EP3711074A1 - Unité de transformateur de puissance transportable - Google Patents
Unité de transformateur de puissance transportableInfo
- Publication number
- EP3711074A1 EP3711074A1 EP18702118.3A EP18702118A EP3711074A1 EP 3711074 A1 EP3711074 A1 EP 3711074A1 EP 18702118 A EP18702118 A EP 18702118A EP 3711074 A1 EP3711074 A1 EP 3711074A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- power transformer
- boiler
- transformer unit
- unit according
- cooling device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 claims abstract description 49
- 238000004804 winding Methods 0.000 claims abstract description 20
- 239000012530 fluid Substances 0.000 claims abstract description 16
- 239000004760 aramid Substances 0.000 claims description 7
- 229920003235 aromatic polyamide Polymers 0.000 claims description 7
- 239000010696 ester oil Substances 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 6
- 238000012806 monitoring device Methods 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 abstract 1
- 230000032258 transport Effects 0.000 description 40
- 239000000306 component Substances 0.000 description 8
- 239000004020 conductor Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/002—Arrangements provided on the transformer facilitating its transport
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/10—Liquid cooling
- H01F27/12—Oil cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/02—Casings
- H01F27/025—Constructional details relating to cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
Definitions
- the invention relates to a power transformer unit having at least a single-phase transformer, which is adapted for connection to a high voltage network, each a phasige transformer a filled with an insulating fluid boiler, in which a core is arranged with a high and low voltage winding, at least one bushing plug , Which is connected via a winding cable extending within the boiler with the upper or lower voltage winding, at least one Hochwoods trim guide, which is inserted into the feedthrough socket, a cooling device for cooling the insulating liquid and an expansion vessel, the temperature-compensated volume fluctuations of the Insulating fluid is used.
- Such a power transformer unit is from the
- the power transformer unit shown there has three single-phase transformers which are each provided for connection to a high voltage network.
- Each of the single-phase transformers has a separate boiler in which a core with egg ner upper and one low voltage winding is arranged.
- a feedthrough bushing is fluid-tightly secured into which a high voltage feedthrough can be inserted.
- the feedthrough socket protrudes into the oil chamber of the boiler and holds there with the help of an inner wall made of a non-conductive insulating material, a contact part which is connected via a winding connection line with the upper or lower voltage winding.
- each bushing has an open air connection for connecting an air-insulated high-voltage conductor to its end facing away from the insertion side. tion.
- a releasably connectable to the boiler cooling device and an expan tion vessel is disclosed, which is also releasably connectable to the boiler.
- a power transformer unit of modular construction is further known from WO 2017/186749 A1, WO 2017/186750 A2 and WO 2017/186751 A1.
- the object of the invention is to provide a varnisherein unit of the type mentioned, which can be put on the spot even faster ler ler.
- the invention solves this problem in that the expan tion vessel and the cooling device are mechanically firmly connected to the boiler and together with this and each
- Implementation socket form a transport unit, wherein the transport unit has an outer contour, which lies within a predetermined transport profile.
- a power transformer unit which consists of at least one and usually meh reren single-phase transformers.
- Each single-phase transformer is designed as a power transformer and provided for connection to a high-voltage network.
- each single-phase transformer with the exception of the high-voltage feedthroughs a transport unit whose outer contour lies within a pre-written transport profile.
- a transport profile is given for example by a road transport to be observed traffic order, which is the maximum height, width and length of a vehicle or a vehicle body established.
- the transport unit according to the invention is within this transport profile and can therefore without Jerusalemwitzi ge planning also transported via conventional roads who the.
- the only limiting factor is the weight of the transport unit, which can be between 50 and 200 tonnes.
- the transport unit according to the invention consists at least of the boiler, the expansion vessel and the cooling device of the respective single-phase transformer, wherein the expansion vessel and the cooling device are firmly connected to the boiler.
- Appropriate connecting lines allow Iso lierfluid from the interior of the boiler via thedeeinrich device can be circulated or can pass as a result of a rise in temperature from the boiler in the expansion vessel.
- Appropriate lifting points are provided on the boiler, at which a crane can engage to lift the transport unit.
- the transport unit is, for example, on the trailer of a truck or alternatively on a
- the transport unit is less than 4.2 m in height, smaller than 3.3 m in width and less than 9 m in length. These dimensions have been found to be particularly expedient to easily meet the existing requirements in the respective countries to a cargo.
- the transport unit comprises in addition to the said components also at least one motor drive, we least one sensor unit and at least one protection and monitoring device.
- the said additional components are advantageously fixed to the boiler or even theisserein direction or the expansion vessel, so that they form a solid mechanical bond and thus need not be complex assembled on site.
- the components are installed so that the maximum height, width and length of the transport unit is within the transport profile.
- the expansion vessel is designed box-shaped, extending in a longitudinal direction and has a height between 50 cm and 250 cm.
- the expansion vessel expediently extends above the boiler and parallel to this, the distance to the boiler is kept as low as possible and for example a few centimeters, for example 5 cm - 30 cm, is. If the expansion vessel has, for example, a height of about 20 cm, the boiler can have a height of more than 4 m, without the transport unit projecting beyond the trans port profile.
- the width of the expansion vessel is smaller than two-thirds of the width of the boiler.
- the length of the expansion vessel is greater than three-quarters of the length of the Kes sels. According to this further development of the invention, cherstra that the expansion vessel has the necessary internal volume to compensate for the volume fluctuations of the insulating fluid Kings even with larger temperature fluctuations NEN.
- boiler and expansion vessel each extend in a longitudinal direction, the two longitudinal lines extending parallel to each other.
- Both expansion vessel and the boiler are box-shaped according to this further development of the invention.
- the box of the expansion vessel extends above the boiler with the smallest possible distance.
- the lengths of Kes sel and expansion vessel are advantageously in the same order of magnitude, while the width of the Ausdehnungsge vessel is less than the width of the boiler.
- the expansion vessel is therefore arranged only above a portion of the lid of the boiler.
- a section of the boiler is open at the top, in order to arrange the Hochhards notebook material ments there.
- the boiler on two opposite longitudinal sides and two opposite end faces, which with the
- the kettle has a box-shaped outer contour that deviates from a cube structure in that two sides of the box facing each other are longer than the other two opposite sides, the shorter sides being referred to herein as end faces.
- the boiler can be designed according to this development who the that this has a width which is slightly less than that of the transport profile.
- the length of the boiler is chosen so that it does not exceed the maximum length of the transport profile together with the front side arranged cooling devices.
- the arrangement of the cooling device at we- at least one of the front sides allows in a particularly simple manner, the transport unit to dimensionie ren ren that this does not exceed the transport profile.
- the cooling device on two cooling units, which are arranged on different end faces.
- a cooling unit of the cooling device is arranged on a first end face.
- the other cooling unit of the cooling device is mounted on the opposite end face of the boiler, wherein both cooling units are connected via an inlet and outlet to the interior of the boiler, so that the insulating fluid can be circulated through the respective cooling unit vice.
- the circulation can take place passively or actively within the scope of the invention.
- the cooling device on an inlet and outlet, both of which are arranged below a cooling unit of the cooling device to. According to this advantageous development, it is possible that the expansion vessel can be arranged with only a small distance above the boiler.
- the bushings are arranged in a lid of the boiler.
- dome are avoided according to this advantageous development.
- dome increase the internal volume of the boiler and therefore simplify the inclusion of a passage.
- such a dome would not allow to arrange the expansion vessel with a small distance to the lid of the boiler.
- the windings have an aramid insulation.
- Aramid is an insulating material associated with a high thermal grade and capable of providing the necessary dielectric strength even at high temperatures of the insulating fluid within the boiler.
- aramid insulation serves to hold the winding conductors of the winding at a fixed distance from one another.
- An aramid insulation can also serve for the voltage-resistant routing of connecting cables.
- aramid insulation or another insulating material of this thermal class which can likewise be used instead of aramid insulation, is known to the person skilled in the art, so that further explanations for this can be dispensed with.
- the insulating fluid is an ester oil.
- Ester oils have the advantage over mineral oils that they are environmentally friendly.
- transformers whose boilers are filled with ester oil can be operated at higher temperatures than would be the case with a comparable transformer with mineral oil filling.
- the trans port unit can therefore be made even more compact.
- Figure 1 shows an embodiment of a single-phase
- FIG. 2 shows the single-phase transformer according to FIG. 1 in a side view
- FIG. 3 shows the single-phase transformer according to FIG. 2 in a plan view
- Figure 4 shows the transport unit of a single-phase transformer according to Figure 1 with transport profile and Figure 5 illustrate the transport unit according to Figure 4 in a plan view.
- Figure 1 shows an embodiment of a single-phase
- Transformers 1 a procedureforransfor- matorhim invention, which in addition to the single-phase transformer 1 shown in Figure 1 has two further identically configured single-phase power transformers 1.
- Each monophasic transformer 1 is used to connect a phase of a three-phase AC voltage supply network, which is here at a high voltage potential of 335 kV.
- the single-phase transformer 1 shown in Figure 1 has a boiler 2, which has a viewer facing Be tenwand 3 and an end face 4, which is the viewer ter also facing.
- the side wall 3 is a correspondingly dimensioned not visible in Figure 1 sides wall 5 opposite, whereas the front side 4 a corre sponding dimensioned end face 6 is opposite.
- the boiler 2 has a cover 7, which closes fluid-tight at the top.
- the bottom wall of the boiler 2 is not shown figuratively in FIG.
- the single-phase transformer 1 further comprises adeein direction, which consists of two cooling units 8 and 9, wherein the cooling unit 8 is connected to the front side 4 and the cooling unit 9 on the front side 6 fixed to the boiler 2.
- Each cooling unit 8 and 9, respectively, is equipped with fans 10 which, if required, generate an air flow for increasing the cooling power of the respective cooling unit 8, 9.
- Each cooling unit 8, 9 is connected via an inlet 11 and a drain 12 to the interior of the boiler 2, which is filled with an insulating fluid - here an ester oil. It can be seen that both inlet 11 and outlet 12 un below the respective cooling unit 8 or 9 open into this.
- a surge tank 13 Above the boiler 2 extends a surge tank 13, which is also connected via a connecting line 14 to the inner space of the boiler 2.
- the expansion vessel 13 he stretches, as the boiler 2, in a longitudinal direction, wherein the longitudinal direction of the expansion vessel 13 and the longitudinal direction of the boiler 2 are parallel to each other.
- the expansion vessel 13 is substantially box-shaped and in particular flat, and has a height of about 1 m, wherein the distance between the lid 7 and the bottom surface of the Ausdehnungsge vessel 13, not shown figuratively, is about 10 cm. It is essential that the inlet opening of the inlet 11 is arranged below the inlet mouth of the connecting line 14, so that it is ensured that the level of the insulating liquid in the boiler 2 is always above the inlet opening of the inlet 11.
- bushings 15 are arranged, which are fluid-tightly connected to the boiler 2.
- Each through bushing socket 15 forms a mounting flange, against which it is pressed firmly on the cover 7 of the boiler 2 GE.
- appropriate screw connections serve.
- figuratively illustrated sealing means are required, which are clamped between the De ckel 7 and the mounting flange.
- Bushing socket 15 also has aconsab-section, which is not shown figuratively and is made of egg nem electrically non-conductive insulating material be.
- the receiving portion tapers to a ge closed end.
- Kon contact part At its projecting into the inner space of the boiler 2 section Kon contact part is connected to a winding connection line extending within the boiler 2 to a winding which is arranged in the boiler. Said winding is inductively coupled via a magnetizable core with another Wick development.
- a high voltage feedthrough 16, 17, 18 is introduced in Figure 1 respectively. These each have an insertion-side insertion, the complementary shape to said receiving portion of the
- Feedthrough socket 15 is formed so that it comes to a precise fit of the two components together and air or other inclusions are avoided.
- each high-voltage feedthrough 16, 17, 18 is equipped with an outdoor connection 19.
- the single-phase transformer 1 has two cable outputs 20, which are adapted to receive a cable connector.
- the cable outputs 20 are redundant, so that in case of failure of a cable output 20, the power supply of the transformer 1 downstream consumers is ensured by the still intact cable exit 20.
- the transformer 1 with three high-voltage bushings 16, 17 and 18 is shown.
- the high-voltage lead-through 16 is used to connect an air-insulated phase conductor of a high-voltage power supply network with a voltage of 335 kV.
- the single-phase transformer 1 can now be set so that it outputs the output voltage across the high-voltage bushing 17 or 18, the output voltage from, for example, 138 kV or 134 kV. It is understood that in this case le diglich an output-side high-voltage bushing 17 or 18 is required and the other Hochschreibs pleat tion does not have to be plugged into the associated feedthrough socket 15.
- a device box 21 and a control unit 22 can be seen in addition to the cooling unit 8, which are both sides of the cooling unit 8 attached to the boiler 2.
- the cooling unit 8 which are both sides of the cooling unit 8 attached to the boiler 2.
- a bulge 23 which serves to accommodate the imple mentation socket 15 for the high-voltage bushing 16. Laterally offset next to the bulge 23, the cooling unit 9 can be seen.
- FIG. 2 shows the single-phase transformer 1 according to FIG. 1 in a side view, in which the bulge 23 covers somewhat the cooling unit 8 arranged behind it, so that only the fans 10 can be seen.
- the expansion vessel 13 is offset from the boiler 2 to the left and protrudes beyond the lid 7 of the boiler 2 and projects beyond the inlet 11 of the cooling unit 8, extending from its top of the boiler 2 arranged inlet opening under the device box 21 through the inlet opening of the cooling unit 8 extends.
- Figure 3 shows the single-phase transformer 1 in a plan view, from which in particular the connecting line 14 is clearly visible.
- the expansion vessel 13 has a vent line 24 equipped with an air dryer to allow the supply of dry air to the expansion vessel 13 at its end remote from the expansion vessel 13.
- FIG. 4 shows a transport unit 25 of the single-phase transformer 1 according to FIGS. 1, 2 or 3, which comprises all components of the single-phase transformer 1, with the exception of the high-voltage feedthrough 16, 17 and 18.
- a transport profile 26 is clarified, which should clarify the ma ximal allowable size of cargo in traffic ver. It can be seen that the transport unit 25 does not exceed the maximum permissible transport profile 26. This is achieved on the one hand by the fact that all compo- nents - with the exception of the bushings 16, 17, 18 - are installed on the end faces 4 or 6.
- the expansion vessel 13 is formed flat, wherein the accesses, so both the input and the output to the respective cooling units 8 and 9 below the respective cooling unit 8 and 9 are arranged.
- FIG. 5 shows the transport unit 24 and the associated transport profile 25 in an end view. Again, it is recognizable that the transport unit 25 is within the transport port profile 26 and thus allowed to be admitted for road transport.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transformer Cooling (AREA)
Abstract
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2018/050859 WO2019137623A1 (fr) | 2018-01-15 | 2018-01-15 | Unité de transformateur de puissance transportable |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3711074A1 true EP3711074A1 (fr) | 2020-09-23 |
EP3711074B1 EP3711074B1 (fr) | 2022-03-30 |
Family
ID=61094431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18702118.3A Active EP3711074B1 (fr) | 2018-01-15 | 2018-01-15 | Unité de transformateur de puissance transportable |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200343033A1 (fr) |
EP (1) | EP3711074B1 (fr) |
DK (1) | DK3711074T3 (fr) |
WO (1) | WO2019137623A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112821722B (zh) | 2019-10-31 | 2022-07-19 | 台达电子企业管理(上海)有限公司 | 功率变换系统 |
CN112751473B (zh) * | 2019-10-31 | 2021-11-05 | 台达电子企业管理(上海)有限公司 | 功率模块 |
CN112750607A (zh) | 2019-10-31 | 2021-05-04 | 台达电子企业管理(上海)有限公司 | 变压器及具有其的功率模块 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123783A (en) * | 1964-03-03 | Mobile transformer apparatus | ||
DE709004C (de) * | 1937-01-24 | 1941-08-04 | Siemens Schuckertwerke Akt Ges | Auf der Eisenbahn betriebsfertig verfahrbarer Grosstransformator |
DE721450C (de) * | 1940-06-16 | 1942-06-05 | Aeg | Mit der Eisenbahn verfahrbarer Grosstransformator |
DE932567C (de) * | 1941-08-28 | 1955-09-05 | Aeg | Mit der Eisenbahn verfahrbarer Grosstransformator mit Deckelkuehlung |
DE749246C (de) * | 1941-10-29 | 1945-01-04 | Bahntransportfaehiger Einphasentransformator grosser Leistung und hoher Spannung | |
US2341058A (en) * | 1941-11-29 | 1944-02-08 | Gen Electric | Electric apparatus with fluid system therefor |
DE918695C (de) * | 1950-11-04 | 1954-10-04 | Licentia Gmbh | Mit der Eisenbahn in betriebsfertigem Zustand verfahrbarer Hochleistungstransformator |
US3872414A (en) * | 1973-10-12 | 1975-03-18 | Hipotronics | Mobile, accurately mechanically variable high reactive power inductor having low headroom requirements suitable for transport on a utility vehicle |
JPH05501346A (ja) * | 1989-09-28 | 1993-03-11 | イソボルタ・エスターライヒツシエ・イゾリールシユトツフベルケ・アクチエンゲゼルシヤフト | 電気機械の巻き線の電気的絶縁物の製造方法 |
NO313068B1 (no) * | 2000-11-14 | 2002-08-05 | Abb As | Undersjoisk transformator - distribusjonssystem med et forste og et andre kammer |
ES2257161B1 (es) * | 2004-07-22 | 2007-07-01 | Asea Brown Boveri, S.A. | Transformador de potencia multi-tension para red de transmision de energia electrica de alta tension (politrafo). |
CN102160132A (zh) * | 2008-09-19 | 2011-08-17 | Abb技术有限公司 | 变压器组件 |
US20100090543A1 (en) * | 2008-10-10 | 2010-04-15 | General Electric Company | Portable transformer and method for improving reliability of electric power delivery |
CA2823141C (fr) * | 2010-12-30 | 2018-11-27 | Union Carbide Chemicals & Plastics Technology Llc | Procede d'elimination d'impuretes a partir de fluides dielectriques a base d'huile de type ester naturel |
WO2013013703A1 (fr) * | 2011-07-25 | 2013-01-31 | Abb Technology Ag | Dispositif de sécurité et procédé de surveillance pour un transformateur de puissance, et transformateur de puissance associé |
US9816633B2 (en) * | 2011-10-11 | 2017-11-14 | Sentry Depressurization Systems, Inc. | Depressurization system for an electrical transformer |
CA2965666C (fr) * | 2014-10-24 | 2023-06-27 | Abb Schweiz Ag | Dispositif inductif renforce ainsi que systemes et procedes de protection du dispositif inductif contre des evenements catastrophiques |
EP3057112B1 (fr) * | 2015-02-16 | 2020-05-20 | ABB Power Grids Switzerland AG | Transformateur à huile |
EP3069868A1 (fr) * | 2015-03-17 | 2016-09-21 | ABB Technology Ltd | Matériau d'isolation électrique inorganique |
US10543511B2 (en) * | 2015-10-07 | 2020-01-28 | Abb Power Grids Switzerland Ag | Material coating system and method |
DE102016207405A1 (de) | 2016-04-29 | 2017-11-02 | Siemens Aktiengesellschaft | Transformator mit einsteckbaren Hochspannungsdurchführungen |
DE102016207390A1 (de) | 2016-04-29 | 2017-11-02 | Siemens Aktiengesellschaft | Transformator mit eingehängtem Kühlmodul |
DE102016207425A1 (de) | 2016-04-29 | 2017-11-02 | Siemens Aktiengesellschaft | Anordnung von einphasigen Transformatoren |
DE102016207393A1 (de) | 2016-04-29 | 2017-11-02 | Siemens Aktiengesellschaft | Ersatztransformator mit modularem Aufbau |
-
2018
- 2018-01-15 WO PCT/EP2018/050859 patent/WO2019137623A1/fr unknown
- 2018-01-15 DK DK18702118.3T patent/DK3711074T3/da active
- 2018-01-15 US US16/962,340 patent/US20200343033A1/en active Pending
- 2018-01-15 EP EP18702118.3A patent/EP3711074B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
US20200343033A1 (en) | 2020-10-29 |
WO2019137623A1 (fr) | 2019-07-18 |
EP3711074B1 (fr) | 2022-03-30 |
DK3711074T3 (da) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3229242B1 (fr) | Traversée haute tension | |
EP3427275B1 (fr) | Transformateur de rechange de conception modulaire | |
EP3711074A1 (fr) | Unité de transformateur de puissance transportable | |
DE3240724A1 (de) | Transformatoranordnung | |
WO2018046208A1 (fr) | Transformateur pour transmission de courant continu à haute tension | |
EP3577664B1 (fr) | Dispositif électrique avec une réservoir d'une forme complémentaire à la partie active | |
WO2017186749A1 (fr) | Ensemble de transformateurs monophasés | |
WO2010112462A2 (fr) | Raccord réducteur pour boîtier d'encapsulation | |
EP3133615B1 (fr) | Systeme de bobine electrique | |
DE2225987A1 (de) | Elektrische energieuebertragung mit verdampfungskuehlung | |
EP3685039B1 (fr) | Dispositif composé d'une cuve de transformateur et d'une nacelle d'une éolienne | |
DE10296689T5 (de) | Elektrolytkondensator und Verfahren zur dessen Kühlung | |
DE2613367C2 (de) | Hochspannungsdurchführung durch ein Gerätegehäuse | |
EP3164919B1 (fr) | Terminaison de câble pour relier une installation de commutation à un câble haute tension | |
EP3577665B1 (fr) | Partie active pour un appareil électrique à haute tension | |
DE102017206733A1 (de) | Verbesserter Gasbehälter für Schaltanlagen und Schaltanlage mit einem solchen verbesserten Gasbehälter und Herstellungsverfahren für einen solchen Gasbehälter | |
DE102011004428A1 (de) | Behälter für eine elektrische Schaltanlage | |
DE2554460B2 (de) | Transformator für hohe Spannung mit einer örtlich verformbaren Verbindung zwischen einer Wicklung und einem Anschlußleiter | |
DE102010004971A1 (de) | Vorrichtung für eine Schaltanlage | |
DE314236C (fr) | ||
DD257136A1 (de) | Messanordnung fuer transformatoren hoher spannung | |
EP3360147A1 (fr) | Dispositif de liaison électrique d'au moins quatre conducteurs électriques | |
DE2138895A1 (de) | Vorrichtung zum verbinden elektrischer geraete mit einem energieversorgungsnetz | |
DD257135A1 (de) | Messanordnung fuer transformatoren hoher spannung | |
EP3738134A1 (fr) | Dispositif pour protéger un semi-conducteur de puissance dans une cuve remplie d'un fluide isolant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211011 |
|
INTG | Intention to grant announced |
Effective date: 20211029 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018009240 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1479949 Country of ref document: AT Kind code of ref document: T Effective date: 20220415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20220603 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220630 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220701 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220801 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220730 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018009240 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230115 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230115 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240125 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1479949 Country of ref document: AT Kind code of ref document: T Effective date: 20230115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230115 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240129 Year of fee payment: 7 Ref country code: GB Payment date: 20240123 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240125 Year of fee payment: 7 Ref country code: NO Payment date: 20240118 Year of fee payment: 7 Ref country code: FR Payment date: 20240125 Year of fee payment: 7 Ref country code: DK Payment date: 20240125 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |