EP3040478B1 - Self-propelled street milling machine for milling street surfaces, and method for machining street surfaces with a street milling machine - Google Patents

Self-propelled street milling machine for milling street surfaces, and method for machining street surfaces with a street milling machine Download PDF

Info

Publication number
EP3040478B1
EP3040478B1 EP15199518.0A EP15199518A EP3040478B1 EP 3040478 B1 EP3040478 B1 EP 3040478B1 EP 15199518 A EP15199518 A EP 15199518A EP 3040478 B1 EP3040478 B1 EP 3040478B1
Authority
EP
European Patent Office
Prior art keywords
milling
milling drum
oscillation
accordance
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15199518.0A
Other languages
German (de)
French (fr)
Other versions
EP3040478A1 (en
Inventor
Axel Mahlberg
Cyrus Barimani
Günter HÄHN
Sebastian Bötzius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wirtgen GmbH
Original Assignee
Wirtgen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wirtgen GmbH filed Critical Wirtgen GmbH
Publication of EP3040478A1 publication Critical patent/EP3040478A1/en
Application granted granted Critical
Publication of EP3040478B1 publication Critical patent/EP3040478B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/088Rotary tools, e.g. milling drums
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/12Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor
    • E01C23/122Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus
    • E01C23/127Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus rotary, e.g. rotary hammers

Definitions

  • the invention relates to a self-propelled road milling machine for machining road surfaces according to the preamble of claim 1 and a method for machining road surfaces according to the preamble of claim 14.
  • Such road milling machines are already known in principle.
  • small milling machines where the milling drum is at the height of the rear axle of the chassis and between the rear wheels, it is known to provide on the null side of the machine, a rear jockey wheel or track drive, which can swing inward for edge-near milling behind the outer contour of the road milling machine.
  • Large milling machines are, for example, road milling machines in which the milling drum is mounted on the machine frame between the crawler tracks of the front and rear axles, and at a distance therefrom.
  • the EP 11 677 626 A1 describes such a large milling machine.
  • the milling rollers of such milling machines have a plurality of circumferentially preferably helically arranged tools.
  • these are milling tools which are fixed in tool holders welded onto a hollow cylindrical roller body or in chisel holder systems.
  • the tools therefore have a constant line spacing, which corresponds to the axial distance between adjacent tools and is usually between 3 mm and 25 mm.
  • line spacing depends on the respective milling task. Thus, in the development of complete lanes usually a larger line spacing is selected than in fine milling, which only serves the roughening of the road surface with low milling depth.
  • milling depth and desired surface structure also play a variety of other factors, such as the type of substrate to be processed for the choice of line spacing a role, which means that a variety of different milling drums with different line spacing for different tasks are available.
  • the invention is therefore an object of the invention to provide a road milling machine for processing road surfaces, as well as a method for editing road surfaces that allow flexible use for various milling tasks, expand the possibilities of milling, and can be used cost and time saving.
  • the invention advantageously provides that an oscillation drive exerts on the milling drum an oscillation stroke reciprocating in the axial direction relative to the machine frame, the rotational movement of the tools being superimposed on an axial movement running parallel to the axis of the milling drum whose stroke is at the line spacing is adaptable between two axially adjacent tools.
  • the advantage of the invention is that with a single roughing or standard roll now large cutting depths can be achieved and at the same time fine surface structures are produced.
  • the line structure on the road surface can be changed or completely eliminated.
  • a road surface can be achieved with a structure that is not directly dependent on the line spacing of the milling drum. It also eliminates the need to use a milling drum, which produces a finer line structure on the milled surface.
  • Another advantage is that the changed surface structure of the road surface can be achieved even with larger cutting depths.
  • the tools perform a rotational movement about the Fräswalzenachse, which is superimposed by an axial movement parallel to the axis of the milling drum.
  • the stroke of the displacement of the milling drum in the axial direction can be adjusted according to the line spacing of two axially adjacent tools, so that the oscillation is variably variable on milling drums with different tool density. This eliminates changeover times and the provision of a variety of milling drums for different applications can be significantly reduced.
  • the invention makes it possible to save time and costs in an advantageous manner, because both coarse structures and fine structures can be produced with a single milling drum.
  • the fine groove structure produced during fine milling can negatively influence the steering behavior, in particular of two-wheeled vehicles, and lead to self-steering behavior.
  • This groove formation is reduced parallel to the traffic lane, even if the oscillation stroke is smaller than the line spacing.
  • the Oszillationshub does not have to correspond exactly to the line spacing, but also can be set lower or greater, or alternatively can be switched off completely, so that the road milling machine can be operated in a conventional manner.
  • the amplitude and / or the frequency of the oscillation are variably adjustable, so that the type of structure produced by the milling drum on the surface can be adapted individually to specific milling tasks.
  • the oscillation stroke in the range between 0.5 to 1.5 times, preferably between 0.9 to 1.1 times the line spacing can be adjusted.
  • the oscillation stroke can be adjustable in the range between 3 mm and 40 mm.
  • the frequency of the oscillation can be adjustable, for example, between 0.1 and 20 Hz.
  • the ratio of the average speed amount of the oscillation stroke to the peripheral speed of the milling drum tools lies in the range between 0.1 and 3, preferably between 0.25 and 2.
  • the milling drum has an axially movable axial bearing.
  • the movable axial bearing can be achieved in that the milling drum housing is displaced together with the milling drum or that the axial bearing is axially movable relative to the Fräswalzengephaseuses.
  • a reciprocating movement in the direction of travel can be superimposed on the axial bearing.
  • the milling drum can oscillate both in the axial direction and in the direction of travel.
  • a further oscillation drive is preferably provided.
  • the displacement of the milling drum in the direction of travel can be done not only linearly but also arcuately about an axis extending above the milling drum parallel to the milling drum axis.
  • a control is provided which automatically controls or regulates the oscillation frequency and / or the amplitude of the oscillation stroke as a function of the milling drum rotational speed and / or the feed rate and / or milling depth of the milling drum.
  • the milling drum oscillates together with the Fräswalzengephaseuse in the axial direction, and that the Oscillation drive the Fräswalzengephaseuse drives relative to the machine frame.
  • the oscillation drive drives the milling drum in the milling drum housing in the axial direction.
  • the milling drum housing is longer in the axial direction than the milling drum at least by the maximum oscillation stroke.
  • the axial bearing is a fixed-lot storage, in which the fixed bearing is displaceable in the axial direction.
  • the oscillation drive can act on the side of the fixed bearing axially on a running in the Fräswalzenachse drive shaft of the milling drum.
  • the movable bearing allows for a movement stroke that corresponds at least to the oscillation stroke.
  • the milling drum may have a rotary drive which drives a drive shaft on the side of the fixed bearing. If the entire Fräswalzengeophuse can oscillate in the axial direction, this is done along at least two linear guides, which extend parallel to the Fräswalzenachse in the axial direction.
  • the milling drum housing or the milling drum can be oscillated along at least two linear or arcuate guides in the direction of travel.
  • All guides have a first guide, which leads both vertically and horizontally, and at least one further, parallel to the first guide extending second guide, which leads at least in the horizontal direction.
  • the object is also achieved by the method according to claim 14, wherein during operation an oscillating oscillation stroke reciprocating in the axial direction is exerted on the milling drum in the axial direction, the rotational movement of the tools being superimposed on an axial rotational movement running parallel to the axis of the milling drum Hub is variably adjusted to the line spacing of two axially adjacent tools.
  • the FräswalzenFWharmiere in the range between 180 U / min and 600 U / min corresponding to a Fräswalzenwindfrequenz between 3 Hz and 10 Hz, preferably between 240 U / min and 360 rev / min or the Fräswalzencardfrequenz between 4 Hz and 6 Hz and with an oscillation frequency of 0.1 Hz to 5 Hz, preferably between 1 Hz and 3 Hz, are combined.
  • Fig. 1 shows a large milling machine as they basically from the EP 2 011 921 A is known.
  • the road milling machine 1 has a machine frame 8, which is supported by a chassis with at least three crawler tracks 20 or wheels.
  • the milling drum housing 10 is arranged in the direction of travel 22 between the crawler tracks 20, in small milling, however, rather at the level of the rear support wheels or crawler tracks 20th
  • the milling drum 12 is rotatable about a Fräswalzenachse 24 transverse to the direction 22, wherein the milling drum 12 is mounted in side walls 11, 13 of the Fräswalzengephaseuses 10 or on the machine frame 8.
  • the milling drum 12 may extend with its one end face to the outer side of the machine frame 8 designated as the zero side, whereas a drive device for the milling drum 12 may be arranged on the opposite outer wall of the machine frame 8.
  • the drive device for the milling drum 12 may be, for example, a mechanical drive having a belt drive 38 or a hydraulic or electric drive.
  • the driver's cab 14 Above the milling drum 12 is the driver's cab 14 with a seat for the driver.
  • Fig. 2a shows by way of example the arrangement of the tools 16 on the milling drum 12, as basically from the DE 102 03 732 is known.
  • the tools 16 In the circumferential direction, the tools 16 have a predetermined predominantly constant mutual distance.
  • a series of tools 16 may be provided which are not spirally arranged to produce vertical milling edges. Since the tools 16 do not change their axial position during the rotation of the milling drum 12, they produce on the road surface 2 grooves 18 which form in the direction of travel 22 on the road surface 2 in cross-section groove-shaped recesses, as for example in the FIGS. 2b and 2c are recognizable.
  • the distance 19 between two adjacent grooves 18 is therefore dependent on the line spacing of the milling drum, that is, the axial distance of the circumferentially adjacent tools 16.
  • line spacings are preferably common between 3 mm and 25 mm.
  • Fig. 2c schematically shows the distance 19 between the grooves 18, which results from the line spacing of the spirally arranged on the milling drum 12 tools 16.
  • two counter-rotating spirals of tools 16 are formed on the milling drum 12, which have the task to transport the milled material to the roll center or to a specific axial position of the milling drum 12.
  • Fig. 3 schematically shows a conventional axial bearing of a milling drum 12 in a Fräswalzengephaseuse 10, which is immovable axially relative to the machine frame 8.
  • the Fräswalzenachse 24 is mounted in the side walls 11, 13 of the Fräswalzengephaseuses 10, with the aid of a fixed bearing 30 and a floating bearing 32.
  • the floating bearing is axially movable to a small extent, so that, for example, thermal expansion of the Fräswalzenachse 24 can be compensated.
  • the milling drum drive is usually arranged, which can be done for example by a mechanical belt drive 38 but also hydraulically or electrically.
  • the inventively mounted in the end walls of the Fräswalzengephases 10 milling drum 12 has apart from a radial bearing axially movable axial bearing.
  • the fixed bearing (axial bearing) of the milling drum is moved relative to the machine frame 8, either with the entire Fräswalzengephaseuse 10 or relative to this.
  • Fig. 4 and 5 an embodiment is shown in which the axial movement of the milling drum is achieved in that the entire milling drum housing 10 with the milling drum 12 performs the Oszillationshub.
  • the oscillation drive 28 acts between the milling drum 12 and the milling drum housing 10.
  • the milling drum housing 10 is, as in FIGS. 4 and 5 can be seen, along at least two linear mutually parallel guides 42a, 44a and 42b, 44b transversely to the direction of travel 22 movable to allow oscillation of the entire Fräswalzengepuruses 10 with the milling drum 12 in the axial direction parallel to the Fräswalzenachse 24 in a ground-parallel plane.
  • An oscillating drive 28, in particular a linear drive, e.g. from a piston-cylinder unit or a mechanical eccentric drive, or a spindle drive allows the oscillation of the milling drum housing 10 relative to the machine frame eighth
  • Fig. 5 is a schematic plan view of the embodiment of Fig. 4 , from which it can be seen that the linear guides 42a, 42b are parallel to the linear guides 44a and 44b and to the milling drum axis 24.
  • each linear guide 42a, 42b and 44a, 44b may be made in one piece. This means that the guide elements 42a, 42b and 44a, 44b can be connected to one another or extend over the entire width of the milling drum housing 10.
  • Fig. 6 schematically shows a second embodiment in which the Fräswalzengepuruse 10 is rigidly fixed to the machine frame 8 and the milling drum 12 is mounted in the side walls 11, 13 via movable bearings 32a, 32b.
  • the oscillation drive 28 acts between the milling drum 12 and the milling drum housing 10.
  • the milling drum housing 10 is longer in the axial direction than the milling drum 12 by at least the maximum oscillation stroke.
  • Fig. 7 schematically shows the oscillating movement of the Fräswalzengepuruses 10 in the direction of travel 22, while Fig. 8 an embodiment in which the milling roller 12 can oscillate within the side walls 11, 13 in the direction of travel.
  • the Fräswalzenachse 24 is in the embodiment of Fig. 8 guided in the milling drum housing 10 in a horizontal slot 25.
  • the linear guides 42, 44, 46, 48 may for example also be provided in the manner of a cross slide.
  • the amplitude and / or the frequency of the oscillation in the axial direction and parallel to the direction of travel 22 are variably adjustable.
  • the oscillation stroke can be set in a range of 0.5 to 1.5 times the line spacing.
  • the maximum oscillation stroke is oriented at the line spacing and differs only slightly therefrom.
  • the oscillation stroke in a range between 3 mm, preferably 5 mm, and 40 mm adjustable.
  • the frequency of the oscillation can be set between 0.1 Hz and 40 Hz.
  • the frequency may be adjusted to achieve a certain ratio of the average axial velocity amount to the feed rate of the milling drum 12 or the peripheral speed of the tools of the milling drum 12 or the addition of the peripheral speed of the tools and the feed rate of the milling machine.
  • a relatively high milling roll speed in the range of 180 rpm to 600 rpm (or milling drum rotational frequency between 3 Hz to 10 Hz), preferably between 240 rpm to 360 rpm (or 4 Hz to 6 Hz) a relatively low oscillation frequency between 0.1 Hz to 5 Hz, more preferably between 1 Hz to 3 Hz, to be combined.
  • the oscillation frequencies refer to the specified range for the oscillation.
  • a low milling roll speed can be combined with a high oscillation speed.
  • the milling drum speed can range from 30 rpm to 180 rpm (corresponding to milling drum rotation frequency 0.5 Hz to 3 Hz), preferably between 60 rpm to 150 rpm (corresponding to 1 Hz to 2.5 Hz ), at an oscillation frequency in the range between 2 Hz to 40 Hz, preferably between 5 Hz to 15 Hz.
  • this embodiment is preferable because it allows lower tool wear to be achieved (lower peripheral speed of the bits, i.e. lower forces on the tool being cut).
  • the oscillation frequency should not correspond to an integer multiple of the rotational frequency of the milling drum (or vice versa), since thus the cut could be made each time in the same, running in the direction of travel line. However, this effect is negligible in the case of fast oscillation, eg five times the rolling rotational frequency.
  • variable oscillation frequency is possible by superposition with a harmonic of the rotational frequency of the milling drum, e.g. with a bandwidth of 30% around the oscillation frequency.
  • the superimposed oscillating movement of the milling drum 12 parallel to the direction of travel 22 may also be linear instead of as in the FIGS. 7 and 8 illustrated, circular arc-shaped about a pivot axis 50 take place, which extends above and parallel to the Fräswalzenachse 24.
  • Fig. 9 shows an embodiment in which the milling drum housing 10 with the milling drum 12 about the pivot axis 50 in the direction of travel 22 can oscillate circular arc.
  • Fig. 10 shows an alternative embodiment in which the milling drum 12 can oscillate within the Fräswalzengephaseuses 10 about the pivot axis 50 in the direction of travel 22.
  • the slot 25 is curved in this case about the pivot axis 50 in the side walls 11 of the Fräswalzengephaseuses 10 arranged curved.
  • Fig. 11 shows a cross section through the longitudinal guides 42, 44, 46, 48, from which it can be seen that in each case one of the two mutually parallel guides 42, 48 has only one degree of freedom, namely in the axial direction and the respective other guide 44, 46 a degree of freedom in axial direction and a degree of freedom in the horizontal direction.
  • This design of the guides is suitable both for the linear guides 42, 44 acting in the axial direction and for the linear guides 46, 48 acting in the direction of travel.
  • the road milling machine may have a controller 14, the oscillation frequency and / or the amplitude of the oscillation depending on the Fräswalzennaviere and / or the feed rate of the milling machine and / or Cutting depth of the milling drum automatically controls or regulates.
  • parameters of the road surface for example, the consistency of the road surface can be taken into account.

Description

Die Erfindung betrifft eine selbstfahrende Straßenfräsmaschine zum Bearbeiten von Straßenoberflächen nach dem Oberbegriff des Anspruchs 1 bzw. ein Verfahren zum Bearbeiten von Straßenoberflächen nach dem Oberbegriff des Anspruchs 14.The invention relates to a self-propelled road milling machine for machining road surfaces according to the preamble of claim 1 and a method for machining road surfaces according to the preamble of claim 14.

Derartige Straßenfräsen sind grundsätzlich bereits bekannt. Bei Kleinfräsen, bei denen die Fräswalze in Höhe der hinteren Achse des Fahrwerks und zwischen den Hinterrädern liegt, ist es bekannt, auf der Nullseite der Maschine ein hinteres Stützrad oder Kettenlaufwerk vorzusehen, das zum kantennahen Fräsen nach innen hinter die Außenkontur der Straßenfräsmaschine einschwenken kann.Such road milling machines are already known in principle. In small milling machines, where the milling drum is at the height of the rear axle of the chassis and between the rear wheels, it is known to provide on the null side of the machine, a rear jockey wheel or track drive, which can swing inward for edge-near milling behind the outer contour of the road milling machine.

Großfräsen sind beispielsweise Straßenfräsmaschinen, bei denen die Fräswalze an dem Maschinenrahmen zwischen den Kettenlaufwerken der Vorder- und der Hinterachse gelagert ist, und zwar mit Abstand von diesen. Die EP 11 677 626 A1 beschreibt eine derartige Großfräse.Large milling machines are, for example, road milling machines in which the milling drum is mounted on the machine frame between the crawler tracks of the front and rear axles, and at a distance therefrom. The EP 11 677 626 A1 describes such a large milling machine.

Die Fräswalzen derartiger Fräsmaschinen weisen mehrere umfangsmäßig vorzugsweise spiralförmig angeordnete Werkzeuge auf. Üblicherweise handelt es sich dabei um Fräsmeißel, die in, auf einen hohlzylindrischen Walzenkörper aufgeschweißten Meißelhaltern oder in Meißelhaltersystemen fixiert werden. Die Werkzeuge weisen daher einen konstanten Linienabstand auf, der dem axialen Abstand benachbarter Werkzeuge entspricht und in der Regel zwischen 3 mm und 25 mm liegt.The milling rollers of such milling machines have a plurality of circumferentially preferably helically arranged tools. Usually, these are milling tools which are fixed in tool holders welded onto a hollow cylindrical roller body or in chisel holder systems. The tools therefore have a constant line spacing, which corresponds to the axial distance between adjacent tools and is usually between 3 mm and 25 mm.

Durch den axialen Abstand der Werkzeuge wird beim Fräsprozess eine Rillenstruktur auf der gefrästen Oberfläche erzeugt, wobei der gegenseitige Abstand benachbarter Rillen dem Linienabstand entspricht.Due to the axial spacing of the tools, a groove structure is produced on the milled surface during the milling process, with the mutual spacing of adjacent grooves corresponding to the line spacing.

Die Wahl des Linienabstands hängt dabei von der jeweiligen Fräsaufgabe ab. So wird beim Ausbau kompletter Fahrbahnen üblicherweise ein größerer Linienabstand gewählt als beim Feinfräsen, das lediglich dem Aufrauen der Fahrbahnoberfläche mit geringer Frästiefe dient.The choice of the line spacing depends on the respective milling task. Thus, in the development of complete lanes usually a larger line spacing is selected than in fine milling, which only serves the roughening of the road surface with low milling depth.

Vereinfacht dargestellt ist dies darin begründet, dass Fräswalzen mit geringem Linienabstand aufgrund der hohen Werkzeugdichte nicht für große Frästiefen geeignet sind, während Fräswalzen mit großem Linienabstand nicht die gewünschte Struktur zum Aufrauen der Fahrbahn erreichen, da die erzeugte Rillenstruktur in der gefrästen Oberfläche zu grob ist.In simple terms, this is due to the fact that milling drums with small line spacing are not suitable for large cutting depths due to the high tool density, while milling drums with large line spacing do not achieve the desired structure for roughening the roadway because the groove structure produced in the milled surface is too coarse.

Darüber hinaus spielen neben Frästiefe und gewünschter Oberflächenstruktur auch eine Vielzahl anderer Faktoren, wie zum Beispiel die Art des zu bearbeitende Untergrundes für die Wahl des Linienabstandes eine Rolle, was dazu führt, dass eine Vielzahl verschiedener Fräswalzen mit unterschiedlichen Linienabständen für unterschiedliche Aufgaben zur Verfügung stehen.In addition to milling depth and desired surface structure also play a variety of other factors, such as the type of substrate to be processed for the choice of line spacing a role, which means that a variety of different milling drums with different line spacing for different tasks are available.

Daraus ergibt sich für Fräsunternehmer die Notwendigkeit, für verschiedene Aufgaben unterschiedliche Fräsmaschinen und/oder für eine Fräsmaschine unterschiedliche Fräswalzentypen vorzuhalten.As a result, it is necessary for milling contractors to provide different milling machines for different tasks and / or different milling drum types for a milling machine.

Hieraus folgen zusätzliche Kosten für die Anschaffung zusätzlicher Maschinen, bzw. zusätzlicher Arbeits- und Zeitaufwand für die Umrüstung der Maschinen mit verschiedenen Fräswalzen. Insbesondere ist dies nachteilig, wenn auf einer Baustelle verschiedene Anforderungen erfüllt werden müssen und daher verschiedene Maschinen zum Einsatzort transportiert werden, oder eine Maschine vor Ort umgerüstet werden muss.This results in additional costs for the purchase of additional machinery, or additional labor and time required for the conversion of the machines different milling drums. In particular, this is disadvantageous when various requirements must be met on a construction site and therefore different machines are transported to the place of use, or a machine has to be converted on site.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Straßenfräsmaschine zum Bearbeiten von Straßenoberflächen, sowie ein Verfahren zum Bearbeiten von Straßenoberflächen zu schaffen, die einen flexiblen Einsatz für verschiedene Fräsaufgaben ermöglichen, die Möglichkeiten der Fräsbearbeitung erweitern, und kosten- und zeitsparend eingesetzt werden können.The invention is therefore an object of the invention to provide a road milling machine for processing road surfaces, as well as a method for editing road surfaces that allow flexible use for various milling tasks, expand the possibilities of milling, and can be used cost and time saving.

Zur Lösung dieser Aufgabe dienen die Merkmale des Anspruchs 1 bzw. 14.To solve this problem serve the features of claim 1 and 14th

Die Erfindung sieht in vorteilhafter Weise vor, dass ein Oszillationsantrieb auf die Fräswalze einen in Axialrichtung hin- und hergehenden Oszillationshub relativ zu dem Maschinenrahmen ausübt, wobei der Rotationsbewegung der Werkzeuge eine parallel zur Achse der Fräswalze verlaufende axiale Bewegung überlagerbar ist, deren Hub an den Linienabstand zwischen zwei axial benachbarten Werkzeugen anpassbar ist.The invention advantageously provides that an oscillation drive exerts on the milling drum an oscillation stroke reciprocating in the axial direction relative to the machine frame, the rotational movement of the tools being superimposed on an axial movement running parallel to the axis of the milling drum whose stroke is at the line spacing is adaptable between two axially adjacent tools.

Der erfindungsgemäße Vorteil besteht darin, dass mit einer einzigen Schrupp-oder Standardwalze nunmehr große Frästiefen erreichbar und gleichzeitig auch feine Oberflächenstrukturen erzeugbar sind.The advantage of the invention is that with a single roughing or standard roll now large cutting depths can be achieved and at the same time fine surface structures are produced.

Dadurch, dass die Fräswalze relativ zu dem Maschinenrahmen einen in Axialrichtung hin- und hergehenden Oszillationshub ausübt, kann die Linienstruktur auf der Straßenoberfläche verändert bzw. vollständig beseitigt werden. Dadurch kann auch eine Straßenoberfläche mit einer Struktur erzielt werden, die nicht direkt vom Linienabstand der Fräswalze abhängig ist. Es entfällt auch die Notwendigkeit, eine Fräswalze einzusetzen, die eine feinere Linienstruktur auf der gefrästen Oberfläche erzeugt. Ein weiterer Vorteil besteht darin, dass die veränderte Oberflächenstruktur der Straßenoberfläche auch bei größeren Frästiefen erreicht werden kann. Die Werkzeuge führen dabei eine Rotationsbewegung um die Fräswalzenachse aus, die von einer axialen Bewegung parallel zur Achse der Fräswalze überlagert wird. Der Hub der Verlagerung der Fräswalze in Axialrichtung kann entsprechend dem Linienabstand von zwei axial benachbarten Werkzeugen eingestellt werden, so dass der Oszillationshub an Fräswalzen mit unterschiedlicher Werkzeugdichte variabel anpassbar ist. Dadurch entfallen Umrüstzeiten und die Bereitstellung einer Vielzahl von Fräswalzen für unterschiedliche Anwendungen kann erheblich reduziert werden.By virtue of the fact that the milling drum exerts an oscillation stroke reciprocating in the axial direction relative to the machine frame, the line structure on the road surface can be changed or completely eliminated. As a result, a road surface can be achieved with a structure that is not directly dependent on the line spacing of the milling drum. It also eliminates the need to use a milling drum, which produces a finer line structure on the milled surface. Another advantage is that the changed surface structure of the road surface can be achieved even with larger cutting depths. The tools perform a rotational movement about the Fräswalzenachse, which is superimposed by an axial movement parallel to the axis of the milling drum. The stroke of the displacement of the milling drum in the axial direction can be adjusted according to the line spacing of two axially adjacent tools, so that the oscillation is variably variable on milling drums with different tool density. This eliminates changeover times and the provision of a variety of milling drums for different applications can be significantly reduced.

Insbesondere kann durch die axiale Oszillation auf Fein- und Microfeinfräswalzen verzichtet werden, die aufgrund der hohen Werkzeugdichte und den hohen Meißelverschleiß pro m3 kostenintensiv sind.In particular, can be dispensed with by the axial oscillation on fine and Microfeinfräswalzen, which are costly due to the high tool density and high chisel wear per m 3 .

Auf diese Weise kann bei Einsatz z.B. einer Standardfräswalze sowohl der Komplettausbau von Fahrbahnen als auch der Abtrag nur einer Deckschicht einer Straßenoberfläche oder eine Erhöhung der Griffigkeit durch Aufrauen effektiv durchgeführt werden.In this way, when using e.g. a standard milling of both the complete construction of roads and the removal of only a top layer of a road surface or an increase in grip by roughening are effectively performed.

Die Erfindung ermöglicht es in vorteilhafter Weise, Zeit und Kosten zu sparen, weil mit einer einzigen Fräswalze sowohl grobe Strukturen als auch feine Strukturen erzeugbar sind.The invention makes it possible to save time and costs in an advantageous manner, because both coarse structures and fine structures can be produced with a single milling drum.

Zusätzlich werden hierbei auch Vorteile gegenüber dem Fräsen mit konventionellen Feinfräswalzen erreicht. Die beim Feinfräsen erzeugte feine Rillenstruktur kann das Lenkverhalten, insbesondere von zweirädrigen, Fahrzeugen negativ beeinflussen und zu einem Eigenlenkverhalten führen. Durch die Oszillation der Fräswalze wird diese Rillenbildung parallel zur Fahrspur reduziert, selbst wenn der Oszillationshub kleiner als der Linienabstand ist.In addition, advantages over milling with conventional fine milling rollers are achieved. The fine groove structure produced during fine milling can negatively influence the steering behavior, in particular of two-wheeled vehicles, and lead to self-steering behavior. By the oscillation of the milling drum, this groove formation is reduced parallel to the traffic lane, even if the oscillation stroke is smaller than the line spacing.

Es versteht sich, dass der Oszillationshub nicht exakt dem Linienabstand entsprechen muss, sondern auch geringer oder größer eingestellt werden kann oder alternativ auch vollständig abgeschaltet werden kann, so dass die Straßenfräsmaschine in herkömmlicher Weise betrieben werden kann.It is understood that the Oszillationshub does not have to correspond exactly to the line spacing, but also can be set lower or greater, or alternatively can be switched off completely, so that the road milling machine can be operated in a conventional manner.

Vorzugsweise ist vorgesehen, dass die Amplitude und/oder die Frequenz der Oszillation variabel einstellbar sind, so dass die Art der durch die Fräswalze erzeugten Struktur auf der Oberfläche individuell an bestimmte Fräsaufgaben angepasst werden kann.It is preferably provided that the amplitude and / or the frequency of the oscillation are variably adjustable, so that the type of structure produced by the milling drum on the surface can be adapted individually to specific milling tasks.

Dabei kann der Oszillationshub im Bereich zwischen dem 0,5 bis 1,5-fachen, vorzugsweise zwischen dem 0,9 bis 1,1-fachen des Linienabstandes eingestellt werden. Alternativ kann der Oszillationshub im Bereich zwischen 3 mm und 40 mm einstellbar sein.In this case, the oscillation stroke in the range between 0.5 to 1.5 times, preferably between 0.9 to 1.1 times the line spacing can be adjusted. Alternatively, the oscillation stroke can be adjustable in the range between 3 mm and 40 mm.

Die Frequenz der Oszillation kann beispielsweise zwischen 0,1 und 20 Hz einstellbar sein.The frequency of the oscillation can be adjustable, for example, between 0.1 and 20 Hz.

Vorzugsweise kann vorgesehen sein, dass das Verhältnis des durchschnittlichen Geschwindigkeitsbetrages des Oszillationshubs zur Umfangsgeschwindigkeit der Fräswalzenwerkzeuge im Bereich zwischen 0,1 und 3, vorzugsweise zwischen 0,25 und 2 liegt.It can preferably be provided that the ratio of the average speed amount of the oscillation stroke to the peripheral speed of the milling drum tools lies in the range between 0.1 and 3, preferably between 0.25 and 2.

Bei einer Ausführungsform ist vorgesehen, dass die Fräswalze eine in Axialrichtung bewegliche Axiallagerung aufweist. Die bewegliche Axiallagerung kann dadurch erreicht werden, dass das Fräswalzengehäuse gemeinsam mit der Fräswalze verlagert wird oder, dass die Axiallagerung relativ zu dem Fräswalzengehäuses axial beweglich ist.In one embodiment, it is provided that the milling drum has an axially movable axial bearing. The movable axial bearing can be achieved in that the milling drum housing is displaced together with the milling drum or that the axial bearing is axially movable relative to the Fräswalzengehäuses.

Bei einer weiteren Ausführungsform kann zusätzlich vorgesehen sein, dass auf die Axiallagerung eine hin- und hergehende Bewegung in Fahrtrichtung überlagerbar ist. Dies bedeutet, dass die Fräswalze sowohl in Axialrichtung als auch in Fahrtrichtung schwingen kann. Hierzu ist vorzugsweise ein weiterer Oszillationsantrieb vorgesehen. Die Verlagerung der Fräswalze in Fahrtrichtung kann nicht nur linear, sondern auch bogenförmig um eine oberhalb der Fräswalze parallel zur Fräswalzenachse verlaufende Achse erfolgen.In a further embodiment, it may additionally be provided that a reciprocating movement in the direction of travel can be superimposed on the axial bearing. This means that the milling drum can oscillate both in the axial direction and in the direction of travel. For this purpose, a further oscillation drive is preferably provided. The displacement of the milling drum in the direction of travel can be done not only linearly but also arcuately about an axis extending above the milling drum parallel to the milling drum axis.

Vorzugsweise ist eine Steuerung vorgesehen, die die Oszillationsfrequenz und/oder die Amplitude des Oszillationshubes in Abhängigkeit der Fräswalzendrehzahl und/oder der Vorschubgeschwindigkeit und/oder Frästiefe der Fräswalze automatisch steuert oder regelt.Preferably, a control is provided which automatically controls or regulates the oscillation frequency and / or the amplitude of the oscillation stroke as a function of the milling drum rotational speed and / or the feed rate and / or milling depth of the milling drum.

Bei einem bevorzugten Ausführungsbeispiel ist vorgesehen, dass die Fräswalze gemeinsam mit dem Fräswalzengehäuse in Axialrichtung oszilliert, und dass der Oszillationsantrieb das Fräswalzengehäuse relativ zu dem Maschinenrahmen antreibt.In a preferred embodiment it is provided that the milling drum oscillates together with the Fräswalzengehäuse in the axial direction, and that the Oscillation drive the Fräswalzengehäuse drives relative to the machine frame.

Alternativ hierzu kann vorgesehen sein, dass der Oszillationsantrieb die Fräswalze innerhalb des Fräswalzengehäuses in Axialrichtung antreibt.Alternatively, it may be provided that the oscillation drive drives the milling drum in the milling drum housing in the axial direction.

Dabei ist das Fräswalzengehäuse in Axialrichtung wenigstens um den maximalen Oszillationshub länger als die Fräswalze.At the same time, the milling drum housing is longer in the axial direction than the milling drum at least by the maximum oscillation stroke.

Vorzugsweise ist vorgesehen, dass die Axiallagerung eine Fest-Los-Lagerung ist, bei der das Festlager in Axialrichtung verschiebbar ist.Preferably, it is provided that the axial bearing is a fixed-lot storage, in which the fixed bearing is displaceable in the axial direction.

Dabei kann der Oszillationsantrieb auf der Seite des Festlagers axial auf eine in der Fräswalzenachse verlaufende Antriebswelle der Fräswalze einwirken.In this case, the oscillation drive can act on the side of the fixed bearing axially on a running in the Fräswalzenachse drive shaft of the milling drum.

Das Loslager lässt einen Bewegungshub zu, der mindestens dem Oszillationshub entspricht.The movable bearing allows for a movement stroke that corresponds at least to the oscillation stroke.

Die Fräswalze kann einen Rotationsantrieb aufweisen, der an der Seite des Festlagers eine Antriebswelle antreibt. Wenn das gesamte Fräswalzengehäuse in Axialrichtung oszillieren kann, erfolgt dies längs von mindestens zwei linearen Führungen, die parallel zur Fräswalzenachse in Axialrichtung verlaufen.The milling drum may have a rotary drive which drives a drive shaft on the side of the fixed bearing. If the entire Fräswalzengehäuse can oscillate in the axial direction, this is done along at least two linear guides, which extend parallel to the Fräswalzenachse in the axial direction.

Bei allen Ausführungsbeispielen kann vorgesehen sein, dass das Fräswalzengehäuse oder die Fräswalze längs von mindestens zwei linearen oder bogenförmigen Führungen in Fahrtrichtung oszillierbar ist.In all embodiments, it can be provided that the milling drum housing or the milling drum can be oscillated along at least two linear or arcuate guides in the direction of travel.

Alle Führungen weisen eine erste Führung auf, die sowohl vertikal als auch horizontal führt und mindestens eine weitere, parallel zur ersten Führung verlaufende zweite Führung, die zumindest in Horizontalrichtung führt.All guides have a first guide, which leads both vertically and horizontally, and at least one further, parallel to the first guide extending second guide, which leads at least in the horizontal direction.

Auf diese Weise ist sichergestellt, dass die Führungen sich nicht gegeneinander verspannen.In this way it is ensured that the guides do not clamp against each other.

Die Aufgabe wird auch gelöst durch das Verfahren nach Anspruch 14, wobei während des Betriebes ein in Axialrichtung hin- und hergehender Oszillationshub auf die Fräswalze in Axialrichtung ausgeübt wird, wobei der Rotationsbewegung der Werkzeuge eine parallel zur Achse der Fräswalze verlaufende axiale Rotationsbewegung überlagert wird, deren Hub an den Linienabstand zwei axial benachbarten Werkzeugen variabel angepasst wird.The object is also achieved by the method according to claim 14, wherein during operation an oscillating oscillation stroke reciprocating in the axial direction is exerted on the milling drum in the axial direction, the rotational movement of the tools being superimposed on an axial rotational movement running parallel to the axis of the milling drum Hub is variably adjusted to the line spacing of two axially adjacent tools.

Vorzugsweise ist vorgesehen, dass eine Fräswalzendrehfrequenz im Bereich zwischen 0,5 Hz und 3 Hz entsprechend einer Fräswalzendrehzahl im Bereich von 30 U/min bis 180 U/min, vorzugsweise zwischen 1 Hz und 2,5 Hz bzw. 60 U/min bis 150 U/min, mit einer Oszillationsfrequenz zwischen 2 Hz und 40 Hz, vorzugsweise zwischen 5 Hz und 15 Hz kombiniert wird.Preferably, it is provided that a milling drum rotational frequency in the range between 0.5 Hz and 3 Hz corresponding to a Fräswalzendrehzahl in the range of 30 U / min to 180 U / min, preferably between 1 Hz and 2.5 Hz or 60 U / min to 150 U / min, is combined with an oscillation frequency between 2 Hz and 40 Hz, preferably between 5 Hz and 15 Hz.

Alternativ kann die Fräswalzendrehzahl im Bereich zwischen 180 U/min und 600 U/min entsprechend einer Fräswalzendrehfrequenz zwischen 3 Hz und 10 Hz, vorzugsweise zwischen 240 U/min und 360 U/min bzw. die Fräswalzendrehfrequenz zwischen 4 Hz und 6 Hz liegen und mit einer Oszillationsfrequenz von 0,1 Hz bis 5 Hz, vorzugsweise zwischen 1 Hz und 3 Hz, kombiniert werden.Alternatively, the Fräswalzendrehzahl in the range between 180 U / min and 600 U / min corresponding to a Fräswalzendrehfrequenz between 3 Hz and 10 Hz, preferably between 240 U / min and 360 rev / min or the Fräswalzendrehfrequenz between 4 Hz and 6 Hz and with an oscillation frequency of 0.1 Hz to 5 Hz, preferably between 1 Hz and 3 Hz, are combined.

Bei einer Weiterbildung des Verfahrens kann vorgesehen sein, dass auf die axiale Oszillation der Fräswalze quer zur Fahrtrichtung eine oszillierende Bewegung in Fahrtrichtung der Fräswalze überlagert wird.In a further development of the method can be provided that is superimposed on the axial oscillation of the milling drum transversely to the direction of travel an oscillating movement in the direction of travel of the milling drum.

Im Folgenden werden unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert:Exemplary embodiments of the invention will be explained in more detail below with reference to the drawings.

Es zeigen:

Fig. 1
eine perspektivische Ansicht einer Straßenfräsmaschine in Form einer Großfräse,
Fig. 2a
eine Fräswalze mit spiralförmig angeordneten Werkzeugen nach dem Stand der Technik,
Fig. 2b
die Struktur einer gefrästen Straßenoberfläche,
Fig. 2c
den Linienabstand der Werkzeuge,
Fig. 3
eine herkömmliche Lagerung der Fräswalze,
Fig. 4
ein erstes Ausführungsbeispiel der Erfindung,
Fig. 5
eine schematische Darstellung eines axial verschiebbaren Fräswalzengehäuses mit einer darin gelagerten Fräswalze gemäß Fig. 4 in Draufsicht,
Fig. 6
eine schematische Darstellung der Axialverschiebung der Fräswalze innerhalb des Fräswalzengehäuses gemäß einem zweiten Ausführungsbeispiel,
Fig. 7
eine schematische Darstellung der Linearverschiebung des Fräswalzengehäuses in Fahrtrichtung, und
Fig. 8
eine schematische Darstellung einer Linearverschiebung der Fräswalzenachse in Fahrtrichtung,
Fig. 9 und 10
eine schematische Darstellung einer Pendelbewegung des Fräswalzengehäuses bzw. der Fräswalze in Fahrtrichtung, und
Fig. 11
einen Querschnitt durch die Linearführungen.
Show it:
Fig. 1
a perspective view of a road milling machine in the form of a large milling machine,
Fig. 2a
a milling drum with spirally arranged tools according to the prior art,
Fig. 2b
the structure of a milled road surface,
Fig. 2c
the line spacing of the tools,
Fig. 3
a conventional mounting of the milling drum,
Fig. 4
a first embodiment of the invention,
Fig. 5
a schematic representation of an axially displaceable Fräswalzengehäuses with a milling drum mounted therein according to Fig. 4 in plan view,
Fig. 6
a schematic representation of the axial displacement of the milling drum within the Fräswalzengehäuses according to a second embodiment,
Fig. 7
a schematic representation of the linear displacement of the Fräswalzengehäuses in the direction of travel, and
Fig. 8
a schematic representation of a linear displacement of the Fräswalzenachse in the direction of travel,
FIGS. 9 and 10
a schematic representation of a pendulum movement of the milling drum housing or the milling drum in the direction of travel, and
Fig. 11
a cross section through the linear guides.

Fig. 1 zeigt eine Großfräse wie sie grundsätzlich aus der EP 2 011 921 A bekannt ist. Die Straßenfräsmaschine 1 weist einen Maschinenrahmen 8 auf, der von einem Fahrwerk mit mindestens drei Kettenlaufwerken 20 oder Rädern getragen ist. Fig. 1 shows a large milling machine as they basically from the EP 2 011 921 A is known. The road milling machine 1 has a machine frame 8, which is supported by a chassis with at least three crawler tracks 20 or wheels.

Das Fräswalzengehäuse 10 ist in Fahrtrichtung 22 zwischen den Kettenlaufwerken 20 angeordnet, bei Kleinfräsen dagegen eher auf Höhe der hinteren Stützräder oder Kettenlaufwerke 20.The milling drum housing 10 is arranged in the direction of travel 22 between the crawler tracks 20, in small milling, however, rather at the level of the rear support wheels or crawler tracks 20th

Die Fräswalze 12 ist quer zur Fahrtrichtung 22 um eine Fräswalzenachse 24 drehbar, wobei die Fräswalze 12 in Seitenwänden 11, 13 des Fräswalzengehäuses 10 oder am Maschinenrahmen 8 gelagert ist.The milling drum 12 is rotatable about a Fräswalzenachse 24 transverse to the direction 22, wherein the milling drum 12 is mounted in side walls 11, 13 of the Fräswalzengehäuses 10 or on the machine frame 8.

Die Fräswalze 12 kann mit ihrer einen Stirnseite bis an die als Nullseite bezeichnete Außenseite des Maschinenrahmens 8 reichen, während an der gegenüberliegenden Außenwand des Maschinenrahmens 8 eine Antriebseinrichtung für die Fräswalze 12 angeordnet sein kann. Die Antriebseinrichtung für die Fräswalze 12 kann beispielsweise ein, einen Riementrieb 38 aufweisenden mechanischer Antrieb oder ein hydraulischer oder elektrischer Antrieb sein.The milling drum 12 may extend with its one end face to the outer side of the machine frame 8 designated as the zero side, whereas a drive device for the milling drum 12 may be arranged on the opposite outer wall of the machine frame 8. The drive device for the milling drum 12 may be, for example, a mechanical drive having a belt drive 38 or a hydraulic or electric drive.

Oberhalb der Fräswalze 12 befindet sich der Fahrerstand 14 mit einem Sitz für den Fahrzeugführer.Above the milling drum 12 is the driver's cab 14 with a seat for the driver.

Fig. 2a zeigt beispielhaft die Anordnung der Werkzeuge 16 auf der Fräswalze 12, wie sie grundsätzlich aus der DE 102 03 732 bekannt ist. In Umfangsrichtung weisen die Werkzeuge 16 einen vorgegebenen überwiegend gleichbleibenden gegenseitigen Abstand auf. An jeder Stirnseite der Fräswalze 12 kann eine Reihe von Werkzeugen 16 vorgesehen sein, die nicht spiralförmig angeordnet sind, um vertikale Fräskanten zu erzeugen. Da die Werkzeuge 16 ihre axiale Position während der Drehung der Fräswalze 12 nicht verändern, erzeugen sie auf der Straßenoberfläche 2 Rillen 18, die in Fahrtrichtung 22 auf der Straßenoberfläche 2 im Querschnitt nutenförmige Vertiefungen bilden, wie sie beispielsweise in den Fign. 2b und 2c erkennbar sind. Fig. 2a shows by way of example the arrangement of the tools 16 on the milling drum 12, as basically from the DE 102 03 732 is known. In the circumferential direction, the tools 16 have a predetermined predominantly constant mutual distance. At each end face of the milling drum 12, a series of tools 16 may be provided which are not spirally arranged to produce vertical milling edges. Since the tools 16 do not change their axial position during the rotation of the milling drum 12, they produce on the road surface 2 grooves 18 which form in the direction of travel 22 on the road surface 2 in cross-section groove-shaped recesses, as for example in the FIGS. 2b and 2c are recognizable.

Der Abstand 19 zwischen zwei benachbarten Rillen 18 ist daher von dem Linienabstand der Fräswalze, also dem axialen Abstand der in Umfangsrichtung benachbarten Werkzeuge 16 abhängig.The distance 19 between two adjacent grooves 18 is therefore dependent on the line spacing of the milling drum, that is, the axial distance of the circumferentially adjacent tools 16.

Je nach Fräswalzenstruktur sind Linienabstände vorzugsweise zwischen 3 mm und 25 mm üblich.Depending on the milling drum structure, line spacings are preferably common between 3 mm and 25 mm.

Fig. 2c zeigt schematisch den Abstand 19 zwischen den Rillen 18, der sich aus dem Linienabstand der spiralförmig auf der Fräswalze 12 angeordneten Werkzeuge 16 ergibt. Fig. 2c schematically shows the distance 19 between the grooves 18, which results from the line spacing of the spirally arranged on the milling drum 12 tools 16.

Vorzugsweise sind auf der Fräswalze 12 zwei gegenläufige Spiralen aus Werkzeugen 16 gebildet, die die Aufgabe haben, das abgefräste Material zur Walzenmitte oder zu einer bestimmten axialen Position der Fräswalze 12 zu transportieren.Preferably, two counter-rotating spirals of tools 16 are formed on the milling drum 12, which have the task to transport the milled material to the roll center or to a specific axial position of the milling drum 12.

Fig. 3 zeigt schematisch eine herkömmliche Axiallagerung einer Fräswalze 12 in einem Fräswalzengehäuse 10, das axial gegenüber dem Maschinenrahmen 8 unbeweglich ist. Die Fräswalzenachse 24 ist in den Seitenwänden 11, 13 des Fräswalzengehäuses 10 gelagert, und zwar mit Hilfe eines Festlagers 30 und eines Loslager 32. Das Loslager ist in geringem Umfang axial beweglich, so dass beispielsweise Wärmedehnungen der Fräswalzenachse 24 ausgeglichen werden können. Fig. 3 schematically shows a conventional axial bearing of a milling drum 12 in a Fräswalzengehäuse 10, which is immovable axially relative to the machine frame 8. The Fräswalzenachse 24 is mounted in the side walls 11, 13 of the Fräswalzengehäuses 10, with the aid of a fixed bearing 30 and a floating bearing 32. The floating bearing is axially movable to a small extent, so that, for example, thermal expansion of the Fräswalzenachse 24 can be compensated.

Vorzugsweise auf der Seite des Festlagers 30 ist üblicherweise der Fräswalzenantrieb angeordnet, der beispielsweise durch einen mechanischen Riementrieb 38 aber auch hydraulisch oder elektrisch erfolgen kann.Preferably, on the side of the fixed bearing 30, the milling drum drive is usually arranged, which can be done for example by a mechanical belt drive 38 but also hydraulically or electrically.

Die erfindungsgemäß in den Stirnwandungen des Fräswalzengehäuses 10 gelagerte Fräswalze 12 hat abgesehen von einer Radiallagerung eine in Axialrichtung bewegliche Axiallagerung. Dabei wird das Festlager (Axiallagerung) der Fräswalze relativ zum Maschinenrahmen 8 bewegt, entweder mit dem gesamten Fräswalzengehäuse 10 oder relativ zu diesem.The inventively mounted in the end walls of the Fräswalzengehäuses 10 milling drum 12 has apart from a radial bearing axially movable axial bearing. In this case, the fixed bearing (axial bearing) of the milling drum is moved relative to the machine frame 8, either with the entire Fräswalzengehäuse 10 or relative to this.

Aufgrund des erfindungsgemäß relativ geringen Oszillationshubes ist hierbei auch ein mechanischer Walzenantrieb realisierbar, da nur eine geringe axiale Bewegung des Riemenantriebs 38 erfolgen muss.Due to the inventively relatively small oscillation stroke in this case also a mechanical roller drive can be realized, since only a small axial movement of the belt drive 38 must be made.

In Fig. 4 und 5 ist ein Ausführungsbeispiel dargestellt bei dem die axiale Bewegung der Fräswalze dadurch erreicht wird, dass das gesamte Fräswalzengehäuse 10 mit der Fräswalze 12 den Oszillationshub ausführt. Dabei wirkt der Oszillationsantrieb 28 zwischen der Fräswalze 12 und dem Fräswalzengehäuse 10.In Fig. 4 and 5 an embodiment is shown in which the axial movement of the milling drum is achieved in that the entire milling drum housing 10 with the milling drum 12 performs the Oszillationshub. In this case, the oscillation drive 28 acts between the milling drum 12 and the milling drum housing 10.

Das Fräswalzengehäuse 10 ist, wie in Fign. 4 und 5 ersichtlich, längs von wenigstens zwei linearen parallel zueinander verlaufenden Führungen 42a, 44a sowie 42b, 44b quer zur Fahrtrichtung 22 beweglich, um eine Oszillation des gesamten Fräswalzengehäuses 10 mit der Fräswalze 12 in Axialrichtung parallel zur Fräswalzenachse 24 in einer bodenparallelen Ebene zu ermöglichen.The milling drum housing 10 is, as in FIGS. 4 and 5 can be seen, along at least two linear mutually parallel guides 42a, 44a and 42b, 44b transversely to the direction of travel 22 movable to allow oscillation of the entire Fräswalzengehäuses 10 with the milling drum 12 in the axial direction parallel to the Fräswalzenachse 24 in a ground-parallel plane.

Ein Oszillationsantrieb 28, insbesondere ein Linearantrieb, z.B. aus einer Kolbenzylindereinheit oder einem mechanischen Exzenterantrieb, oder einem Spindeltrieb erlaubt die Oszillation des Fräswalzengehäuses 10 relativ zu dem Maschinenrahmen 8.An oscillating drive 28, in particular a linear drive, e.g. from a piston-cylinder unit or a mechanical eccentric drive, or a spindle drive allows the oscillation of the milling drum housing 10 relative to the machine frame eighth

Fig. 5 ist eine schematische Draufsicht auf das Ausführungsbeispiel der Fig. 4, aus der ersichtlich ist, dass die linearen Führungen 42a, 42b parallel zu den linearen Führungen 44a und 44b und zu der Fräswalzenachse 24 verlaufen. Fig. 5 is a schematic plan view of the embodiment of Fig. 4 , from which it can be seen that the linear guides 42a, 42b are parallel to the linear guides 44a and 44b and to the milling drum axis 24.

Da das Fräswalzengehäuse 10 nur einen kurzen Hub ausführt, können die Führungen 42a, 42b, 44a, 44b deutlich kürzer gestaltet sein als in der schematischen Darstellung in Fig. 5. Es versteht sich, desweiteren, dass jede lineare Führung 42a, 42b bzw. 44a, 44b einstückig ausgeführt sein kann. Dies bedeutet, dass die Führungselemente 42a, 42b bzw. 44a, 44b miteinander verbunden sein können oder sich über die gesamte Breite des Fräswalzengehäuses 10 erstrecken können.Since the milling drum housing 10 executes only a short stroke, the guides 42a, 42b, 44a, 44b can be made significantly shorter than in the schematic representation in FIG Fig. 5 , It is understood, furthermore, that each linear guide 42a, 42b and 44a, 44b may be made in one piece. This means that the guide elements 42a, 42b and 44a, 44b can be connected to one another or extend over the entire width of the milling drum housing 10.

Fig. 6 zeigt schematisch ein zweites Ausführungsbeispiel, bei dem das Fräswalzengehäuse 10 starr an dem Maschinenrahmen 8 befestigt ist und die Fräswalze 12 in den Seitenwänden 11, 13 über Loslager 32a, 32b gelagert ist. Der Oszillationsantrieb 28 wirkt zwischen der Fräswalze 12 und dem Fräswalzengehäuse 10. Hierzu ist das Fräswalzengehäuse 10 in Axialrichtung um wenigstens den maximalen Oszillationshub länger als die Fräswalze 12. Fig. 6 schematically shows a second embodiment in which the Fräswalzengehäuse 10 is rigidly fixed to the machine frame 8 and the milling drum 12 is mounted in the side walls 11, 13 via movable bearings 32a, 32b. The oscillation drive 28 acts between the milling drum 12 and the milling drum housing 10. For this purpose, the milling drum housing 10 is longer in the axial direction than the milling drum 12 by at least the maximum oscillation stroke.

Alternativ kann auch zwischen der Seitenwand 13 und der Fräswalze 12 eine nicht dargestellte axialbewegliche Zwischenwand angeordnet sein, in der das eine Ende der Fräswalze 12 in einem Festlager gelagert ist. Der Oszillationsantrieb 28 wirkt in diesem Fall zwischen der Zwischenwand und der Seitenwand 13.Alternatively it can be arranged between the side wall 13 and the milling drum 12, a not shown axially movable partition, in which one end of the milling drum 12 is mounted in a fixed bearing. The oscillating drive 28 in this case acts between the intermediate wall and the side wall 13.

Die Fig. 7 zeigt schematisch die oszillierende Bewegung des Fräswalzengehäuses 10 in Fahrtrichtung 22, während Fig. 8 ein Ausführungsbeispiel betrifft, bei der die Fräswalze 12 innerhalb der Seitenwände 11, 13 in Fahrtrichtung oszillieren kann.The Fig. 7 schematically shows the oscillating movement of the Fräswalzengehäuses 10 in the direction of travel 22, while Fig. 8 an embodiment in which the milling roller 12 can oscillate within the side walls 11, 13 in the direction of travel.

Durch zwei weitere in Fig. 7 gezeigte lineare Führungen 46, 48, die orthogonal zu den linearen Führungen 42, 44 verlaufen, kann eine weitere Schwingungsbewegung parallel zur Fahrtrichtung 22 erzeugt werden, so dass sich der Rotationsbewegung der Werkzeuge 16 nicht nur eine axiale Schwingungsbewegung überlagern lässt, sondern auch eine zusätzliche Schwingungsbewegung parallel zur Fahrtrichtung 22.Through two more in Fig. 7 shown linear guides 46, 48 which are orthogonal to the linear guides 42, 44, a further oscillatory movement parallel to the direction of travel 22 can be generated, so that the rotational movement of the tools 16 can be superimposed not only an axial oscillatory motion, but also an additional oscillatory motion parallel to the direction of travel 22.

Die Fräswalzenachse 24 ist bei dem Ausführungsbeispiel der Fig. 8 in dem Fräswalzengehäuse 10 in einem horizontalen Schlitz 25 geführt.The Fräswalzenachse 24 is in the embodiment of Fig. 8 guided in the milling drum housing 10 in a horizontal slot 25.

Die linearen Führungen 42, 44, 46, 48 können beispielsweise auch in der Art eines Kreuzschlittens vorgesehen sein.The linear guides 42, 44, 46, 48 may for example also be provided in the manner of a cross slide.

Die Amplitude und/oder die Frequenz der Oszillation in Axialrichtung als auch parallel zur Fahrtrichtung 22 sind variabel einstellbar. Beispielsweise kann der Oszillationshub in einem Bereich zwischen 0,5- bis 1,5-fachen des Linienabstandes eingestellt werden. Vorzugsweise orientiert sich der maximale Oszillationshub jedoch an dem Linienabstand und weicht von diesem nur geringfügig ab.The amplitude and / or the frequency of the oscillation in the axial direction and parallel to the direction of travel 22 are variably adjustable. For example, the oscillation stroke can be set in a range of 0.5 to 1.5 times the line spacing. Preferably, however, the maximum oscillation stroke is oriented at the line spacing and differs only slightly therefrom.

Beispielsweise ist der Oszillationshub in einem Bereich zwischen 3 mm, vorzugsweise 5 mm, und 40 mm einstellbar.For example, the oscillation stroke in a range between 3 mm, preferably 5 mm, and 40 mm adjustable.

Die Frequenz der Oszillation kann zwischen 0,1 Hz und 40 Hz eingestellt werden.The frequency of the oscillation can be set between 0.1 Hz and 40 Hz.

Die Frequenz kann auch alternativ so eingestellt werden, dass ein bestimmtes Verhältnis des durchschnittlichen Axialgeschwindigkeitsbetrages zur Vorschubgeschwindigkeit der Fräswalze 12 oder der Umfangsgeschwindigkeit der Werkzeuge der Fräswalze 12 oder der Addition aus der Umfangsgeschwindigkeit der Werkzeuge und der Vorschubgeschwindigkeit der Fräsmaschine erreicht wird.Alternatively, the frequency may be adjusted to achieve a certain ratio of the average axial velocity amount to the feed rate of the milling drum 12 or the peripheral speed of the tools of the milling drum 12 or the addition of the peripheral speed of the tools and the feed rate of the milling machine.

Nach einer weiteren Alternative kann die Kombination eines bestimmten Fräswalzendrehzahlbereichs mit einem daran angepassten Bereich der Oszillationsfrequenz von Vorteil sein.According to a further alternative, the combination of a specific Fräswalzendrehzahlbereichs with an adapted range of the oscillation frequency may be advantageous.

Beispielsweise kann eine relativ hohe Fräswalzendrehzahl im Bereich_zwischen 180 U/min bis 600 U/min (oder Fräswalzendrehfrequenz zwischen 3 Hz bis 10 Hz), und zwar bevorzugt zwischen 240 U/min bis 360 U/min (oder 4 Hz bis 6 Hz) mit einer relativ niedrigen Oszillationsfrequenz zwischen 0,1 Hz bis 5 Hz, besonders bevorzugt zwischen 1 Hz bis 3 Hz, kombiniert sein.For example, a relatively high milling roll speed in the range of 180 rpm to 600 rpm (or milling drum rotational frequency between 3 Hz to 10 Hz), preferably between 240 rpm to 360 rpm (or 4 Hz to 6 Hz) a relatively low oscillation frequency between 0.1 Hz to 5 Hz, more preferably between 1 Hz to 3 Hz, to be combined.

Die Oszillationsfrequenzen beziehen sich dabei auf den angegebenen Bereich für den Oszillationshub.The oscillation frequencies refer to the specified range for the oscillation.

Nach einer anderen besonders bevorzugten Ausführungsform kann eine niedrige Fräswalzendrehzahl mit einer hohen Oszillationsgeschwindigkeit kombiniert werden.According to another particularly preferred embodiment, a low milling roll speed can be combined with a high oscillation speed.

In diesem Fall kann die Fräswalzendrehzahl im Bereich zwischen 30 U/min bis 180 U/min (entsprechend Fräswalzendrehfrequenz 0,5 Hz bis 3 Hz), bevorzugt zwischen 60 U/min bis 150 U/min (entsprechend 1 Hz bis 2,5 Hz) liegen, bei einer Oszillationsfrequenz im Bereich zwischen 2 Hz bis 40 Hz, bevorzugt zwischen 5 Hz bis 15 Hz.In this case, the milling drum speed can range from 30 rpm to 180 rpm (corresponding to milling drum rotation frequency 0.5 Hz to 3 Hz), preferably between 60 rpm to 150 rpm (corresponding to 1 Hz to 2.5 Hz ), at an oscillation frequency in the range between 2 Hz to 40 Hz, preferably between 5 Hz to 15 Hz.

Grundsätzlich ist diese Ausführungsform zu bevorzugen, da hiermit ein niedrigerer Werkzeugverschleiß erreicht werden kann (niedrigere Umfangsgeschwindigkeit der Meißel, d. h. niedrigere Kräfte auf das im Schnitt befindliche Werkzeug).Basically, this embodiment is preferable because it allows lower tool wear to be achieved (lower peripheral speed of the bits, i.e. lower forces on the tool being cut).

Die Oszillationsfrequenz sollte nicht einem ganzzahligen Vielfachen der Rotationsfrequenz der Fräswalze entsprechen (oder umgekehrt), da somit der Schnitt jedes Mal in derselben, in Fahrtrichtung verlaufenden Linie erfolgen könnte. Bei schneller Oszillation, z.B. der fünffachen Walzendrehfrequenz, ist dieser Effekt allerdings vernachlässigbar.The oscillation frequency should not correspond to an integer multiple of the rotational frequency of the milling drum (or vice versa), since thus the cut could be made each time in the same, running in the direction of travel line. However, this effect is negligible in the case of fast oscillation, eg five times the rolling rotational frequency.

Bei einem Oszillationshub, der dem Linienabstand entspricht, sind auch ganzzahlige Vielfache der halben Rotationsfrequenz zu vermeiden, da der Schnitt sonst immer in derselben Linie, oder der benachbarten Linie der sich in Fahrtrichtung erstreckenden Linienstruktur erfolgt.In the case of an oscillation stroke corresponding to the line spacing, integer multiples of half the rotational frequency are also to be avoided, since otherwise the cut always takes place in the same line or the adjacent line of the line structure extending in the direction of travel.

Schließlich ist auch eine variable Oszillationsfrequenz durch Überlagern mit einer Oberwelle der Rotationsfrequenz der Fräswalze möglich, z.B. mit einer Bandbreite von 30% um die Oszillationsfrequenz.Finally, a variable oscillation frequency is possible by superposition with a harmonic of the rotational frequency of the milling drum, e.g. with a bandwidth of 30% around the oscillation frequency.

Die überlagerte Schwingbewegung der Fräswalze 12 parallel zur Fahrtrichtung 22 kann auch statt linear wie in den Fign. 7 und 8 dargestellt, kreisbogenförmig um eine Schwenkachse 50 erfolgen, die oberhalb und parallel zu der Fräswalzenachse 24 verläuft.The superimposed oscillating movement of the milling drum 12 parallel to the direction of travel 22 may also be linear instead of as in the FIGS. 7 and 8 illustrated, circular arc-shaped about a pivot axis 50 take place, which extends above and parallel to the Fräswalzenachse 24.

Fig. 9 zeigt dabei ein Ausführungsbeispiel, bei dem das Fräswalzengehäuse 10 mit der Fräswalze 12 um die Schwenkachse 50 in Fahrtrichtung 22 kreisbogenförmig oszillieren kann. Fig. 9 shows an embodiment in which the milling drum housing 10 with the milling drum 12 about the pivot axis 50 in the direction of travel 22 can oscillate circular arc.

Fig. 10 zeigt ein alternatives Ausführungsbeispiel, bei dem die Fräswalze 12 innerhalb des Fräswalzengehäuses 10 um die Schwenkachse 50 in Fahrtrichtung 22 schwingen kann. Der Schlitz 25 ist in diesem Fall bogenförmig um die Schwenkachse 50 in den Seitenwänden 11 des Fräswalzengehäuses 10 gekrümmt angeordnet. Fig. 10 shows an alternative embodiment in which the milling drum 12 can oscillate within the Fräswalzengehäuses 10 about the pivot axis 50 in the direction of travel 22. The slot 25 is curved in this case about the pivot axis 50 in the side walls 11 of the Fräswalzengehäuses 10 arranged curved.

Fig. 11 zeigt einen Querschnitt durch die Längsführungen 42, 44, 46, 48, aus dem ersichtlich ist, dass jeweils eine der beiden zueinander parallelen Führungen 42, 48 nur einen Freiheitsgrad aufweist, nämlich in axialer Richtung und die jeweils andere Führung 44, 46 einen Freiheitsgrad in axialer Richtung und einen Freiheitgrad in horizontalter Richtung aufweist. Diese Gestaltung der Führungen ist sowohl für die in Axialrichtung wirkenden Linearführungen 42, 44 als auch die in Fahrtrichtung wirkenden Linearführungen 46, 48 geeignet. Fig. 11 shows a cross section through the longitudinal guides 42, 44, 46, 48, from which it can be seen that in each case one of the two mutually parallel guides 42, 48 has only one degree of freedom, namely in the axial direction and the respective other guide 44, 46 a degree of freedom in axial direction and a degree of freedom in the horizontal direction. This design of the guides is suitable both for the linear guides 42, 44 acting in the axial direction and for the linear guides 46, 48 acting in the direction of travel.

Die Straßenfräsmaschine kann eine Steuerung 14 aufweisen, die die Oszillationsfrequenz und/oder die Amplitude der Oszillation in Abhängigkeit der Fräswalzendrehzahl und/oder der Vorschubgeschwindigkeit der Fräsmaschine und/oder der Frästiefe der Fräswalze automatisch steuert oder regelt. Außerdem können Parameter der Straßenoberfläche beispielsweise die Konsistenz der Straßenoberfläche berücksichtigt werden.The road milling machine may have a controller 14, the oscillation frequency and / or the amplitude of the oscillation depending on the Fräswalzendrehzahl and / or the feed rate of the milling machine and / or Cutting depth of the milling drum automatically controls or regulates. In addition, parameters of the road surface, for example, the consistency of the road surface can be taken into account.

Claims (16)

  1. Self-propelled road milling machine (1) for working road surfaces (2),
    - comprising a machine frame (8),
    - comprising a milling drum (12) mounted to rotate and extending in axial direction transverse to the direction of travel (22), and a milling drum housing (10) enclosing the milling drum (12),
    - wherein the milling drum (12) comprises a plurality of tools (16) arranged circumferentially, preferably in the shape of a helix, wherein the tools (16), except for the axial peripheral area, feature a specified mutual line spacing,
    characterized in that
    an oscillation drive (28) exercises an oscillation stroke on the milling drum (12) reciprocating in axial direction relative to the machine frame (8), where the rotating movement of the tools (16) is superimposable with an axial movement parallel to the axis (24) of the milling drum (12), the stroke of which is adjustable to the line spacing between two axially neighbouring tools (16).
  2. Road milling machine (1) in accordance with claim 1, characterized in that the amplitude and/or the frequency of oscillation are variably adjustable.
  3. Road milling machine (1) in accordance with claim 1 or 2, characterized in that the oscillation stroke is adjustable in the range from 0.5 times to 1.5 times, preferably from 0.9 times to 1.1 times, of the line spacing, or in the range between 3 and 40 mm.
  4. Road milling machine (1) in accordance with any one of the claims 1 to 3, characterized in that the frequency of the oscillation is adjustable from 0.1 to 40 Hz.
  5. Road milling machine (1) in accordance with any one of the claims 1 to 4, characterized in that the relation of the average axial speed magnitude to the circumferential speed of the milling drum tools is in the range from 0.1 to 3, preferably from 0.25 to 2.
  6. Road milling machine (1) in accordance with any one of the claims 1 to 5, characterized in that the milling drum (12) comprises an axial support movable in axial direction.
  7. Road milling machine (1) in accordance with any one of the claims 1 to 6, characterized in that a reciprocating movement in the direction of travel (22) is superimposable on the axial support.
  8. Road milling machine (1) in accordance with any one of the claims 1 to 3, characterized in that a controller (14) is provided to control or regulate the oscillation frequency and/or the amplitude of the oscillation stroke automatically in accordance with the milling drum rotary speed and/or the advance speed and/or the milling depth of the milling drum (12).
  9. Road milling machine (1) in accordance with any one of the claims 1 to 8, characterized in that the milling drum (12) oscillates in axial direction together with the milling drum housing (10), and that the oscillation drive (28) drives the milling drum housing (10) relative to the machine frame (8).
  10. Road milling machine (1) in accordance with claim 9, characterized in that the milling drum housing (10) is oscillatable in axial direction along at least two linear guides (42, 44).
  11. Road milling machine (1) in accordance with any one of the claims 1 to 8, characterized in that the oscillation drive drives the milling drum (12) in axial direction relative to the milling drum housing (10).
  12. Road milling machine (1) in accordance with claim 11, characterized in that the oscillation drive, on the side of the fixed bearing (30), acts axially on a drive shaft of the milling drum (12) extending in the milling drum axis (24).
  13. Road milling machine (1) in accordance with any one of the claims 7 to 12, characterized in that the milling drum housing (10) or the milling drum (12) is oscillatable in the direction of travel (22) along at least two linear or arc-shaped guides (46, 48).
  14. Method for working road surfaces (2) by means of a road milling machine (1),
    - with a milling drum (12) mounted to rotate at the machine frame (8) and extending axially transverse to the direction of travel (22),
    - with a plurality of tools arranged on the milling drum (12) circumferentially, preferably in the shape of a helix, wherein the tools, except for the axial peripheral area, maintain a specified mutual line spacing,
    characterized in that,
    during operation, an oscillation stroke moving reciprocally in axial direction is exercised on the milling drum (12) in axial direction, wherein the rotating movement of the tools (16) is superimposed with at least one axial movement parallel to the axis (24) of the milling drum (12), the stroke of which is adjusted to the line spacing between two axially neighbouring tools (16).
  15. Method in accordance with claim 14, characterized in that an oscillation frequency and/or amplitude of the oscillation is used which is controlled or regulated automatically in accordance with the rotary speed and/or the advance speed and/or the milling depth of the milling drum (12) and/or a parameter of the road surface (2).
  16. Method in accordance with claim 14 or 15, characterized in that a high milling drum speed in the range between 180 rpm and 600 rpm is combined with a low oscillation frequency from 0.1 Hz to 5 Hz, or a low milling drum speed in the range from 30 rpm to 180 rpm is combined with a high oscillation frequency from 2 Hz to 40 Hz.
EP15199518.0A 2014-12-30 2015-12-11 Self-propelled street milling machine for milling street surfaces, and method for machining street surfaces with a street milling machine Active EP3040478B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014227037 2014-12-30
DE102015209740.4A DE102015209740A1 (en) 2014-12-30 2015-05-27 Self-propelled road milling machine for working on road surfaces, as well as methods for working on road surfaces with a road milling machine

Publications (2)

Publication Number Publication Date
EP3040478A1 EP3040478A1 (en) 2016-07-06
EP3040478B1 true EP3040478B1 (en) 2017-10-18

Family

ID=54849538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15199518.0A Active EP3040478B1 (en) 2014-12-30 2015-12-11 Self-propelled street milling machine for milling street surfaces, and method for machining street surfaces with a street milling machine

Country Status (5)

Country Link
US (1) US10024005B2 (en)
EP (1) EP3040478B1 (en)
JP (1) JP6283651B2 (en)
CN (2) CN105735097B (en)
DE (1) DE102015209740A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015002743A1 (en) * 2014-12-23 2016-06-23 Wirtgen Gmbh Self-propelled construction machine and method for operating a self-propelled construction machine
DE102015209740A1 (en) * 2014-12-30 2016-06-30 Wirtgen Gmbh Self-propelled road milling machine for working on road surfaces, as well as methods for working on road surfaces with a road milling machine
WO2018098599A1 (en) * 2016-11-29 2018-06-07 Ammann Schweiz Ag Method and device for milling stone material or stone-like material
DE102017005015A1 (en) * 2017-05-26 2018-11-29 Wirtgen Gmbh Machine train comprising a road milling machine and a road paver and method of operating a road milling machine and a road paver
CN108457164A (en) * 2018-05-28 2018-08-28 徐州世通重工机械制造有限责任公司 A kind of dustless broken excavator in concrete road surface with ultrasonic wave miscellaneous function
US11174604B1 (en) * 2020-07-14 2021-11-16 Caterpillar Paving Products Inc. Milling systems and methods for a milling machine
CN112359691A (en) * 2020-11-13 2021-02-12 山东建筑大学 Rapid milling equipment and maintenance method for road surface around inspection well of municipal road
US11866891B2 (en) * 2021-10-13 2024-01-09 Caterpillar Paving Products Inc. Adjustable pitch rotor for milling applications

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1851875A (en) * 1931-03-28 1932-03-29 Lee W Siegel Power roller and surfacer
US3767262A (en) 1971-11-17 1973-10-23 Greenside Machine Co Ltd Road cutting machine with laterally extensible drum and method
DE2420330A1 (en) 1974-04-26 1975-11-06 Hackmack Alfred Mobile road surface stripper - with cutting rollers mounted in tandem leaving no strips uncut
DE2540047A1 (en) 1975-09-09 1977-03-17 Marks & Co Height adjustable road surface cutter roller - swivels about centre line horizontal axis and movable lengthways both sides
DE8315139U1 (en) 1983-05-21 1984-02-09 Marks GmbH, 4353 Oer-Erkenschwick MILLING MACHINE
DE3409389A1 (en) 1984-03-14 1985-10-03 Reinhard 5461 Windhagen Wirtgen MACHINE FOR MILLING OR PEELING ROAD Paving
JPS62152663A (en) 1985-12-25 1987-07-07 Y K Trading Kk Surface cutting and finishing device
DE3823480C1 (en) 1988-07-11 1989-10-26 Reinhard 5461 Windhagen De Wirtgen Collecting plate for surface-cutting machines
US5029652A (en) * 1990-03-05 1991-07-09 Whitfield Carroll J Turf aerator with lateral tine movement
US5203615A (en) 1991-12-30 1993-04-20 Alitec Corporation Full side shift system for detachable rotary apparatus
DE4201984A1 (en) 1992-01-25 1993-07-29 Bomag Gmbh VEHICLE FOR REPAIRING ROAD CEILINGS
US5244306A (en) * 1992-03-31 1993-09-14 M-B-W Inc. Vibratory compactor attachment for mechanical equipment
US5382084A (en) 1993-07-28 1995-01-17 Alitec Corporation Milling drum with internal drive motor
US5378081A (en) * 1994-02-16 1995-01-03 Swisher, Jr.; George W. Milling machine with front-mounted cutter
US5474397A (en) 1994-05-31 1995-12-12 Ingersoll-Rand Company Drum access mechanism
JPH0921107A (en) 1995-07-04 1997-01-21 Okita Engineering:Kk Excavating method of pavement
EP0752501A1 (en) 1995-07-04 1997-01-08 Ohkita Engineering Co., Ltd. Road excavator with a rotary cutter
JP3474361B2 (en) 1996-06-05 2003-12-08 株式会社大北エンジニアリング Excavator for paved roads
DE19726122C2 (en) 1997-06-20 2002-03-07 Wirtgen Gmbh Device for milling off floor coverings, in particular roadways
IT1294702B1 (en) 1997-09-03 1999-04-12 Bitelli Spa SCARIFYING MACHINE WITH SHAKING MILLING DRUM.
US6033031A (en) * 1998-03-13 2000-03-07 Astec Industries, Inc. Milling machine with vibrating mechanism and rotary drum
DE19814053B4 (en) 1998-03-30 2007-07-26 Wirtgen Gmbh Apparatus for milling off floor surfaces, in particular roadways
DE10031195C1 (en) 2000-06-27 2002-01-10 Wirtgen Gmbh Construction machine for working on floor surfaces
DE10203732A1 (en) 2002-01-30 2003-08-21 Wirtgen Gmbh Construction machinery
DE10223819B4 (en) 2002-05-28 2005-05-12 Wirtgen Gmbh Milling machine for processing soil surfaces, and method for disposing of generated during milling dust and vapors on a milling machine
DE10247579B3 (en) 2002-10-11 2004-04-15 Wirtgen Gmbh Scraper device for milling drums of a construction machine, as well as method
DE10347874A1 (en) 2003-10-10 2005-05-12 Wirtgen Gmbh Rear loader road milling machine with height-adjustable sealing device
US7131704B2 (en) 2004-09-23 2006-11-07 Wirtgen America, Inc. Shiftable conveyor for road milling machine
DE102005058102B3 (en) 2005-12-05 2007-03-01 Wirtgen Gmbh Scraping device for a cutting roller mounted in a construction machine comprises a centering device that on lateral movement of a scraper blade acts on its upper end to limit lateral displacement of its upper end in guides
DE102006015506B3 (en) * 2006-03-31 2007-11-08 Wirtgen Gmbh Milling roller for a construction machine, construction machine and gear unit for a milling drum
DE102006024123B4 (en) * 2006-05-22 2010-02-25 Wirtgen Gmbh Self-propelled construction machine, as well as methods for processing of ground surfaces
US7854566B2 (en) 2006-12-01 2010-12-21 Hall David R Nozzles incorporated into a milling machine
US7748789B2 (en) 2007-05-25 2010-07-06 Freeburn Charles W Pavement profiler
DE102007033808A1 (en) 2007-07-05 2009-01-08 Wirtgen Gmbh Self-propelled road milling machine, in particular large milling machine
US20130195554A1 (en) 2012-01-27 2013-08-01 Caterpillar Paving Products Inc. Moldboard lock
US9328468B2 (en) 2012-03-08 2016-05-03 Wirtgen Gmbh Self-propelled road milling machine with adjustable width scraper blade
DE102012203649A1 (en) 2012-03-08 2013-09-12 Wirtgen Gmbh Self-propelled road milling machine for working on road surfaces, in particular large milling machine
DE102012205005B4 (en) * 2012-03-28 2015-04-02 Wirtgen Gmbh Self-propelled milling machine, use of a lifting column of a milling machine, as well as methods for increasing the working efficiency of a milling machine
DE102014007907A1 (en) 2013-06-07 2014-12-11 Bomag Gmbh Wiper device with a wiper strip for a floor milling machine, wiper element for a wiper strip and ground milling machine with a wiper device
DE102015209740A1 (en) * 2014-12-30 2016-06-30 Wirtgen Gmbh Self-propelled road milling machine for working on road surfaces, as well as methods for working on road surfaces with a road milling machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105735097A (en) 2016-07-06
JP6283651B2 (en) 2018-02-21
US20160186392A1 (en) 2016-06-30
CN205313962U (en) 2016-06-15
CN105735097B (en) 2018-06-12
JP2016135981A (en) 2016-07-28
US10024005B2 (en) 2018-07-17
DE102015209740A1 (en) 2016-06-30
EP3040478A1 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
EP3040478B1 (en) Self-propelled street milling machine for milling street surfaces, and method for machining street surfaces with a street milling machine
EP3027345B2 (en) Method for machining tooth edges and machining station designed for this purpose
EP1757405B1 (en) Method for machining of workpieces with curved surfaces, in particular for turbine blades, machine tool
DE3413091C2 (en)
DE102007035591B3 (en) Civil engineering device for creating slots in the ground
EP2636799B1 (en) Drilling tool for making a subterraneous curtain wall and method of making such wall
DE10234707A1 (en) Method and device for grinding a rotationally symmetrical machine component
EP2794156B1 (en) Machine and method for turning at least flat shoulders of a crankshaft that surround bearing pins
EP0311778A2 (en) Method for finishing crowned tooth flanks, in particular of hardened gears
EP0360953B1 (en) Machine for finishing the tooth flanks of toothed work pieces
DE2156282C3 (en) Machine for layer-by-layer removal of worn road surfaces
DE10105687B4 (en) Vibration generator for steerable soil compaction devices
DE102011117819B4 (en) Centerless cylindrical grinding machine
EP2423388A1 (en) Method and device for manufacturing a slotted wall
EP0367951A1 (en) Miller for removing a road surfacing consisting of asphalt, concrete or the like along any pattern
WO2009033929A2 (en) Lathe
DE2614419B2 (en) Saw sharpening machine
WO2018098599A1 (en) Method and device for milling stone material or stone-like material
DD255296B3 (en) TOOTHING MACHINE WITH CNC CONTROL FOR THE PRODUCTION OF CONE HEADS
DE2105667A1 (en) Machine tool
WO2021249958A1 (en) Machine tool and method for operating a machine tool
WO2017076833A1 (en) Chamfering tool with guide for eliminating vibrations
EP2505305A2 (en) Device and method for grinding a bent surface of a workpiece
DE1552739A1 (en) Method and device for the production of toothed wheels
EP3928923A1 (en) Method for the treatment of the surface of a rock and / or concrete surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 23/088 20060101AFI20170419BHEP

INTG Intention to grant announced

Effective date: 20170509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 938071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002140

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171018

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180118

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002140

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151211

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 938071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231219

Year of fee payment: 9

Ref country code: FR

Payment date: 20231219

Year of fee payment: 9

Ref country code: DE

Payment date: 20231214

Year of fee payment: 9