EP3748168B1 - Système d'entraînement hydraulique à deux pompes et à récupération d'énergie - Google Patents

Système d'entraînement hydraulique à deux pompes et à récupération d'énergie Download PDF

Info

Publication number
EP3748168B1
EP3748168B1 EP20173200.5A EP20173200A EP3748168B1 EP 3748168 B1 EP3748168 B1 EP 3748168B1 EP 20173200 A EP20173200 A EP 20173200A EP 3748168 B1 EP3748168 B1 EP 3748168B1
Authority
EP
European Patent Office
Prior art keywords
pump
pressure
actuator
drive system
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20173200.5A
Other languages
German (de)
English (en)
Other versions
EP3748168A1 (fr
Inventor
Sebastian Oschmann
Botond Szeles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3748168A1 publication Critical patent/EP3748168A1/fr
Application granted granted Critical
Publication of EP3748168B1 publication Critical patent/EP3748168B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • F15B2211/2656Control of multiple pressure sources by control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40523Flow control characterised by the type of flow control means or valve with flow dividers
    • F15B2211/4053Flow control characterised by the type of flow control means or valve with flow dividers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • F15B2211/41518Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve being connected to multiple pressure sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5157Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/521Pressure control characterised by the type of actuation mechanically
    • F15B2211/522Pressure control characterised by the type of actuation mechanically actuated by biasing means, e.g. spring-actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6333Electronic controllers using input signals representing a state of the pressure source, e.g. swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders

Definitions

  • the invention relates to a hydraulic drive system according to the preamble of claim 1.
  • a hydraulic drive system is known. This includes a first pump with a constant displacement volume and a second pump with an adjustable displacement volume. The flow of the first pump can be returned to the tank via an adjustable first aperture.
  • the first aperture is part of a pressure regulator, which regulates the delivery pressure of the first pump depending on a highest load pressure of the first actuators.
  • An advantage of the present invention is that the hydraulic drive system can be operated at very high pressures, while at the same time very high delivery flows are possible with a comparatively low pressure.
  • the hydraulic drive system is still particularly cost-effective.
  • the first diaphragm is acted upon in the closing direction by a predeterminable control force, which is independent of an individual load pressure acting in the at least one first actuator.
  • the delivery pressure of the first pump is therefore no longer regulated. Rather, it is returned to the tank essentially without pressure when the pressure at the second control point or the delivery pressure of the second pump exceeds the pressure equivalent of the actuating force.
  • the actuating force is fixed in such a way that the hydraulic drive system has a minimum energy consumption under the expected operating conditions.
  • the control force is preferably also independent of an individual load pressure in the second actuator discussed below.
  • the first aperture is preferred Monotonically adjustable between a fully open and a fully closed position. The opening cross section of the first aperture can change suddenly or continuously over the corresponding adjustment path. If several first actuators are provided, they are preferably connected in parallel to the second control point. Each first actuator can be assigned a second check valve, which only allows a fluid flow from the second control point to the relevant first actuator.
  • the first pump can be designed as an external gear pump.
  • the second pump can be designed as an axial piston machine with a swash plate design.
  • the displacement volume of the second pump is preferably continuously adjustable.
  • the first and second fluid flow paths are preferably designed differently from one another apart from their end points, namely the tank and the first control point.
  • control force is generated exclusively by a preloaded first spring.
  • the first orifice is preferably part of a pressure relief valve. This embodiment is particularly simple and inexpensive.
  • first and the second pump are or can be brought into rotary drive connection with one another, their relative direction of rotation being fixed, the second pump being adjustable in two opposite directions starting from a position with the displacement volume zero so that it can be operated either as a pump or as a motor with the same direction of rotation.
  • the first and second pumps are preferably permanently coupled to one another in a rotationally fixed manner.
  • the first and second pumps are driven by a common motor.
  • the drive system has a first operating state in which the pressure at the second control point is below one Pressure equivalent of the control force, wherein in the first operating state a part of the delivery flow of the first pump can be conducted into the tank via the second fluid flow path, so that the second pump is operated by a motor, the drive system having a second operating state in which the pressure at the second Control point is above the pressure equivalent of the control force, wherein in the second operating state the delivery flow of the first pump can be directed into the tank via the first aperture, so that the first pump runs essentially without pressure.
  • further operating states can be present, in particular if the second actuator with the priority valve explained below is present.
  • a priority valve can be provided with a continuously adjustable second aperture and a continuously adjustable third aperture, which are adjustable together, the second aperture being open in every position of the priority valve, with a pressure downstream of the third aperture moving the priority valve in the opening direction of the third Aperture is acted upon, wherein a second actuator is provided, which is fluidly connected to the first and/or the second pump via the second aperture, an individual load pressure of the second actuator acting on the priority valve in the closing direction of the third aperture.
  • the second actuator is reliably supplied with pressurized fluid, even if the delivery flow of the first and/or the second pump is not sufficient to supply all actuators with pressurized fluid.
  • the priority valve is assigned a second spring, which acts on the priority valve in the closing direction of the third aperture.
  • the third aperture is preferably monotonically adjustable between a completely closed and a completely open position.
  • the second and third apertures are preferably adjustable in opposite directions, i.e. if the opening cross section of the third aperture becomes larger over the adjustment path, the opening cross section of the second aperture becomes smaller.
  • a third fluid flow path starts from the tank via the first pump, continues via the second aperture to the second actuator, the third aperture being arranged in the first fluid flow path between the first pump and the first check valve.
  • This embodiment is particularly advantageous if the second actuator has a low pressure requirement. Then, in operating states in which the pressure at the second control point is high, the first pump can be used to supply the second actuator with pressurized fluid. This achieves a high level of security of supply with low energy losses at the same time.
  • an individual load pressure is assigned to each first actuator and possibly the second actuator, with a first highest load pressure being determined exclusively from the individual load pressures of the at least one first actuator, with the displacement volume of the second pump depending on the first highest Load pressure is adjustable. This avoids energy losses when supplying the first actuators when the individual load pressure on the second consumer is high.
  • the second actuator is fluidly connected to the second control point via the second aperture, wherein the at least one first actuator is fluidly connected to the second control point via the third aperture.
  • This embodiment is particularly energy efficient if the delivery flow of the first pump is designed to be large compared to the delivery flow of the second pump. If several first actuators are provided, they are preferably connected in parallel to the third aperture.
  • an individual load pressure is assigned to each first actuator and the second actuator, with a second highest load pressure being determined from all of the individual load pressures mentioned, the displacement volume of the second pump being adjustable depending on the second highest load pressure. This means that the delivery pressure of the second pump is always high enough to move the loads acting on all actuators.
  • the displacement volume of the second pump is adjustable by means of an electrical control signal, the second pump being connected to a control device, a first pressure sensor being provided, by means of which the pressure at the first control point can be measured, the first pressure sensor being connected to the control device.
  • the control of the second pump on which the invention is based can be implemented electronically in a particularly simple manner. A hydraulic control that is also possible would be much more complex.
  • the control device preferably comprises a digital computer.
  • a second pressure sensor can be provided, by means of which the first or second highest load pressure can be measured, the second pressure sensor being connected to the control device, the control device implementing a first controller, an actual variable of the first controller being a difference in the pressures first and on the second pressure sensor, wherein a manipulated variable of the first controller at least indirectly influences the control signal of the second pump.
  • the first controller is preferably a continuous, linear controller, most preferably a PID controller.
  • the first controller is preferably implemented digitally, with the corresponding digital values most preferably being determined in a predetermined time frame.
  • the setpoint size of the first controller is preferably fixed, and it can also be dependent on the operating state of the hydraulic drive system, the rate of change being significantly lower than the rate of change of the pressures in the hydraulic drive system.
  • the first controller is preferably supplied with a difference between the assigned actual and the assigned target variable as a control deviation.
  • a position sensor can be provided, by means of which an adjustment of the displacement volume of the second pump can be measured, the position sensor being connected to the control device, the control device implementing a second controller, wherein a manipulated variable of the second controller at least indirectly influences the control signal of the second pump , where an actual variable of the second controller is the setting of the displacement volume of the second pump, where the The manipulated variable of the first controller is a setpoint variable of the second controller.
  • the position sensor is preferably a rotation or swivel angle sensor, by means of which a rotational position of a swivel cradle of the second pump can most preferably be measured.
  • the second controller is preferably a continuous, linear controller, most preferably a PID controller.
  • the second controller is preferably implemented digitally, with the corresponding digital values most preferably being determined in a predetermined time frame.
  • the second controller is preferably supplied with a difference between the assigned actual and the assigned target variable as a control deviation.
  • Fig. 1 shows a hydraulic drive system 10 according to a first embodiment of the invention.
  • the hydraulic drive system 10 includes a first pump 40 with a constant displacement volume, which is designed, for example, as an external gear pump.
  • a second pump 50 with an adjustable displacement volume is provided, which is designed, for example, as an axial piston machine in a swash plate design.
  • Both pumps 40; 50 are driven by a common engine 14, which is designed, for example, as a diesel engine.
  • the second pump 50 can also be operated as a motor, with the drive direction of rotation not being reversed. It is therefore designed as a pump that can be adjusted beyond the zero displacement volume.
  • the corresponding pivoting cradle can be pivotable in two opposite directions starting from the position in which the delivery flow or the displacement volume is zero.
  • Fig. 1 several tank symbols 13 are shown, all of which refer to the same tank.
  • the pressurized fluid is preferably a liquid and most preferably hydraulic oil.
  • first actuators 20 are provided here, the number of which can be chosen arbitrarily.
  • the first actuators 20 can be hydraulic cylinders or hydraulic motors, with any mixed forms being conceivable.
  • a second actuator 30 is also provided. This can be the steering cylinder of a vehicle steering system. But it can also be the hydraulic motor of a hydraulic fan drive.
  • the second actuator 30 can be omitted, and several second actuators 30 can also be provided.
  • Each actuator has a main aperture 21; 31 and each a directional control valve 22; 32 assigned. These are preferably each connected by a common valve formed, whereby they are adjustable together.
  • the main panel 21; 31 is the movement speed of the respectively assigned actuator 20; 30 set.
  • the main panels 21; 31 can each be assigned a pressure compensator (not shown), with which the pressure drop at the relevant main aperture 21; 31 is adjusted to a predetermined value, so that the respective movement speed depends solely on the setting of the main aperture 21; 31 and not from the respective individual load pressure 23; 33 is dependent.
  • With the directional control valve 22; 32 is the direction of movement of the respectively assigned actuator 20; 30 set.
  • the directional control valves 22; 32 are each equipped with a load pressure tap, at which the inlet-side pressure on the relevant actuator 20; 30 is applied, which is referred to as individual load pressure in the context of this application.
  • the directional control valves 22; 32 a middle locking position in which the relevant actuator 20; 30 not moved. In this blocking position, the load pressure tap is connected to the tank 13 in order to save energy.
  • a first fluid flow path runs from the tank 13 via the first pump 40, further via a third aperture 72 of a priority valve 70, further via a first control point 11, further via a first check valve 43 to a second control point 12.
  • the first check valve 43 only allows one Fluid flow to the second control point 12. If the second actuator 30 is not present, the priority valve 70 is omitted, with the first pump 40 as in Fig. 2 is connected directly to the first control point 11.
  • a second fluid flow path runs completely bypassing the first fluid flow path from the tank 13 via the second pump 50 to the second control point 12.
  • the pressurized fluid flows from the second control point 12 to the tank 13.
  • a comparable reversal of the flow direction is not possible because of the first check valve 43.
  • the first actuators 20 are supplied with pressurized fluid in parallel from the second control point 12.
  • Each actuator can be assigned a second check valve 24, which only allows a fluid flow to the actuator 20.
  • the second check valve 24 maintains the load so that the relevant first actuator 20 cannot move against the desired direction of movement when the delivery rate of the first and/or the second pump 40; 50 is not sufficient to hold the load acting on the relevant actuator 20.
  • the second check valves 24 can be partially or completely omitted, for example to enable energy recovery when lowering external loads.
  • a first aperture 41 is provided, by means of which pressurized fluid can be conducted from the first control point 11 to the tank 13.
  • the first aperture 41 is preferably part of a pressure relief valve. It is acted upon by a predetermined control force 44 in the closing direction, this control force 44 preferably being generated by a preloaded first spring 42.
  • this control force 44 is independent of the actuators 20; 30 attacking individual load pressures 23; 33. It is preferably selected so that the hydraulic drive system has the lowest possible energy consumption, taking into account the expected operating conditions.
  • the first aperture 41 is subjected to the pressure at the second control point 12. Accordingly, the first aperture 41 opens when the pressure at the second control point 12 exceeds the pressure equivalent of the first spring 42.
  • a steady, gentle transition is preferably provided between the open and closed positions of the first aperture 41, so that there is sufficient time to adapt the setting of the second pump 50 to the changed position of the first aperture 41.
  • the optional priority valve 70 includes a continuously adjustable second aperture 72 and a continuously adjustable third aperture 73, which are adjustable together.
  • the second aperture 72 is open in every position of the priority valve 70, with a pressure 71 downstream of the third aperture 73, the priority valve 70 is acted upon in the opening direction of the third aperture 73.
  • the priority valve 70 is acted upon by a second spring 74 in the closing direction of the third aperture 73.
  • the individual load pressure 33 of the second actuator 30 also acts on the priority valve 70 in the closing direction of the third aperture 73.
  • the third aperture 73 is preferably monotonically adjustable between a completely closed and a completely open position.
  • the second and third apertures are preferably adjustable in opposite directions, ie if the opening cross section of the third aperture 73 becomes larger over the adjustment path, the opening cross section of the second aperture 72 becomes smaller.
  • the main aperture 31 of the second actuator 30 is connected to the first pump 40 via the second aperture 72. Accordingly, the second actuator 30 is always supplied with pressure fluid from the first pump 40, regardless of the operating state in which the hydraulic drive system 10 is. Too much pressurized fluid delivered by the first pump 40 flows either to the first actuators 20 or via the second pump 50 back into the tank 13. In this case, its hydraulic energy is used to relieve the load on the motor 14 and is therefore not lost.
  • the first maximum load pressure 61 is determined from the individual load pressures 23 on the first actuators 20, with the individual load pressure 33 on the second actuator 30 being ignored. This can be done, for example, by means of a shuttle valve cascade 60, with each first actuator 20 being assigned a corresponding shuttle valve 64. However, other methods known from the prior art can also be used just as well to determine a highest load pressure from several individual load pressures. If only a first actuator 20 is present, the first maximum load pressure 61 is equal to its individual load pressure.
  • the pressure at the second control point 12 is measured with a first pressure sensor 53, with the first highest load pressure 61 being measured with a second pressure sensor 63.
  • the two pressure sensors 53; 63 are connected to a control device 51, which preferably comprises a programmable digital computer.
  • the displacement volume of the second pump 50 becomes preferably adjusted by means of an electrical control signal 54.
  • an electrically operated 3/2-way valve can be provided, by means of which an actuating cylinder in the second pump 50 is adjusted.
  • a position sensor 52 can be assigned to the second pump, with which the setting of the relevant displacement volume can be measured.
  • the position sensor 52 is preferably a rotation angle sensor, by means of which a rotational position of a pivoting cradle of the second pump 50 can most preferably be measured.
  • the position sensor 52 is also connected to the control device 51. The position sensor 52 can be omitted, whereby the control dynamics are adversely affected.
  • Fig. 2 shows a hydraulic drive system 10 'according to a second embodiment of the invention.
  • the second embodiment is identical to the first embodiment except for the differences described below, so please refer to the comments in this regard Fig. 1 is referred.
  • Fig. 1 and 2 The same or corresponding parts are provided with the same reference numbers.
  • the second embodiment is preferably used when the displacement volume of the first pump is significantly larger than the maximum displacement volume of the second pump.
  • the first pump would be significantly oversized if it only had to supply the second actuator. Such an operating state is avoided with the second embodiment.
  • the priority valve 70 was arranged differently compared to the first embodiment.
  • the second actuator 20 is now fluidic via the second aperture 72 connected to the second control point.
  • the first actuators 20 are connected in parallel to the third aperture 73, whereby they are fluidly connected to the second control point 12 via this. All first actuators 20 and the second actuator 30 are now included in the determination of the second highest load pressure 62.
  • the shuttle valve cascade 60' therefore includes a further shuttle valve 64', which is assigned to the second actuator 30.
  • Fig. 3a shows a diagram in which different pressures p of the hydraulic drive system are plotted over time.
  • Fig. 3b shows a diagram in which different volume flows Q of the hydraulic drive system are plotted over time.
  • the time t is plotted along the horizontal axis, with these two axes plotted synchronously.
  • Vertical dashed lines indicate a first, a third and a second operating state 101; 103; 102 separated from each other.
  • Fig. 3a the pressure p is plotted on the vertical axis.
  • the hydraulic drive system is used in accordance with Fig. 2 based on which no priority valve is arranged in the first fluid flow path.
  • the solid line that is in Fig. 3a marked 11 shows the pressure at the first control point.
  • the dashed line in Fig. 3a marked 12 shows the pressure at the second control point.
  • the solid line that is in Fig. 3a at 61; 62 shows the highest load pressure of the respective hydraulic drive system.
  • Fig. 3a horizontal dash-dotted line marked No. 44 is drawn, which shows the pressure equivalent of the actuating force, which is constant over time t.
  • the pressure at the second control point 12 is higher by the pressure difference 82 than the highest load pressure 61; 62. Only at very low pressures can this pressure difference specified as a target value not be maintained.
  • the pressure at the first control point 12 is smaller than the pressure equivalent of the control force 44.
  • the first actuators are completely supplied with pressurized fluid by the first pump provided. The excess pressure fluid delivered by the first pump is returned to the tank via the second pump. Accordingly, the pressure at the first and second control points is the same, except for the pressure drop at the first check valve.
  • Fig. 3b The flow rate Q is plotted on the vertical axis.
  • the solid line, marked No. 40, shows the flow of the first pump. This is constant over time, since the first pump with a constant displacement volume is typically operated at a substantially constant drive speed.
  • the solid line that is in Fig. 3b marked with number 50 shows the flow of the second pump.
  • the dashed line in Fig. 3b marked with No. 104 shows the effective flow, which flows in particular to the first actuators. In this example, this should be constant over time.
  • the first operating state 101 approximately half of the volume flow conveyed by the first pump 40 flows back into the tank via the second pump 50.
  • the delivery flow of the second pump 50 is in Fig. 3b accordingly entered negatively.
  • the first orifice No. 41 in Fig. 1 and 2
  • a constant opening behavior is assumed in this case.
  • the ones with reference to Fig. 4 The control explained compensates for this by adjusting the displacement volume of the first pump. In the present example, it changes continuously from a maximum negative value to a maximum positive value.
  • the in Fig. 3a The pressure curve shown at the first control point 11 within the third operating state 103 is to be viewed as a very rough approximation. Only the initial and final pressures are specified exactly.
  • the delivery pressure of the first pump is determined solely by the flow resistance of the fully opened first aperture, which is preferably designed to be very small. The first pump therefore runs largely without pressure.
  • the first actuators are completely supplied with pressurized fluid by the second pump.
  • the first and second pumps can also deliver in the same direction, resulting in a very high delivery flow.
  • the possible delivery pressure is limited by the pressure equivalent of the control force 44.
  • the second operating state in contrast, allows a much higher delivery pressure, with the maximum delivery flow being given by the maximum delivery flow of the second pump.
  • Fig. 4 shows a circuit diagram of the control device 51 with the first and second controllers 80; 90.
  • the first controller 80 is preferably a PID controller, which regulates the difference between the highest load pressure and the pressure at the second control point to a predetermined target value 83.
  • the highest load pressure is measured with the second pressure sensor 63, with the pressure at the second control point 12 being measured with the first pressure sensor 53.
  • the actual variable 81 of the first controller 80 is calculated from these two measured values by forming the difference.
  • the control difference 84 which is supplied to the first controller 80, is determined by forming the difference between the target variable 82 and the actual variable 81.
  • the setpoint size 82 of the first controller corresponds to that on the main apertures (No. 21; 31 in Fig. 1 and 2 ) desired pressure drop.
  • the manipulated variable 83 of the first controller 80 could be used directly as a control signal 54 of the second pump 40. In the present case, however, a subordinate control with a second controller 90 is provided in order to improve the control dynamics and the control accuracy.
  • the second controller 90 is preferably a PID controller. Its control difference 94 is formed from the manipulated variable 83 of the first controller 80 and the measured value of the position sensor 52 used as the actual variable 91. In the present case, the manipulated variable 93 of the second controller 90 forms the control signal 54 of the second pump 40, and further subordinate control loops can be provided.

Claims (11)

  1. Système d'entraînement hydraulique (10 ; 10') comprenant au moins un premier actionneur (20), un réservoir (13), un premier clapet anti-retour (43) et des première et deuxième pompes (40 ; 50), la première pompe (40) ayant un volume de déplacement constant, la deuxième pompe (50) ayant un volume de déplacement réglable, un premier chemin d'écoulement de fluide s'étendant depuis le réservoir (13), en passant par la première pompe (40), puis un premier point de commande (11), puis le premier clapet anti-retour (43), jusqu'à un deuxième point de commande (12), l'au moins un premier actionneur (20) étant raccordé fluidiquement au deuxième point de commande (12), le premier clapet anti-retour (43) ne permettant qu'un écoulement de fluide vers le deuxième point de commande (12), un deuxième chemin d'écoulement de fluide allant du réservoir (13) en passant par la deuxième pompe (40) jusqu'au deuxième point de commande (12), le fluide sous pression pouvant être acheminé du premier point de commande (11) jusqu'au réservoir (13) en passant par un premier obturateur réglable (41), le premier obturateur (41) étant soumis à la pression au deuxième point de commande (12) dans la direction d'ouverture, les première et deuxième pompes (40 ; 50) étant ou pouvant être amenées en liaison d'entraînement en rotation l'une avec l'autre, leur sens de rotation relatif étant spécifié de manière fixe, le premier obturateur (41) étant soumis dans la direction de fermeture à une force de commande (44) qui peut spécifiée de manière fixe et qui est indépendante d'une pression de charge individuelle (23) agissant dans au moins un premier actionneur (20),
    caractérisé en ce que la deuxième pompe (50) est réglable dans deux sens opposés depuis une position dans laquelle le volume de déplacement est nul de sorte qu'elle peut être utilisée au choix comme une pompe ou comme un moteur avec le même sens de rotation.
  2. Système d'entraînement hydraulique selon la revendication 1, la force de commande (44) étant générée exclusivement par un premier ressort précontraint (42).
  3. Système d'entraînement hydraulique selon l'une des revendications précédentes, le système d'entraînement (10 ; 10') présentant un premier état de fonctionnement (101) dans lequel la pression au deuxième point de commande (12) est inférieure à une pression équivalente à la force de commande (44), une partie du débit de refoulement de la première pompe (40) pouvant être acheminée, dans le premier état de fonctionnement (101), jusque dans le réservoir (13) par le biais du deuxième chemin d'écoulement de fluide de sorte que la deuxième pompe (50) fonctionne comme un moteur, le système d'entraînement (10 ; 10') présentant un deuxième état de fonctionnement (101) dans lequel la pression au deuxième point de commande (12) est supérieure à la pression équivalente de la force de commande (44), le débit de refoulement de la première pompe (40) pouvant être acheminé, dans le deuxième état de fonctionnement (102), jusque dans le réservoir (13) par le biais du premier obturateur (41) de sorte que la première pompe (40) fonctionne sensiblement sans pression.
  4. Système d'entraînement hydraulique selon l'une des revendications précédentes, une soupape de priorité (70) étant pourvue d'un deuxième obturateur (72) réglable en continu et d'un troisième obturateur (73) réglable en continu, lesquels peuvent être réglés conjointement, le deuxième obturateur (72) étant ouvert dans n'importe quelle position de la soupape de priorité (70), une pression (71) agissant en aval du troisième obturateur sur la soupape de priorité (70) dans le sens d'ouverture du troisième obturateur (73), un deuxième actionneur (30) étant prévu qui est relié fluidiquement à la première et/ou à la deuxième pompe (40 ; 50) par le biais du deuxième obturateur (72), une pression de charge individuelle (33) du deuxième actionneur (30) agissant sur la soupape de priorité (70) dans le sens de fermeture du troisième obturateur (73) .
  5. Système d'entraînement hydraulique selon la revendication 4, un troisième chemin d'écoulement de fluide allant du réservoir (13) au deuxième actionneur (30) en passant par la première pompe (40), puis le deuxième obturateur (72), le troisième obturateur (73) étant disposé dans le premier chemin d'écoulement de fluide entre la première pompe (40) et le premier clapet anti-retour (43).
  6. Système d'entraînement hydraulique selon l'une des revendications précédentes, une pression de charge individuelle (23 ; 33) étant associée au premier actionneur (20) et, le cas échéant, au deuxième actionneur (30), une première pression de charge la plus élevée (61) étant déterminée exclusivement à partir des pressions de charge individuelles (23) de l'au moins un premier actionneur (20), le volume de déplacement de la deuxième pompe (50) étant réglable en fonction de la première pression de charge la plus élevée (61).
  7. Système d'entraînement hydraulique selon la revendication 4, le deuxième actionneur (30) étant relié fluidiquement au deuxième point de commande (12) par le biais du deuxième obturateur (72), l'au moins un premier actionneur (20) étant relié fluidiquement au deuxième point de commande (12) par le biais du troisième obturateur (73).
  8. Système d'entraînement hydraulique selon la revendication 7, une pression de charge individuelle (23 ; 33) étant associée à chaque premier actionneur (20) et au deuxième actionneur (30), une deuxième pression de charge la plus élevée (62) étant déterminée à partir de toutes lesdites pressions de charge individuelles (23 ; 33), le volume de déplacement de la deuxième pompe (50) étant réglable en fonction de la deuxième pression de charge la plus élevée (62).
  9. Système d'entraînement hydraulique selon l'une des revendications précédentes, le volume de déplacement de la deuxième pompe (50) pouvant être réglé au moyen d'un signal de réglage électrique (54), la deuxième pompe étant reliée à un dispositif de commande (51), un premier capteur de pression (53) étant prévu qui permet de mesurer la pression au premier point de commande (11), le premier capteur de pression (53) étant relié au dispositif de commande (51).
  10. Système d'entraînement hydraulique selon la revendication 9, dans la mesure où celle-ci renvoie à la revendication 6 ou 8, un deuxième capteur de pression (63) étant prévu qui permet de mesurer la première ou la deuxième pression de charge la plus élevée (61 ; 62), le deuxième capteur de pression (63) étant relié au dispositif de commande (51), le dispositif de commande (51) mettant en œuvre un premier régulateur (80), une grandeur réelle (81) du premier régulateur (80) étant une différence entre les pressions au niveau des premier et deuxième capteurs de pression (53 ; 63), une grandeur de réglage (83) du premier régulateur (80) influant au moins indirectement sur le signal de réglage (54) de la deuxième pompe (50) .
  11. Système d'entraînement hydraulique selon la revendication 9 ou 10, un capteur de position (52) étant prévu qui permet de mesurer un réglage du volume de déplacement de la deuxième pompe (50), le capteur de position (52) étant relié au dispositif de commande (51), le dispositif de commande (51) mettant en œuvre un deuxième régulateur (90), une grandeur de réglage (93) du deuxième régulateur (90) influant au moins indirectement sur le signal de réglage (54) de la deuxième pompe (50), une grandeur réelle (91) du deuxième régulateur (90) étant le réglage du volume de déplacement de la deuxième pompe (50), la grandeur de réglage (83) du premier régulateur (80) étant une grandeur cible (92) du deuxième régulateur (90).
EP20173200.5A 2019-06-04 2020-05-06 Système d'entraînement hydraulique à deux pompes et à récupération d'énergie Active EP3748168B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019208086.3A DE102019208086A1 (de) 2019-06-04 2019-06-04 Hydraulisches Antriebssystem mit zwei Pumpen und Energierückgewinnung

Publications (2)

Publication Number Publication Date
EP3748168A1 EP3748168A1 (fr) 2020-12-09
EP3748168B1 true EP3748168B1 (fr) 2023-10-11

Family

ID=70613607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20173200.5A Active EP3748168B1 (fr) 2019-06-04 2020-05-06 Système d'entraînement hydraulique à deux pompes et à récupération d'énergie

Country Status (3)

Country Link
EP (1) EP3748168B1 (fr)
CN (1) CN112032126A (fr)
DE (1) DE102019208086A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021210054A1 (de) * 2021-09-13 2023-03-16 Robert Bosch Gesellschaft mit beschränkter Haftung Energieeffiziente elektrisch-hydraulische Steueranordnung
US11614101B1 (en) 2021-10-26 2023-03-28 Cnh Industrial America Llc System and method for controlling hydraulic valve operation within a work vehicle
US11608615B1 (en) 2021-10-26 2023-03-21 Cnh Industrial America Llc System and method for controlling hydraulic valve operation within a work vehicle
DE102022206501A1 (de) * 2022-06-28 2023-12-28 Robert Bosch Gesellschaft mit beschränkter Haftung Hydraulischer Antrieb und Verfahren zum regenerativen Absenken eines Elements einer Arbeitsmaschine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216737A1 (de) * 2015-09-02 2017-03-02 Robert Bosch Gmbh Hydraulische Steuervorrichtung für zwei Pumpen und mehrere Aktuatoren

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684066B1 (fr) * 1991-11-26 1994-01-07 Messier Bugatti Systeme d'actionnement du verin de manóoeuvre d'un train d'atterrissage d'avion.
DE19842534A1 (de) * 1998-08-01 2000-02-03 Mannesmann Rexroth Ag Hydrostatisches Antriebssystem für eine Spritzgießmaschine und Verfahren zum Betreiben eines solchen Antriebssystems
US7665299B2 (en) * 2007-03-12 2010-02-23 Clark Equipment Company Hydraulic power management system
JP6510396B2 (ja) * 2015-12-28 2019-05-08 日立建機株式会社 作業機械
DE102016105159A1 (de) * 2016-03-21 2017-09-21 Claas Industrietechnik Gmbh Hydrauliksystem eines land- oder bauwirtschaftlich nutzbaren Fahrzeugs
DE102016215747A1 (de) * 2016-08-23 2018-03-01 Robert Bosch Gmbh Ventilanordnung für eine erste und eine zweite Pumpe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216737A1 (de) * 2015-09-02 2017-03-02 Robert Bosch Gmbh Hydraulische Steuervorrichtung für zwei Pumpen und mehrere Aktuatoren

Also Published As

Publication number Publication date
DE102019208086A1 (de) 2020-12-10
CN112032126A (zh) 2020-12-04
EP3748168A1 (fr) 2020-12-09

Similar Documents

Publication Publication Date Title
EP3748168B1 (fr) Système d'entraînement hydraulique à deux pompes et à récupération d'énergie
DE102015209074B3 (de) Vorrichtung und verfahren zum steuern einer hydraulikmaschine
EP1714764A2 (fr) Unité de fermeture de moule hydraulique
DE4228599B4 (de) Hydraulikkreis für die Versorgung mehrerer, seriell betriebener Verbraucher einer hydraulisch gesteuerten Anlage
EP1989450B1 (fr) Dispositif de commande hydraulique
EP1656224B1 (fr) Systeme pour commander le processus d'etirage dans une presse de transfert
DE102012208938A1 (de) Closed-Center-Steuereinrichtung mit Konstant- und Verstellpumpe
EP2126371B1 (fr) Ensemble vanne
DE102012016838B4 (de) Hydraulische Steuerschaltung für eine hydraulisch betätigte Gießeinheit
DE102020206343A1 (de) Verfahren zur Kalibrierung eines elektroproportional verstellbaren Stetigventils
DE3421502A1 (de) Hydraulische vorrangsteuereinrichtung fuer mindestens zwei servomotoren
DE19742157C2 (de) Regeleinrichtung für eine verstellbare Hydropumpe mit mehreren Verbrauchern
EP2199623A2 (fr) Système hydraulique
EP3135924B1 (fr) Commande hydraulique
EP2600011A2 (fr) Distributeur hydraulique pour le dispositif de levage d'un véhicule agricole
DE102009054217B4 (de) Hydraulikanordnung
DE3805287C2 (de) Ventilanordnung für mindestens einen von einer Pumpe mit veränderlichem Fördervolumen gespeisten hydraulischen Verbraucher
DE102020109134A1 (de) Axialkolbenmaschine
DE4410156B4 (de) Steuereinrichtung für eine Verstellpumpe
DE102018212419A1 (de) Drehmomentsteuer- und rückführvorrichtung
EP1178943A1 (fr) Dispositif servant a reguler la fonction d'inclinaison d'un mat de levage, notamment pour un chariot a fourche
EP0707147B1 (fr) Dispositif de commande pour une machine hydrostatique
DE19756600C1 (de) Leistungsregelventil
DE3844399A1 (de) Verstellpumpe fuer mehrere unabhaengig voneinander betaetigbare verbraucher
DE102016209509A1 (de) Hydraulisches Antriebssystem für Gabelstapler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210609

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230710

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020005577

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240212