EP3745913B1 - Elektrisch höhenverstellbarer tisch sowie verfahren zum steuern desselben - Google Patents

Elektrisch höhenverstellbarer tisch sowie verfahren zum steuern desselben Download PDF

Info

Publication number
EP3745913B1
EP3745913B1 EP18705816.9A EP18705816A EP3745913B1 EP 3745913 B1 EP3745913 B1 EP 3745913B1 EP 18705816 A EP18705816 A EP 18705816A EP 3745913 B1 EP3745913 B1 EP 3745913B1
Authority
EP
European Patent Office
Prior art keywords
inclination
tabletop
change
angular velocity
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18705816.9A
Other languages
English (en)
French (fr)
Other versions
EP3745913A1 (de
EP3745913C0 (de
Inventor
Florian RIEBNER
Thibaud BUCQUET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oelschlaeger Metalltechnik GmbH
Original Assignee
Oelschlaeger Metalltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oelschlaeger Metalltechnik GmbH filed Critical Oelschlaeger Metalltechnik GmbH
Publication of EP3745913A1 publication Critical patent/EP3745913A1/de
Application granted granted Critical
Publication of EP3745913B1 publication Critical patent/EP3745913B1/de
Publication of EP3745913C0 publication Critical patent/EP3745913C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B9/00Tables with tops of variable height
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B2200/00General construction of tables or desks
    • A47B2200/0035Tables or desks with features relating to adjustability or folding
    • A47B2200/004Top adjustment
    • A47B2200/0042Height and inclination adjustable desktop, either separately or simultaneously
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B2200/00General construction of tables or desks
    • A47B2200/0035Tables or desks with features relating to adjustability or folding
    • A47B2200/005Leg adjustment
    • A47B2200/0056Leg adjustment with a motor, e.g. an electric motor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B2200/00General construction of tables or desks
    • A47B2200/0035Tables or desks with features relating to adjustability or folding
    • A47B2200/005Leg adjustment
    • A47B2200/0062Electronically user-adaptable, height-adjustable desk or table
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B2220/00General furniture construction, e.g. fittings
    • A47B2220/0091Electronic or electric devices

Definitions

  • the present application relates to an electrically height-adjustable table and a method for controlling the same. In particular, it is also about a device and a method for detecting collisions in an electrically height-adjustable table.
  • a height-adjustable tabletop of a table When a height-adjustable tabletop of a table is moved up or down, it can collide with obstacles, for example walls or objects, which can lead to damage to the table or the obstacle. It is also critical when people or animals collide with the table, which can result in injuries such as bruises. In order to reduce the risk of injury and damage, it is necessary to detect a collision with an obstacle in order to be able to take appropriate measures, such as stopping the movement of the table top after the collision or retracting the table top.
  • obstacles for example walls or objects
  • the EP 1 891 872 B1 discloses an apparatus and method for detecting collisions in furniture, and more particularly relates to an apparatus and method for detecting collisions of automatically movable portions of furniture with obstacles by detecting a change in flexure.
  • the known device comprises a sensor adapted to detect a change in bending of the movable portion and containing a piezoelectric material and a piezoelectric diaphragm for generating sound signals.
  • the sensor detects a flexure change of an attachment point of the movable portion when the movable portion collides with an obstacle, it is done by changing compression or stretching of the piezoelectric material with the flexure change of the location of the movable portion and generating an electrical signal through the piezoelectric material at the change of compression or stretching.
  • the EP 1 837 723 A2 describes a multi-part piece of furniture with at least one electric motor drive provided for the adjustment of a furniture part that can be moved in two opposite directions, wherein a control system comprises a safety device that is effective when the furniture part is adjusted and is provided to prevent impermissible operating states, the safety device being an inclination sensor attached to the movable furniture part is assigned, the output signal of which is evaluated by the safety device to detect an impermissible position of the movable furniture part.
  • a capacitive acceleration sensor having a micromechanical sensor element can be used as the inclination sensor.
  • the DE 20 2007 006 673 U1 relates to an electrically height-adjustable table, comprising a height-adjustable underframe, a tabletop which is arranged on the underframe, at least one drive device for adjusting the height of the underframe/the tabletops, in that the drive device is fixed to the underframe or to the tabletop, the drive device being at least an electric motor for the operation thereof, a controller for controlling the drive means and an operator for activating the controller, the table comprising a "tilt device" which causes the drive means to stop or reverse and then stop if the table is tilted becomes.
  • the DE 10 2006 038 558 A1 relates to an arrangement for controlling the drive of an electrically adjustable piece of furniture.
  • Said arrangement has a control device which is connected to at least one motor and one operating device.
  • at least one acceleration sensor arranged on the piece of furniture is connected to the control device and the control device is designed such that when an acceleration is measured by the acceleration sensor, the at least one motor is controlled in such a way that the movement of the piece of furniture is stopped.
  • the DE 10 2016 102 382 A1 relates to an electrically adjustable table and a control method for the electrically adjustable table.
  • the power table control method includes the following steps: initializing an internal setting value or a user setting value, entering a sleep state, extending or retracting a table base for adjusting the height of a table top moving in a first direction in accordance with an operation on a hand control device, stopping the height adjustment of the table top when a motion sensor unit is used and detecting that the table top is moving during the height adjustment of the table top is inclined.
  • the motion sensor unit is a gyroscope or an accelerometer sensor.
  • the piece of furniture has an electric drive motor for adjusting at least one furniture adjustment section relative to a furniture support section, the piece of furniture being provided with a sensor device for detecting the inclination or change in inclination of the furniture adjustment section.
  • the sensor device can include a gyro sensor, via which the inclination or change in inclination or angle of the furniture adjustment section can be determined.
  • the sensor device can include a gravitational sensor, via which the absolute inclination of the furniture adjustment section can be determined.
  • the sensor devices cannot be positioned in any desired orientation on an electrically height-adjustable table for correct detection of collisions. This makes assembly more difficult and thus leads to higher production costs.
  • the present invention is therefore based on the object of enabling any desired positioning of a sensor device for detecting a collision in an electrically height-adjustable table.
  • an electrically height-adjustable table comprising: an electrically height-adjustable underframe, a tabletop that is arranged on or on the underframe, a drive device for adjusting the height of the underframe/the tabletop, the drive device on the underframe or on the Table top is fixed and comprises at least one electric motor, a control device and an operating device for operating the control device, and a sensor device for detecting an initial absolute inclination of the table top
  • the sensor device having a 3-axis acceleration sensor for determining the absolute inclination of the table top and a 3-axis gyroscope, preferably integral therewith, for determining the change in inclination of the tabletop over time, preferably wherein the acceleration sensor and the gyroscope are housed in a micro
  • this object is achieved by a method for controlling an electrically height-adjustable table according to one of the preceding claims, comprising: receiving, on the operating device, an input of a movement command by a user, as a reaction to the movement command, determining an initial absolute inclination of the table top, by the computing device, through an initial detection of acceleration components via the acceleration sensor in a three-dimensional Cartesian coordinate system dependent on the installation orientation of the acceleration sensor and a comparison of the detected acceleration components with known acceleration components under the same conditions in a global three-dimensional Cartesian coordinate system, with its z-axis in direction is oriented to the acceleration due to gravity, and any offset correction of the detected acceleration components and any inversion of the acceleration components in the z-direction, as well as a conversion of the detected and possibly offset-corrected and/or inverted acceleration components into an inclination angle or vector and subsequent method of Table top up or down according to the movement command via the drive device and determination of an absolute inclination of the table top by detecting acceleration components by the acceleration sensor
  • control device is designed to stop the drive device or to activate it in the opposite direction in the event that the determined sum of the angular velocity components exceeds the angular velocity limit value, and/or the control device is designed to that the determined absolute inclination exceeds a predetermined inclination limit value to stop the drive device or to control in the opposite direction. If namely, if the sum of the angular velocities and thus the change in inclination or the variable representative thereof exceeds the limit value, it is assumed that a collision has occurred and countermeasures are then taken.
  • control device is designed to control the drive device depending on the determined inclination or the determined change in inclination of the table top over time or the determined variable representative of the table top over time.
  • the sensor device can be attached to the table top, preferably by gluing, preferably detachably.
  • the sensor device can be fastened on or under the tabletop.
  • the sensor device is advantageously fastened in the operating device, preferably detachably.
  • the sensor device can be mounted in a manual switch.
  • the sensor device can be integrated in the control device.
  • the operating device advantageously has a manual switch device.
  • the table has a display device which is designed to display the location and/or the magnitude of a determined change in inclination.
  • the term "magnitude” is intended to include “amount”.
  • a direction of the change in inclination can also be displayed on the display device.
  • the term "determined slope change” can refer to both the slope change over time (°/s) and the change in slope (in °).
  • the table has a database designed to store the location and/or magnitude of a determined change in inclination.
  • the display device is located in the vicinity of or within the operating device, in particular is an integral part of the same.
  • the method can provide that, in the event that the determined sum of the angular velocity components exceeds the angular velocity limit value, the drive device is stopped or the drive device is activated in the opposite direction and/or comprehensively, in the event that the determined absolute inclination exceeds a predetermined one exceeds inclination limit, stopping the drive device or driving the drive device in the opposite direction includes.
  • the method can include displaying, by the display device, the location and/or the size of a determined change in inclination of the tabletop.
  • the method advantageously includes storing, by the database, the location and/or the magnitude of a determined change in inclination of the tabletop.
  • the present invention is based on the surprising finding that by combining a 3-axis acceleration sensor with a 3-axis gyroscope and, if necessary, correcting the measurement data depending on the installation orientation of the sensors - mathematically also referred to as coordinate transformation - any positioning and Orientation of the sensor device is possible on the electrically height-adjustable table.
  • the "coordinate transformation" takes place in an upstream initialization process. In said initialization process, the actual installation direction(s) of the sensor device or sensors is/are indirectly determined and subsequently the measured values for the inclination as a function of the actual one(s). Installation direction(s) corrected. At least in one special embodiment, the sensor device can even be positioned without tools.
  • common acceleration sensors can usually measure from about 0.5° due to their design.
  • the figures 1 , 2 and 3 show an electrically height-adjustable table 10 according to a particular embodiment of the present invention.
  • the table 10 comprises an electrically height-adjustable underframe 14 with two lateral table legs 16, each with a table base 18 and a crossbar 17 connecting the two table legs 16, a tabletop 12, which is arranged on the underframe 14 and is releasably attached thereto, a drive device (not shown ) for adjusting the height of the underframe 14 and thus also the table top 12, with the drive device being fixed to the underframe 14 and at least one electric motor (not shown), a control device 70 in this example in the traverse 17 and an operating device for operating the control device 70, for example in the form of a manual switch 71, and a sensor device 72 for detecting an initial absolute inclination of the tabletop 12, which is usually stationary at the beginning, upon receipt of a movement command input via the manual switch 71 and a subsequent absolute inclination and a subsequent change in the inclination of the tabletop 12 over time during the
  • the sensor device 72 comprises a 3-axis acceleration sensor 74 for determining the absolute inclination of the tabletop 12 and a 3-axis gyroscope 73 integral therewith for determining the change in inclination of the tabletop 12 over time or a variable representative thereof, with the acceleration sensor 74 and the Gyroscope 73 are housed in a microelectronic mechanical system (MEMS) component.
  • MEMS microelectronic mechanical system
  • the sensor device 72 also includes a computing device (not shown), such as a microprocessor or at least one microprocessor, which is designed to determine the initial absolute inclination of the table top 12 each time
  • a computing device such as a microprocessor or at least one microprocessor, which is designed to determine the initial absolute inclination of the table top 12 each time
  • acceleration components are initially detected by acceleration sensor 74 in a three-dimensional Cartesian coordinate system 731 that is oriented as a function of the installation orientation of the acceleration sensor (see figure 2 ), a comparison of the detected acceleration components with known acceleration components under the same conditions in a global three-dimensional Cartesian coordinate system 741 (see figure 2 ), with its z-axis being oriented in the direction of the acceleration due to gravity, and any offset correction of the detected acceleration components and any inversion of the acceleration components in the z-direction as well as a conversion of the detected and possibly offset-corrected and/or inverted acceleration components into to cause an inclination angle or vector, and for correspondingly determining
  • the sensor device 72 is located in the manual switch 71. As a result, no separate housing is required for the sensor device and no additional plug-in connection has to be provided on the control device.
  • the table top 12 can be inclined, for example around the x-axis (horizontal axis), in the event of a collision. The inclination or change in inclination can be detected by means of the sensor device 72 .
  • the figure 2 represents a collision detection by means of the acceleration sensor 74.
  • a first local coordinate system 731 (x, y, z) recognized. If the tabletop 12 tilts about the x-axis 75 when moving, the local coordinate system changes to (x ⁇ , y', z ⁇ ).
  • the gravitational acceleration is now no longer measured via the only z-axis (example case), but also via the y'-axis.
  • the pitch angle ⁇ can be measured by an argtangent calculation between the projected y' and z ⁇ values of acceleration and compared to a pitch limit (e.g. at 0.5°). In this example, when the tilt angle ⁇ reaches or exceeds the tilt limit, the table top is stopped (desk top movement aborted).
  • a collision of the table top 12 is to be shown in plan view at the front left (collision location 76).
  • the collision or inclination of the table top is caused by the rotation vector ⁇ identified.
  • the change in inclination over time can be determined via the rotation vector. This will be explained briefly using two examples. If, in a first example, the sensor device 72, as in figure 3 is shown below at the far right, the rotation vector can be represented in the shown x 1 , y 1 plane of a local coordinate system 731 .
  • the sensor device 72 is rotated around the z-axis ((x1, y1, z1) becomes (x2, y2, z1)). This has no effect on the sensor evaluation, since the angular velocities in °/s (as a vector value) can be added.
  • step 750 the table top 12 is in the rest position (step 750). If a movement command is then received from a user via the manual switch 71 (step 751), the sensors are first initialized (step 752), i.e. in this case the acceleration sensor 74 and the gyroscope 73, in the context of which the absolute inclination is determined of the table top 12 is carried out by means of the acceleration sensor 74 . After the absolute inclination of the tabletop 12 has been determined, a process of the tabletop 12 begins in the through Movement command specified direction (command direction step 753). During the movement of the table top 12, the absolute inclination of the table top is monitored (754).
  • a check is made as to whether the determined change in inclination over time has exceeded a predefinable limit value, here in this example the angular velocity limit value (step 755). If so, a collision is assumed and "countermeasures" are taken in a step 757 or a series of steps. Countermeasures typically include stopping the table top 12 immediately, or traveling in the opposite direction and then stopping the table top (step 758).
  • a predefinable limit value here in this example the angular velocity limit value
  • the limit value in this example the angular velocity limit value
  • FIG 6 shows details of the initialization of the sensors according to a particular embodiment of the present invention.
  • the starting point or trigger is the receipt of a movement command from a user (step 751).
  • the sensor data is initialized at rest by retrieving the accelerations in the x, y, and z directions from the accelerometer (step 760) and the angular velocities from the gyroscope (step 762).
  • the local coordinate system 731 is initially stored as an offset for the subsequent evaluations (step 761) and the measurement noise of the gyroscope is reduced directly by the microprocessor after a brief reference recording (step 763).
  • the offset is the gravitational acceleration projected in the x, y and z directions (only measurable acceleration when the tabletop is stationary), which is saved during initialization.
  • An offset correction of the measured data is carried out by using the offset data stored during initialization for the respective components. As a result, the sensors are then initialized (764).
  • FIG. 12 shows details of tilt monitoring according to a particular embodiment of the present invention.
  • the sensor data are queried continuously or at intervals Change in inclination Sensor data of the acceleration sensor, which are representative for acceleration components in the x, y and z direction and retrieved (step 770), an offset correction for the transformation into the global coordinate system 741 (step 771), and optionally a z component - inversion (step 773) for the calculation of an angle change with the x and y components (step 774).
  • Temporal changes in inclination are determined in parallel by retrieving the sensor data from the gyroscope 73 in the x, y and z directions (step 775), optionally inverting the x, y and/or z components, if negative (step 776) and takes into account a summation of the x, y and z components.
  • FIG 12 shows details of handling a collision according to a particular embodiment of the present invention. If the check in step 755 has shown that a collision may have occurred, the tabletop X cm is moved in the opposite direction to the movement command (step 781). Optionally, the collision location and/or the intensity of the collision can then also be determined and stored, for example, in a database (step 782) and/or displayed using a display device (step 783). Finally, the tabletop is stopped (step 758).
  • the operating device has, for example in the form of a manual switch 71, a display device 77 which is integral in this example and has a rectangular display area which is divided into sub-areas A, B, C and D .
  • a display device 77 which is integral in this example and has a rectangular display area which is divided into sub-areas A, B, C and D .
  • reference number 783 according to figure 8 is intended to express the fact that the collision location 76 is displayed in the sub-area D at the bottom left by means of the display device 77 .
  • the reference number 782 according to figure 8 be expressed that the collision location 76 and the collision intensity are stored in a database DB.
  • the figure 4 represents the possibility that since both parts (gyroscope and accelerometer) can be located, the entire sensor device 72 can be used as a localization tool for collisions in a global coordinate system. Depending on the subsurface or sector A, B, C and D in which a collision occurs, This collision is evaluated differently by the sensors (gyroscope and acceleration sensor). For the gyroscope 73, the signs of the x and y components of the rotation vector in the coordinate system 741 are considered.
  • the angular velocities determined by means of the gyroscope are no longer added for this type of evaluation, but are considered individually (sign) depending on the sector. Therefore, the integration of the sensor device in a known positioned system (global coordinate system 741) ( X , Y , Z ) (see also figure 2 ) (e.g. manual switch or controller) is required in order to be able to locate the collision based on the measured values.
  • a known positioned system global coordinate system 741
  • X , Y , Z e.g. manual switch or controller

Landscapes

  • Gyroscopes (AREA)

Description

  • Die vorliegende Anmeldung betrifft einen elektrisch höhenverstellbaren Tisch sowie ein Verfahren zum Steuern desselben. Insbesondere geht es auch um eine Vorrichtung und ein Verfahren zur Erkennung von Kollisionen bei einem elektrisch höhenverstellbaren Tisch.
  • Bei der Bewegung einer höhenverstellbaren Tischplatte eines Tisches nach oben oder nach unten kann es zu Kollisionen mit Hindernissen, beispielsweise Wänden oder Gegenständen kommen, was zu einer Beschädigung des Tisches oder des Hindernisses führen kann. Kritisch ist auch, wenn Personen oder Tiere mit dem Tisch kollidieren, was Verletzungen, beispielsweise Quetschungen, nach sich ziehen kann. Um das Verletzungs- und Beschädigungsrisiko zu verringern, ist es erforderlich, eine Kollision mit einem Hindernis zu detektieren, um geeignete Maßnahmen ergreifen zu können, beispielsweise die Bewegung der Tischplatte nach der Kollision zu unterbrechen oder die Tischplatte zurückzufahren.
  • Die EP 1 891 872 B1 offenbart eine Vorrichtung und ein Verfahren zur Erkennung von Kollisionen bei Möbeln und betrifft insbesondere eine Vorrichtung und ein Verfahren zur Erkennung von Kollisionen von automatisch bewegbaren Anteilen von Möbeln mit Hindernissen durch Erfassung einer Biegungsänderung. Die bekannte Vorrichtung umfasst einen Sensor, der angepasst ist, eine Biegungsänderung des bewegbaren Anteils zu erfassen, und ein piezoelektrisches Material enthält sowie ein piezoelektrisches Diaphragma zum Erzeugen von Schallsignalen ist. Bei Erfassen einer Biegungsänderung einer Anbringungsstelle des bewegbaren Anteils durch den Sensor bei Kollision des bewegbaren Anteils mit einem Hindernis erfolgt durch Ändern einer Stauchung oder Streckung des piezoelektrischen Materials bei der Biegungsänderung der Stelle des bewegbaren Anteils und Erzeugen eines elektrischen Signals durch das piezoelektrische Material bei der Änderung der Stauchung oder Streckung.
  • Die EP 1 837 723 A2 beschreibt ein mehrteiliges Möbel mit zumindest einem für die Verstellung eines in zwei entgegengesetzte Richtungen bewegbaren Möbelteiles vorgesehenen elektromotorischen Antrieb, wobei ein Steuersystem eine bei der Verstellung des Möbelteiles wirksame, zur Verhinderung unzulässiger Betriebszustände vorgesehene Sicherheitseinrichtung umfasst, wobei der Sicherheitseinrichtung ein an dem bewegbaren Möbelteil angebrachter Neigungssensor zugeordnet ist, dessen Ausgangssignal durch die Sicherheitseinrichtung zur Erkennung einer unzulässigen Lage des bewegbaren Möbelteils ausgewertet wird. Als Neigungssensor kann ein mikromechanisches Sensorelement aufweisender, kapazitiver Beschleunigungssensor eingesetzt sein.
  • Die DE 20 2007 006 673 U1 betrifft einen elektrisch höhenverstellbaren Tisch, umfassend ein höhenverstellbares Untergestell, eine Tischplatte, die an dem Untergestell arrangiert ist, mindestens eine Antriebseinrichtung zur Höhenverstellung des Untergestells/der Tischplatten, indem die Antriebseinrichtung an dem Untergestell bzw. an der Tischplatte festgemacht ist, wobei die Antriebseinrichtung mindestens einen Elektromotor für den Betrieb hiervon, ein Steuerteil zur Steuerung der Antriebseinrichtung und eine Bedieneinrichtung zur Aktivierung des Steuerteils umfasst, wobei der Tisch eine "Tilt-Vorrichtung" umfasst, die das Anhalten oder das Umkehren und dann Anhalten der Antriebseinrichtung verursacht, falls der Tisch geneigt wird.
  • Die DE 10 2006 038 558 A1 betrifft eine Anordnung zur Steuerung des Antriebs eines elektrisch verstellbaren Möbels. Besagte Anordnung weist eine Steuereinrichtung auf, die mit mindestens einem Motor und einer Bedieneinrichtung verbunden ist. Ferner ist mindestens ein am Möbel angeordneter Beschleunigungssensor an die Steuereinrichtung angeschlossen und die Steuereinrichtung derart ausgebildet, dass bei einer vom Beschleunigungssensor gemessenen Beschleunigung der mindestens eine Motor derart gesteuert wird, dass die Bewegung des Möbels angehalten wird.
  • Die DE 10 2016 102 382 A1 betrifft einen elektrisch einstellbaren Tisch und ein Steuerverfahren für den elektrisch einstellbaren Tisch. Das Steuerverfahren des elektrisch einstellbaren Tischs enthält die folgenden Schritte: Initialisieren eines internen Einstellwerts oder eines Nutzereinstellwerts, Eintreten in einen Ruhestatus, Ausfahren oder Einfahren eines Tischfußes zum Einstellen der Höhe einer Tischplatte, die sich in einer ersten Richtung bewegt, in Übereinstimmung mit einer Operation an einer Handsteuervorrichtung, Anhalten des Einstellens der Höhe der Tischplatte, wenn eine Bewegungssensoreinheit verwendet wird und detektiert, dass die Tischplatte während des Einstellens der Höhe der Tischplatte geneigt ist. Die Bewegungssensoreinheit ist ein Gyroskop oder ein Beschleunigungsmesssensor. Schließlich offenbart die DE 10 2016 101 955 A1 ein elektrisch verstellbares Möbelstück. Das Möbelstück weist einen elektrischen Antriebsmotor zum Verstellen mindestens eines Möbelverstellabschnittes gegenüber einem Möbelträgerabschnitt auf, wobei das Möbelstück mit einer Sensoreinrichtung zur Erkennung der Neigung oder Neigungsänderung des Möbelverstellabschnitts versehen ist. Die Sensoreinrichtung kann einen Kreiselsensor umfassen, über den die Neigung oder Neigungs- bzw. Winkeländerung des Möbelverstellabschnitts ermittelbar ist. Zudem kann die Sensoreinrichtung einen Gravitationssensor umfassen, über den die absolute Neigung des Möbelverstellabschnitts ermittelbar ist. Weitere einschlägige Dokumente aus dem Stand der Technik sind US2016/309889 A1 , DE102016101954 A1 , DE202006018530 U1 , US2014/137773 A1 , WO2009/003918 A1 , US2014/109802 A1 und EP3637206 A1 .
  • Im vorgenannten Stand der Technik können jedoch die Sensoreinrichtungen für eine korrekte Erkennung von Kollisionen nicht beliebig orientiert an einem elektrisch höhenverstellbaren Tisch positioniert werden. Dies erschwert die Montage und führt damit zu höheren Herstellkosten.
  • Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, eine beliebige Positionierung einer Sensoreinrichtung zum Erkennen einer Kollision bei einem elektrisch höhenverstellbaren Tisch zu ermöglichen.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch einen elektrisch höhenverstellbarer Tisch, umfassend: ein elektrisch höhenverstellbares Untergestell, eine Tischplatte, die an oder auf dem Untergestell angeordnet ist, eine Antriebseinrichtung zur Höhenverstellung des Untergestells/der Tischplatte, wobei die Antriebseinrichtung an dem Untergestell bzw. an der Tischplatte festgemacht ist und mindestens einen Elektromotor, eine Steuereinrichtung und eine Bedieneinrichtung zur Bedienung der Steuereinrichtung umfasst, und eine Sensoreinrichtung zur Erkennung einer initialen absoluten Neigung der Tischplatte bei Empfang einer Eingabe eines Verfahrbefehls über die Bedieneinrichtung und einer nachfolgenden absoluten Neigung sowie einer nachfolgenden zeitlichen Neigungsänderung der Tischplatte während des Verfahrens der Tischplatte nach oben oder unten entsprechend dem Verfahrbefehl, wobei die Sensoreinrichtung einen 3-Achsen-Beschleunigungssensor zur Ermittlung der absoluten Neigung der Tischplatte und ein, vorzugsweise damit integrales, 3-Achsen-Gyroskop zur Ermittlung der zeitlichen Neigungsänderung der Tischplatte umfasst, vorzugsweise wobei der Beschleunigungssensor und das Gyroskop in einem Mikroelektronischen-Mechanischen-System (MEMS)-Bauteil untergebracht sind, wobei die Sensoreinrichtung ferner eine Recheneinrichtung, insbesondere einen Mikroprozessor, umfasst, die gestaltet ist, um zur Ermittlung der initialen absoluten Neigung der Tischplatte jedes Mal vor Ausführung eines eingegebenen Verfahrbefehls eine initiale Erfassung von Beschleunigungskomponenten durch den Beschleunigungssensor in einem von der Einbauorientierung des Beschleunigungssensors abhängig orientierten dreidimensionalen kartesischen Koordinatensystem und einen Vergleich der erfassten Beschleunigungskomponenten mit bekannten Beschleunigungskomponenten unter denselben Bedingungen in einem globalen dreidimensionalen kartesischen Koordinatensystem, wobei dessen z-Achse in Richtung der Erdbeschleunigung orientiert ist, und eine etwaige Offset-Korrektur der erfassten Beschleunigungskomponenten sowie eine etwaige Invertierung der Beschleunigungskomponente in der z-Richtung sowie eine Umrechnung der erfassten und gegebenenfalls Offset-korrigierten und/oder gegebenenfalls invertierten Beschleunigungskomponenten in einen Neigungswinkel oder -vektor zu veranlassen, und um zur entsprechenden Ermittlung einer absoluten Neigung der Tischplatte durch eine Erfassung von Beschleunigungskomponenten durch den Beschleunigungssensor und zur Ermittlung einer zeitlichen Neigungsänderung der Tischplatte oder einer für die zeitliche Neigungsänderung der Tischplatte repräsentativen Größe während der nachfolgenden Ausführung des Verfahrbefehls durch eine Erfassung von Winkelgeschwindigkeitskomponenten durch das Gyroskop, eine etwaige Invertierung der Winkelgeschwindigkeitskomponenten und eine Summierung der Winkelgeschwindigkeitskomponenten und einen Vergleich der ermittelten Summe der Winkelgeschwindigkeitskomponenten mit einem vorab festgelegten Winkelgeschwindigkeitsgrenzwert zu veranlassen.
  • Weiterhin wird diese Aufgabe gelöst durch ein Verfahren zum Steuern eines elektrisch höhenverstellbaren Tisches nach einem der vorangehenden Ansprüche, umfassend: Empfangen, an der Bedieneinrichtung, einer Eingabe eines Verfahrbefehls durch einen Benutzer, als Reaktion auf den Verfahrbefehl Ermittlung einer initialen absoluten Neigung der Tischplatte, durch die Recheneinrichtung, durch eine initiale Erfassung von Beschleunigungskomponenten über den Beschleunigungssensor in einem von der Einbauorientierung des Beschleunigungssensors abhängig orientierten dreidimensionalen kartesischen Koordinatensystem und einen Vergleich der erfassten Beschleunigungskomponenten mit bekannten Beschleunigungskomponenten unter denselben Bedingungen in einem globalen dreidimensionalen kartesischen Koordinatensystem, wobei dessen z-Achse in Richtung der Erdbeschleunigung orientiert ist, und eine etwaige Offset-Korrektur der erfassten Beschleunigungskomponenten sowie eine etwaige Invertierung der Beschleunigungskomponente in der z-Richtung sowie eine Umrechnung der erfassten und gegebenenfalls Offset-korrigierten und/oder invertierten Beschleunigungskomponenten in einen Neigungswinkel oder -vektor und nachfolgend Verfahren der Tischplatte nach oben oder unten entsprechend dem Verfahrbefehl über die Antriebseinrichtung und Ermittlung einer absoluten Neigung der Tischplatte durch eine Erfassung von Beschleunigungskomponenten durch den Beschleunigungssensor und Ermittlung einer zeitlichen Neigungsänderung der Tischplatte oder einer für die zeitliche Neigungsänderung der Tischplatte repräsentativen Größe, durch die Recheneinrichtung, während des Verfahrens, wobei die Ermittlung der zeitlichen Neigungsänderung der Tischplatte durch eine Erfassung von Winkelgeschwindigkeitskomponenten über das Gyroskop, eine etwaige Invertierung der Winkelgeschwindigkeitskomponenten und eine Summierung der Winkelgeschwindigkeitskomponenten und Vergleich der ermittelten Summe der Winkelgeschwindigkeitskomponenten mit einem vorab festgelegten Winkelgeschwindigkeitsgrenzwert erfolgt.
  • Bei dem Tisch kann vorgesehen sein, dass die Steuereinrichtung gestaltet ist, um für den Fall, dass die ermittelte Summe der Winkelgeschwindigkeitskomponenten den Winkelgeschwindigkeitsgrenzwert überschreitet, die Antriebseinrichtung zu stoppen oder in Gegenrichtung anzusteuern, und/oder wobei die Steuereinrichtung gestalte ist, um für den Fall, dass die ermittelte absolute Neigung einem vorab festgelegten Neigungsgrenzwert überschreitet, die Antriebseinrichtung zu stoppen oder in Gegenrichtung anzusteuern. Wenn nämlich die Summe der Winkelgeschwindigkeiten und damit Neigungsänderung bzw. die dafür repräsentative Größe den Grenzwert überschreitet, wird davon ausgegangen, dass eine Kollision stattgefunden hat, und dann eine Gegenmaßnahme ergriffen.
  • Weiterhin kann vorgesehen sein, dass die Steuereinrichtung gestaltet ist, um die Antriebseinrichtung abhängig von der ermittelten Neigung oder der ermittelten zeitlichen Neigungsänderung der Tischplatte bzw. der ermittelten, für die zeitliche der Tischplatte repräsentativen Größe anzusteuern.
  • Gemäß einer weiteren besonderen Ausführungsform kann die Sensoreinrichtung an der Tischplatte, vorzugsweise durch Kleben, vorzugsweise lösbar, befestigt sein. Beispielsweise kann die Sensoreinrichtung auf oder unter der Tischplatte befestigt sein.
  • Vorteilhafterweise ist die Sensoreinrichtung in der Bedieneinrichtung, vorzugsweise lösbar, befestigt. Beispielsweise kann die Sensoreinrichtung in einem Handschalter befestigt sein.
  • Alternativ kann die Sensoreinrichtung in der Steuereinrichtung integriert sein.
  • Vorteilhafterweise weist die Bedieneinrichtung eine Handschaltereinrichtung auf.
  • Gemäß einer weiteren besonderen Ausführung der vorliegenden Erfindung weist der Tisch eine Anzeigeeinrichtung, die zum Anzeigen des Ortes und/oder der Größe einer ermittelten Neigungsänderung gestaltet ist, auf. Der Begriff "Größe" soll den "Betrag" umfassen. Gegebenenfalls kann alternativ oder zusätzlich auch eine Richtung der Neigungsänderung auf der Anzeigeeinrichtung angezeigt werden. In diesem Fall kann sich der Begriff "ermittelte Neigungsänderung" sowohl auf die zeitliche Neigungsänderung (°/s) als auch auf die Änderung der Neigung (in °) beziehen.
  • Zweckmäßigerweise weist der Tisch eine Datenbank, die zum Speichern des Ortes und/oder der Größe einer ermittelten Neigungsänderung gestaltet ist, auf.
  • Insbesondere kann dabei vorgesehen sein, dass sich die Anzeigeeinrichtung in der Nähe oder innerhalb der Bedieneinrichtung befindet, insbesondere ein integraler Bestandteil derselben ist.
  • Bei dem Verfahren kann vorgesehen sein, dass es, für den Fall, dass die ermittelte Summe der Winkelgeschwindigkeitskomponenten den Winkelgeschwindigkeitsgrenzwert überschreitet, Stoppen der Antriebseinrichtung oder Ansteuern der Antriebseinrichtung in Gegenrichtung und/oder umfassend, für den Fall, dass die ermittelte absolute Neigung einen vorab festgelegten Neigungsgrenzwert überschreitet, Stoppen der Antriebseinrichtung oder Ansteuern der Antriebseinrichtung in Gegenrichtung umfasst.
  • Zudem kann vorgesehen sein, dass es Ansteuern, durch die Steuereinrichtung, der Antriebseinrichtung abhängig von der ermittelten Neigung oder ermittelten zeitlichen Neigungsänderung der Tischplatte (12) bzw. ermittelten, für die zeitliche Neigungsänderung der Tischplatte repräsentativen Größe umfasst.
  • Weiterhin kann das Verfahren Anzeigen, durch die Anzeigeeinrichtung, des Ortes und/oder der Größe einer ermittelten Neigungsänderung der Tischplatte umfassen.
  • Schließlich umfasst das Verfahren vorteilhafterweise Speichern, durch die Datenbank, des Ortes und/oder der Größe einer ermittelten Neigungsänderung der Tischplatte.
  • Der vorliegenden Erfindung liegt die überraschende Erkenntnis zugrunde, dass durch Kombination eines 3-Achsen-Beschleunigungssensors mit einem 3-Achsen-Gyroskop und bedarfsweise Korrektur der Messdaten in Abhängigkeit von der Einbauorientierung der Sensoren - mathematisch auch als Koordinaten-Transformation bezeichenbar - eine beliebige Positionierung und Orientierung der Sensoreinrichtung am elektrisch höhenverstellbaren Tisch möglich ist. Die "Koordinaten-Transformation" erfolgt dabei in einem vorgeschalteten Initialisierungsprozess. In besagtem Initialisierungsprozess wird/werden indirekt die wirkliche(n) Einbaurichtung(en) der Sensoreinrichtung bzw. Sensoren bestimmt und nachfolgend die Messwerte für die Neigung in Abhängigkeit von der/den wirklichen Einbaurichtung(en) korrigiert. Zumindest in einer besonderen Ausführungsform kann die Sensoreinrichtung sogar werkzeuglos positioniert werden.
  • Ausgehend von einer bei der Initialisierung ermittelten absoluten Neigung können gängige Beschleunigungssensoren konstruktiv bedingt üblicherweise ab ca. 0,5° messen.
  • Mit dem Gyroskop lässt sich eine schnelle Neigungsänderung wie bei einer Kollision ermitteln. Mit einer "schnellen" Neigungsänderung soll hier eine Winkelgeschwindigkeit ≥ 1°/s (Summe aller Sensoren) gemeint sein. Beispielsweise können jede 10 ms Sensordaten erfasst, und ggf. umgerechnet und verglichen werden, bevor eine Entscheidung getroffen wird. Zudem können die Daten danach für neue Messungen gelöscht werden. Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den beigefügten Ansprüchen und aus der nachfolgenden Beschreibung, in der mehrere Ausführungsbeispiele anhand der schematischen Zeichnungen im Einzelnen erläutert werden. Dabei zeigt:
  • Figur 1
    eine perspektivische Ansicht (schräg von unten) von einem elektrisch höhenverstellbaren Tisch gemäß einer besonderen Ausführungsform der vorliegenden Erfindung;
    Figur 2
    den Tisch von Figur 1 in perspektivischer Ansicht (schräg von oben) sowie eine Detailansicht;
    Figur 3
    den Tisch von Figur 1 in Seitenansicht und in Draufsicht;
    Figur 4
    eine Seitenansicht von einem elektrisch höhenverstellbaren Tisch gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung sowie eine Detailansicht einer Anzeigeeinrichtung des Tisches;
    Figur 5
    ein Flussdiagramm eines Verfahrens zum Steuern beispielsweise des Tisches von Figuren 1 und 2 gemäß einer besonderen Ausführungsform der vorliegenden Erfindung;
    Figur 6
    ein Flussdiagramm eines "Unterverfahrens" des Verfahrens von Figur 5;
    Figur 7
    ein Flussdiagramm eines "Unterverfahrens" des Verfahrens von Figur 5; und
    Figur 8
    ein Flussdiagramm eines "Unterverfahrens" des Verfahrens von Figur 5.
  • Die Figuren 1, 2 und 3 zeigen einen elektrisch höhenverstellbaren Tisch 10 gemäß einer besonderen Ausführungsform der vorliegenden Erfindung. Der Tisch 10 umfasst ein elektrisch höhenverstellbares Untergestell 14 mit zwei seitlichen Tischbeinen 16 mit jeweils einem Tischfuß 18 und einer die beiden Tischbeine 16 verbindenden Traverse 17, eine Tischplatte 12, die auf dem Untergestell 14 angeordnet und daran lösbar befestigt ist, eine Antriebseinrichtung (nicht gezeigt) zur Höhenverstellung des Untergestells 14 und damit auch der Tischplatte 12, wobei die Antriebseinrichtung an dem Untergestell 14 festgemacht ist und mindestens einen Elektromotor (nicht gezeigt), eine Steuereinrichtung 70 in diesem Beispiel in der Traverse 17 und eine Bedieneinrichtung zur Bedienung der Steuereinrichtung 70 beispielhaft in Form eines Handschalters 71 umfasst, und eine Sensoreinrichtung 72 zur Erkennung einer initialen absoluten Neigung der üblicherweise zu Beginn ruhenden Tischplatte 12 bei Empfang einer Eingabe eines Verfahrbefehls über den Handschalter 71 und einer nachfolgenden absoluten Neigung sowie einer nachfolgenden zeitlichen Neigungsänderung der Tischplatte 12 während des Verfahrens der Tischplatte nach oben oder unten entsprechend dem Verfahrbefehl. Die Sensoreinrichtung 72 umfasst einen 3-Achsen-Beschleunigungssensor 74 zur Ermittlung der absoluten Neigung der Tischplatte 12 und ein damit integrales 3-Achsen-Gyroskop 73 zur Ermittlung der zeitlichen Neigungsänderung der Tischplatte 12 bzw. einer dafür repräsentativen Größe, wobei der Beschleunigungssensor 74 und das Gyroskop 73 in einem Mikroelektronischen-Mechanischen-System (MEMS)-Bauteil untergebracht sind. Zur Sensoreinrichtung 72 gehört auch eine Recheneinrichtung (nicht gezeigt), wie beispielsweise ein Mikroprozessor bzw. mindestens ein Mikroprozessor, die gestaltet ist, um zur Ermittlung der initialen absoluten Neigung der Tischplatte 12 jedes Mal vor Ausführung eines eingegebenen Verfahrbefehls eine initiale Erfassung von Beschleunigungskomponenten durch den Beschleunigungssensor 74 in einem von der Einbauorientierung des Beschleunigungssensors abhängig orientierten dreidimensionalen kartesischen Koordinatensystem 731 (siehe Figur 2), einen Vergleich der erfassten Beschleunigungskomponenten mit bekannten Beschleunigungskomponenten unter denselben Bedingungen in einem globalen dreidimensionalen kartesischen Koordinatensystem 741 (siehe Figur 2), wobei dessen z-Achse in Richtung der Erdbeschleunigung orientiert ist, und eine etwaige Offset-Korrektur der erfassten Beschleunigungskomponenten sowie eine etwaige Invertierung der Beschleunigungskomponente in der z-Richtung sowie eine Umrechnung der erfassten und gegebenenfalls Offset-korrigierten und/oder invertierten Beschleunigungskomponenten in einen Neigungswinkel oder -vektor zu veranlassen, und zur entsprechenden Ermittlung einer absoluten Neigung der Tischplatte (12) durch eine Erfassung von Beschleunigungskomponenten durch den Beschleunigungssensor (74) und zur Ermittlung einer zeitlichen Neigungsänderung der Tischplatte (12) oder einer für die zeitliche Neigungsänderung der Tischplatte 12 repräsentativen Größe während der nachfolgenden Ausführung des Verfahrbefehls durch eine Erfassung von Winkelgeschwindigkeitskomponenten durch das Gyroskop 73, eine etwaige Invertierung der Winkelgeschwindigkeitskomponenten und eine Summierung der Winkelgeschwindigkeitskomponenten und einen Vergleich der ermittelten Summe der Winkelgeschwindigkeitskomponenten mit einem vorab festgelegten Winkelgeschwindigkeitsgrenzwert zu veranlassen.
  • In der hier gezeigten Ausführungsform befindet sich die Sensoreinrichtung 72 im Handschalter 71. Dadurch ist kein separates Gehäuse für die Sensoreinrichtung erforderlich und muss auch kein weiterer Steckanschluss an der Steuereinrichtung vorgesehen werden. Wie durch die Koordinaten y` und x` in der Figur 2 zum Ausdruck gebracht werden soll, kann eine Neigung der Tischplatte 12 beispielsweise um die x-Achse (horizontale Achse) im Falle einer Kollision erfolgen. Die Neigung bzw. Neigungsänderung kann mittels der Sensoreinrichtung 72 detektiert werden.
  • Genauer gesagt, stellt die Figur 2 eine Kollisionserkennung mittels des Beschleunigungssensors 74 dar. Nach der Initialisierung (Tischplatte 12 in Ruhe) (Neigungswinkel gleich null gesetzt) wird ein erstes lokales Koordinatensystem 731 (x, y, z) erkannt. Falls sich die Tischplatte 12 beim Verfahren um die x-Achse 75 neigt, ändert sich das lokale Koordinatensystem in (x`, y', z`). Die Erdbeschleunigung wird nun nicht mehr über die einzige z-Achse gemessen (Beispielfall), sondern auch über die y'-Achse. Der Neigungswinkel α kann durch eine Argustangens-Berechnung zwischen den projizierten y'und z`- Werten der Beschleunigung gemessen werden und mit einem Neigungsgrenzwert (z. B. bei 0,5 °) verglichen werden. Wenn der Neigungswinkel α den Neigungsgrenzwert erreicht bzw. überschreitet, wird in diesem Beispiel die Tischplatte angehalten (Verfahren der Tischplatte abgebrochen).
  • In der Figur 3 soll eine Kollision der Tischplatte 12 in Draufsicht vorne links (Kollisionsort 76) dargestellt werden. Die Kollision bzw. Neigung der Tischplatte wird durch den Rotationsvektor ω identifiziert. Unabhängig davon, wo und wie die Sensorvorrichtung 72 angeordnet ist, lässt sich über den Rotationsvektor die zeitliche Neigungsänderung bestimmen. Dies soll für zwei Beispiele kurz dargelegt werden. Wenn sich in einem ersten Beispiel die Sensorvorrichtung 72, wie in Figur 3 unten ganz rechts dargestellt ist, befindet, so kann der Rotationsvektor in der dargestellten x1, y1-Ebende eines lokalen Koordinatensystems 731 dargestellt werden. In einem zweiten Beispiel (siehe Figur 3 unten halbrechts) ist die Sensorvorrichtung 72 um die z-Achse gedreht ((x1, y1, z1) wird (x2, y2, z1)). Dies ist ohne Einfluss auf die Sensorauswertung, da sich die Winkelgeschwindigkeiten in °/s (als vektorielle Größe) addieren lassen.. Der Wert Gyro_Summe=Gyro_x+Gyro_y+Gyro_z (wobei in der Figur 3, Gyro_z = 0 °/s) wird mit einem zweiten Grenzwert, beispielsweise von 1,0 °/s (= kurzfristige Neigungsänderung) verglichen. Sobald der Wert der Summe den zweiten Grenzwert überschreitet, wird die Steuerung des Verfahrens abgebrochen.
  • In der Figur 5 ist in groben Schritten gezeigt, wie beispielsweise der Tisch gemäß den Figuren 1 und 2 gesteuert werden kann. Zu Beginn befindet sich die Tischplatte 12 in Ruheposition (Schritt 750). Wenn dann über die Handschalter 71 ein Verfahrbefehl von einem Benutzer empfangen wird (Schritt 751), erfolgt zunächst einmal eine Initialisierung der Sensoren (Schritt 752), d. h. in diesem Fall des Beschleunigungssensors 74 und des Gyroskops 73, im Rahmen derer eine Bestimmung der absoluten Neigung der Tischplatte 12 mittels des Beschleunigungssensors 74 durchgeführt wird. Nachdem die absolute Neigung der Tischplatte 12 bestimmt worden ist, beginnt ein Verfahren der Tischplatte 12 in der durch den Verfahrbefehl vorgegebenen Richtung (Befehlsrichtung Schritt 753). Während des Verfahrens der Tischplatte 12 erfolgt eine Überwachung der absoluten Neigung der Tischplatte (754). Zudem wird geprüft, ob die ermittelte zeitliche Neigungsänderung einen vorgebbaren Grenzwert, hier in diesem Beispiel Winkelgeschwindigkeitsgrenzwert, überschritten hat (Schritt 755). Falls ja, wird eine Kollision angenommen und werden "Gegenmaßnahmen" in einem Schritt 757 bzw. einer Folge von Schritten durchgeführt. Die Gegenmaßnahmen beinhalten üblicherweise ein sofortiges Anhalten der Tischplatte 12 oder aber ein Verfahren in der Gegenrichtung und dann Anhalten der Tischplatte (Schritt 758).
  • Wenn der Grenzwert, hier in diesem Beispiel Winkelgeschwindigkeitsgrenzwert, nicht überschritten ist, wird weiterhin geprüft, ob die Tischplatte an der Zielposition gemäß dem Verfahrbefehl angelangt ist(Schritt 756). Falls ja, wird die Tischplatte angehalten (Schritt 758). Falls nicht, wird die Tischplatte weiter entsprechend dem Verfahrbefehl verfahren (Schritt 753).
  • Figur 6zeigt Einzelheiten der Initialisierung der Sensoren gemäß einer besonderen Ausführungsform der vorliegenden Erfindung. Ausgangspunkt bzw. Auslöser ist der Empfang eines Verfahrbefehls von einem Benutzer (Schritt 751). Zunächst werden die Sensordaten im Stillstand initialisiert, indem die Beschleunigungen in x-, y- und z-Richtung aus dem Beschleunigungssensor (Schritt 760) und die Winkelgeschwindigkeiten aus dem Gyroskop (Schritt 762) abgerufen werden. Das lokale Koordinatensystem 731wird zunächst als Offset für die nachfolgenden Auswertungen gespeichert (Schritt 761) und das Messrauschen des Gyroskops wird nach einer kurzzeitigen Referenzaufnahme direkt vom Mikroprozessor reduziert (Schritt 763). Der Offset ist die in x-, y- und z-Richtungprojektierte Erdbeschleunigung (einzige messbare Beschleunigung, wenn die Tischplatte im Stillstand ist), die bei der Initialisierung gespeichert wird. Eine Offset-Korrektur der gemessenen Daten erfolgt durch Verwendung der bei der Initialisierung gespeicherten Offsetdaten bei den jeweiligen Komponenten. Als Ergebnis sind die Sensoren dann initialisiert (764).
  • Figur 7 zeigt Details der Neigungsüberwachung gemäß einer besonderen Ausführungsform der vorliegenden Erfindung. Nach Eintreten des Tisches in einen Verfahrmodus (753) werden kontinuierlich bzw. in Intervallen die Sensordaten abgefragt, wobei zur Ermittlung einer Neigungsänderung Sensordaten des Beschleunigungssensors, die für Beschleunigungskomponenten in x-, y- und z-Richtung repräsentativ und abgerufen werden (Schritt 770), eine Offset-Korrektur für die Transformation in das globalen Koordinatensystem 741 (Schritt 771), und gegebenenfalls eine z-Komponenten-Invertierung (Schritt 773) für die Berechnung einer Winkeländerung mit der x- und y-Komponente (Schritt 774) erfolgen. Zeitliche Neigungsänderungen werden parallel durch einen Abruf der Sensordaten des Gyroskops 73 in x-, y- und z-Richtung (Schritt 775), gegebenenfalls eine Invertierung der x-, y- und/oder z-Komponente, falls negativ, (Schritt 776) und eine Summierung der x-, y- und z-Komponenten berücksichtigt.
  • Figur 8 zeigt Einzelheiten der Behandlung einer Kollision gemäß einer besonderen Ausführungsform der vorliegenden Erfindung. Wenn die Überprüfung in dem Schritt 755 ergeben hat, dass womöglich eine Kollision vorliegt, wird die Tischplatte X cm in Gegenrichtung zum Verfahrbefehl verfahren (Schritt 781). Optional können dann auch der Kollisionsort und/oder die Intensität der Kollision ermittelt und beispielsweise in einer Datenbank gespeichert werden (Schritt 782) und/oder mittels einer Anzeigeeinrichtung angezeigt werden (Schritt 783). Schließlich wird die Tischplatte angehalten (Schritt 758).
  • Bei dem in der Figur 4 beispielhaften gezeigten elektrisch höhenverstellbaren Tisch 10 gemäß einer besonderen Ausführungsform der vorliegenden Erfindung weist die Bedieneinrichtung beispielsweise in Form eines Handschalters 71 eine in diesem Beispiel integrale Anzeigeeinrichtung 77 auf, die eine rechteckige Anzeigefläche aufweist, die in Unterflächen A, B, C, und D unterteilt ist. Durch die Bezugszahl 783 gemäß Figur 8 soll zum Ausdruck gebracht werden, dass mittels der Anzeigeeinrichtung 77 der Kollisionsort 76 in der Unterfläche D unten links angezeigt wird. Zudem soll mit der Bezugszahl 782 gemäß Figur 8 zum Ausdruck gebracht werden, dass der Kollisionsort 76 und die Kollisionsintensität in einer Datenbank DB gespeichert werden.
  • Genauer gesagt stellt die Figur 4 die Möglichkeit dar, dass die gesamte Sensoreinrichtung 72, da beide Anteile (Gyroskop und Beschleunigungssensor) geortet werden können, als Lokalisierungswerkzeug für Kollisionen in einem globalen Koordinatensystem verwendet werden. Je nach Unterfläche bzw. Sektor A, B, C und D, in dem eine Kollision aufritt, wird diese Kollision bei den Sensoren (Gyroskop und Beschleunigungssensor) anders ausgewertet. Für das Gyroskop 73 werden die Vorzeichen der x- und y-Komponente des Rotationsvektors im Koordinatensystem 741 betrachtet. Beispielsweise bei der in Figur 4 gezeigten rechteckigen Tischplatte, die durch eine Traverse 17 wie in Figur 1 gehalten wird, ergeben sich folgende Vorzeichen für die x- und y-Komponente des Rotationsvektors: Sektor D (-x; - y) Sektor C (-x; +y), Sektor B (+x, +y) und Sektor A (+x; -y). Bei dem Beschleunigungssensor wird die Ortung mit dem Vorzeichen des projizierten Wertes z` auf die x, y-Ebene des Koordinatensystems (siehe Figur 2) erkannt.
  • Die mittels des Gyroskops ermittelten Winkelgeschwindigkeiten werden für diese Art von Auswertung nämlich nicht mehr addiert, sondern einzeln betrachtet (Vorzeichen) je nach Sektor. Daher ist die Integration der Sensoreinrichtung in einem bekannten positionierten System (globales Koordinatensystem 741) (X, Y, Z) (siehe auch Figur 2) (z. B. Handschalter oder Steuerung) dabei erforderlich, um die Kollision je nach gemessenen Werten orten zu können. Bezugszeichenliste
    10 Tisch
    12 Tischplatte 14 Untergestell
    16 Tischbein
    18 Tischfuß
    17 Traverse
    70 Steuereinrichtung
    71 Handschalter
    72 Sensoreinrichtung
    73 Gyroskop
    74 Beschleunigungssensor
    75 x-Achse
    76 Kollision
    77 Anzeigeeinrichtung
    731 Koordinatensystem
    741 globales Koordinatensystem
    A, B, C, D Unterflächen
    DB Datenbank
    α Neigungswinkel

Claims (15)

  1. Elektrisch höhenverstellbarer Tisch (10), umfassend:
    - ein elektrisch höhenverstellbares Untergestell (14),
    - eine Tischplatte (12), die an oder auf dem Untergestell (14) angeordnet ist,
    - eine Antriebseinrichtung zur Höhenverstellung des Untergestells (14)/der Tischplatte (12), wobei die Antriebseinrichtung an dem Untergestell (14) bzw. an der Tischplatte (12) festgemacht ist und mindestens einen Elektromotor, eine Steuereinrichtung (70) und eine Bedieneinrichtung zur Bedienung der Steuereinrichtung (70) umfasst, und
    - eine Sensoreinrichtung (72) zur Erkennung einer initialen absoluten Neigung der Tischplatte (12) bei Empfang einer Eingabe eines Verfahrbefehls über die Bedieneinrichtung und einer nachfolgenden absoluten Neigung sowie einer nachfolgenden zeitlichen Neigungsänderung der Tischplatte (12) während des Verfahrens der Tischplatte (12) nach oben oder unten entsprechend dem Verfahrbefehl, wobei die Sensoreinrichtung (72) einen 3-Achsen-Beschleunigungssensor (74) zur Ermittlung der absoluten Neigung der Tischplatte (12) und ein, vorzugsweise damit integrales, 3-Achsen-Gyroskop (73) zur Ermittlung der zeitlichen Neigungsänderung der Tischplatte (12) umfasst, vorzugsweise wobei der Beschleunigungssensor (74) und das Gyroskop (72) in einem Mikroelektronischen-Mechanischen-System (MEMS)-Bauteil untergebracht sind,
    wobei die Sensoreinrichtung (72) ferner eine Recheneinrichtung, insbesondere einen Mikroprozessor, umfasst, die gestaltet ist, um zur Ermittlung der initialen absoluten Neigung der Tischplatte (12) jedes Mal vor Ausführung eines eingegebenen Verfahrbefehls eine initiale Erfassung von Beschleunigungskomponenten durch den Beschleunigungssensor (74) in einem von der Einbauorientierung des Beschleunigungssensors (74) abhängig orientierten dreidimensionalen kartesischen Koordinatensystem und einen Vergleich der erfassten Beschleunigungskomponenten mit bekannten Beschleunigungskomponenten unter denselben Bedingungen in einem globalen dreidimensionalen kartesischen Koordinatensystem (741), wobei dessen z-Achse in Richtung der Erdbeschleunigung orientiert ist, und eine etwaige Offset-Korrektur der erfassten Beschleunigungskomponenten sowie eine etwaige Invertierung der Beschleunigungskomponente in der z-Richtung sowie eine Umrechnung der erfassten und gegebenenfalls Offset-korrigierten und/oder gegebenenfalls invertierten Beschleunigungskomponenten in einen Neigungswinkel oder -vektor zu veranlassen, und um zur entsprechenden Ermittlung einer absoluten Neigung der Tischplatte (12) durch eine Erfassung von Beschleunigungskomponenten durch den Beschleunigungssensor (74) und zur Ermittlung einer zeitlichen Neigungsänderung der Tischplatte (12) oder einer für die zeitliche Neigungsänderung der Tischplatte (12) repräsentativen Größe während der nachfolgenden Ausführung des Verfahrbefehls durch eine Erfassung von Winkelgeschwindigkeitskomponenten durch das Gyroskop (73), eine etwaige Invertierung der Winkelgeschwindigkeitskomponenten und eine Summierung der Winkelgeschwindigkeitskomponenten und einen Vergleich der ermittelten Summe der Winkelgeschwindigkeitskomponenten mit einem vorab festgelegten Winkelgeschwindigkeitsgrenzwert zu veranlassen.
  2. Tisch (10) nach Anspruch 1, wobei die Steuereinrichtung (70) gestaltet ist, um für den Fall, dass die ermittelte Summe der Winkelgeschwindigkeitskomponenten den Winkelgeschwindigkeitsgrenzwert überschreitet, die Antriebseinrichtung zu stoppen oder in Gegenrichtung anzusteuern, und/oder wobei die Steuereinrichtung (70) gestaltet ist, um für den Fall, dass die ermittelte absolute Neigung einen vorab festgelegten Neigungsgrenzwert überschreitet, die Antriebseinrichtung zu stoppen oder in Gegenrichtung anzusteuern.
  3. Tisch (10) nach Anspruch 1 oder 2, wobei die Steuereinrichtung (70) gestaltet ist, um die Antriebseinrichtung abhängig von der ermittelten Neigung oder der ermittelten zeitlichen Neigungsänderung der Tischplatte (12) bzw. der ermittelten, für die zeitliche Neigungsänderung der Tischplatte repräsentativen Größe anzusteuern.
  4. Tisch (10) nach einem der Ansprüche 1 bis 3, wobei die Sensoreinrichtung (72) an der Tischplatte, vorzugsweise durch Kleben, vorzugsweise lösbar, befestigt ist.
  5. Tisch (10) nach einem der Ansprüche 1 bis 3, wobei die Sensoreinrichtung (72) in der Bedieneinrichtung, vorzugsweise lösbar, befestigt ist.
  6. Tisch (10) nach einem der Ansprüche 1 bis 3, wobei die Sensoreinrichtung (72) in der Steuereinrichtung (70) integriert ist.
  7. Tisch (10) nach einem der vorangehenden Ansprüche, wobei die Bedieneinrichtung eine Handschaltereinrichtung aufweist.
  8. Tisch (10) nach einem der vorangehenden Ansprüche, wobei er eine Anzeigeeinrichtung (77), die zum Anzeigen des Ortes und/oder der Größe einer ermittelten Neigungsänderung der Tischplatte (12) gestaltet ist, aufweist.
  9. Tisch (10) nach Anspruch 8, wobei er eine Datenbank, die zum Speichern des Ortes und/oder der Größe einer ermittelten Neigungsänderung der Tischplatte (12) gestaltet ist, aufweist.
  10. Tisch (10) nach Anspruch 8 oder 9, wobei sich die Anzeigeeinrichtung (77) in der Nähe oder innerhalb der Bedieneinrichtung befindet, insbesondere ein integraler Bestandteil derselben ist.
  11. Verfahren zum Steuern eines elektrisch höhenverstellbaren Tisches (10) nach einem der vorangehenden Ansprüche, umfassend:
    - Empfangen, an der Bedieneinrichtung, einer Eingabe eines Verfahrbefehls durch einen Benutzer,
    - als Reaktion auf den Verfahrbefehl Ermittlung einer initialen absoluten Neigung der Tischplatte (12), durch die Recheneinrichtung, durch eine initiale Erfassung von Beschleunigungskomponenten über den Beschleunigungssensor (74) in einem von der Einbauorientierung des Beschleunigungssensors (74) abhängig orientierten dreidimensionalen kartesischen Koordinatensystem und einen Vergleich der erfassten Beschleunigungskomponenten mit bekannten Beschleunigungskomponenten unter denselben Bedingungen in einem globalen dreidimensionalen kartesischen Koordinatensystem (741), wobei dessen z-Achse in Richtung der Erdbeschleunigung orientiert ist, und eine etwaige Offset-Korrektur der erfassten Beschleunigungskomponenten sowie eine etwaige Invertierung der Beschleunigungskomponente in der z-Richtung sowie eine Umrechnung der erfassten und gegebenenfalls Offset-korrigierten und/oder invertierten Beschleunigungskomponenten in einen Neigungswinkel oder -vektor und
    - nachfolgend Verfahren der Tischplatte (12) nach oben oder unten entsprechend dem Verfahrbefehl über die Antriebseinrichtung und
    - Ermittlung einer absoluten Neigung der Tischplatte (12) durch eine Erfassung von Beschleunigungskomponenten durch den Beschleunigungssensor (74) und Ermittlung einer zeitlichen Neigungsänderung der Tischplatte (12) oder einer für die zeitliche Neigungsänderung der Tischplatte (12) repräsentativen Größe, durch die Recheneinrichtung, während des Verfahrens der Tischplatte (12), wobei die Ermittlung der zeitlichen Neigungsänderung der Tischplatte (12) durch eine Erfassung von Winkelgeschwindigkeitskomponenten über das Gyroskop (73), eine etwaige Invertierung der Winkelgeschwindigkeitskomponenten und eine Summierung der Winkelgeschwindigkeitskomponenten und Vergleich der ermittelten Summe der Winkelgeschwindigkeitskomponentenmit einem vorab festgelegten Winkelgeschwindigkeitsgrenzwert erfolgt.
  12. Verfahren nach Anspruch 11, ferner umfassend, für den Fall, dass die ermittelte Summe der Winkelgeschwindigkeitskomponenten den Winkelgeschwindigkeitsgrenzwert überschreitet, Stoppen der Antriebseinrichtung oder Ansteuern der Antriebseinrichtung in Gegenrichtung und/oder umfassend, für den Fall, dass die ermittelte absolute Neigung einen vorab festgelegten Neigungsgrenzwert überschreitet, Stoppen der Antriebseinrichtung oder Ansteuern der Antriebseinrichtung in Gegenrichtung.
  13. Verfahren nach Anspruch 11 oder 12, umfassend Ansteuern, durch die Steuereinrichtung (70), der Antriebseinrichtung abhängig von der ermittelten Neigung oder ermittelten zeitlichen Neigungsänderung der Tischplatte (12) bzw. ermittelten, für die zeitliche Neigungsänderung der Tischplatte (12) repräsentativen Größe.
  14. Verfahren nach einem der Ansprüche 11 bis 13, umfassend Anzeigen, durch die Anzeigeeinrichtung, des Ortes und/oder der Größe einer ermittelten Neigungsänderung der Tischplatte (12).
  15. Verfahren nach Anspruch 14, umfassend Speichern, durch die Datenbank, des Ortes und/oder der Größe einer ermittelten Neigungsänderung der Tischplatte (12).
EP18705816.9A 2018-01-31 2018-01-31 Elektrisch höhenverstellbarer tisch sowie verfahren zum steuern desselben Active EP3745913B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2018/100073 WO2019149296A1 (de) 2018-01-31 2018-01-31 Elektrisch höhenverstellbarer tisch sowie verfahren zum steuern desselben

Publications (3)

Publication Number Publication Date
EP3745913A1 EP3745913A1 (de) 2020-12-09
EP3745913B1 true EP3745913B1 (de) 2023-06-14
EP3745913C0 EP3745913C0 (de) 2023-06-14

Family

ID=61244328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18705816.9A Active EP3745913B1 (de) 2018-01-31 2018-01-31 Elektrisch höhenverstellbarer tisch sowie verfahren zum steuern desselben

Country Status (5)

Country Link
US (1) US11206920B2 (de)
EP (1) EP3745913B1 (de)
CN (1) CN111655074B (de)
DE (1) DE112018006985A5 (de)
WO (1) WO2019149296A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3624636A1 (de) * 2017-05-15 2020-03-25 Linak A/S Höhenverstellbarer tisch
CN109452757A (zh) * 2018-12-04 2019-03-12 嘉兴礼海电气科技有限公司 一种基于电动升降桌防碰撞控制系统及其防碰撞方法
US11510487B2 (en) * 2018-12-06 2022-11-29 Zhejiang Jiecang Linear Motion Technology Co., Ltd. Desktop lifting platform with improved safety
CN113766856B (zh) * 2019-04-25 2023-04-14 爱格升公司 具有零空载功率的高度可调节工作站
TWI756671B (zh) * 2019-05-15 2022-03-01 第一傳動科技股份有限公司 易於組裝調整的電動桌腳架
USD942566S1 (en) * 2019-11-18 2022-02-01 Coulter Ventures, Llc. Weightlifting bench
EP3878312B1 (de) * 2020-03-13 2024-04-17 Changzhou Kaidi Electrical Co., Ltd. Einheit zur steuerung des sicheren betriebs eines elektrischen tisches
USD970927S1 (en) * 2020-04-21 2022-11-29 Yajun Hu Gaming desk
USD942188S1 (en) * 2020-04-21 2022-02-01 Yajun Hu, Eureka Llc. Electric height adjustable gaming desk
CN111436746A (zh) * 2020-04-23 2020-07-24 常州市凯迪电器股份有限公司 一种快速组装的桌面支架
USD926498S1 (en) * 2020-04-27 2021-08-03 Yajun Hu Gaming desk
USD931660S1 (en) * 2020-05-29 2021-09-28 Yajun Hu Gaming desk
USD931661S1 (en) * 2020-06-05 2021-09-28 Yajun Hu Gaming desk with square legs
USD947579S1 (en) * 2020-06-15 2022-04-05 zhejiang zhongwei smart furniture Co., LTD Electric lift table
USD961962S1 (en) * 2020-07-02 2022-08-30 Yajun Hun Gaming desk
US11642995B1 (en) * 2020-07-10 2023-05-09 Apple Inc. Movable support surfaces
USD950986S1 (en) * 2020-07-13 2022-05-10 Yajun Hu Height adjustable desk
USD947578S1 (en) * 2020-08-07 2022-04-05 Yajun Hu Height adjustable desk
DE102020211550A1 (de) * 2020-09-15 2022-03-17 Kesseböhmer Holding Kg Antriebssystem zum Bewegen einer höhenverstellbaren Tischplatte, Tisch mit einem solchen Antriebssystem und Verfahren zum Erfassen einer Kollision einer höhenverstellbaren Tischplatte
USD1018738S1 (en) 2021-03-05 2024-03-19 Coulter Ventures, Llc. Weightlifting bench
CN112971339A (zh) * 2021-03-26 2021-06-18 得力普乐士办公科技有限公司 一种智能升降桌
TWM618980U (zh) * 2021-05-28 2021-11-01 第一傳動科技股份有限公司 輕量化電動桌腳架
TWM622096U (zh) * 2021-07-21 2022-01-11 第一傳動科技股份有限公司 升降桌腳架
USD972342S1 (en) * 2021-09-22 2022-12-13 Zhejiang Zhongwei Smart Furniture Co., Ltd. Lifting table
USD966016S1 (en) * 2021-09-24 2022-10-11 Jiangsu Star Intelligent Home Furnishing Co., Ltd Electric desk
USD966752S1 (en) * 2021-09-24 2022-10-18 Jiangsu Star Intelligent Home Furnishing Co., Ltd Electric desk
CN113925276B (zh) * 2021-10-11 2023-01-24 安徽淘云科技股份有限公司 书桌高度调整方法、装置、电子设备、书桌与存储介质
USD966751S1 (en) * 2021-11-04 2022-10-18 Shenzhen Bestqi Innovation Technology Co., Ltd Computer desk
USD965349S1 (en) * 2021-12-13 2022-10-04 Shenzhen Bestqi Innovation Technology Co., Ltd Height adjustable desk
CN114631687B (zh) * 2022-03-07 2023-05-12 深圳市瑞必达科技有限公司 升降桌不计算欧拉角做敲击保护和倾斜保护的控制方法
USD979988S1 (en) * 2022-04-19 2023-03-07 Sailvan Times Co., Ltd. Electric standing desk
CN217851816U (zh) * 2022-06-27 2022-11-22 乐歌人体工学科技股份有限公司 一种方便组装的桌脚及升降桌

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637206A1 (de) * 2017-06-09 2020-04-15 Zhejiang Jiecang Linear Motion Technology Co., Ltd Elektrische hebebühne mit einziehfunktion bei stossen auf einen widerstand

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006018530U1 (de) * 2006-03-23 2007-03-01 Kostal Industrie Elektrik Gmbh Mehrteiliges elektrisches verstellbares Möbel
DE102006013349A1 (de) * 2006-03-23 2007-09-27 Kostal Industrie Elektrik Gmbh Mehrteiliges elektrisch verstellbares Möbel
DE202007006673U1 (de) 2006-05-05 2007-09-13 Linak A/S Elektrisch höhenverstellbarerer Tisch
DE102006038558A1 (de) 2006-08-17 2008-04-30 Vibradorm Gmbh Anordnung zur Steuerung des Antriebs eines elektrisch verstellbaren Möbels
DE502006007106D1 (de) 2006-08-24 2010-07-15 Kesseboehmer Produktions Gmbh Vorrichtung und Verfahren zur Erkennung von Kollisionen bei Möbeln
DE102007030473A1 (de) * 2007-06-29 2009-01-08 Logicdata Electronic & Software Entwicklungs Gmbh Elektrisch verstellbares Möbel und Kabel dafür
JP2012008096A (ja) * 2010-06-28 2012-01-12 Seiko Epson Corp バイアス推定方法、姿勢推定方法、バイアス推定装置及び姿勢推定装置
CN102314179B (zh) * 2011-05-04 2013-02-06 杭州电子科技大学 基于手机及内置重力感应器的云台控制方法
EP2721951B1 (de) * 2012-10-22 2017-04-19 USM Holding AG Möbel mit bewegbarem Möbelteil
US8947215B2 (en) 2012-11-16 2015-02-03 Xerox Corporation Systems and methods for implementing automated workstation elevation position tracking and control
DE102013221494A1 (de) * 2013-10-23 2015-04-23 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen eines Drehwinkels eines Objekts um eine Drehachse
EP2896320B1 (de) * 2014-01-16 2021-08-25 Meyer AG Tischverlängerungsbeschlag für einen Tisch mit einer Tischplatte und einer Auszugplatte sowie Tisch mit einem Tischverlängerungsbeschlag
US20150338430A1 (en) * 2014-05-21 2015-11-26 Regents Of The University Of Minnesota Excessive vehicle acceleration detection using a mobile device
JP6372751B2 (ja) * 2014-09-22 2018-08-15 カシオ計算機株式会社 電子機器及びオフセット値取得方法、オフセット値取得プログラム
KR102053015B1 (ko) * 2015-04-23 2020-01-08 티모션 테크놀로지 코., 엘티디. 전기 조정 테이블 및 전기 조정 테이블의 제어 방법
CN106483985B (zh) * 2015-08-24 2020-09-08 第一传动科技股份有限公司 用以控制升降设备的可携式装置及升降设备控制方法
JP6514089B2 (ja) * 2015-11-02 2019-05-15 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置、情報処理システム、および情報処理方法
DE102016101954A1 (de) 2016-02-04 2017-08-10 Karsten Laing Elektrisch verstellbares Möbelstück
DE102016101955A1 (de) 2016-02-04 2017-08-10 Karsten Laing Elektrisch verstellbares Möbelstück
CA3066494A1 (en) * 2017-06-09 2018-12-13 Sparx Smart Pods Inc. Workstation controller for a power-actuated workstation
DE102017125390A1 (de) * 2017-10-30 2019-05-02 Karsten Laing Verfahren zum Erfassen des Belegungszustandes mindestens eines Möbelstücks und elektrisch verstellbares Möbelstück
US20210000250A1 (en) * 2018-02-08 2021-01-07 Linak A/S Height-adjustable table
US11510487B2 (en) * 2018-12-06 2022-11-29 Zhejiang Jiecang Linear Motion Technology Co., Ltd. Desktop lifting platform with improved safety
CN110338556A (zh) * 2019-07-10 2019-10-18 乐歌人体工学科技股份有限公司 电动升降桌及其控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637206A1 (de) * 2017-06-09 2020-04-15 Zhejiang Jiecang Linear Motion Technology Co., Ltd Elektrische hebebühne mit einziehfunktion bei stossen auf einen widerstand

Also Published As

Publication number Publication date
DE112018006985A5 (de) 2020-10-08
WO2019149296A1 (de) 2019-08-08
CN111655074B (zh) 2022-09-09
EP3745913A1 (de) 2020-12-09
CN111655074A (zh) 2020-09-11
US20210030146A1 (en) 2021-02-04
EP3745913C0 (de) 2023-06-14
US11206920B2 (en) 2021-12-28

Similar Documents

Publication Publication Date Title
EP3745913B1 (de) Elektrisch höhenverstellbarer tisch sowie verfahren zum steuern desselben
DE202016104512U1 (de) Elektrisch verstellbares Möbelstück
DE102016118617B4 (de) Messsystem
EP2089667B1 (de) Verfahren und vorrichtung zum bestimmen von raumkoordinaten an einer vielzahl von messpunkten
DE102015007524A1 (de) Mehrgelenkroboter mit einer Funktion zum Repositionieren des Arms
DE112017002639T5 (de) Robotersteuerungsvorrichtung
WO2007134733A1 (de) Messvorrichtung für schnelle messungen
DE102016101954A1 (de) Elektrisch verstellbares Möbelstück
EP2322897A1 (de) Optisches und mechanisches Verfahren und Vorrichtung zum Vermessen von Werkstücken
EP2512291A1 (de) Vorrichtung und verfahren zur kollisionserkennung eines beweglichen möbelanteils mit einem hindernis
DE102016012040A1 (de) Robotersteuerungsvorrichtung, robotersystem und verfahren zum steuern eines in zusammenarbeit mit einer person einen gegenstand tragenden roboters
EP3359913A1 (de) Überwachung eines sicherheitsrelevanten parameters eines koordinatenmessgeräts
WO2005098355A1 (de) Tastkopf mit schutzvorrichtung und koordinatenmessgerät mit solchem tastkopf
WO2000043227A1 (de) Verfahren und vorrichtung zum betreiben eines verstellantriebs in einem kraftfahrzeug
DE102019115379B4 (de) Robotersystem und Roboter
DE102019131401B3 (de) Kalibrierung einer Impedanzregelung eines Robotermanipulators
WO2018177848A1 (de) Überwachungsverfahren und überwachungssystem
DE102020203671B4 (de) Verfahren zum Steuern eines Roboterarms
WO2007045286A1 (de) Vorrichtung zur überwachung der relativposition mehrerer einrichtungen
WO2016113134A1 (de) Fahrgeschäft mit roboteranordnung
EP2693165B1 (de) Verfahren zum Ermitteln der Position eines Objekts
EP3974264B1 (de) Steuerung eines pneumatischen bearbeitungsgeräts
DE102019133372A1 (de) Fortbewegungsmittel, Vorrichtung und Verfahren zur Unterstützung eines Anwenders einer Anwenderschnittstelle
DE102020208400B4 (de) Verfahren zur verbesserten kantenreinigung einer wand
WO2024052520A1 (de) System zur bestimmung und anzeige von beschränkungen beim betrieb von medizinischen tischen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210909

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018012466

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1578570

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

U01 Request for unitary effect filed

Effective date: 20230707

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230822

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230914

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231014

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

U20 Renewal fee paid [unitary effect]

Year of fee payment: 7

Effective date: 20240125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018012466

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240315