EP3745544A1 - Schleifringsystem mit verbesserter kühlung - Google Patents

Schleifringsystem mit verbesserter kühlung Download PDF

Info

Publication number
EP3745544A1
EP3745544A1 EP19177085.8A EP19177085A EP3745544A1 EP 3745544 A1 EP3745544 A1 EP 3745544A1 EP 19177085 A EP19177085 A EP 19177085A EP 3745544 A1 EP3745544 A1 EP 3745544A1
Authority
EP
European Patent Office
Prior art keywords
slip ring
brush
ring system
brush holder
brushes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19177085.8A
Other languages
English (en)
French (fr)
Inventor
Herbert Binder
Daniel Friedl
Robert Gruber
Oliver Memminger
Andrej Raskopf
Klaus SCHIFFERER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP19177085.8A priority Critical patent/EP3745544A1/de
Priority to EP20718258.5A priority patent/EP3977572A1/de
Priority to CA3138621A priority patent/CA3138621A1/en
Priority to US17/613,352 priority patent/US11916467B2/en
Priority to CN202080039385.6A priority patent/CN113892215B/zh
Priority to BR112021020887A priority patent/BR112021020887A2/pt
Priority to PCT/EP2020/059546 priority patent/WO2020239301A1/de
Publication of EP3745544A1 publication Critical patent/EP3745544A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/38Brush holders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/28Cooling of commutators, slip-rings or brushes e.g. by ventilating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/08Slip-rings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/14Means for supporting or protecting brushes or brush holders
    • H02K5/141Means for supporting or protecting brushes or brush holders for cooperation with slip-rings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/26Structural association of machines with devices for cleaning or drying cooling medium, e.g. with filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/232Heat transfer, e.g. cooling characterised by the cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a brush holder of a slip ring system of a dynamoelectric excited machine, a carrier segment with such brush holders, a slip ring system with such carrier segments, a ventilation system of a slip ring system and a dynamoelectric machine.
  • Slip ring systems are used to introduce electrical excitation into the rotating part of a dynamo-electric machine, i.e. the rotor.
  • the electrical power that can be transmitted becomes higher and higher.
  • the temperatures, in particular of the brushes and the brush holders rise considerably. Excessive temperature increases cause damage to the slip ring system and also to the brushes.
  • slip ring bodies with larger outer diameters are used from a certain size of dynamoelectric machine.
  • the brush holders used which are also referred to as brush bridges, are dimensioned correspondingly larger.
  • this performance-related increase also leads to a unwanted enlargement of the external dimensions of the dynamo-electric machine.
  • the invention is based on the object of creating a slip ring system which, even with a comparatively compact design of the slip ring system, does not exceed the maximum permissible temperatures of the slip ring system and its components.
  • the problem is solved by a brush holder of a slip ring system, an electrically excited dynamo-electric machine, the brush holder providing means for cooling brushes in the brush holder and / or the brush holder.
  • each brush in the brush holder can now be cooled comparatively well, so that the power that can be transmitted to a rotor of a dynamo-electric machine can be increased.
  • the problem posed is also achieved by means of a carrier segment with one or more brush holders according to the invention.
  • the problem posed is also achieved by means of a slip ring system with one or more carrier segments according to the invention. Due to the improved cooling performance of the brushes and / or brush holder and thus of a carrier system, the slip ring system is also thermally almost uniformly loaded and adequately cooled, so that the slip ring system has a compact design.
  • the problem posed is also achieved by a ventilation system with a slip ring system according to the invention.
  • the ventilation system guides air within the slip ring system, which is designed to be closed or open, in such a way that brush holders and / or brush pockets and / or brushes can be cooled. This is achieved in that the required flow of cooling air, generated by radial and / or axial fans, is provided inside or on the slip ring system.
  • the problem posed is also achieved by a dynamoelectric machine, in particular a generator of a wind power plant with a ventilation system according to the invention or a slip ring system according to the invention.
  • the cooling surface of the brush pockets and / or the overflow area of the brushes is enlarged by a cooling air flow.
  • the ribs can be designed as rectangular ribs, triangular ribs, trapezoidal ribs, concave or convex parabolic ribs, just as the needles can be designed as cylindrical-conical, concave, parabolic or convex parabolic needles or knobs.
  • At least one fan arranged within the slip ring system guides air past the brush pocket and brush holders, which have surface-enlarging structures.
  • Corresponding fans can advantageously be used, which generate a radial air flow and / or a cooling air flow running in the circumferential direction. This can be supported in that the knobs, needles or ribs are arranged accordingly in the flow direction of a generated cooling air flow.
  • a ventilation of the slip ring system is thus possible through a draft ventilation, as well as or in addition through an external ventilation.
  • the cooling air flow or the cooling air flows are generated by fans in and / or on the slip ring system.
  • the outside air which is sucked into the slip ring system as cooler air via the cooling openings, is guided within the slip ring system via cooling air ducts or guiding devices, among other things, directly to the brush pocket, the brush holder and / or the brushes. Since these are the critical heat sources, they are now directly cooled with the so-called cold air flow.
  • cooler ambient air is sucked in and distributed in the slip ring system by fans and / or guide devices, in particular to the heat sources.
  • the air that is now heated in the slip ring system on the brush pockets, the brush holders and / or the brushes is discharged from the slip ring space into the environment.
  • the air flow is generated by suction and / or pressure fans that are designed as axial or radial fans.
  • Filter mats at the entrance and / or exit can filter the polluted air.
  • the internal cooling circuit recooled in an intercooler is distributed by fans and / or guide devices, in particular to the heat sources within the closed housing of the slip ring system.
  • the air that is now heated in the slip ring system on the brush pockets, the brush holders and / or the brushes is passed from the slip ring space into the intercooler.
  • This air flow is generated by suction and / or pressure fans, which are designed as axial or radial fans and are arranged within the housing of the slip ring system.
  • FIG 1 shows a brush holder 1 with brush pockets 7, in this case three parallel receiving pockets into which brushes 8 can be inserted.
  • the brush pockets 7 are only provided with recesses 11 in order, in particular, to facilitate cooling of the brushes 8.
  • FIG 2 shows a carrier segment 2 on which several brush holders 1 are arranged, one carrier segment 2 being provided for one electrical phase U, V, M each of a slip ring system 13.
  • the brush pockets 7 have ribs 9 which run essentially tangentially to an axis 19.
  • FIG 3 shows a mixture of the shape of the course of the ribs 9, in that on the one hand a tangential shape and a radial shape is present on a brush holder 1. A flow of cooling air is thus not only guided in the tangential direction but also in the radial direction, which further improves the cooling of this brush holder 1.
  • FIG 4 shows a further carrier segment 2 with brush pockets 7, the surface of which is provided with needles 10 or knobs in order to enlarge the surface and thus improve the cooling.
  • a flow of cooling air 20 can be guided in both the tangential and radial directions.
  • FIG 5 shows a brush pocket 7, the holding function of which has been minimized by additionally providing a predetermined number of recesses 11 on the brush pocket 7. Needles 10 are attached to the remaining guides of the brush 8, so that direct cooling of the brushes 8 and cooling of the brush pocket 7 are made possible.
  • FIG 6 shows a slip ring unit with three individual slip rings 3 which are arranged axially one behind the other and are separated from one another by insulation 4. Each slip ring 3 is to proceed for an electrical phase U or V or M. At one axial end of this arrangement there is a support ring 12 from which contact points 5 protrude axially parallel and which allow an electrical connection of a winding system 17 of a rotor 16.
  • FIG 7 shows the slip ring system 3 according to FIG FIG 6 .
  • FIG 8 shows a single slip ring 3, for example phase U of a slip ring unit with the elements mentioned above, such as contact points 5, support ring 12, radial cooling openings 23 and axial cooling openings 24. It is also shown there in principle how a brush holder 1 can be arranged on slip ring 3.
  • FIG 9 shows a brush bridge in which four carrier segments 2 are arranged axially one behind the other, with, for example, three carrier segments 2 each assigned to an electrical phase U, V, M and one carrier segment 2 having brushes 8 for grounding.
  • FIG 10 shows a basic illustration of the arrangement of a slip ring system 13 on a shaft 18, the slip rings 3 rotating about the axis 19 just like the rotor 16.
  • the slip ring system 13 is positioned on the end face of the rotor 16.
  • a slip ring system 13 has a brush bridge with carrier segments 2 and a slip ring unit with slip rings 3.
  • a carrier segment 2 has one or more brush holders 1, each of which can be assigned to a slip ring 3.
  • Each brush holder 1 has one or more brush pockets 7 in which the brushes 8 are positioned.
  • the brushes 8 are pressed onto the slip ring 3 by a device not shown in detail in order to ensure proper contact. Furthermore, the brushes 8 are monitored with regard to their wear by a corresponding device.
  • the slip ring system 13 has contact points 5, support ring 12, radial cooling openings 23 and axial cooling openings 24.
  • cooler ambient air is preferably sucked in by fans and distributed in slip ring system 13 by further fans and / or guide devices, in particular to the heat sources.
  • the now in the slip ring system 13 on the brush pockets 7, the Brush holders 1 and / or the brushes 8 heated air is passed from the slip ring space into the environment.
  • the air flow is generated by suction and / or pressure fans, which are designed as axial or radial fans and are arranged on or in the slip ring space.
  • Filter mats at the entrance and / or exit can filter the polluted air.
  • the internal cooling circuit recooled in an intercooler is distributed by fans and / or guide devices, in particular to the heat sources within the closed housing of the slip ring system 13.
  • the air that is now heated in the slip ring system 13 on the brush pockets 7, the brush holders 1 and / or the brushes 8 is passed out of the slip ring space into the intercooler (not shown in detail).
  • This air flow is generated by suction and / or pressure fans, which are designed as axial or radial fans and are arranged within the housing of the slip ring system 13.
  • Such compact slip ring systems 13 are particularly suitable for dynamoelectric machines 14 with a comparatively high output in the MW range.
  • These machines 14 are particularly suitable as generators, in particular double-fed asynchronous machines for wind turbines, since the space available in a nacelle of a wind turbine is comparatively tight, and nevertheless comparatively large powers are to be transmitted in the generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

Die Erfindung betrifft eine Bürstenhalterung (1) eines Schleifringsystems (13), einer elektrisch erregten dynamoelektrischen Maschine (14), wobei die Bürstenhalterung (1) Mittel zur Kühlung von Bürsten (8) in der Bürstenhalterung (1) und/oder der Bürstenhalterung (1) vorsieht.

Description

  • Die Erfindung betrifft eine Bürstenhalterung eines Schleifringsystems einer dynamoelektrischen erregten Maschine, ein Trägersegment mit derartigen Bürstenhalterungen, ein Schleifringsystem mit derartigen Trägersegmenten, ein Belüftungssystem eines Schleifringsystems und eine dynamoelektrische Maschine.
  • Schleifringsysteme dienen dazu in den rotierenden Teil einer dynamoelektrischen Maschine, also den Läufer, eine elektrische Erregung einzubringen. Durch immer höhere Leistungen der dynamoelektrischen Maschine, beispielsweise Generatoren von Windkraftanlagen werden die dafür erforderlichen übertragbaren elektrischen Leistungen immer höher. Dies führt zu einer zusätzlichen Erwärmung der Schleifringsysteme, deren Entwärmung aufgrund einer zusätzlichen Kosten- und Bauraumoptimierung dieser Schleifringsysteme und deren Komponenten immer schwieriger wird. Durch die nunmehr bei kompakterer Ausführung anzustrebenden höheren Strombelastungen des Schleifringsystems steigen die Temperaturen, insbesondere der Bürsten und der Bürstenhalter erheblich an. Durch übermäßige Temperaturerhöhung entstehen Schäden an dem Schleifringsystem und auch an den Bürsten.
  • Um den steigenden Temperaturen entgegenzutreten, werden ab einer bestimmten Baugröße der dynamoelektrischen Maschine Schleifringkörper mit größeren Außendurchmessern eingesetzt. Dazu werden auch die verwendeten Bürstenhalterungen, die auch als Bürstenbrücken bezeichnet werden, dementsprechend größer dimensioniert. Jedoch nimmt dadurch der Arbeitsbereich des Schleifringsystems wesentlich mehr Raum ein. Durch Vergrößern des Schleifringsystems, wie Schleifringgehäuse und deren Komponenten werden höhere Materialkosten verursacht. Des Weiteren führt diese leistungsbedingte Vergrößerung auch zu einer ungewollten Vergrößerung der Außenabmessung der dynamoelektrischen Maschine.
  • Ausgehend davon liegt der Erfindung die Aufgabe zugrunde, ein Schleifringsystem zu schaffen, das auch bei einer vergleichsweise kompakten Ausführung des Schleifringsystems die maximal zulässigen Temperaturen des Schleifringsystems und deren Komponenten nicht überschreitet.
  • Die Lösung der gestellten Aufgabe gelingt durch eine Bürstenhalterung eines Schleifringsystems, einer elektrisch erregten dynamoelektrischen Maschine, wobei die Bürstenhalterung Mittel zur Kühlung von Bürsten in der Bürstenhalterung und/oder der Bürstenhalterung vorsieht.
  • Durch die erfindungsgemäße Bürstenhalterung kann nunmehr jede Bürste in der Bürstenhalterung vergleichsweise gut gekühlt werden, sodass die übertragbare Leistung in einen Läufer einer dynamoelektrischen Maschine gesteigert werden kann.
  • Die Lösung der gestellten Aufgabe gelingt ebenso durch Trägersegment mit einer oder mehreren erfindungsgemäßen Bürstenhalterungen.
  • Dies trägt zu einer Vergleichmäßigung des Leistungsflusses bzw. des Stromes über die Bürsten einer elektrischen Phase eines Schleifringsystems bei.
  • Die Lösung der gestellten Aufgabe gelingt auch durch Schleifringsystem mit einem oder mehrerer erfindungsgemäßer Trägersegmente. Durch die verbesserte Kühlleistung von Bürsten und/oder Bürstenhalterung und damit eines Trägersystems wird auch das Schleifringsystem thermisch nahezu gleichmäßig belastet und ausreichend gekühlt, so dass eine kompakte Bauweise des Schleifringsystems vorliegt.
  • Die Lösung der gestellten Aufgabe gelingt auch durch Belüftungssystem mit einem erfindungsgemäßen Schleifringsystem. Das Belüftungssystem führt Luft innerhalb des Schleifringsystems, das geschlossen oder offen ausgeführt ist, derart, dass Bürstenhalterungen, und/oder Bürstentaschen und/oder Bürsten kühlbar sind. Die gelingt indem der erforderliche Kühlluftstrom, erzeugt durch Radial- und/oder Axiallüfter innerhalb oder an dem Schleifringsystem vorgesehen sind.
  • Die Lösung der gestellten Aufgabe gelingt auch durch eine dynamoelektrische Maschine, insbesondere Generator einer Windkraftanlage mit einem erfindungsgemäßen Belüftungssystem oder einer erfindungsgemäßen Schleifringsystem.
  • Durch Vergrößern der Oberfläche der Bürstentaschen mittels Rippen, Nadeln oder Noppen an der Oberfläche der Bürstentaschen, als auch gegebenenfalls Ausnehmungen an den Bürstentaschen, wird die Kühloberfläche der Bürstentaschen und/oder der überströmten Fläche der Bürsten durch einen Kühlluftstrom vergrößert. Die Rippen können dabei als Rechteckrippen, Dreieckrippen, Trapezrippen, konkave oder konvexe parabolische Rippen ausgeführt sein, ebenso wie die Nadeln als zylindrische- konische, konkave, parabolische- oder konvexe parabolische Nadeln oder Noppen ausgeführt sein können.
  • Durch zumindest einen innerhalb des Schleifringsystems angeordneten Lüfter wird Luft an den Bürstentasche und Bürstenhalterungen vorbeigeführt, die oberflächenvergrößernde Strukturen aufweisen.
  • Vorteilhafterweise können dabei dementsprechende Lüfter eingesetzt werden, die einen Radialluftstrom und/oder einen in Umfangsrichtung verlaufenden Kühlluftstrom generieren. Dies kann unterstützt werden, in dem die Noppen, Nadeln oder Rippen dementsprechend in Strömungsrichtung eines generierten Kühlluftstroms angeordnet werden.
  • Durch die Reduzierung der Betriebstemperaturen im Schleifringsystem werden dadurch niedrigere Temperaturen geschaffen, die somit auch vergleichsweise geringere Bauabmessungen eines Schleifringsystems und deren angrenzenden Komponenten gestatten. Des Weiteren kann die übertragene Leistung von den Bürsten auf den jeweiligen Schleifring auch mit vergleichsweise weniger Bürsten pro elektrische Phase betrieben werden, ohne dass dabei die Bürsten Kühlungsprobleme aufweisen.
  • Es sind somit höhere Leistungsstufen der gesamten Schleifringsysteme und damit der dynamoelektrischen Maschine möglich.
  • Eine Belüftung des Schleifringsystems ist somit durch eine Durchzugsbelüftung, als auch oder ergänzend durch eine Fremdbelüftung möglich. Der Kühlluftstrom oder die Kühlluftströme werden durch Lüfter in und/oder an dem Schleifringsystem generiert.
  • Die Außenluft, die als kühlere Luft über die Kühlöffnungen in das Schleifringsystem gesaugt wird, wird innerhalb des Schleifringsystems über Kühlluftführungen bzw. Leitvorrichtungen unter anderem direkt an die Bürstentasche, die Bürstenhalterung und/oder die Bürsten geführt. Da dies die kritischen Wärmequellen sind, werden diese nun direkt mit dem sogenannten Kaltluftstrom direkt gekühlt.
  • Damit können in dem Schleifringsystem vorhandene Lüfter, wie z.B. Radiallüfter unterstützt werden.
  • Bei einem durchzugsbelüfteten Schleifringsystem wird kühlere Umgebungsluft angesaugt und im Schleifringsystem durch Lüfter und/oder Leitvorrichtungen, insbesondere an die Wärmequellen verteilt. Die nun im Schleifringsystem an den Bürstentaschen, den Bürstenhalterungen und/oder den Bürsten erwärmte Luft wird aus dem Schleifringraum in die Umgebung abgeführt. Die Luftströmung wird dabei von Saug- und/oder Drucklüftern generiert, die als Axial- oder Radiallüfter ausgeführt sind.
  • Filtermatten am Zugang und/oder am Abgang können dabei die verschmutzte Luft filtern.
  • Bei einem geschlossenen Schleifringsystem wird der in einem Zwischenkühler rückgekühlte Innenkühlkreislauf durch Lüfter und/oder Leitvorrichtungen, insbesondere an die Wärmequellen innerhalb des geschlossenen Gehäuses des Schleifringsystems verteilt. Die nun im Schleifringsystem an den Bürstentaschen, den Bürstenhalterungen und/oder den Bürsten erwärmte Luft wird aus dem Schleifringraum in den Zwischenkühler geleitet. Diese Luftströmung wird dabei von Saug- und/oder Drucklüftern generiert, die als Axial- oder Radiallüfter ausgeführt sind und innerhalb des Gehäuses des Schleifringsystems angeordnet sind.
  • Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung werden anhand prinzipiell dargestellter Ausführungsbeispiele näher erläutert. Darin zeigen:
  • FIG 1
    eine Bürstenhalterung,
    FIG 2 bis FIG 5
    jeweils ein Trägersegment mit Bürstenhaltung,
    FIG 6 bis FIG 8
    jeweils einen Schleifring,
    FIG 9
    eine Bürstenbrücke und
    FIG 10
    eine prinzipiell dargestellte dynamoelektrische Maschine mit Schleifringsystem.
  • FIG 1 zeigt eine Bürstenhalterung 1 mit Bürstentaschen 7 in diesem Fall drei parallelen Aufnahmetaschen, in die Bürsten 8 einsetzbar sind. In diesem Ausführungsbeispiel sind die Bürstentaschen 7 nur mit Ausnehmungen 11 versehen, um insbesondere eine Kühlung der Bürsten 8 zu erleichtern.
  • FIG 2 zeigt ein Trägersegment 2 an dem mehrere Bürstenhalterungen 1 angeordnet sind, wobei ein Trägersegment 2 für je eine elektrische Phase U, V, M eines Schleifringsystems 13 vorgesehen ist. Die Bürstentaschen 7 zeigen in dieser Ausführung Rippen 9, die im Wesentlichen tangential zu einer Achse 19 verlaufen.
  • Es sind grundsätzlich auch Ausführungen der Bürstentaschen 7 oder Bürstenhalterungen 1 möglich, bei denen Ausnehmungen 11 und oberflächenvergrößernde Strukturen, wie Rippen 9 realisiert sind.
  • FIG 3 zeigt eine Mischung von Verlaufsformen der Rippen 9, indem zum einen eine tangentiale Verlaufsform, als auch eine radiale Verlaufsform an einer Bürstenhalterung 1 vorhanden ist. Damit wird ein Kühlluftstrom nicht nur in Tangentialrichtung sondern auch in Radialrichtung geführt, was die Kühlung dieser Bürstenhalterung 1 weiter verbessert.
  • FIG 4 zeigt ein weiteres Trägersegment 2 mit Bürstentaschen 7, deren Oberfläche mit Nadeln 10 bzw. Noppen versehen ist, um die Oberfläche zu vergrößern und damit die Kühlung zu verbessern. Auch hier kann ein Kühlluftstrom 20 sowohl in Tangential- als auch Radialrichtung geführt werden.
  • FIG 5 zeigt eine Bürstentasche 7, deren Haltefunktion minimiert wurde, indem an die Bürstentasche 7 zusätzlich eine vorgegebene Anzahl von Ausnehmungen 11 vorgesehen wurden. An den verbliebenen Führungen der Bürste 8 sind Nadeln 10 angebracht, so dass eine direkte Kühlung Bürsten 8 und eine Kühlung der Bürstentasche 7 ermöglicht wird.
  • FIG 6 zeigt eine Schleifringeinheit mit drei einzelnen Schleifringen 3, die axial hintereinander angeordnet sind und durch eine Isolierung 4 voneinander getrennt sind. Jeder Schleifring 3 ist für eine elektrische Phase U oder V oder M vorgehen. An einem axialen Ende dieser Anordnung befindet sich ein Stützring 12 aus dem Kontaktstellen 5 achsparallel ragen und die einen elektrischen Anschluss eines Wicklungssystems 17 eines Rotors 16 erlauben.
  • FIG 7 zeigt in einer Queransicht das Schleifringsystem 3 gemäß FIG 6.
  • FIG 8 zeigt einen einzelnen Schleifring 3 beispielsweise der Phase U einer Schleifringeinheit mit den vorhin benannten Elementen, wie Kontaktstellen 5, Stützring 12, radialen Kühlöffnungen 23 und axialen Kühlöffnungen 24. Des Weiteren wird dort prinzipiell gezeigt, wie eine Bürstenhalterung 1 am Schleifring 3 angeordnet sein kann.
  • FIG 9 zeigt eine Bürstenbrücke, bei der vier Trägersegmente 2 axial hintereinander angeordnet sind, wobei beispielsweise drei Trägersegmente 2 jeweils einer elektrischen Phase U, V, M zugeordnet sind und ein Trägersegment 2 Bürsten 8 für eine Erdung aufweist.
  • FIG 10 zeigt in einer prinzipiellen Darstellung die Anordnung eines Schleifringsystems 13 auf einer Welle 18, wobei die Schleifringe 3 ebenso wie der Rotor 16 um die Achse 19 rotiert. Das Schleifringsystem 13 ist dabei an der Stirnseite des Rotors 16 positioniert.
  • Ein Schleifringsystems 13 weist eine Bürstenbrücke, mit Trägersegmenten 2 und eine Schleifringeinheit mit Schleifringen 3 auf. Ein Trägersegment 2 weist eine oder mehrere Bürstenhalterungen 1 auf, die jeweils einem Schleifring 3 zuzuordnen sind. Jede Bürstenhalterung 1 weist eine oder mehrere Bürstentaschen 7 auf, in denen die Bürsten 8 positioniert sind. Die Bürsten 8 werden durch nicht näher dargestellte Vorrichtung auf den Schleifring 3 gedrückt, um einen ordnungsgemäßen Kontakt zu gewährleisten. Des Weiteren werden die Bürsten 8 durch dementsprechende Einrichtung bezüglich ihres Verschleißes überwacht. Des Weiteren weist das Schleifringsystem 13 Kontaktstellen 5, Stützring 12, radialen Kühlöffnungen 23 und axialen Kühlöffnungen 24 auf.
  • Bei einem durchzugsbelüfteten Schleifringsystem 13 wird vorzugsweise kühlere Umgebungsluft durch Lüfter angesaugt und im Schleifringsystem 13 durch ggf. weitere Lüfter und/oder Leitvorrichtungen, insbesondere an die Wärmequellen verteilt. Die nun im Schleifringsystem 13 an den Bürstentaschen 7, den Bürstenhalterungen 1 und/oder den Bürsten 8 erwärmte Luft wird aus dem Schleifringraum in die Umgebung geleitet. Die Luftströmung wird dabei von Saug- und/oder Drucklüftern generiert, die als Axial- oder Radiallüfter ausgeführt sind und am oder im Schleifringraum angeordnet sind.
  • Filtermatten am Zugang und/oder am Abgang können dabei die verschmutzte Luft filtern.
  • Bei einem geschlossenen Schleifringsystem 13 wird der in einem Zwischenkühler rückgekühlte Innenkühlkreislauf durch Lüfter und/oder Leitvorrichtungen, insbesondere an die Wärmequellen innerhalb des geschlossenen Gehäuses des Schleifringsystems 13 verteilt. Die nun im Schleifringsystem 13 an den Bürstentaschen 7, den Bürstenhalterungen 1 und/oder den Bürsten 8 erwärmte Luft wird aus dem Schleifringraum, in den nicht näher dargestellten Zwischenkühler geleitet. Diese Luftströmung wird dabei von Saug- und/oder Drucklüftern generiert, die als Axial- oder Radiallüfter ausgeführt sind und innerhalb des Gehäuses des Schleifringsystems 13 angeordnet sind.
  • Derartige kompakte Schleifringsysteme 13 eignen sich vor allem für dynamoelektrischen Maschinen 14 mit vergleichsweise hoher Leistung im MW-Bereich. Dabei sind diese Maschinen 14 besonders als Generatoren, insbesondere doppelt gespeiste Asynchronmaschinen von Windkraftanlagen geeignet, da der vorhandene Bauraum in einer Gondel einer Windkraftanlage vergleichsweise knapp bemessen ist, und trotzdem vergleichsweise große Leistungen im Generator übertragen werden sollen.

Claims (9)

  1. Bürstenhalterung (1) eines Schleifringsystems (13), einer elektrisch erregten dynamoelektrischen Maschine (14), wobei die Bürstenhalterung (1) Mittel zur Kühlung von Bürsten (8) in der Bürstenhalterung (1) und/oder der Bürstenhalterung (1) vorsieht.
  2. Bürstenhalterung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Bürstenhalterung (1) oberflächenvergrößernde Strukturen aufweist.
  3. Bürstenhalterung (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Bürstenhalterung (1) eine oder mehrere Bürstentaschen (7) aufweist, wobei die Oberfläche der Bürstenhalterung (1) und/oder der Bürstentaschen (7) Rippen (9) und/oder Nadeln (10) und/oder Ausnehmungen (11) aufweist, um eine Kühlung der Bürsten (8) und/oder der Bürstenhalterung (1) zu ermöglichen.
  4. Trägersegment (2), dadurch gekennzeichnet, dass an dem Trägersegment (2) eine oder mehrere Bürstenhalterungen (1) nach einem der Ansprüche 1 bis 3 angeordnet sind.
  5. Schleifringsystem (13), dadurch gekennzeichnet, dass das Schleifringsystem (13) ein oder mehrere Trägersegmente (2) nach Anspruch 4 aufweist.
  6. Belüftungssystem eines Schleifringsystems (13) nach Anspruch 5, dadurch gekennzeichnet, dass innerhalb des Schleifringsystems (13), das geschlossen oder offen ausgeführt ist, Luft derart führbar ist, dass die Bürstenhalterungen (1), und/oder die Bürstentaschen (7) kühlbar sind.
  7. Belüftungssystem nach Anspruch 6, dadurch gekennzeichnet, dass Kühlluftströme radial und/oder in Umfangsrichtung an den Bürstenhalterungen (1) vorbeiführbar sind.
  8. Dynamoelektrische Maschine, insbesondere Generator einer Windkraftanlage mit einem Belüftungssystem nach Anspruch 7 oder einem Schleifringsystem (13) nach Anspruch 5.
  9. Dynamoelektrische Maschine nach Anspruch 8, dadurch gekennzeichnet, dass der Generator eine doppelt gespeiste Asynchronmaschine ist.
EP19177085.8A 2019-05-28 2019-05-28 Schleifringsystem mit verbesserter kühlung Withdrawn EP3745544A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19177085.8A EP3745544A1 (de) 2019-05-28 2019-05-28 Schleifringsystem mit verbesserter kühlung
EP20718258.5A EP3977572A1 (de) 2019-05-28 2020-04-03 Schleifringsystem mit verbesserter kühlung
CA3138621A CA3138621A1 (en) 2019-05-28 2020-04-03 Slip ring system with imrpoved cooling
US17/613,352 US11916467B2 (en) 2019-05-28 2020-04-03 Slip ring system with improved cooling
CN202080039385.6A CN113892215B (zh) 2019-05-28 2020-04-03 改善冷却的滑环系统
BR112021020887A BR112021020887A2 (pt) 2019-05-28 2020-04-03 Sistema de ventilação de um sistema de anel deslizante, e, máquina dinamoelétrica
PCT/EP2020/059546 WO2020239301A1 (de) 2019-05-28 2020-04-03 Schleifringsystem mit verbesserter kühlung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19177085.8A EP3745544A1 (de) 2019-05-28 2019-05-28 Schleifringsystem mit verbesserter kühlung

Publications (1)

Publication Number Publication Date
EP3745544A1 true EP3745544A1 (de) 2020-12-02

Family

ID=66676261

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19177085.8A Withdrawn EP3745544A1 (de) 2019-05-28 2019-05-28 Schleifringsystem mit verbesserter kühlung
EP20718258.5A Pending EP3977572A1 (de) 2019-05-28 2020-04-03 Schleifringsystem mit verbesserter kühlung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20718258.5A Pending EP3977572A1 (de) 2019-05-28 2020-04-03 Schleifringsystem mit verbesserter kühlung

Country Status (6)

Country Link
US (1) US11916467B2 (de)
EP (2) EP3745544A1 (de)
CN (1) CN113892215B (de)
BR (1) BR112021020887A2 (de)
CA (1) CA3138621A1 (de)
WO (1) WO2020239301A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210167670A1 (en) * 2018-07-27 2021-06-03 Flender Gmbh Holding device for a slip ring unit, slip ring bridge, slip ring unit, electric machine, and wind turbine
CN113708570A (zh) * 2021-08-18 2021-11-26 西安中车永电捷力风能有限公司 一种双馈风力发电机滑环室冷却结构
US20220224204A1 (en) * 2019-05-28 2022-07-14 Flender Gmbh Slip ring system with improved cooling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028606A (de) * 1973-07-20 1975-03-24
EP3291423A1 (de) * 2016-08-29 2018-03-07 Siemens Aktiengesellschaft Schleifringanordnung
US20180166844A1 (en) * 2015-05-29 2018-06-14 Siemens Aktiengesellschaft Arrangement for guiding and/or holding electrically conductive sliding contact elements

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH571283A5 (de) * 1974-04-17 1975-12-31 Bbc Brown Boveri & Cie
US4137474A (en) 1974-06-04 1979-01-30 Kraftwerk Union Aktiengesellschaft Gas-cooled slip ring for electrical machines
DE2848410A1 (de) * 1978-11-08 1980-05-29 Bosch Gmbh Robert Abdeckhaube fuer elektrische maschinen
JP3430027B2 (ja) * 1998-09-04 2003-07-28 三菱電機株式会社 車両用交流発電機
JP4106852B2 (ja) * 2000-04-14 2008-06-25 株式会社デンソー 車両用交流発電機
GB2367193A (en) * 2000-09-20 2002-03-27 Johnson Electric Sa Cooling brushes in a miniature electric motor
DE10154866A1 (de) * 2001-11-08 2003-05-28 Bosch Gmbh Robert Elektrische Maschine, vorzugsweise Drehstromgenerator für Kraftfahrzeuge
JP4471126B2 (ja) * 2006-09-07 2010-06-02 株式会社デンソー 車両用交流発電機
US7843080B2 (en) * 2009-05-11 2010-11-30 General Electric Company Cooling system and wind turbine incorporating same
JP4810589B2 (ja) * 2009-05-28 2011-11-09 三菱電機株式会社 回転電機
EP2688185B1 (de) * 2011-06-07 2018-01-17 Mitsubishi Electric Corporation Elektrische drehmaschine
CN103609007A (zh) 2011-07-28 2014-02-26 三菱电机株式会社 旋转电机
WO2013061404A1 (ja) * 2011-10-25 2013-05-02 三菱電機株式会社 回転電機
JP5634618B2 (ja) * 2011-11-09 2014-12-03 三菱電機株式会社 回転電機
WO2013069105A1 (ja) * 2011-11-09 2013-05-16 三菱電機株式会社 回転電機
JP5542977B1 (ja) * 2013-01-24 2014-07-09 三菱電機株式会社 回転電機
JP5721794B2 (ja) * 2013-08-26 2015-05-20 三菱電機株式会社 制御装置一体型回転電機
CN207732237U (zh) 2017-12-29 2018-08-14 江苏民威电碳科技有限公司 一种整流性能优良的电刷
CN208046397U (zh) 2018-02-13 2018-11-02 西门子公司 滑环结构及滑环电机
EP3537577A1 (de) * 2018-03-08 2019-09-11 Siemens Aktiengesellschaft Schleifringeinheit mit aktivem kühlsystem
EP3745544A1 (de) * 2019-05-28 2020-12-02 Siemens Aktiengesellschaft Schleifringsystem mit verbesserter kühlung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028606A (de) * 1973-07-20 1975-03-24
US20180166844A1 (en) * 2015-05-29 2018-06-14 Siemens Aktiengesellschaft Arrangement for guiding and/or holding electrically conductive sliding contact elements
EP3291423A1 (de) * 2016-08-29 2018-03-07 Siemens Aktiengesellschaft Schleifringanordnung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210167670A1 (en) * 2018-07-27 2021-06-03 Flender Gmbh Holding device for a slip ring unit, slip ring bridge, slip ring unit, electric machine, and wind turbine
US11664709B2 (en) * 2018-07-27 2023-05-30 Flender Gmbh Holding apparatus for a slip ring unit, slip ring bridge, slip ring unit, electric machine, and wind turbine
US20220224204A1 (en) * 2019-05-28 2022-07-14 Flender Gmbh Slip ring system with improved cooling
US11916467B2 (en) * 2019-05-28 2024-02-27 Flender Gmbh Slip ring system with improved cooling
CN113708570A (zh) * 2021-08-18 2021-11-26 西安中车永电捷力风能有限公司 一种双馈风力发电机滑环室冷却结构

Also Published As

Publication number Publication date
CN113892215A (zh) 2022-01-04
CA3138621A1 (en) 2020-12-03
EP3977572A1 (de) 2022-04-06
CN113892215B (zh) 2023-12-08
US11916467B2 (en) 2024-02-27
US20220224204A1 (en) 2022-07-14
WO2020239301A1 (de) 2020-12-03
BR112021020887A2 (pt) 2021-12-21

Similar Documents

Publication Publication Date Title
EP3745544A1 (de) Schleifringsystem mit verbesserter kühlung
EP3476012B1 (de) Schleifringeinheit mit lüfter-isoliersegment
DE102011087602B4 (de) Elektrische Maschine
DE10355385A1 (de) Dichtungseinrichtung für das Belüftungssystem eines elektrischen Generators
DE102010029986A1 (de) Dynamoelektrische Maschine mit Luft-Flüssigkeitskühlung
EP2930827B1 (de) Elektrische Maschine mit Strömungskühlung
DE602004011600T2 (de) Elektrischer Motor
EP3033825B1 (de) Einrichtung zum ablenken von zumindest einem teil eines axial in einem zwischen einem rotor und einem stator einer rotierenden elektrischen maschine angeordneten zwischenraum strömenden kühlfluids
DE10307813B4 (de) Elektrische Maschine
DE2007194A1 (de) Kühlgasführung bei elektrischen Maschinen
EP4278428B1 (de) Dynamoelektrische maschine mit kühlung des schleifringsystems
EP1249578A1 (de) Kühlung einer Gasturbine
DE102008035159A1 (de) Kühlluftstromverlauf für riemengetriebenen Stromgenerator für Fahrzeuge
DE102014223527A1 (de) Kühlung eines axialen Endbereichs eines Stators einer rotierenden elektrischen Maschine
EP0522210B1 (de) Verfahren zum Kühlen einer umlaufenden elektrischen Maschine und elektrische Maschine zur Durchführung des Verfahrens
EP2961009B1 (de) Windkraftgenerator mit einer Schleifringanordnung
EP3732772B1 (de) Schleifringeinheit mit aktivem kühlsystem
EP2887509B1 (de) Elektrische Kontaktvorrichtung für eine elektrische Maschine
DE102015219669A1 (de) Elektrische Maschine mit einer Kühleinrichtung
EP2887510B1 (de) Elektrische Kontaktvorrichtung für eine elektrische Maschine
EP0985262A1 (de) Flüssigkeitgekühlte elektrische maschine
EP3599679A1 (de) Haltevorrichtung für eine schleifringeinheit, schleifringbrücke, schleifringeinheit, elektrische maschine sowie windkraftanlage
DE102014102999A1 (de) Turbinenmantelkühlsystem
EP3780359A1 (de) Läuferwicklung mit lüftereffekt
DE102013203068B4 (de) Elektrische Maschine mit gekühltem Anschlusskasten und Kühlverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210603