrehende Unwuchtmassen mit reduzierter Schlagkraft
Fig. 9
gleichdrehende Unwuchtmassen mit maximaler Schlagkraft
Fig. 10
gegenläufige Unwuchtmassen mit maximaler Schlagkraft in eine Richtung
Fig. 11
gegenläufige Unwuchtmassen mit reduzierter Schlagkraft
Fig. 12
vier Unwuchtmassen mit vollständiger Tilgung der Schlagkraft
Fig. 13
vier Unwuchtmassen mit maximaler Schlagkraft in x-Richtung
Fig. 14
vier Unwuchtmassen mit vollständiger Tilgung der Schlagkraft
Fig. 15
vier Unwuchtmassen mit maximaler Schlagkraft in y-Richtung
Fig. 16
vier Unwuchtmassen mit verschiedenen Einstellungen der Phasenverschiebungen
The invention is explained below in an exemplary manner with reference to the attached figures. Show it:
1
Side view of a machine for stabilizing a track
2
Detailed view of a stabilization unit
3
Drive concept with two motors
4
Drive concept with four motors
figure 5
Adjusting device for variable phase shift
6
Vibration exciter with hollow shaft
7
co-rotating imbalance masses with vibration damping
8
co-rotating unbalanced masses with reduced impact power
9
co-rotating unbalanced masses with maximum impact
10
opposing unbalanced masses with maximum impact force in one direction
11
opposing unbalanced masses with reduced impact force
12
four unbalanced masses with complete cancellation of the impact force
13
four unbalanced masses with maximum impact force in the x-direction
14
four unbalanced masses with complete cancellation of the impact force
15
four unbalanced masses with maximum impact force in the y-direction
16
four unbalance masses with different phase shift settings

Beschreibung der AusführungsformenDescription of the embodiments

Fig. 1 zeigt eine Maschine 1 zum Stabilisieren eines auf Schotter 2 ruhenden Gleises 3, welche einen durch Schienenfahrwerke 4 auf Schienen 5 abgestützten Maschinenrahmen 6 umfasst. Zwischen den beiden endseitig positionierten Schienenfahrwerken 4 sind zwei Stabilisationsaggregate 7 in Gleislängsrichtung 8 hintereinander angeordnet. Diese sind jeweils durch Höhenantriebe 9 höhenverstellbar mit dem Maschinenrahmen 6 verbunden. 1 shows a machine 1 for stabilizing a track 3 resting on ballast 2, which comprises a machine frame 6 supported on rails 5 by rail chassis 4. Two stabilization units 7 are arranged one behind the other in the longitudinal direction 8 of the track between the two end-positioned rail carriages 4 . These are each connected to the machine frame 6 in a height-adjustable manner by height drives 9 .

Mit Hilfe von auf den Schienen 5 abrollbaren Aggregatrollen 10 kann jedes Stabilisationsaggregat 7 formschlüssig mit dem Gleis 3 in Eingriff gebracht werden, um dieses mit einer gewünschten Schwingungsfrequenz in Schwingung zu versetzen. Die Aggregatrollen 10 umfassen für jede Schiene 5 zwei Spurkranzrollen, die an der Innenseite der Schiene 5 abrollen, und eine Zangenrolle, die im Betrieb von außen mittels eines Zangenmechanismus 33 gegen die Schiene 5 gedrückt ist. Durch die Höhenantriebe 9 wird eine statische vertikale Auflast auf das Gleis 3 aufgebracht.With the aid of unit rollers 10 that can roll on the rails 5, each stabilization unit 7 can be positively engaged with the track 3 in order to cause it to vibrate at a desired vibration frequency. For each rail 5, the aggregate rollers 10 comprise two wheel flange rollers, which roll on the inside of the rail 5, and a pincer roller which, during operation, is pressed against the rail 5 from the outside by means of a pincer mechanism 33. A static vertical load is applied to the track 3 by the height drives 9 .

Angesteuert werden die Stabilisationsaggregate 7 mittels einer gemeinsamen Steuerungseinrichtung 31. Im Stabilisationsaggregat 7 angeordnete Antriebe 19 sind an eine gemeinsame Versorgungseinrichtung 32 angeschlossen. Bei elektrischen Antrieben 19 ist das zum Beispiel eine Motor-Generator-Einheit mit einem elektrischen Speicher. Auch eine Oberleitung ist zur Versorgung elektrischer Antriebe nutzbar, wenn die Maschine 1 Stromabnehmer und entsprechende Umrichter aufweist. Bei hydraulischen Antrieben 19 ist die Versorgungseinrichtung 32 sinnvollerweise in ein Hydrauliksystem der Maschine 1 integriert.The stabilization units 7 are controlled by means of a common control device 31 . Drives 19 arranged in the stabilization unit 7 are connected to a common supply device 32 . In the case of electric drives 19, for example, this is a motor-generator unit with an electric storage device. An overhead line can also be used to supply electric drives if the machine has 1 pantograph and corresponding converter. In the case of hydraulic drives 19, the supply device 32 is usefully integrated into a hydraulic system of the machine 1.

In Fig. 2 ist eines der zwei Stabilisationsaggregate 7 im Detail dargestellt. Innerhalb eines Gehäuses 11 ist ein Schwingungserreger 12 angeordnet, welcher vier Rotationswellen 13 mit darauf angeordneten Unwuchtmassen 14 umfasst. Auf zwei Rotationsachsen 15 sind jeweils zwei Rotationswellen 13 angeordnet. Auf jeder Rotationswelle 13 ist eine Unwuchtmasse 14 angeordnet. Jede Rotationswelle 13 ist beidseitig neben der Unwuchtmasse 14 im Gehäuse 11 über Wälzlager 16 drehbar gelagert.In 2 one of the two stabilization units 7 is shown in detail. A vibration exciter 12 is arranged inside a housing 11 and comprises four rotary shafts 13 with unbalanced masses 14 arranged thereon. Two rotary shafts 13 are arranged on each of two rotary axes 15 . An unbalanced mass 14 is arranged on each rotary shaft 13 . Each rotary shaft 13 is rotatably mounted on both sides next to the unbalanced mass 14 in the housing 11 via roller bearings 16 .

An einem aus dem Gehäuse 11 ragenden Ende der jeweiligen Rotationswelle 13 ist eine Verzahnung 17 eingefräst, auf welcher ein Rotor 18 eines als Torque-Motors ausgebildeten Antriebs 19 formschlüssig mit der zugehörigen Rotationswelle 13 verbunden ist. Um den Rotor 18 des jeweiligen Torque-Motors ist ein Stator 20 angeordnet, welcher über ein Motorengehäuse 21 mit dem Gehäuse 11 des Schwingungserregers 12 verbunden ist. Außerhalb des Motorengehäuses 21 sind Kühlrippen 22 angeordnet. Dadurch kann eine im Betrieb entstehende Wärme zuverlässig abgeführt werden.A toothing 17 is milled into one end of the respective rotary shaft 13 protruding from the housing 11 , on which a rotor 18 of a drive 19 designed as a torque motor is positively connected to the associated rotary shaft 13 . A stator 20 is arranged around the rotor 18 of the respective torque motor and is connected to the housing 11 of the vibration exciter 12 via a motor housing 21 . Cooling fins 22 are arranged outside of the motor housing 21 . As a result, heat generated during operation can be reliably dissipated.

An einem unteren Ende ist das Stabilisationsaggregat 7 mit einem Stabilisationsaggregatrahmen 23 verbunden, um eine Schwingung auf die Aggregat-/Zangenrollen 10 und somit auf das Gleis 3 zuverlässig zu übertragen. Die in Fig. 2 dargestellten Unwuchtmassen 14 sind unabhängig voneinander antreibbar mit frei vorgebbaren Phasenverschiebungen zwischen den einzelnen Unwuchtmassen 14. Eine Verwendung von vier baugleichen Antrieben 19, Rotationswellen 13 und Unwuchtmassen 14 führt in einem Wartungs- oder Schadensfall zu einer erleichterten Ausstauschbarkeit und Ersatzteilversorgung. Für den Einsatz einer Maschine 1 mit zwei Stabilisationsaggregaten 7 ergibt sich ebenfalls ein Vorteil aus den baugleichen Ausführungen beider Stabilisationsaggregate 7. Zudem ist keine Kraftübertragung zwischen den beiden Stabilisationsaggregaten 7 notwendig.At a lower end, the stabilization unit 7 is connected to a stabilization unit frame 23 in order to transmit vibration to the unit/pincer rollers 10 and thus to the track 3 reliably. In the 2 Unbalanced masses 14 shown can be driven independently of one another with freely definable phase shifts between the individual unbalanced masses 14. The use of four identical drives 19, rotary shafts 13 and unbalanced masses 14 leads to easier exchangeability and spare parts supply in the event of maintenance or damage. When using a machine 1 with two stabilization units 7, there is also an advantage from the structurally identical designs of both stabilization units 7. In addition, no power transmission between the two stabilization units 7 is necessary.

Fig. 3 zeigt schematisch eine vereinfachte Variante des Schwingungserregers 12. Antreibbar sind beide Unwuchtmassen 14 mit einer vorgegebenen Drehzahl, welche die auf das Gleis 3 übertragene Schwingungsfrequenz bestimmt. In Ausnahmefällen kann es sinnvoll sein, dass beide Unwuchtmassen 14 mit unterschiedlichen Drehzahlen antreibbar sind, um eine fortlaufende Schlagkraftänderung herbeizuführen. Ansonsten rotieren alle Unwuchtmassen 14 mit derselben Drehzahl. Eine Schlagkraftänderung wird dabei lediglich durch Phasenverschiebungen Δϕ1, Δϕ2 erreicht, indem also eine Unwuchtmasse 14 der anderen vorauseilt. 3 shows a simplified variant of the vibration exciter 12. Both unbalanced masses 14 can be driven at a predetermined speed, which determines the vibration frequency transmitted to the track 3. In exceptional cases, it can make sense for the two unbalanced masses 14 to be able to be driven at different speeds in order to bring about a continuous change in impact force. Otherwise, all unbalanced masses 14 rotate at the same speed. A change in impact force is only achieved by phase shifts Δφ 1 , Δφ 2 , ie by one unbalanced mass 14 running ahead of the other.

Um die Phasenverschiebungen Δϕ1, Δϕ2 besser erläutern zu können, sind die vier Unwuchtmassen 14 nebeneinander dargestellt und mit den Buchstaben A, B, C und D bezeichnet. Jeweils zwei Unwuchtmassen A, B bzw. C, D bilden ein Unwuchtmassepaar 34, das mittels eines gemeinsamen Antriebs 19 angetrieben ist. Die Drehrichtungen 30 der beiden Unwuchtmassen A, B bzw. C, D sind dabei entgegengesetzt. Im dargestellten Beispiel sind die Unwuchtmassen A und C linksdrehend und die Unwuchtmassen B und D rechtsdrehend antreibbar. Wie im Ausführungsbeispiel gemäß Fig. 2 gezeigt, können jeweils zwei Unwuchtmassen A, C bzw. B, D auf einer gemeinsamen Rotationsachse 15 angeordnet sein.In order to be able to better explain the phase shifts Δφ 1 , Δφ 2 , the four unbalanced masses 14 are shown side by side and with the letters A, B, C and D denoted. Two unbalanced masses A, B or C, D form an unbalanced mass pair 34 which is driven by a common drive 19 . The directions of rotation 30 of the two unbalanced masses A, B or C, D are opposite. In the example shown, the unbalanced masses A and C can be driven counterclockwise and the unbalanced masses B and D can be driven in a clockwise direction. As in the embodiment according to 2 shown, two unbalanced masses A, C or B, D can be arranged on a common axis of rotation 15 .

Um zwischen den Unwuchtmassen A, B bzw. C, D eines Unwuchtmassepaares 34 einen Drehrichtungswechsel zu erreichen, ist jeweils ein Wendegetriebe 24 angeordnet. In einer anderen, nicht dargestellten Variante sind die beiden gleichdrehenden Unwuchtmassen A, C bzw. B, D mittels eines gemeinsamen Antriebs 19 antreibbar. Dann ist kein Wendegetriebe 24 erforderlich. Für die Einstellung einer Phasenverschiebung zwischen den mittels eines gemeinsamen Antriebs 19 angetriebenen Unwuchtmassen 14 ist eine Verstellvorrichtung 25 angeordnet (Fig. 5). Dabei ist bei den mit entgegengesetzten Drehrichtungen antreibbaren Unwuchtmassen 14 gegenüber einer Ausgangsstellung eine erste Phasenverschiebung Δϕ1 einstellbar. Bei den gleichdrehenden Unwuchtmassen 14 ist eine zweite Phasenverschiebung Δϕ2 einstellbar.In order to achieve a change in direction of rotation between the unbalanced masses A, B or C, D of an unbalanced mass pair 34, a reversing gear 24 is arranged in each case. In another variant, not shown, the two unbalanced masses A, C and B, D rotating in the same direction can be driven by means of a common drive 19 . Then no reversing gear 24 is required. An adjusting device 25 is arranged for setting a phase shift between the unbalanced masses 14 driven by means of a common drive 19 ( figure 5 ). In this case, a first phase shift Δφ 1 can be set in relation to an initial position in the case of the imbalance masses 14 which can be driven in opposite directions of rotation. A second phase shift Δφ 2 can be set for the unbalanced masses 14 rotating in the same direction.

In Fig. 4 ist bezugnehmend auf Fig. 2 der Schwingungserreger 12 mit einem eigenen Antrieb 19 pro Unwuchtmasse 14 schematisch dargestellt. Wie im Beispiel gemäß Fig. 3 sind die Unwuchtmassen A und C linksdrehend und die Unwuchtmassen B und D rechtsdrehend antreibbar. Zur Einstellung der Phasenverschiebungen Δϕ1, Δϕ2 ist jeder Antrieb 19 drehwinkelabhängig ansteuerbar oder zwischen jedem Antrieb 19 und der zugehörigen Unwuchtmasse 14 ist eine Verstellvorrichtung 25 angeordnet.In 4 is referring to 2 the vibration exciter 12 with its own drive 19 per unbalanced mass 14 shown schematically. As per the example 3 the unbalanced masses A and C can be driven anticlockwise and the unbalanced masses B and D can be driven clockwise. To set the phase shifts Δφ 1 , Δφ 2 , each drive 19 can be controlled as a function of the angle of rotation, or an adjusting device 25 is arranged between each drive 19 and the associated unbalanced mass 14 .

Fig. 5 zeigt zum Beispiel eine mechanische Verstellvorrichtung 25 für eine Verdrehung der Rotationswelle 13 der Unwuchtmasse 14 gegenüber einer Antriebswelle 26 des Antriebes 19. Hierzu ist die Rotationswelle 13 innerhalb einer mit der Antriebswelle 26 längsverschiebbar verbundenen Hülse 27 geführt. Wie eine Spindel weist die Rotationswelle 13 zumindest eine helixartig verlaufende Nut 28 auf, in welcher sich ein innenseitiges Gegenstück der Hülse 27 im Eingriff befindet. figure 5 shows, for example, a mechanical adjusting device 25 for rotating the rotary shaft 13 of the unbalanced mass 14 relative to a drive shaft 26 of the drive 19. Like a spindle, the rotary shaft 13 has at least one helically running groove 28, in which an inner counterpart of the sleeve 27 is engaged.

Die Hülse 27 und die Rotationswelle 13 sind drehbar gelagert über einen Hydraulikzylinder 29 miteinander verbunden. Wird mittels des Hydraulikzylinders 29 eine Längsverschiebung der Hülse 27 gegenüber der Rotationswelle 13 herbeigeführt, verdreht sich die Rotationswelle 13 samt Unwuchtmasse 14 im gewünschten Winkel gegenüber der Antriebswelle 26. Durch eine Verdrehung der Rotationswelle 13 gegenüber der Antriebswelle 26 wird gegenüber einer anderen Unwuchtmasse 14 eine Phasenverschiebung Δϕ1, Δϕ2 erreicht.The sleeve 27 and the rotary shaft 13 are rotatably connected to one another via a hydraulic cylinder 29 . If a longitudinal displacement of the sleeve 27 relative to the rotary shaft 13 is brought about by means of the hydraulic cylinder 29, the rotary shaft 13 together with the unbalanced mass 14 rotates at the desired angle relative to the drive shaft 26. By twisting the rotary shaft 13 relative to the drive shaft 26, a phase shift occurs relative to another unbalanced mass 14 Δφ 1 , Δφ 2 is reached.

Die mechanische Verstellvorrichtung 25 eignet sich besonders in Kombination mit gleichförmig angetriebenen Hydraulikmotoren. Hier kommt günstigerweise ein Winkelgeber 35 zum Einsatz, um eine Rückmeldung über die Winkelstellung der jeweiligen Antriebswelle 26 bzw. Rotationswelle 13 zu erhalten. Auch bei einer vereinfachten Lösung wie in Fig. 3 ist die Anordnung einer Verstellvorrichtung 25 zwischen den mit einem gemeinsamen Antrieb 19 versehenen Unwuchtmassen 14 sinnvoll, um eine Phasenverschiebung Δϕ1, Δϕ2 zwischen den beiden Unwuchtmassen 14 zu erreichen.The mechanical adjusting device 25 is particularly suitable in combination with uniformly driven hydraulic motors. An angle sensor 35 is advantageously used here in order to receive feedback on the angular position of the respective drive shaft 26 or rotary shaft 13 . Even with a simplified solution as in 3 the arrangement of an adjusting device 25 between the unbalanced masses 14 provided with a common drive 19 makes sense in order to achieve a phase shift Δφ 1 , Δφ 2 between the two unbalanced masses 14 .

Beim Schwingungserreger 12 in Fig. 6 rotieren zwei Unwuchtmassen 14 um eine gemeinsame Rotationsachse 15. Dabei ist eine Rotationswellen 13 mit einer äußeren Unwuchtmasse 14 als Hohlwelle ausgebildet. Innerhalb der Hohlwelle ist ein freies Ende der anderen Rotationswelle 13 mit einer inneren Unwuchtmasse 14 gelagert. Die Rotationswellen 13 sind über weitere Wälzlager 16 in einem Gehäuse 11 gelagert und mittels eigener Antriebe 19 angetrieben. Die Fliehkräfte der rotierenden Unwuchtmassen 14 wirken dabei in einer gemeinsamen Ebene, sodass keine eventuell störenden Kippmomente auftreten. Diese Lagerungsvariante eignet sich insbesondere für einen Schwingungserreger 12 mit nur zwei Unwuchtmassen 14.At the vibration exciter 12 in 6 rotate two unbalanced masses 14 about a common axis of rotation 15. A rotary shaft 13 is formed with an outer unbalanced mass 14 as a hollow shaft. A free end of the other rotary shaft 13 with an inner unbalanced mass 14 is mounted within the hollow shaft. The rotary shafts 13 are mounted in a housing 11 via additional roller bearings 16 and are driven by their own drives 19 . The centrifugal forces of the rotating unbalanced masses 14 act in a common plane, so that no potentially disruptive tilting moments occur. This storage variant is particularly suitable for a vibration exciter 12 with only two unbalanced masses 14.

In den Figuren 7 bis 9 ist die Wirkung einer variablen zweiten Phasenverschiebung Δϕ2 anhand zweier gleichdrehender Unwuchtmassen 14 erläutert. Links sind die Stellungen der Unwuchtmassen 14 zueinander dargestellt. Dabei sind die Rotationsachsen 15 in Gleislängsrichtung 8 ausgerichtet und verlaufen somit parallel zu einer z-Achse eines in Fig. 1 eingezeichneten rechtsdrehenden kartesischen Koordinatensystems x, y, z. Diagramme zeigen Richtungskomponenten Fx, Fy einer resultierenden Schlagkraft Fs über einem gemeinsamen Phasenwinkel ϕ. Darunter sind für mehrere Phasenwinkel ϕ Schlagkraftvektoren im mit der Maschine 1 mitbewegten Koordinatensystem x, y, z dargestellt. Wenn in einer Ausgangsstellung gemäß Fig. 7 die zweite Unwuchtmasse 14 gegenüber der ersten Unwuchtmasse 14 um 180° phasenverschoben ist, sind die Fliehkräfte getilgt. Die resultierenden Richtungskomponenten Fy, Fx der Schlagkraft Fs sind gleich null.In the Figures 7 to 9 the effect of a variable second phase shift Δφ 2 is explained using two unbalanced masses 14 rotating in the same direction. The positions of the unbalanced masses 14 relative to one another are shown on the left. The axes of rotation 15 are in the longitudinal direction of the track 8 aligned and thus run parallel to a z-axis of an in 1 drawn right-hand Cartesian coordinate system x, y, z. Diagrams show directional components F x , F y of a resulting impact force Fs over a common phase angle ϕ. Below that, impact force vectors are shown for several phase angles φ in the coordinate system x, y, z moved along with the machine 1 . When in a starting position according to 7 the second unbalanced mass 14 is phase-shifted by 180° with respect to the first unbalanced mass 14, the centrifugal forces are eliminated. The resulting directional components F y , F x of the impact force Fs are equal to zero.

Gegenüber der Ausgangsstellung ist in Fig. 8 für die zweite Unwuchtmasse 14 eine zweite Phasenverschiebung Δϕ2 von 60° in Drehrichtung eingestellt, sodass die zweite Unwuchtmasse 14 der ersten Unwuchtmasse 14 insgesamt um 240° vorläuft. Daraus ergibt sich eine drehende Schlagkraft Fs mit einem gleichbleibenden Betrag. Die maximale Schlagkraft Fs wird erreicht, wenn gegenüber der Ausgangsstellung für die zweite Unwuchtmasse 14 eine zweite Phasenverschiebung Δϕ2 von 180° in Drehrichtung eingestellt wird. Dann rotieren beide Unwuchtmassen 14 synchron, sodass sich die Fliehkräfte addieren (Fig. 9).Opposite the starting position is in 8 a second phase shift Δφ 2 of 60° is set for the second unbalanced mass 14 in the direction of rotation, so that the second unbalanced mass 14 leads the first unbalanced mass 14 by a total of 240°. This results in a rotating impact force Fs with a constant amount. The maximum impact force Fs is achieved when a second phase shift Δφ 2 of 180° in the direction of rotation is set for the second unbalanced mass 14 compared to the starting position. Then both unbalanced masses 14 rotate synchronously, so that the centrifugal forces add up ( 9 ).

Entsprechende Abbildungen sind in den Figuren 10 und 11 für zwei gegenläufig angetriebene Unwuchtmasse 14 dargestellt. In einer Ausgangsstellung ist die Schlagkraftkomponente Fy in y-Richtung getilgt und in x-Richtung tritt die größte Schlagkraft (Fs) auf (Fig. 10). Eine Änderung der Schlagkraft Fs tritt ein, wenn gegenüber der Ausgangsstellung für eine Unwuchtmasse 14 eine erste Phasenverschiebung Δϕ1 eingestellt wird. In Fig. 11 beträgt die erste Phasenverschiebung Δϕ1 der zweiten Unwuchtmasse 14 zum Beispiel 60° in Drehrichtung. Dann verringert sind die Schlagkraft Fs. Die Wirkrichtung der Schlagkraft Fs weist dabei gegenüber der x-Achse einen Neigungswinkel auf, welcher der halben ersten Phasenverschiebung Δϕ1 entspricht. Eine maximale Schlagkraft Fs parallel zur y-Achse ergibt sich somit bei einer ersten Phasenverschiebung Δϕ1 von 180°.Corresponding illustrations are in Figures 10 and 11 shown for two unbalanced masses 14 driven in opposite directions. In a starting position, the impact force component F y in the y-direction is eliminated and the greatest impact force (Fs) occurs in the x-direction ( 10 ). A change in the impact force Fs occurs when a first phase shift Δφ 1 is set for an unbalanced mass 14 in relation to the starting position. In 11 the first phase shift Δφ 1 of the second unbalanced mass 14 is, for example, 60° in the direction of rotation. The impact force Fs is then reduced. The effective direction of the impact force Fs has an angle of inclination relative to the x-axis which corresponds to half the first phase shift Δφ 1 . A maximum impact force Fs parallel to the y-axis thus results with a first phase shift Δφ 1 of 180°.

In den Figuren 12 bis 16 sind verschiedene Phasenverschiebungen Δϕ1, Δϕ2 bei vier Unwuchtmassen A, B, C und D gemäß den Figuren 3 und 4 dargestellt. Jede der Figuren 12 bis 15 zeigt links eine erste Ausgangsstellung zweier Unwuchtmassepaare 34 mit jeweils gegenläufig rotierenden Unwuchtmassen A, B bzw. C, D (Phasenwinkel ϕ = 0). Daneben (Fig. 12, 13) bzw. darunter (Fig. 14, 15) sind Verläufe der Schlagkräfte FAB, FCD der Unwuchtmassepaare 34 und der sich insgesamt ergebenen Schlagkraft Fs über einem gemeinsamen Phasenwinkel ϕ dargestellt. Des Weiteren sind die Stellungen der Unwuchtmassen 14 bei einem Phasenwinkel ϕ von 90°, 180° und 270° dargestellt.In the Figures 12 to 16 are different phase shifts Δϕ 1 , Δϕ 2 for four unbalanced masses A, B, C and D according to Figures 3 and 4 shown. Each of the Figures 12 to 15 shows on the left a first initial position of two pairs of unbalanced masses 34, each with unbalanced masses A, B and C, D rotating in opposite directions (phase angle φ=0). Besides ( 12, 13 ) or below ( 14 , 15 ) courses of the impact forces F AB , F CD of the pairs of unbalanced masses 34 and the resulting impact force Fs are shown over a common phase angle φ. Furthermore, the positions of the unbalanced masses 14 are shown at a phase angle φ of 90°, 180° and 270°.

Anhand der Figuren 12 und 13 wird eine Schlagkraftverstellung in Richtung der x-Achse, das heißt in der Gleisebene normal zur Gleislängsrichtung 8, erläutert. Dabei sind die Unwuchtmassen A, B bzw C, D jedes Unwuchtmassenpaares 34 zueinander um 180° phasenverschoben. Infolge der gegengleichen Drehrichtungen 30 sind die Fliehkräfte in Richtung der y-Achse getilgt und die y-Komponente der Schlagkraft Fs ist gleich null. In Fig. 12 sind zudem die jeweils mit gleicher Drehrichtung antreibbaren Unwuchtmassen A, C bzw. B, D zueinander um 180° phasenverschoben. Damit ergibt sich für die insgesamt resultierende Schlagkraft Fs auch eine getilgte x-Komponente. In dieser Ausgangsstellung wirkt somit trotz rotierender Unwuchtmassen 14 keine Schlagkraft Fs auf das Gleis 3.Based on Figures 12 and 13 an impact force adjustment in the direction of the x-axis, ie in the track plane normal to the longitudinal direction 8 of the track, is explained. The unbalanced masses A, B or C, D of each unbalanced mass pair 34 are phase-shifted by 180° with respect to one another. As a result of the opposite directions of rotation 30, the centrifugal forces in the direction of the y-axis are eliminated and the y-component of the impact force Fs is equal to zero. In 12 the unbalanced masses A, C or B, D, which can be driven in the same direction of rotation, are also phase-shifted by 180° with respect to one another. This also results in a canceled x-component for the overall resulting impact force Fs. In this initial position, despite the rotating unbalanced masses 14, no impact force Fs acts on the track 3.

Für eine maximale Schlagkraft Fs in x-Richtung ist die eingestellte zweite Phasenverschiebung Δϕ2 gleich 180° (Fig. 7). Hier laufen die mit gleicher Drehrichtung antreibbaren Unwuchtmassen A, C bzw. B, D synchron, sodass sich die Fliehkräfte in x-Richtung addieren. Mit der variabel einstellbaren zweiten Phasenverschiebung Δϕ2 im Bereich von 0° bis 180° ist die resultierende Schlagkraft Fs in Richtung der x-Achse von null bis maximal exakt einstellbar.For a maximum impact force Fs in the x-direction, the set second phase shift Δϕ 2 is equal to 180° ( 7 ). Here, the imbalance masses A, C or B, D that can be driven in the same direction of rotation run synchronously, so that the centrifugal forces add up in the x-direction. With the variably adjustable second phase shift Δϕ 2 in the range from 0° to 180°, the resulting impact force Fs in the direction of the x-axis can be precisely adjusted from zero to a maximum.

Die Einstellung der Schlagkraft Fs in Richtung der y-Achse wird anhand der Figuren 14 und 15 erläutert. Zunächst ist in jedem Unwuchtmassepaar 34 eine Unwuchtmasse B bzw. D gegenüber der Ausgangsstellung in Fig. 12 phasenverschoben. Konkret wird bei beiden Unwuchtmassepaaren 34 eine erste Phasenverschiebung Δϕ1 gleich 180° eingestellt, sodass weiterhin eine vollständige Tilgung der resultierenden Schlagkraft Fs vorliegt (Fig. 14). Um eine maximale Schlagkraft Fs in Richtung der y-Achse zu erreichen, wird gegenüber dieser neuen Ausgangstellung eine zweite Phasenverschiebung Δϕ2 gleich 180° eingestellt (Fig. 15).The setting of the impact force Fs in the direction of the y-axis is based on the figures 14 and 15 explained. First, in each pair of unbalanced masses 34, an unbalanced mass B or D is in relative to the starting position 12 out of phase. Specifically, a first phase shift Δφ 1 equal to 180° is set for both pairs of unbalanced masses 34, so that a there is complete cancellation of the resulting impact force Fs ( 14 ). In order to achieve a maximum impact force Fs in the direction of the y-axis, a second phase shift Δϕ 2 equal to 180° is set compared to this new starting position ( 15 ).

Fig. 16 zeigt für vier Unwuchtmassen A, B, C, D fünf verschiedene Schlagkrafteinstellungen mit der jeweils resultierenden Schlagkraft Fs. Von links nach rechts sind vier Stellungen der jeweiligen Schlagkrafteinstellung dargestellt, nämlich bei den Phasenwinkel ϕ gleich 0°, 90°, 180° und 270°. Durch eine veränderte Vorgabe der ersten Phasenverschiebung Δϕ1 und der zweiten Phasenverschiebung Δϕ2 mittels der gemeinsamen Steuerungseinrichtung 31 wird die benötigte Schlagkraft Fs schnell und präzise eingestellt. Dabei umfasst die Steuerungseinrichtung 31 eine Recheneinheit, um in Abhängigkeit einer örtlichen Gleisbeschaffenheit die optimale Schlagkraft Fs einzustellen. Der Steuerungseinrichtung 31 sind für diesen Optimierungsvorgang entsprechende Sensorsignale von an der Maschine 1 angeordneten Sensoren oder vorab ermittelte Gleisdaten zugeführt. 16 shows five different impact force settings with the resulting impact force Fs for four unbalanced masses A, B, C, D. Four positions of the respective impact force setting are shown from left to right, namely with the phase angle ϕ equal to 0°, 90°, 180° and 270° . The required impact force Fs is set quickly and precisely by changing the specification of the first phase shift Δφ 1 and the second phase shift Δφ 2 by means of the common control device 31 . In this case, the control device 31 includes a computing unit in order to set the optimum impact force Fs as a function of a local track condition. Corresponding sensor signals from sensors arranged on the machine 1 or previously determined track data are fed to the control device 31 for this optimization process.

Claims (10)

  1. A machine (1) for stabilizing a track (3), including a machine frame (6) supported on on-track undercarriages (4) and a vertically adjustable stabilizing unit (7) designed to roll on rails (5) of the track (3) by means of unit rollers (10), the stabilizing unit comprising a vibration exciter (12) with rotating imbalance masses (14) for generating an impact force (Fs) acting dynamically in a track plane perpendicularly to a track longitudinal direction (8) and a vertical drive (9) for generating a vertical load acting on the track (3), characterized in that the vibration exciter (12) comprises at least four rotatable imbalance masses (14) of which two imbalance masses (14) in each case are driveable right-turning and two imbalance masses (14) are driveable left-turning, that the right-turning imbalance masses (14) and the left-turning imbalance masses (14) each forming an imbalance mass pair (34) are driveable applying a first phase shift (Δϕ1) which is variably adjustable with respect to an initial position, that the two left-turning imbalance masses (14) are driveable with a variably adjustable second phase shift (Δϕ2) to one another, and that the two right-turning imbalance masses (14) are driveable with a variably adjustable second phase shift (Δϕ2) to one another.
  2. A machine (1) according to on claim 1, characterized in that an angle sensor (35) is associated with each imbalance mass (14).
  3. A machine (1) according to claim 1 or 3, characterized in that the respective imbalance mass (14) is arranged on the stabilizing unit (7) with a rotation axis (15) being aligned in the track longitudinal direction (8).
  4. A machine (1) according to one of claims 1 to 3, characterized in that a separate drive (19) is associated with each imbalance mass (14).
  5. A machine (1) according to one of claims 1 to 3, characterized in that a common drive (19) is associated with two imbalance masses (14).
  6. A machine (1) according to one of claims 4 or 5, characterized in that the respective drive (19) is designed as an electric drive.
  7. A machine (1) according to claim 6, characterized in that the electric drives are controlled by means of a common control device (31).
  8. A machine (1) according to one of claims 4 or 5, characterized in that the respective drive (19) is designed as a hydraulic drive.
  9. A machine (1) according to one of claims 4 to 8, characterized in that an adjustment device (25) for a variable phase shift (Δϕ1, Δϕ2) is associated with the respective drive (19).
  10. A method of operating a machine (1) according to one of claims 1 to 9, characterized in that the stabilizing unit (7) is set down on the track (3) via the vertical drive (9) and actuated with a vertical load, and that at least four rotatable imbalance masses (14) are driven applying variably adjustable phase shifts (Δϕ1, Δϕ2) to one another in this way, that two right-turning imbalance masses (14) and two left-turning imbalance masses (14) each forming an imbalance mass pair (34) are driven applying a first phase shift (Δϕ1) which is variably adjustable with respect to an initial position and that the two left-turning imbalance masses (14) are driven applying a variably adjustable second phase shift (Δϕ2) to one another and the two right-turning imbalance masses (14) are driven applying a variably adjustable second phase shift (Δϕ2) to one another.
EP19701584.5A 2018-02-13 2019-01-14 Machine for stabilizing a track Active EP3752675B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT362018 2018-02-13
PCT/EP2019/050767 WO2019158288A1 (en) 2018-02-13 2019-01-14 Machine for stabilizing a track

Publications (3)

Publication Number Publication Date
EP3752675A1 EP3752675A1 (en) 2020-12-23
EP3752675C0 EP3752675C0 (en) 2023-07-19
EP3752675B1 true EP3752675B1 (en) 2023-07-19

Family

ID=65228509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19701584.5A Active EP3752675B1 (en) 2018-02-13 2019-01-14 Machine for stabilizing a track

Country Status (9)

Country Link
US (1) US11891761B2 (en)
EP (1) EP3752675B1 (en)
JP (1) JP2021513621A (en)
CN (1) CN111670284A (en)
AT (1) AT16604U1 (en)
CA (1) CA3088341A1 (en)
EA (1) EA039947B1 (en)
PL (1) PL3752675T3 (en)
WO (1) WO2019158288A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT523034A3 (en) * 2019-09-18 2024-02-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Machine and method for stabilizing a track
AT523228B1 (en) 2019-12-10 2024-06-15 Plasser & Theurer Export Von Bahnbaumaschinen Ges M B H Machine and method for stabilizing a ballast track
AT525090B1 (en) 2021-08-12 2022-12-15 Hp3 Real Gmbh Process for stabilizing the ballast bed of a track
AT18204U1 (en) 2022-11-22 2024-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Stabilization unit, rail vehicle and method for stabilizing a track
AT18205U1 (en) * 2022-11-22 2024-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Stabilization unit for stabilizing a track

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU96295A1 (en) 1952-01-18 1952-11-30 Ю.А. Чекменев Kurako-gruzouborochna machine
DE1149304B (en) * 1957-04-03 1963-05-22 Losenhausenwerk Duesseldorfer Soil compactor with an unbalance vibrator to generate directed vibrations
FR1347335A (en) * 1963-01-04 1963-12-27 Method and machine for compacting the ballast of the backfill of the railway tracks, in particular at the place of the benches, in connection with the straightening of the track, the wedging or the stuffing of sleepers or with the raising and leveling of the track
AT343165B (en) * 1975-01-31 1978-05-10 Plasser Bahnbaumasch Franz MOBILE BOTTOM BED COMPACTION MACHINE FOR CORRECTING THE TRACK
US4111129A (en) * 1976-03-31 1978-09-05 Canron Railgroup Method and apparatus for the vibratory tamping of railway tracks
SU796295A1 (en) * 1979-03-23 1981-01-15 Всесоюзный Ордена Трудового Крас-Ного Знамени Научно-Исследовательс-Кий Институт Железнодорожного Tpahc-Порта Working member of machine for compacting railway track ballast prism
FR2671744A1 (en) * 1991-01-21 1992-07-24 Procedes Tech Construction Variable-moment circular-vibration generator
DE4116647C5 (en) * 1991-05-22 2004-07-08 Hess Maschinenfabrik Gmbh & Co. Kg shaker
ATE168428T1 (en) * 1995-06-16 1998-08-15 Plasser Bahnbaumasch Franz MACHINE FOR STABILIZING A TRACK
SE513571C2 (en) * 1999-03-18 2000-10-02 Ulf Bertil Andersson Apparatus for generating mechanical vibrations
WO2008009314A1 (en) * 2006-07-20 2008-01-24 Franz Plasser Bahnbaumaschinen-Industriegesellschaft Mbh Method and machine for stabilizing track
DE102011008835A1 (en) * 2011-01-19 2012-07-19 Robel Bahnbaumaschinen Gmbh Handstopfer for submerging a track
JP5771341B1 (en) * 2014-01-27 2015-08-26 西日本旅客鉄道株式会社 Track-and-shrinker for road-rail vehicles
CN104562873B (en) * 2014-12-26 2016-10-12 中车北京二七机车有限公司 Railroad track stabilising arrangement
AT517999B1 (en) * 2015-11-20 2018-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Stopfaggregat and method for plugging a track
AT517843B1 (en) * 2015-11-24 2017-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method and tamping unit for submerging a track
AT518373B1 (en) 2016-02-24 2018-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Machine with stabilization unit and measuring method
CN206486753U (en) * 2016-11-23 2017-09-12 中国铁建高新装备股份有限公司 A kind of stable car of continous way circuit track switch
CN106592349B (en) * 2016-12-13 2018-09-21 常州市瑞泰工程机械有限公司 The adjustable exciting component of exciting force and the stabilising arrangement for using the component
CN107227661B (en) * 2017-06-12 2018-10-23 东北大学 A kind of exciting of hydraulic tamping machine and tamping unit and parameter determination method

Also Published As

Publication number Publication date
EP3752675C0 (en) 2023-07-19
AT16604U1 (en) 2020-02-15
US11891761B2 (en) 2024-02-06
EA202000178A1 (en) 2020-10-27
JP2021513621A (en) 2021-05-27
EP3752675A1 (en) 2020-12-23
PL3752675T3 (en) 2024-02-26
WO2019158288A1 (en) 2019-08-22
CA3088341A1 (en) 2019-08-22
US20210071369A1 (en) 2021-03-11
EA039947B1 (en) 2022-03-31
CN111670284A (en) 2020-09-15

Similar Documents

Publication Publication Date Title
EP3752675B1 (en) Machine for stabilizing a track
DE3709112C1 (en) Vibrating device for a concrete block molding machine
EP1727940B1 (en) Tamping device
EP1624102B1 (en) Shaking device for reciprocatingly moving a body along an axis thereof
DE4322744A1 (en) Electrical drive system for adjusting one or more rotatable and/or pivotable functional parts in devices and machines, drive arrangement with an angular position transmitter and printing machine
EP2881516A1 (en) Road roller
EP3040478B1 (en) Self-propelled street milling machine for milling street surfaces, and method for machining street surfaces with a street milling machine
DE2633578A1 (en) VIBRATOR WITH CHANGEABLE CENTRIFUGAL FORCE FOR SOIL COMPACTION ROLLERS
DE2733070A1 (en) GRINDING MACHINE
WO2002011906A1 (en) Controllable vibration generator
WO2000061344A1 (en) Internal vibration device with variable vibration amplitude
DE10147957A1 (en) Vibration exciter for a soil compaction device
WO1998035094A1 (en) Shaker
DE10105687B4 (en) Vibration generator for steerable soil compaction devices
EP4031712B1 (en) Machine and method for stabilizing a track
EP2242590B1 (en) Unbalance exciter with one or more rotatable unbalances
EP1534439B1 (en) Vibration exciter for soil compacting devices
EP1212148B1 (en) Vibration exciter for ground compacting devices
EP0945187A2 (en) Compacting installation with vibratory drive
EP3715050A1 (en) Device and method for actively damping the oscillations of a machine element and machine tool device with at least one such device
DE4138476C1 (en) Mass equaliser for flat screening machines - has eccentric drive firmly coupled to main frame, or foundation, also contg. equalising weight
WO2024008523A1 (en) Tamping unit and method for tamping sleepers of a track
DE2030995C3 (en) Drive device for the rolling stand of a pilger step rolling mill, which is moved linearly back and forth via a crank mechanism
EP2050873A2 (en) Vibration roller
DE1634246C (en) Vibrating roller

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008577

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230719

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230724

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230719

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231222

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019008577

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240202

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240103

Year of fee payment: 6