EP4031712B1 - Machine and method for stabilizing a track - Google Patents

Machine and method for stabilizing a track Download PDF

Info

Publication number
EP4031712B1
EP4031712B1 EP20757854.3A EP20757854A EP4031712B1 EP 4031712 B1 EP4031712 B1 EP 4031712B1 EP 20757854 A EP20757854 A EP 20757854A EP 4031712 B1 EP4031712 B1 EP 4031712B1
Authority
EP
European Patent Office
Prior art keywords
machine
rotation
track
unbalanced
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20757854.3A
Other languages
German (de)
French (fr)
Other versions
EP4031712A1 (en
Inventor
Josef HOFSTÄTTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Original Assignee
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasser und Theurer Export Von Bahnbaumaschinen GmbH filed Critical Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Publication of EP4031712A1 publication Critical patent/EP4031712A1/en
Application granted granted Critical
Publication of EP4031712B1 publication Critical patent/EP4031712B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • B06B1/162Making use of masses with adjustable amount of eccentricity
    • B06B1/164Making use of masses with adjustable amount of eccentricity the amount of eccentricity being automatically variable as a function of the running condition, e.g. speed, direction
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/20Compacting the material of the track-carrying ballastway, e.g. by vibrating the track, by surface vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • B06B1/186Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid operating with rotary unbalanced masses

Definitions

  • the invention relates to a machine for stabilizing a track, with a machine frame supported on rail chassis and a height-adjustable stabilization unit that can be rolled on rails of the track by aggregate rollers, which has a vibration exciter with rotating unbalanced masses to generate an impact force acting dynamically in a track level normal to a longitudinal direction of the track, as well as a Height drive to generate an effective load on the track.
  • the invention also relates to a method for operating such a machine.
  • Today's recognized maintenance measures in the track include compacting the ballast bed using dynamic track stabilizers after tamping work. This method not only increases the lateral displacement resistance of the track grating, but also ensures high track quality over a longer period of time.
  • the compaction effect is influenced by several parameters, including compaction frequency, vibration amplitude, vertical load and dynamic impact force.
  • the frequency is limited to the range of around 32-38 Hz due to the material behavior of the gravel. In this area the ballast bed shows optimal behavior.
  • Machines for stabilizing a track are already known several times from the prior art.
  • stabilization units located between two rail chassis are lowered onto a track to be stabilized via a height adjustment and applied with a vertical load.
  • the adjacent pincer rollers transmit a transverse vibration of the stabilization units to the track with continuous right-of-way.
  • the stabilization unit includes adjustable unbalance masses in order to quickly reduce the impact force to a reduced value or to zero if necessary (e.g. in the case of solid structures, such as bridges or tunnels) and to raise it to the original value immediately after reaching a section of track to be stabilized.
  • Another machine for track stabilization according to the preamble of claim 1 is out WO 2019/158288 A1 known.
  • the invention is based on the object of providing a machine of the type mentioned at the outset to provide a significant improvement in the economic efficiency of operation, in relation to the maintenance effort, compared to the prior art, through the simplest, most robust construction of the stabilization unit.
  • a process carried out using the machine to compact the ballast bed of the track superstructure should be specified.
  • the invention provides that a main unbalanced mass and a secondary unbalanced mass cause different centrifugal forces at the same rotation speed depending on the direction of rotation, the two unbalanced masses being coupled in such a way that when rotating in one direction of rotation, the unbalanced masses have a first phase shift relative to one another and that when rotating in the opposite direction of rotation the unbalanced masses to each other one of the have a second phase shift that deviates from the first phase shift.
  • a changed phase shift changes both the direction and the strength of the impact force.
  • At least one main unbalanced mass and at least one secondary unbalanced mass are assigned to a rotary shaft, the main unbalanced mass being firmly connected to the shaft.
  • This shaft-hub connection is designed with a positive, non-positive or material fit.
  • the secondary unbalance mass is mounted in such a way that it can rotate freely within a defined angular range.
  • This defined angular range is determined depending on the drive direction of rotation and thus results in two possible phase shifts of different amounts between the main unbalanced mass and the assigned secondary unbalanced mass, with end stops in the respective direction of rotation determining the position of the main unbalanced mass relative to the secondary unbalanced mass.
  • a main unbalanced mass and an associated secondary unbalanced mass around the same axis of rotation are referred to as an unbalanced mass pair.
  • the main components of the stabilization unit in its structurally simplest possible structure are a rotation shaft and an unbalanced mass pair, consisting of a main unbalanced mass and a secondary unbalanced mass.
  • the secondary unbalanced masses are driven by the main unbalanced masses in a form-fitting manner, thus purely passively, by so-called drivers. It is structurally possible to design these drivers as independent components, but the driver function can also be integrated into a single component by appropriately designing the main unbalanced masses. This special design or geometric arrangement of the drivers results in a predefined angular range in which free rotational movement of the secondary unbalanced masses between the end stops is possible.
  • the stabilization unit comprises two counter-rotating units coupled via gears Rotary shafts and the unbalance mass pairs associated with each shaft.
  • the force vectors in the machine housing are added or subtracted. It is usually provided that all centrifugal force components subtract in the vertical direction, thus canceling out, while the centrifugal force components add in the horizontal direction, so that the resulting, maximum possible total impact force is achieved in the horizontal effective direction. This results in at least two impact forces that differ in magnitude in order to be able to specifically change the impact force acting on the track.
  • the respective unbalance mass is arranged on the stabilization unit with a rotation axis aligned in the longitudinal direction of the track.
  • This alignment is particularly suitable for use in a stabilization unit, as the resulting impact force acts on the track to be stabilized normal to the longitudinal direction of the track. This ensures optimal energy input into the track.
  • pairs of unbalanced masses are assigned to a rotary shaft, the pairs of unbalanced masses each comprising a main unbalanced mass and a secondary unbalanced mass around the same axis of rotation.
  • the pairs of unbalanced masses can be arranged in series on a rotation shaft.
  • the respective drives are controlled by means of a common control device.
  • phase synchronization of the uncoupled stabilization units can ensure either co-oscillating or counter-oscillating operation. This is particularly advantageous for controlling the 8 different impact forces mentioned above.
  • At least two stabilization units are operated coupled on one machine, for example via a cardan shaft.
  • a common drive enables a very compact design of the overall arrangement.
  • the drives are designed as hydraulic actuators. This means that the drives can be integrated into an existing hydraulic system of the machine.
  • the respective drives are designed as electrical actuators.
  • a sensible integration is possible, especially with new machine concepts that provide for modern and more efficient overall operation with power supply via accumulators or overhead lines.
  • the method according to the invention for operating a machine provides that at least one stabilization unit is placed on the track via a height drive and is subjected to a load and that at least one pair of unbalanced masses is driven via a rotation shaft with a switchable direction of rotation. This ensures track stabilization with variable impact force that can be adapted to local conditions.
  • increasing the drive power of a drive of the stabilization unit is regulated via a so-called soft start.
  • a predefined, increasing ramp course is stored in a higher-level control system, which enables a targeted ramp-up within a defined period of time in order to avoid shocks in the end stops of the unbalanced masses.
  • a further embodiment of the method enables variable adjustment of the impact force in the range between selectable impact force levels by changing the speed of the respective, associated drive. This offers the operator great flexibility and precision in track stabilization.
  • Fig. 1 shows a simplified machine 1 for stabilizing a track 3 resting on ballast 2, which includes a machine frame 6 supported on rails 5 by rail chassis 4. Between the two rail chassis 4 positioned at the ends, two stabilization units 7 are arranged one behind the other in the longitudinal direction 8 of the track. These are each connected to the machine frame 6 in a vertically adjustable manner by height drives 9.
  • a measuring system 27 for recording the rail geometry is attached to the machine frame 6.
  • a control device 26 is set up to process the data received from the measuring system 27, as well as to determine the control parameters for operating and controlling the stabilization units 7, the height drives 9 and the drives 13.
  • Fig. 1 represents independent, uncoupled stabilization units 7 with their own drives 13.
  • Characters Fig. 2 and Fig. 3 ) possible designs with both coupled and uncoupled stabilization units 7 are shown.
  • each stabilization unit 7 can be brought into positive engagement with the track 3 in order to cause it to oscillate at a desired oscillation frequency.
  • the aggregate rollers 10 include for each rail 5 two wheel flange rollers, which roll on the inside of the rail 5, and a tong roller, which is pressed against the rail 5 from the outside by means of a tong mechanism 11 during operation.
  • the height drives 9 apply a vertical static load to the track 3.
  • the drives 13 of the stabilization unit 7 are connected to a common supply device 25.
  • this is, for example, a motor-generator unit with power from an electrical storage unit.
  • An overhead line can also be used to supply electric drives 13 if the machine 1 has current collectors and corresponding converters. If hydraulic drives 13 are used, the supply device 25 is usefully integrated into a hydraulic system of the machine 1.
  • FIG. 3 An alternative shows Fig. 3 with coupled stabilization units and a common drive.
  • the basic structure of the stabilization units 7 is with the execution in Fig. 2 identical, the difference here lies in the coupling of the arrangement in the longitudinal direction of the track 8 and the design of the drives 13.
  • the stabilization units 7 are connected to each other in terms of drives via a connecting shaft 15.
  • the drive 13 and the connecting shaft 14 are simply designed.
  • FIG. 4 one of the stabilization units 7 is shown in detail in sectional views.
  • a vibration exciter 17 is arranged within a housing 16 and has a rotation shaft 18 with unbalanced masses arranged thereon on two rotation axes 21.
  • a main unbalance mass 19 and a secondary unbalance mass 20 form unbalanced mass pair.
  • Each rotation shaft 18 is rotatably mounted on both sides in the housing 16 via roller bearings 22.
  • the unbalanced masses 19, 20 are coupled via so-called drivers 24, which are designed here as independent elements. These are congruently attached directly to the main unbalanced mass 19 as well as to the secondary unbalanced mass 20.
  • the counter-rotating rotation shafts 18 are mechanically coupled via gears 23, with the power transmission to the rotation shaft 18 taking place in a form-fitting manner via a keyway connection.
  • the secondary unbalanced masses 20 are freely rotatable via plain bearings on the rotary shaft 18, the main unbalanced masses 19 are firmly connected to the rotary shaft 18 via a keyway connection.
  • the ones in here Fig. 4 The construction presented shows two pairs of unbalanced masses arranged axially on the rotary shafts 18, that is to say two main unbalanced masses 19 each with two secondary unbalanced masses 20.
  • the technically simplest solution is a structure with only one rotary shaft 18 and only one pair of unbalanced masses arranged thereon.
  • Fig. 5 shows the direction of rotation-dependent unbalance adjustment via driver 24 schematically.
  • the illustrations A, B, C, D, E, F, G, H show the angular positions 0°, 90°, 180° and 270° for both directions of rotation, each Representation composed of an upper and a lower rotation shaft 18.
  • the specified direction of rotation is always related to the upper rotation shaft 18, the lower rotation shaft 18 rotates in the opposite direction of rotation through mechanical coupling.
  • Illustrations A to D show right-hand operation (clockwise direction of rotation) while illustrations E to H show left-hand rotation operation (counter-clockwise direction of rotation).
  • the structure in illustration A (angular position 0°) includes the upper, clockwise rotating shaft 18 with a pair of unbalanced masses arranged thereon.
  • the main unbalanced mass 19 with associated drivers 24 (fine hatched) causes a centrifugal force F1 from the pivot point in the vertical direction
  • the secondary unbalanced mass 20 with associated drivers 24 (coarse hatched) also causes a centrifugal force F3 from Pivot point out in vertical direction.
  • the sum of the two centrifugal forces F1 and F3 results in the total centrifugal force Fges1.
  • the structure in illustration E (angular position 0°) now shows a counterclockwise rotating shaft 18 with a pair of unbalanced masses arranged on it.
  • the changed direction of rotation results in a different angular position of the two unbalanced masses 19, 20 relative to one another.
  • the main unbalanced mass 19 with associated drivers 24 (fine hatched) causes a centrifugal force F1 from the pivot point in the vertical direction upwards
  • the secondary unbalanced mass 20 with associated drivers 24 (coarse hatched) causes a centrifugal force F3 from the pivot point in the vertical direction downwards.
  • the sum of the two centrifugal forces F1 and F3 results in the total centrifugal force Fges2.
  • the total centrifugal force Fges2 acts from the pivot point in the horizontal direction.
  • the total centrifugal force acts here Fges2 as the sum of F2 and F4 with the same amount in the same direction, the forces add up and result in 2*Fges2, the minimum possible impact force in the horizontal direction on track 3.
  • the range between the impact force levels can now be compensated for within a very narrow frequency band by changing the speed of the respective, associated drive 13.
  • a so-called frequency control funnel is created (line lines dotted).
  • the impact force F in % is shown on the ordinate above the abscissa with the frequency f in Hz.

Description

Gebiet der Technikfield of technology

Die Erfindung betrifft eine Maschine zum Stabilisieren eines Gleises, mit einem auf Schienenfahrwerken abgestützten Maschinenrahmen und einem höhenverstellbaren, durch Aggregatrollen auf Schienen des Gleises abrollbaren Stabilisationsaggregat, das einen Schwingungserreger mit rotierenden Unwuchtmassen zur Erzeugung einer dynamisch in einer Gleisebene normal zu einer Gleislängsrichtung wirkenden Schlagkraft sowie einen Höhenantrieb zur Erzeugung einer auf das Gleis wirksamen Auflast umfasst. Zudem betrifft die Erfindung ein Verfahren zum Betreiben einer solchen Maschine.The invention relates to a machine for stabilizing a track, with a machine frame supported on rail chassis and a height-adjustable stabilization unit that can be rolled on rails of the track by aggregate rollers, which has a vibration exciter with rotating unbalanced masses to generate an impact force acting dynamically in a track level normal to a longitudinal direction of the track, as well as a Height drive to generate an effective load on the track. The invention also relates to a method for operating such a machine.

Stand der TechnikState of the art

Zu den heute anerkannten Instandhaltungsmaßnahmen im Oberbau gehört die Verdichtung des Schotterbettes mittels dynamischer Gleisstabilisatoren nach Stopfarbeiten. Mit dieser Methode wird nicht nur der Querverschiebewiderstand des Gleisrostes erhöht, sondern auch eine hohe Gleisqualität über einen längeren Zeitraum erreicht.Today's recognized maintenance measures in the track include compacting the ballast bed using dynamic track stabilizers after tamping work. This method not only increases the lateral displacement resistance of the track grating, but also ensures high track quality over a longer period of time.

Die Verdichtwirkung wird dabei durch mehrere Parameter, darunter Verdichtfrequenz, Schwingungsamplitude, vertikale Auflast und dynamische Schlagkraft, beeinflusst. Die Frequenz ist durch das Materialverhalten des Schotters auf den Bereich von etwa 32-38 Hz begrenzt. In diesem Bereich zeigt das Schotterbett das optimale Verhalten.The compaction effect is influenced by several parameters, including compaction frequency, vibration amplitude, vertical load and dynamic impact force. The frequency is limited to the range of around 32-38 Hz due to the material behavior of the gravel. In this area the ballast bed shows optimal behavior.

Maschinen zum Stabilisieren eines Gleises sind aus dem Stand der Technik bereits mehrfach bekannt. Bei einem sogenannten dynamischen Gleisstabilisator werden zwischen zwei Schienenfahrwerken befindliche Stabilisationsaggregate über eine Höhenverstellung auf ein zu stabilisierendes Gleis abgesenkt und mit einer vertikalen Auflast beaufschlagt. Über Aggregatrollen und an Außenseiten der Schienenköpfe anliegenden Zangenrollen wird unter kontinuierlicher Vorfahrt eine Querschwingung der Stabilisationsaggregate auf das Gleis übertragen.Machines for stabilizing a track are already known several times from the prior art. In a so-called dynamic track stabilizer, stabilization units located between two rail chassis are lowered onto a track to be stabilized via a height adjustment and applied with a vertical load. About aggregate rollers and on the outside of the rail heads The adjacent pincer rollers transmit a transverse vibration of the stabilization units to the track with continuous right-of-way.

Eine solche Maschine ist beispielsweise aus der WO 2008/009314 A1 bekannt. Dabei umfasst das Stabilisationsaggregat verstellbare Unwuchtmassen, um bedarfsweise die Schlagkraft rasch auf einen reduzierten Wert oder auf null zu reduzieren (z.B. bei festen Bauwerken, etwa Brücken oder Tunnels) und sofort nach Erreichen eines zu stabilisierenden Gleisabschnitts auf den ursprünglichen Wert anzuheben.
Eine weitere Maschine zur Gleisstabilisierung gemäß dem Oberbegriff des Anspruchs 1 ist aus WO 2019/158288 A1 bekannt.
Such a machine is, for example, from the WO 2008/009314 A1 known. The stabilization unit includes adjustable unbalance masses in order to quickly reduce the impact force to a reduced value or to zero if necessary (e.g. in the case of solid structures, such as bridges or tunnels) and to raise it to the original value immediately after reaching a section of track to be stabilized.
Another machine for track stabilization according to the preamble of claim 1 is out WO 2019/158288 A1 known.

Da die Frequenz nur innerhalb eines eingeschränkten Bereiches variiert werden kann, ist man dazu übergegangen, die Schlagkraft durch eine Lageverstellung der Exzentermassen zu variieren. Ein Nachteil liegt hier im konstruktiven Aufbau der sich bewegenden Teile, der in seiner Umsetzung sehr aufwendig und komplex ist. Dadurch bedingt ist auch ein entsprechender Kostenaufwand für Wartung und Instandhaltung.Since the frequency can only be varied within a limited range, the approach has been to vary the impact force by adjusting the position of the eccentric masses. A disadvantage here is the structural design of the moving parts, which is very complicated and complex to implement. This also results in corresponding costs for maintenance and repair.

Zusammenfassung der ErfindungSummary of the invention

Der Erfindung liegt die Aufgabe zugrunde, für eine Maschine der eingangs genannten Art durch einen möglichst einfachen, robusten Aufbau des Stabilisationsaggregates eine signifikante Verbesserung der Wirtschaftlichkeit im Betrieb, bezogen auf den Instandhaltungsaufwand, gegenüber dem Stand der Technik anzugeben. Zudem soll ein mittels der Maschine durchgeführtes Verfahren zur Verdichtung des Schotterbettes des Gleisoberbaus angegeben werden.The invention is based on the object of providing a machine of the type mentioned at the outset to provide a significant improvement in the economic efficiency of operation, in relation to the maintenance effort, compared to the prior art, through the simplest, most robust construction of the stabilization unit. In addition, a process carried out using the machine to compact the ballast bed of the track superstructure should be specified.

Erfindungsgemäß werden diese Aufgaben gelöst durch eine Maschine gemäß Anspruch 1 und ein Verfahren gemäß Anspruch 10 Abhängige Ansprüche geben vorteilhafte Ausgestaltungen der Erfindung an.According to the invention, these tasks are solved by a machine according to claim 1 and a method according to claim 10. Dependent claims specify advantageous embodiments of the invention.

Die Erfindung sieht vor, dass eine Hauptunwuchtmasse und eine Nebenunwuchtmasse bei gleicher Rotationsgeschwindigkeit in Abhängigkeit der Drehrichtung unterschiedliche Fliehkräfte bewirken, wobei die beiden Unwuchtmassen in der Weise gekoppelt sind, dass bei Rotation in einer Drehrichtung die Unwuchtmassen zueinander eine erste Phasenverschiebung aufweisen und dass bei Rotation in die entgegengesetzte Drehrichtung die Unwuchtmassen zueinander eine von der ersten Phasenverschiebung abweichende zweite Phasenverschiebung aufweisen. Abhängig von der Anordnung der Unwuchtmassen verändert eine geänderte Phasenverschiebung sowohl die Richtung als auch die Stärke der Schlagkraft.The invention provides that a main unbalanced mass and a secondary unbalanced mass cause different centrifugal forces at the same rotation speed depending on the direction of rotation, the two unbalanced masses being coupled in such a way that when rotating in one direction of rotation, the unbalanced masses have a first phase shift relative to one another and that when rotating in the opposite direction of rotation the unbalanced masses to each other one of the have a second phase shift that deviates from the first phase shift. Depending on the arrangement of the unbalanced masses, a changed phase shift changes both the direction and the strength of the impact force.

Einer Rotationswelle sind zumindest eine Hauptunwuchtmasse wie auch zumindest eine Nebenunwuchtmasse zugeordnet, wobei die Hauptunwuchtmasse fest mit der Welle verbunden ist. Diese Welle-Nabe-Verbindung wird form-, kraft-, oder stoffschlüssig ausgeführt.At least one main unbalanced mass and at least one secondary unbalanced mass are assigned to a rotary shaft, the main unbalanced mass being firmly connected to the shaft. This shaft-hub connection is designed with a positive, non-positive or material fit.

Die Nebenunwuchtmasse ist derart gelagert, dass diese in einem definierten Winkelbereich frei drehbar beweglich ist. Dieser definierte Winkelbereich ist in Abhängigkeit der Antriebsdrehrichtung festgelegt und ergibt somit zwei mögliche, betragsmäßig unterschiedliche Phasenverschiebungen zwischen der Hauptunwuchtmasse und der zugeordneten Nebenunwuchtmasse, wobei Endanschläge in der jeweiligen Drehrichtung die Position der Hauptunwuchtmasse relativ zur Nebenunwuchtmasse bestimmen. Für die weiteren Ausführungen werden je eine Hauptunwuchtmasse und eine zugeordnete Nebenunwuchtmasse um dieselbe Rotationsachse als ein Unwuchtmassepaar bezeichnet.The secondary unbalance mass is mounted in such a way that it can rotate freely within a defined angular range. This defined angular range is determined depending on the drive direction of rotation and thus results in two possible phase shifts of different amounts between the main unbalanced mass and the assigned secondary unbalanced mass, with end stops in the respective direction of rotation determining the position of the main unbalanced mass relative to the secondary unbalanced mass. For the further explanations, a main unbalanced mass and an associated secondary unbalanced mass around the same axis of rotation are referred to as an unbalanced mass pair.

Dabei umfasst das Stabilisationsaggregat als Hauptkomponenten in seinem konstruktiv einfachst möglichen Aufbau eine Rotationswelle und ein Unwuchtmassepaar, bestehend aus einer Hauptunwuchtmasse sowie einer Nebenunwuchtmasse.The main components of the stabilization unit in its structurally simplest possible structure are a rotation shaft and an unbalanced mass pair, consisting of a main unbalanced mass and a secondary unbalanced mass.

Vorteilhaft ist es, wenn die Mitnahme der Nebenunwuchtmassen durch die Hauptunwuchtmassen formschlüssig, somit rein passiv durch sogenannte Mitnehmer erfolgt. Dabei ist es konstruktiv möglich, diese Mitnehmer als eigenständige Bauteile auszuführen, es kann aber auch durch entsprechende Formgestaltung der Hauptunwuchtmassen eine Integration der Mitnahmefunktion in einem einzigen Bauteil erfolgen. Aus dieser speziellen Formgestaltung bzw. geometrischen Anordnung der Mitnehmer ergibt sich ein vordefinierter Winkelbereich, in dem eine freie Drehbewegung der Nebenunwuchtmassen zwischen den Endanschlägen möglich ist.It is advantageous if the secondary unbalanced masses are driven by the main unbalanced masses in a form-fitting manner, thus purely passively, by so-called drivers. It is structurally possible to design these drivers as independent components, but the driver function can also be integrated into a single component by appropriately designing the main unbalanced masses. This special design or geometric arrangement of the drivers results in a predefined angular range in which free rotational movement of the secondary unbalanced masses between the end stops is possible.

In einer besonders vorteilhaften Weiterbildung umfasst das Stabilisationsaggregat zwei über Zahnräder gekoppelte, gegenläufige Rotationswellen und die je Welle zugehörigen Unwuchtmassepaare. Hier ergibt sich je nach Ausrichtung und Phasenlage der Unwuchtmassepaare zueinander und damit der einzelnen Fliehkräfte und ihren unterschiedlichen Wirkrichtungen eine Addition oder Subtraktion der Kraftvektoren im Maschinengehäuse. Dabei ist gewöhnlich vorgesehen, dass sich sämtliche Fliehkraftkomponenten in vertikaler Richtung subtrahieren, somit aufheben, während sich die Fliehkraftkomponenten in horizontaler Richtung addieren, somit die resultierende, maximal mögliche Gesamtschlagkraft in horizontaler Wirkrichtung erreicht wird. Daraus ergeben sich zumindest zwei betragsmäßig unterschiedliche Schlagkräfte um damit die auf das Gleis einwirkende Schlagkraft gezielt verändern zu können.In a particularly advantageous development, the stabilization unit comprises two counter-rotating units coupled via gears Rotary shafts and the unbalance mass pairs associated with each shaft. Depending on the alignment and phase position of the unbalanced mass pairs relative to each other and thus the individual centrifugal forces and their different directions of action, the force vectors in the machine housing are added or subtracted. It is usually provided that all centrifugal force components subtract in the vertical direction, thus canceling out, while the centrifugal force components add in the horizontal direction, so that the resulting, maximum possible total impact force is achieved in the horizontal effective direction. This results in at least two impact forces that differ in magnitude in order to be able to specifically change the impact force acting on the track.

Zudem ist es günstig, wenn die jeweilige Unwuchtmasse mit einer in Gleislängsrichtung ausgerichteten Rotationsachse am Stabilisationsaggregat angeordnet ist. Diese Ausrichtung eignet sich besonders für den Einsatz in einem Stabilisationsaggregat, da die resultierende Schlagkraft normal zur Gleislängsrichtung auf das zu stabilisierende Gleis wirkt. Auf diese Weise ist eine optimale Energieeinbringung in das Gleis gegeben.It is also advantageous if the respective unbalance mass is arranged on the stabilization unit with a rotation axis aligned in the longitudinal direction of the track. This alignment is particularly suitable for use in a stabilization unit, as the resulting impact force acts on the track to be stabilized normal to the longitudinal direction of the track. This ensures optimal energy input into the track.

Auch kann es vorteilhaft sein, dass einer Rotationswelle wenigstens zwei Unwuchtmassepaare zugeordnet sind, wobei die Unwuchtmassepaare je eine Hauptunwuchtmasse sowie eine Nebenunwuchtmasse um dieselbe Rotationsachse umfassen. Je nach Anforderung an die Gesamtschlagkraft, beziehungsweise deren Betrag, können auf einer Rotationswelle mehrere Unwuchtmassepaare in Serie angeordnet sein.It can also be advantageous that at least two pairs of unbalanced masses are assigned to a rotary shaft, the pairs of unbalanced masses each comprising a main unbalanced mass and a secondary unbalanced mass around the same axis of rotation. Depending on the requirement for the total impact force or its amount, several pairs of unbalanced masses can be arranged in series on a rotation shaft.

Der Betrieb von zwei Stabilisationsaggregaten auf einer Maschine ist entweder gekoppelt, mittels eines gemeinsamen Antriebs, oder unabhängig voneinander über eigenständige Antriebe je Stabilisationsaggregat möglich.The operation of two stabilization units on one machine is possible either coupled, using a common drive, or independently of each other using independent drives for each stabilization unit.

Werden in einer vorteilhaften Weiterbildung auf einer Maschine zwei unabhängig voneinander angetriebene Stabilisationsaggregate eingesetzt, so sind bis zu acht betragsmäßig unterschiedliche Schlagkräfte ansteuerbar, dies ergibt sich mathematisch aus 32 - 1 = 8.If, in an advantageous development, two independently driven stabilization units are used on one machine, up to eight impact forces with different magnitudes can be controlled; this results mathematically from 3 2 - 1 = 8.

In einer Ausprägung der Erfindung ist vorgesehen, dass bei unabhängig voneinander angetriebenen Stabilisationsaggregaten die jeweiligen Antriebe mittels einer gemeinsamen Steuerungseinrichtung angesteuert werden.In one embodiment of the invention it is provided that in the case of stabilization units that are driven independently of one another, the respective drives are controlled by means of a common control device.

Dadurch sind die einzelnen Antriebe optimal aufeinander abstimmbar und präzise ansteuerbar. Durch eine Phasensynchronisation der nicht gekoppelten Stabilisationsaggregate kann entweder ein gleichschwingender oder gegenschwingender Betrieb sichergestellt werden. Vor allem zur Ansteuerung der oben genannten 8 unterschiedlichen Schlagkräfte ist dies von besonderem Vorteil.This means that the individual drives can be optimally coordinated with one another and controlled precisely. Phase synchronization of the uncoupled stabilization units can ensure either co-oscillating or counter-oscillating operation. This is particularly advantageous for controlling the 8 different impact forces mentioned above.

In einer einfachen Ausprägung werden wenigstens zwei Stabilisationsaggregate auf einer Maschine gekoppelt betrieben, etwa über eine Gelenkwelle. Hier ermöglicht ein gemeinsamer Antrieb einen sehr kompakten Aufbau der Gesamtanordnung.In a simple embodiment, at least two stabilization units are operated coupled on one machine, for example via a cardan shaft. Here, a common drive enables a very compact design of the overall arrangement.

Für den Antrieb der Rotationswelle ist vorgesehen, dass die Antriebe als hydraulische Aktuatoren ausgebildet sind. Dadurch können die Antriebe in ein bereits bestehendes Hydrauliksystem der Maschine miteingebunden werden.To drive the rotation shaft, it is provided that the drives are designed as hydraulic actuators. This means that the drives can be integrated into an existing hydraulic system of the machine.

In einer anderen Ausprägung der Erfindung kann es vorteilhaft sein, wenn die jeweiligen Antriebe als elektrische Aktuatoren ausgebildet sind. Gerade bei neuen Maschinenkonzepten, die einen modernen und effizienteren Gesamtbetrieb mit Speisung über Akkumulatoren oder Oberleitung vorsehen, ist eine sinnvolle Einbindung möglich.In another embodiment of the invention, it can be advantageous if the respective drives are designed as electrical actuators. A sensible integration is possible, especially with new machine concepts that provide for modern and more efficient overall operation with power supply via accumulators or overhead lines.

Das erfindungsgemäße Verfahren zum Betreiben einer Maschine sieht vor, dass zumindest ein Stabilisationsaggregat über einen Höhenantrieb auf das Gleis abgesetzt und mit einer Auflast beaufschlagt wird und dass zumindest ein Unwuchtmassepaar über eine Rotationswelle mit umschaltbarer Drehrichtung angetrieben wird. Dadurch wird eine an die örtlichen Gegebenheiten anpassbare Gleisstabilisation mit einer veränderbaren Schlagkraft gewährleistet.The method according to the invention for operating a machine provides that at least one stabilization unit is placed on the track via a height drive and is subjected to a load and that at least one pair of unbalanced masses is driven via a rotation shaft with a switchable direction of rotation. This ensures track stabilization with variable impact force that can be adapted to local conditions.

In einer günstigen Weiterbildung des Verfahrens wird ein Hochfahren der Antriebsleistung eines Antriebes des Stabilisierungsaggregates über einen sogenannten Soft-Anlauf geregelt. Dabei ist ein vordefinierter, steigender Rampenverlauf in einer übergeordneten Steuerung hinterlegt, der ein gezieltes Hochfahren innerhalb einer definierten Zeitspanne ermöglicht, um Stöße in den Endanschlägen der Unwuchtmassen zu vermeiden.In a favorable development of the method, increasing the drive power of a drive of the stabilization unit is regulated via a so-called soft start. A predefined, increasing ramp course is stored in a higher-level control system, which enables a targeted ramp-up within a defined period of time in order to avoid shocks in the end stops of the unbalanced masses.

Eine weitere Ausprägung des Verfahrens ermöglicht eine variable Verstellung der Schlagkraft im Bereich zwischen wählbaren Schlagkraftstufen durch Änderung der Drehzahl des jeweiligen, zugehörigen Antriebes. Dies bietet dem Betreiber große Flexibilität und Präzision in der Gleisstabilisierung.A further embodiment of the method enables variable adjustment of the impact force in the range between selectable impact force levels by changing the speed of the respective, associated drive. This offers the operator great flexibility and precision in track stabilization.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:

Fig. 1
Seitenansicht einer Maschine zum Stabilisieren eines Gleises
Fig. 2
Stabilisationsaggregate unabhängig, mit eigenem Antrieb
Fig. 3
Stabilisationsaggregate gekoppelt, mit gemeinsamem Antrieb
Fig. 4
Detailansichten eines Stabilisationsaggregats / Schnittdarstellungen
Fig. 5
Drehrichtungsabhängige Unwuchtverstellung über Mitnehmer
Fig. 6
Unwuchtverstellung durch Drehzahlregelung im Zwischenbereich
The invention is explained below in an exemplary manner with reference to the attached figures. It shows in a schematic representation:
Fig. 1
Side view of a machine for stabilizing a track
Fig. 2
Stabilization units independent, with their own drive
Fig. 3
Stabilization units coupled with a common drive
Fig. 4
Detailed views of a stabilization unit / sectional views
Fig. 5
Direction-dependent unbalance adjustment via driver
Fig. 6
Unbalance adjustment through speed control in the intermediate range

Beschreibung der AusführungsformenDescription of the embodiments

Fig. 1 zeigt eine vereinfacht dargestellte Maschine 1 zum Stabilisieren eines auf Schotter 2 ruhenden Gleises 3, welche einen durch Schienenfahrwerke 4 auf Schienen 5 abgestützten Maschinenrahmen 6 umfasst. Zwischen den beiden endseitig positionierten Schienenfahrwerken 4 sind zwei Stabilisations-aggregate 7 in Gleislängsrichtung 8 hintereinander angeordnet. Diese sind jeweils durch Höhenantriebe 9 vertikal verstellbar mit dem Maschinenrahmen 6 verbunden. Fig. 1 shows a simplified machine 1 for stabilizing a track 3 resting on ballast 2, which includes a machine frame 6 supported on rails 5 by rail chassis 4. Between the two rail chassis 4 positioned at the ends, two stabilization units 7 are arranged one behind the other in the longitudinal direction 8 of the track. These are each connected to the machine frame 6 in a vertically adjustable manner by height drives 9.

Ein Messsystem 27 zum Erfassen der Schienengeometrie ist am Maschinenrahmen 6 angebracht. Eine Steuerungseinrichtung 26 ist für die Verarbeitung der vom Messsystem 27 erhaltenen Daten, wie auch die Ermittlung der Stellparameter zum Betrieb und zur Ansteuerung der Stabilisationsaggregate 7, der Höhenantriebe 9 und der Antriebe 13, eingerichtet.A measuring system 27 for recording the rail geometry is attached to the machine frame 6. A control device 26 is set up to process the data received from the measuring system 27, as well as to determine the control parameters for operating and controlling the stabilization units 7, the height drives 9 and the drives 13.

Die Ausführung in Fig. 1 bildet unabhängige, nicht gekoppelte Stabilisationsaggregate 7 mit eigenen Antrieben 13 ab. In den folgenden Figuren (Fig. 2 und Fig. 3) werden mögliche Ausführungen mit gekoppelten wie auch nicht gekoppelten Stabilisationsaggregaten 7 gezeigt.The execution in Fig. 1 represents independent, uncoupled stabilization units 7 with their own drives 13. In the following Characters ( Fig. 2 and Fig. 3 ) possible designs with both coupled and uncoupled stabilization units 7 are shown.

In Fig. 2 sind unabhängige Stabilisationsaggregate mit eigenem Antrieb gezeigt. Mit Hilfe von auf den Schienen 5 abrollbaren Aggregatrollen 10 kann jedes Stabilisationsaggregat 7 formschlüssig mit dem Gleis 3 in Eingriff gebracht werden, um dieses mit einer gewünschten Schwingungsfrequenz in Schwingung zu versetzen. Die Aggregatrollen 10 umfassen für jede Schiene 5 zwei Spurkranzrollen, die an der Innenseite der Schiene 5 abrollen, und eine Zangenrolle, die im Betrieb von außen mittels eines Zangenmechanismus 11 gegen die Schiene 5 gedrückt ist. Durch die Höhenantriebe 9 wird eine vertikale statische Auflast auf das Gleis 3 aufgebracht.In Fig. 2 Independent stabilization units with their own drive are shown. With the help of aggregate rollers 10 that can be rolled on the rails 5, each stabilization unit 7 can be brought into positive engagement with the track 3 in order to cause it to oscillate at a desired oscillation frequency. The aggregate rollers 10 include for each rail 5 two wheel flange rollers, which roll on the inside of the rail 5, and a tong roller, which is pressed against the rail 5 from the outside by means of a tong mechanism 11 during operation. The height drives 9 apply a vertical static load to the track 3.

Die Antriebe 13 des Stabilisationsaggregates 7 sind an eine gemeinsame Versorgungseinrichtung 25 angeschlossen. Bei elektrischen Antrieben 13 ist das beispielsweise eine Motor-Generator-Einheit mit Speisung aus einem elektrischen Speicher. Auch eine Oberleitung ist zur Versorgung elektrischer Antriebe 13 nutzbar, wenn die Maschine 1 über Stromabnehmer und entsprechende Umrichter verfügt. Kommen hydraulische Antriebe 13 zum Einsatz, so ist die Versorgungseinrichtung 25 sinnvollerweise in ein Hydrauliksystem der Maschine 1 integriert.The drives 13 of the stabilization unit 7 are connected to a common supply device 25. In the case of electric drives 13, this is, for example, a motor-generator unit with power from an electrical storage unit. An overhead line can also be used to supply electric drives 13 if the machine 1 has current collectors and corresponding converters. If hydraulic drives 13 are used, the supply device 25 is usefully integrated into a hydraulic system of the machine 1.

Eine Alternative zeigt Fig. 3 mit gekoppelten Stabilisationsaggregaten und einem gemeinsamen Antrieb. Der grundsätzliche Aufbau der Stabilisationsaggregate 7 ist mit der Ausführung in Fig. 2 ident, der Unterschied liegt hier in der Koppelung der Anordnung in Gleislängsrichtung 8 und der Gestaltung der Antriebe 13. Über eine Verbindungswelle 15 sind die Stabilisationsaggregate 7 antriebsmäßig mitsammen verbunden. Der Antrieb 13 und die Verbindungswelle 14 sind nur einfach ausgeführt.An alternative shows Fig. 3 with coupled stabilization units and a common drive. The basic structure of the stabilization units 7 is with the execution in Fig. 2 identical, the difference here lies in the coupling of the arrangement in the longitudinal direction of the track 8 and the design of the drives 13. The stabilization units 7 are connected to each other in terms of drives via a connecting shaft 15. The drive 13 and the connecting shaft 14 are simply designed.

In Fig. 4 ist eines der Stabilisationsaggregate 7 im Detail in Schnittansichten dargestellt. Innerhalb eines Gehäuses 16 ist ein Schwingungserreger 17 angeordnet, welcher auf zwei Rotationsachsen 21 jeweils über eine Rotationswelle 18 mit darauf angeordneten Unwuchtmassen verfügt. Dabei bilden eine Hauptunwuchtmasse 19 und eine Nebenunwuchtmasse 20 ein Unwuchtmassepaar. Jede Rotationswelle 18 ist beidseitig im Gehäuse 16 über Wälzlager 22 drehbar gelagert.In Fig. 4 one of the stabilization units 7 is shown in detail in sectional views. A vibration exciter 17 is arranged within a housing 16 and has a rotation shaft 18 with unbalanced masses arranged thereon on two rotation axes 21. A main unbalance mass 19 and a secondary unbalance mass 20 form unbalanced mass pair. Each rotation shaft 18 is rotatably mounted on both sides in the housing 16 via roller bearings 22.

Eine Koppelung der Unwuchtmassen 19, 20 erfolgt über sogenannte Mitnehmer 24, welche hier als eigenständige Elemente ausgeführt sind. Diese sind deckungsgleich direkt an der Hauptunwuchtmasse 19 wie auch an der Nebenunwuchtmasse 20 angebracht.The unbalanced masses 19, 20 are coupled via so-called drivers 24, which are designed here as independent elements. These are congruently attached directly to the main unbalanced mass 19 as well as to the secondary unbalanced mass 20.

Die gegenläufigen Rotationswellen 18 sind über Zahnräder 23 mechanisch gekoppelt, wobei die Kraftübertragung auf die Rotationswelle 18 formschlüssig über eine Passfederverbindung erfolgt.The counter-rotating rotation shafts 18 are mechanically coupled via gears 23, with the power transmission to the rotation shaft 18 taking place in a form-fitting manner via a keyway connection.

Über Gleitlager auf der Rotationswelle 18 frei drehbar gelagert sind die Nebenunwuchtmassen 20 ausgeführt, die Hauptunwuchtmassen 19 sind fest mit der Rotationswelle 18 über eine Passfederverbindung verbunden.The secondary unbalanced masses 20 are freely rotatable via plain bearings on the rotary shaft 18, the main unbalanced masses 19 are firmly connected to the rotary shaft 18 via a keyway connection.

Die hier in Fig. 4 dargelegte Konstruktion zeigt auf den Rotationswellen 18 je zwei axial darauf angeordnete Unwuchtmassepaare, das heißt je zwei Hauptunwuchtmassen 19 mit je zwei Nebenunwuchtmassen 20. Als technisch einfachste Lösung ist ein Aufbau mit nur einer Rotationswelle 18 und nur einem darauf angeordneten Unwuchtmassepaar möglich.The ones in here Fig. 4 The construction presented shows two pairs of unbalanced masses arranged axially on the rotary shafts 18, that is to say two main unbalanced masses 19 each with two secondary unbalanced masses 20. The technically simplest solution is a structure with only one rotary shaft 18 and only one pair of unbalanced masses arranged thereon.

Fig. 5 stellt die drehrichtungsabhängige Unwuchtverstellung über Mitnehmer 24 schematisch dar. Dabei zeigen die Darstellungen A, B, C, D, E, F, G, H die Winkelstellungen 0°, 90°, 180° und 270° jeweils für beide Drehrichtungen, wobei sich jede Darstellung aus einer oberen und einer unteren Rotationswelle 18 zusammensetzt. Die angegebene Drehrichtung ist immer auf die obere Rotationswelle 18 bezogen, die untere Rotationswelle 18 dreht durch mechanische Koppelung in die gegengesetzte Drehrichtung. Fig. 5 shows the direction of rotation-dependent unbalance adjustment via driver 24 schematically. The illustrations A, B, C, D, E, F, G, H show the angular positions 0°, 90°, 180° and 270° for both directions of rotation, each Representation composed of an upper and a lower rotation shaft 18. The specified direction of rotation is always related to the upper rotation shaft 18, the lower rotation shaft 18 rotates in the opposite direction of rotation through mechanical coupling.

Die Darstellungen A bis D zeigen einen rechtsdrehenden Betrieb (Drehrichtung im Uhrzeigersinn) während die Darstellungen E bis H einen linksdrehenden Betrieb (Drehrichtung gegen Uhrzeigersinn) darstellen.Illustrations A to D show right-hand operation (clockwise direction of rotation) while illustrations E to H show left-hand rotation operation (counter-clockwise direction of rotation).

Der Aufbau in Darstellung A (Winkelstellung 0°) umfasst die obere, rechtsdrehende Rotationswelle 18 mit einem darauf angeordneten Unwuchtmassepaar. Die Hauptunwuchtmasse 19 mit zugehörigen Mitnehmern 24 (fein schraffiert) bewirkt eine Fliehkraft F1 vom Drehpunkt aus in vertikaler Richtung, die Nebenunwuchtmasse 20 mit zugehörigen Mitnehmern 24 (grob schraffiert) bewirkt ebenso eine Fliehkraft F3 vom Drehpunkt aus in vertikaler Richtung. Die Summe der beiden Fliehkräfte F1 und F3 ergibt die Gesamtfliehkraft Fges1. An der unteren Rotationswelle 18 (linksdrehend) wirkt die Gesamtfliehkraft Fges1 als Summe von F2 und F4 mit gleichem Betrag in entgegengesetzter Richtung, die Kräfte heben sich somit bei Reduktion auf das gesamte Stabilisationsaggregat 7 auf, es wirkt keine Kraft in vertikaler Richtung.The structure in illustration A (angular position 0°) includes the upper, clockwise rotating shaft 18 with a pair of unbalanced masses arranged thereon. The main unbalanced mass 19 with associated drivers 24 (fine hatched) causes a centrifugal force F1 from the pivot point in the vertical direction, the secondary unbalanced mass 20 with associated drivers 24 (coarse hatched) also causes a centrifugal force F3 from Pivot point out in vertical direction. The sum of the two centrifugal forces F1 and F3 results in the total centrifugal force Fges1. On the lower rotation shaft 18 (counterclockwise), the total centrifugal force Fges1 acts as the sum of F2 and F4 with the same amount in the opposite direction, the forces are therefore canceled out when reduced to the entire stabilization unit 7, there is no force in the vertical direction.

In Darstellung B (Winkelstellung 90°) wirkt die Gesamtfliehkraft Fges1 vom Drehpunkt aus in horizontaler Richtung. Selbe Kraftsituation herrscht an der unteren Rotationswelle 18 (linksdrehend), hier wirkt die Gesamtfliehkraft Fges1 als Summe von F2 und F4 mit gleichem Betrag in selbige Richtung, die Kräfte addieren sich und ergeben mit 2*Fges1 die maximal mögliche Schlagkraft in horizontaler Richtung auf das Gleis 3.In representation B (angular position 90°), the total centrifugal force Fges1 acts from the pivot point in the horizontal direction. The same force situation exists on the lower rotation shaft 18 (counterclockwise), here the total centrifugal force Fges1 acts as the sum of F2 and F4 with the same amount in the same direction, the forces add up and result in 2*Fges1, the maximum possible impact force in the horizontal direction on the track 3.

Analog zu den Darstellungen A und B verhalten sich die resultierenden Kräfte in den Darstellungen C (Winkelstellung 180°) und D (Winkelstellung 270°), hier kommt es ebenso zu einer Aufhebung (C) und einer Verdoppelung (D) der Gesamtfliehkräfte Fges1.The resulting forces behave analogously to representations A and B in representations C (angular position 180°) and D (angular position 270°); here there is also a cancellation (C) and a doubling (D) of the total centrifugal forces Fges1.

Der Aufbau in Darstellung E (Winkelstellung 0°) zeigt nun eine linksdrehende Rotationswelle 18 mit einem darauf angeordneten Unwuchtmassepaar. Durch die geänderte Drehrichtung kommt es zu einer anderen Winkelstellung der beiden Unwuchtmassen 19, 20 zueinander. Die Hauptunwuchtmasse 19 mit zugehörigen Mitnehmern 24 (fein schraffiert) bewirkt eine Fliehkraft F1 vom Drehpunkt aus in vertikaler Richtung nach oben, die Nebenunwuchtmasse 20 mit zugehörigen Mitnehmern 24 (grob schraffiert) bewirkt eine Fliehkraft F3 vom Drehpunkt aus in vertikaler Richtung nach unten. Die Summe der beiden Fliehkräfte F1 und F3 ergibt die Gesamtfliehkraft Fges2. An der unteren Rotationswelle 18 (linksdrehend) wirkt die Gesamtfliehkraft Fges2 als Summe von F2 und F4 mit gleichem Betrag in entgegengesetzter Richtung, die Kräfte heben sich somit bei Reduktion auf das gesamte Stabilisationsaggregat 7 auf, es wirkt keine Kraft in vertikaler Richtung.The structure in illustration E (angular position 0°) now shows a counterclockwise rotating shaft 18 with a pair of unbalanced masses arranged on it. The changed direction of rotation results in a different angular position of the two unbalanced masses 19, 20 relative to one another. The main unbalanced mass 19 with associated drivers 24 (fine hatched) causes a centrifugal force F1 from the pivot point in the vertical direction upwards, the secondary unbalanced mass 20 with associated drivers 24 (coarse hatched) causes a centrifugal force F3 from the pivot point in the vertical direction downwards. The sum of the two centrifugal forces F1 and F3 results in the total centrifugal force Fges2. On the lower rotation shaft 18 (counterclockwise), the total centrifugal force Fges2 acts as the sum of F2 and F4 with the same amount in the opposite direction, the forces are therefore canceled out when reduced to the entire stabilization unit 7, there is no force in the vertical direction.

In Darstellung F (Winkelstellung 90°) wirkt die Gesamtfliehkraft Fges2 vom Drehpunkt aus in horizontaler Richtung. Selbe Kraftsituation herrscht an der unteren Rotationswelle 18 (linksdrehend), hier wirkt die Gesamtfliehkraft Fges2 als Summe von F2 und F4 mit gleichem Betrag in selbige Richtung, die Kräfte addieren sich und ergeben mit 2*Fges2 die minimal mögliche Schlagkraft in horizontaler Richtung auf das Gleis 3.In representation F (angular position 90°), the total centrifugal force Fges2 acts from the pivot point in the horizontal direction. The same force situation exists on the lower rotation shaft 18 (counterclockwise), the total centrifugal force acts here Fges2 as the sum of F2 and F4 with the same amount in the same direction, the forces add up and result in 2*Fges2, the minimum possible impact force in the horizontal direction on track 3.

Analog zu den Darstellungen E und F verhalten sich die resultierenden Kräfte in den Darstellungen G (Winkelstellung 180°) und H (Winkelstellung 270°), hier kommt es ebenso zu einer Aufhebung (G) und einer Verdoppelung (H) der Gesamtfliehkräfte Fges2.The resulting forces behave analogously to the representations E and F in the representations G (angular position 180°) and H (angular position 270°); here there is also a cancellation (G) and a doubling (H) of the total centrifugal forces Fges2.

Fig. 6 zeigt anhand eines Diagramms, wie durch geringe Drehzahlregelung die Schlagkraft variabel einstellbar ist. Werden auf einer Maschine 1 zwei unabhängig voneinander angetriebene Stabilisationsaggregate 7 eingesetzt, so sind bis zu acht betragsmäßig unterschiedliche Schlagkräfte ansteuerbar, dies ergibt sich aus 32 - 1 = 8. Fig. 6 shows using a diagram how the impact force can be variably adjusted by low speed control. If two independently driven stabilization units 7 are used on a machine 1, up to eight impact forces of different magnitudes can be controlled; this results from 3 2 - 1 = 8.

Der Bereich zwischen den Schlagkraftstufen kann nun durch Veränderung der Drehzahl des jeweiligen, zugehörigen Antriebes 13 innerhalb eines sehr schmalen Frequenzbandes ausgeglichen werden. Bei einem vollständigen Durchfahren aller Zwischenbereiche (Linienzug in dicker Strichstärke) der Schlagkraftstufen S1-S7 entsteht ein sogenannter Frequenz-Regeltrichter (Linienzüge punktiert). Auf der Ordinate wird die Schlagkraft F in % über der Abszisse mit der Frequenz f in Hz dargestellt.The range between the impact force levels can now be compensated for within a very narrow frequency band by changing the speed of the respective, associated drive 13. When all intermediate areas (line in thick lines) of the impact force levels S1-S7 are completely passed through, a so-called frequency control funnel is created (line lines dotted). The impact force F in % is shown on the ordinate above the abscissa with the frequency f in Hz.

Claims (12)

  1. A machine (1) for stabilising a track (3), with a machine frame (6) supported on rail-based running gears (4) and at least one height-adjustable stabilising unit (7) which can be rolled on rails (5) of the track (3) by means of work unit rollers (10), comprising a vibration exciter (17) with rotating unbalanced masses (19, 20) for generating an impact force acting dynamically in a track plane normal to a longitudinal direction of the track (8), and a linear drive (9) for generating a load acting on the track (3), characterised in that a main unbalanced mass (19) and a secondary unbalanced mass (20) produce different centrifugal forces at the same rotational speed depending on the direction of rotation, the two unbalanced masses (19, 20) being coupled in such a way that, during rotation in one direction of rotation, the unbalanced masses have a first phase shift with respect to one another, that, when rotating in the opposite direction of rotation, the unbalanced masses have a second phase shift to each other which differs from the first phase shift and that two unbalanced masses (19, 20), each dependent on the direction of rotation, are mechanically coupled by means of positive engagement or constructive elements, so-called catches (24), thus forming a pair of unbalanced masses and one of two predetermined phase shifts results therefrom depending on the direction of rotation.
  2. A machine (1) according to claim 1, characterised in that the machine (1) has at least two counter-rotating rotation shafts (18) which are coupled via gearwheels (23).
  3. A machine (1) according to one of the claims 1 or 2, characterised in that the respective unbalanced mass (19, 20) is arranged on the stabilising unit (7) with an axis of rotation (21) aligned in the longitudinal direction of the track (8).
  4. A machine (1) according to one of the claims 2 tor 3, characterised in that at least two pairs of unbalanced masses are assigned to a rotation shaft (18), the pairs of unbalanced masses each comprising a main unbalanced mass (19) and a secondary unbalanced mass (20) on the same axis of rotation (21).
  5. A machine (1) according to one of the claims 1 to 4, characterised in that when at least two stabilising units are used, each stabilising unit (7) is assigned its separate drive (13).
  6. A machine (1) according to claim 5, characterised in that the respective drives (13) are actuated by means of a shared control device (26).
  7. A machine (1) according to one of the claims 1 to 4, characterised in that when at least two stabilising units (7) are used, a shared drive (13) is assigned to the overall arrangement of the individual stabilising units (7).
  8. A machine (1) according to one of the claims 5 or 7, characterised in that the respective drive (13) is designed as a hydraulic actuator.
  9. A machine (1) according to one of the claims 5 or 7, characterised in that the respective drive (13) is designed as an electric actuator.
  10. A method for operating a machine (1) according to one of the claims 1 to 9, characterised in that the respective stabilising unit (7) is set down on the track (3) via a linear drive (9), that a load is applied to it, and that the associated rotation shaft (18) is driven by the assigned drive (13) with a reversible direction of rotation.
  11. A method according to claim 10, characterised in that an increase in the driving power of a drive (13) of the stabilising unit (7) is controlled via a so-called soft start, wherein a predefined, increasing ramp is stored in a higher-level control system, which enables a targeted increase within a defined period of time.
  12. A method according to one of the claims 10 or 11, characterised in that a variable adjustment of the impact force in the range between possible impact force levels takes place by changing the engine speed of the respective associated drive (13).
EP20757854.3A 2019-09-18 2020-08-12 Machine and method for stabilizing a track Active EP4031712B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA297/2019A AT523034A3 (en) 2019-09-18 2019-09-18 Machine and method for stabilizing a track
PCT/EP2020/072626 WO2021052684A1 (en) 2019-09-18 2020-08-12 Machine and method for stabilizing a track

Publications (2)

Publication Number Publication Date
EP4031712A1 EP4031712A1 (en) 2022-07-27
EP4031712B1 true EP4031712B1 (en) 2024-02-14

Family

ID=72145370

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20757854.3A Active EP4031712B1 (en) 2019-09-18 2020-08-12 Machine and method for stabilizing a track

Country Status (5)

Country Link
US (1) US20220316145A1 (en)
EP (1) EP4031712B1 (en)
CN (1) CN114286881A (en)
AT (1) AT523034A3 (en)
WO (1) WO2021052684A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0092014A1 (en) * 1982-04-21 1983-10-26 Losenhausen Maschinenbau AG& Co Kommanditgesellschaft Regulator for a vibrations generator with unbalanced masses
DE3410449A1 (en) * 1984-03-22 1985-09-26 Uhde Gmbh, 4600 Dortmund Unbalanced oscillatory drive
DE3806897A1 (en) * 1988-03-03 1989-09-14 Wacker Werke Kg Vibration exciter
DE4434779A1 (en) * 1994-09-29 1996-04-04 Bomag Gmbh Method and device for dynamically compacting soil
DE10147957B4 (en) * 2001-09-28 2006-11-02 Wacker Construction Equipment Ag Vibration generator for a soil compaction device
DE10241200A1 (en) * 2002-09-05 2004-03-25 Wacker Construction Equipment Ag Vibration exciter for soil compaction equipment
DE102005058485A1 (en) * 2005-12-07 2007-06-14 Wacker Construction Equipment Ag Vibrating plate with stabilization device
WO2008009314A1 (en) 2006-07-20 2008-01-24 Franz Plasser Bahnbaumaschinen-Industriegesellschaft Mbh Method and machine for stabilizing track
DE102012201443A1 (en) * 2012-02-01 2013-08-01 Hamm Ag Compressor roller for a soil compactor
AT16604U1 (en) * 2018-02-13 2020-02-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Machine for stabilizing a track

Also Published As

Publication number Publication date
AT523034A3 (en) 2024-02-15
EP4031712A1 (en) 2022-07-27
US20220316145A1 (en) 2022-10-06
AT523034A2 (en) 2021-04-15
WO2021052684A1 (en) 2021-03-25
CN114286881A (en) 2022-04-05

Similar Documents

Publication Publication Date Title
DE3709112C1 (en) Vibrating device for a concrete block molding machine
EP2740846B1 (en) Compacting machine
DE2330102C2 (en) Method and machine for compacting the ballast bedding of a track, in particular while moving this track to the desired altitude
EP0748898B1 (en) Machine for stabilizing a railway track
EP3752675B1 (en) Machine for stabilizing a track
EP1305121A1 (en) Controllable vibration generator
DE112017008221T5 (en) Surface compaction machine with concentrically arranged eccentric masses
DE10147957B4 (en) Vibration generator for a soil compaction device
EP3568524B1 (en) Roller for compacting soil and method for generating an oscillating image of a roller for compacting soil
EP4031712B1 (en) Machine and method for stabilizing a track
EP2331446A1 (en) Gantry crane
DE102004014750A1 (en) Soil compacting device
EP2242590B1 (en) Unbalance exciter with one or more rotatable unbalances
EP1534439B1 (en) Vibration exciter for soil compacting devices
EP3583265B1 (en) Tamping assembly for tamping sleepers of a track
DE102004037993A1 (en) shaking
EP3870758A1 (en) Tamping assembly for tamping sleepers of a track
DE2802648C2 (en) Vibrating plate reversible in the direction of travel
EP4085170B1 (en) Sweeping device for working a track system
EP1212148B1 (en) Vibration exciter for ground compacting devices
EP3165290B1 (en) Vibration generator and method for inserting a pile element into the ground
EP4176131B1 (en) Machine and method using a tamping assembly
AT503437B1 (en) Method for ballasting and stabilization of track, involves reducing transverse vibrations producing dynamic impact force by repetitive ballasting of track section
CH639328A5 (en) ROTARY RAIL MOTOR VEHICLE.
EP2050873A2 (en) Vibration roller

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007028

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240220

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240226

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240229