EP3707179A1 - Nouveau copolymère et son utilisation comme additif pour carburant - Google Patents

Nouveau copolymère et son utilisation comme additif pour carburant

Info

Publication number
EP3707179A1
EP3707179A1 EP18795674.3A EP18795674A EP3707179A1 EP 3707179 A1 EP3707179 A1 EP 3707179A1 EP 18795674 A EP18795674 A EP 18795674A EP 3707179 A1 EP3707179 A1 EP 3707179A1
Authority
EP
European Patent Office
Prior art keywords
group
fuel
copolymer
formula
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18795674.3A
Other languages
German (de)
English (en)
Inventor
Inigo Gonzalez
Julie Prevost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Onetech SAS
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Publication of EP3707179A1 publication Critical patent/EP3707179A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2366Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amine groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/06Use of additives to fuels or fires for particular purposes for facilitating soot removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/18Use of additives to fuels or fires for particular purposes use of detergents or dispersants for purposes not provided for in groups C10L10/02 - C10L10/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/50Chemical modification of a polymer wherein the polymer is a copolymer and the modification is taking place only on one or more of the monomers present in minority
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/40Applications used as motor oil additive
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/08Inhibitors
    • C10L2230/086Demulsifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/22Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine

Definitions

  • the present invention relates to a novel copolymer and its use as an additive for liquid fuel of an internal combustion engine.
  • Liquid fuels of internal combustion engines contain components that can degrade during the operation of the engine.
  • the problem of deposits in the internal parts of combustion engines is well known to motorists. It has been shown that the formation of these deposits has consequences on engine performance and in particular has a negative impact on fuel consumption and particulate emissions. Advances in fuel additive technology have addressed this problem.
  • Additives known as detergents used in fuels have already been proposed to maintain the cleanliness of the engine by limiting deposits ("keep-clean” effect) or by reducing the deposits already present in the internal parts of the combustion engine (effect "Clean-up" in English).
  • a detergent additive for petrol fuel containing a quaternary ammonium function By way of example, mention may be made of US41 71959 which describes a detergent additive for petrol fuel containing a quaternary ammonium function.
  • WO200613588 1 discloses a detergent additive containing a quaternary ammonium salt used to reduce or clean deposits including the intake valves.
  • engine technology is constantly evolving and fuel requirements need to evolve to cope with these advanced combustion engine technologies.
  • the new petrol or diesel direct injection systems expose injectors to more severe pressure and temperature conditions, which favors the formation of deposits.
  • these new injection systems have more complex geometries to optimize the spraying, in particular, more holes with smaller diameters but which, on the other hand, induce greater sensitivity to deposits.
  • the presence of deposits can alter the performance of combustion including increasing pollutant emissions and particulate emissions. Other consequences of the excessive presence of deposits have been reported in the literature, such as increased fuel consumption and maneuverability problems.
  • demulsifier additives or demulsifier
  • US 201 6/0160144 proposes to use a polyisobutenyl succinic acid in combination with one or more detergent additives to improve the separation of water and fuel.
  • the object of the invention relates to novel copolymers comprising the combination of at least two types of particular units, as described hereinafter. These copolymers are useful in particular as additives in petroleum products, and in particular in liquid fuels of an internal combustion engine.
  • the copolymers according to the invention have remarkable properties as a detergent additive in liquid fuels of an internal combustion engine. Used in these fuels, the copolymers according to the invention make it possible to maintain the cleanliness of the engine, in particular, by limiting or avoiding the formation of the deposits ("keep-clean” effect) or by reducing the deposits already present in the internal parts of the combustion engine (“clean-up” effect).
  • copolymers according to the invention have remarkable properties as a demulsifying additive in liquid fuels of an internal combustion engine. They make it possible to improve the separation of water and fuel when the latter contains water.
  • improving the separation of water and fuel is meant to accelerate the separation, and / or to increase the rate of separation of the fuel and the residual water present in this fuel.
  • the present invention is obj and a copolymer comprising:
  • Ri represents a hydrogen atom or a methyl group
  • E represents -O- or -N (Z) -, or -O-CO-, or -CO-O- or -NH-CO- or -CO-NH-, where Z is H or a C1-C4 alkyl group;
  • C 6 , G represents a group chosen from a C 1 to C 34 alkyl group, an aromatic ring, an aralkyl group comprising at least one aromatic ring and at least one C 1 to C 34 alkyl group, and - units of formula (II) next :
  • Ri is chosen from hydrogen atom and methyl group
  • Q is chosen from the oxygen atom and a group -NR'- with R 'being chosen from a hydrogen atom and the C1-C12 hydrocarbon chains,
  • R represents a C 1 to C 34 hydrocarbon-based chain which may also contain one or more nitrogen and / or oxygen atoms and / or carbonyl groups, substituted by at least one amino group; non-quaternary amine and / or at least one quaternary amino group, said non-quaternary amine group comprising at least one primary, secondary or tertiary amine function,
  • said quaternary amino group comprising at least one quaternary ammonium function and optionally one or more hydroxyl groups
  • the group G of the formula (I) is chosen from a C 4 to C 34 alkyl group, an aromatic ring, an aralkyl group comprising at least one aromatic ring and at least one C 1 to C 34 alkyl group, preferably C 4 to C 34.
  • the group G of formula (I) is an aralkyl group comprising at least one aromatic ring and at least one C 4 to C 30 alkyl group.
  • the group G of the formula (I) is a C 4 to C 34 alkyl group.
  • the group E of formula (I) is chosen from: -O- and -N (Z) -, with Z representing H or a C 1 to C 6 alkyl group.
  • the group E of the formula (I) is chosen from: -CO-O- and -CO-NH-, preferably the group E is the group -CO-O-, it being understood that the group E is connected to the vinyl carbon by the carbon atom.
  • the R groups of the units of formula (II) comprise at least one quaternary amino group.
  • the units of formula (II) in which the group R comprises no quaternary amino group comprise in the group R at least one amino group comprising a primary, secondary or tertiary amine function. These units represent from 5 to 95% by m the units of formula (II) of the copolymer according to the invention.
  • said non-quaternary amine group is chosen from groups having at least one amine, imine, amidine, guanidine, aminoguanidine or biguanidine function, such as alkyl-amines, polyalkylene polyamines, polyalkylenimines, alkylimines, alkyls. -amidines, alkyl-guanidines and alkyl-biguanidines, the alkyl substituent may be linear or branched, cyclic or acyclic, and preferably having 1 to 34 carbon atoms, more preferably 1 to 12 carbon atoms.
  • said non-quaternary amine group is chosen from monocyclic or polycyclic heterocyclic groups having from 3 to 34 atoms, preferably from 5 to 12 atoms, more preferably from 6 to 10 atoms, and at least one atom. nitrogen, it being understood that the polycyclic heterocyclic groups have, optionally, fused rings.
  • the number of atoms includes hetero atoms. By fused rings are meant rings having at least two atoms in common.
  • the heterocyclic groups may further include an oxygen atom and / or a carbonyl group and / or one or more unsaturations.
  • heterocyclic amine group mention may be made of the following radicals: triazole, aminotriazol, pyrrolidone, piperidine imidazole, morpholine, isoxazol, oxazole, indole, the said radical being preferably linked to the hydrocarbon chain by an atom nitrogen.
  • the group R of formula (II) comprising at least one non-quaternary amine group is represented:
  • R 2 ' is selected from C 1 to C 34 hydrocarbon chains, optionally substituted with at least one hydroxyl group, and - L is selected from the group consisting of:
  • polyamine groups and polyalkylene polyamines especially those of formulas -NH- (Rf-NH) kH; -NH- (Rf-NH) k-Ra; with R a , Rb, R c , Rd and R e represent, independently of one another, a C 1 -C 34, preferably C 1 -C 12, alkyl group optionally comprising one or more NH 2 functions and one or more bridges -NH-;
  • Rf represents a C 1 -C 6 alkyl group, preferably C 2 -C 4 alkyl
  • k represents an integer ranging from 1 to 20, preferably from 2 to 12.
  • polyamines and polyalkylene polyamines examples include: ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine.
  • the quaternary ammonium function (s) of the quaternary amino group may be chosen from quaternary ammoniums of pyrrolinium, pyridinium, imidazolium, triazolium, triazinium, oxazolium and isoxazolium.
  • the quaternary ammonium function (s) is (are) chosen from quaternary ammoniums of trialkylammonium, iminium, amidinium, formamidinium, guanidinium and biguanidinium, and preferably of trialkylammonium.
  • the group R of formula (II) comprising at least one quaternary amino group is a quaternized form of one of the groups of formulas (V) and (V) above, when these contain at least one quaternizable nitrogen atom.
  • the group R of formula (II) comprising at least one quaternary amino group is represented by one of the following formulas (III) and (IV):
  • X " is chosen from hydroxide ions, halides and organic anions, preferably organic anions,
  • R 2 is chosen from C 1 to C 34 hydrocarbon chains, optionally substituted with at least one hydroxyl group,
  • R 3, R 4 and R 5 are identical or different and chosen, independently, from C 1 to C 18 hydrocarbon chains, it being understood that the R 3, R 4 and R 5 groups may contain one or more groups chosen from: a nitrogen atom , an oxygen atom and a carbonyl group and the R 3 groups, R 4 and R 5 can be joined together pairwise to form one or more rings,
  • R 6 and R 7 are identical or different and independently selected from C 1 to C 18 hydrocarbon chains, it being understood that the R 6 and R 7 groups may contain one or more groups chosen from: a nitrogen atom, an oxygen atom and a carbonyl group and that the R 6 and R 7 groups can be joined together to form a ring.
  • the group R of formula (II) comprising at least one quaternary amino group is represented by formula (III) above, in which:
  • X " is chosen from organic anions, preferably conjugated bases of carboxylic acids,
  • R 2 is selected from C 1 to C 34 hydrocarbon chains, preferably C 1 to C 18 alkyl groups,
  • R 3, R 4 and R 5 are identical or different and are chosen, independently, from C 1 to C 18 hydrocarbon chains, optionally substituted with at least one hydroxyl group, it being understood that at least one of the groups R 3, R 4 and R 5 contains one or more hydroxyl groups.
  • the present invention also relates to a process for preparing the copolymer as described above.
  • the copolymer according to the invention is obtained by copolymerization of at least:
  • Ri ', u, E and G are as defined above, and
  • Ri ", v, Q and R are as defined above,
  • polar monomers (mb) comprise a group R containing at least one quaternary amino group.
  • the copolymer according to the invention is obtained by copolymerization of at least:
  • Ri ', u, E and G are as defined above, and
  • R represents a C 1 to C 34 hydrocarbon chain which may also contain one or more nitrogen and / or oxygen atoms and / or carbonyl groups, substituted by at least one non-quaternary amino group,
  • partial quaternization is meant a quaternization of 5 to 95% in terms of the amino groups of the units derived from the monomer (mb). This quaternization of said amino groups implies that they comprise at least one quaternizable nitrogen atom.
  • the monomer (m a ) is chosen from C 1 to C 34 alkyl acrylates and C 1 to C 34 alkyl methacrylates.
  • the copolymer according to the invention is chosen from block copolymers and random copolymers, and preferably the copolymer according to the invention is a block copolymer.
  • the copolymer according to the invention is a block copolymer comprising:
  • p is an integer ranging from 2 to 100, preferably ranging from 5 to 80, preferably ranging from 10 to 70, more preferably ranging from 20 to 60, Ri ', u, E and G are as defined above, and
  • n is an integer ranging from 2 to 50, preferably from 3 to 40, more preferably from 4 to 20, even more preferably from 5 to 10, Ri ", v, Q and R are as defined above,
  • the block copolymer comprises at least: a block A consisting of a chain of structural units derived from one or more apolar monomers chosen from apolar monomers (m a ) of formula (VII), and
  • a block B consisting of a chain of structural units derived from polar monomers selected from polar monomers (mb) of formula (VIII).
  • the block copolymer comprises at least:
  • Block B consisting of a chain of structural units of which 5 to 95 mol% are derived from a single polar monomer selected from polar monomers (mb) of formula (VIII) in which the R group contains at least one amino group quaternary, and of which 5 to 95 mol% are derived from a single polar monomer chosen from polar monomers (mb) of formula (VIII) in which the group R does not contain a quaternary amino group and comprises at least one amino group non-quaternary.
  • the block copolymer comprises at least:
  • block A consisting of a chain of structural units derived from a C1-C34 alkyl (meth) acrylate monomer (m a ), and
  • Block B consisting of a chain of structural units derived from alkyl (meth) acrylate monomers or alkyl (meth) acrylamide (mb), of which 5 to 95 mol% have an alkyl radical consisting of a hydrocarbon chain in C1 to C34 substituted by a quaternary amino group and optionally one or more hydroxyl groups, and of which 5 to 95 mol% have an alkyl radical consisting of a C1 to C34 hydrocarbon chain substituted with a non-quaternary amine group selected from primary amines secondary or tertiary, preferably tertiary amines.
  • the number of monomer equivalents (m a ) of the block A is from 2 to 100 moles.
  • the number of monomer equivalents (mt) of the block B is from 2 to 50 moles.
  • the copolymer comprises at least one block sequence AB, ABA or BAB where said blocks A and B are linked together without the presence of an intermediate block of different chemical nature.
  • the block copolymer is obtained by sequential polymerization, optionally followed by one or more post-functionalizations.
  • the invention also relates to a fuel concentrate comprising one or more copolymers according to the invention as defined above, in admixture with an organic liquid, said organic liquid being inert with respect to screw of said (said) copolymer (s), and miscible with said fuel.
  • the invention also relates to a fuel composition
  • a fuel composition comprising:
  • a fuel from one or more sources selected from the group consisting of mineral, animal, plant and synthetic sources, and
  • the fuel composition according to the invention comprises the copolymer (s) according to the invention in a minimum content of 5 ppm.
  • the fuel (1) is selected from hydrocarbon fuels, non-substantially hydrocarbon fuels and mixtures thereof.
  • the hydrocarbon fuel is selected from gasolines and gas oils, also called diesel fuel.
  • the invention also relates to the use of a copolymer as described above, as a detergent additive in a liquid fuel of internal combustion engines, said copolymer being used alone or in the form of a concentrate as defined previously.
  • said copolymer is used in the liquid fuel to maintain cleanliness and / or clean at least one of the internal parts of said internal combustion engine.
  • said copolymer is used in the liquid fuel to limit or prevent the formation of deposits in at least one of the internal parts of said engine and / or reduce the deposits existing in at least one of the internal parts of said engine.
  • the deposits are located in at least one of the internal parts selected from the engine intake system, the combustion chamber and the fuel injection system.
  • said copolymer is used in the liquid fuel to reduce the fuel consumption of the internal combustion engine.
  • said copolymer is used to reduce the emissions of pollutants, in particular the particulate emissions of the internal combustion engine.
  • the internal combustion engine is a spark ignition engine.
  • the internal combustion engine is a diesel engine, preferably a direct injection diesel engine.
  • the copolymer is used to prevent and / or reduce the formation of deposits in the injection system of the diesel engine.
  • the copolymer is used to prevent and / or reduce the formation of deposits related to the phenomenon of coking and / or deposits of the soap and / or varnish type.
  • the invention also relates to the use of a copolymer as described above, as a demulsifying additive in a liquid fuel of internal combustion engines, said copolymer being used alone or in the form of a concentrate as defined previously.
  • the copolymer is used in the liquid fuel to accelerate the separation, and / or increase the separation rate of the fuel and the residual water possibly present in this fuel.
  • the invention further relates to a method for maintaining the cleanliness and / or cleaning of at least one of the internal parts of an internal combustion engine comprising at least the following steps:
  • the invention further relates to a method of dememulsifying a fuel containing water, or separating water from a fuel containing it. This method comprises at least the following steps:
  • alkyl (meth) acrylate to designate an alkyl acrylate or an alkyl methacrylate
  • alkyl (meth) acrylamide to designate an alkyl acrylamide or an alkyl methacrylamide
  • copolymer The copolymer:
  • the invention relates to a copolymer comprising
  • Ri represents a hydrogen atom or a methyl group
  • E represents -O- or -N (Z) -, or -O-CO-, or -CO-O- or -NH-CO- or -CO-NH -
  • Z representing H or an alkyl to C 6
  • G represents a group selected from alkyl Cl to C34, an aromatic ring, an aralkyl group comprising at least one aromatic ring and at least one alkyl group Ci to C34, and - units of formula (II) below:
  • Ri is chosen from hydrogen atom and methyl group
  • Q is chosen from the oxygen atom and a group --NR '- with R' being chosen from a hydrogen atom and the C 1 to C 1 2 hydrocarbon chains,
  • R represents a C 1 to C 34 hydrocarbon chain which may also contain one or more nitrogen and / or oxygen atoms and / or carbonyl groups, substituted by at least one non-quaternary amine group and / or at least one quaternary amino group; said non-quaternary amine group comprising at least one primary, secondary or tertiary amine function,
  • said quaternary amino group comprising at least one quaternary ammonium function and optionally one or more hydroxyl groups
  • the copolymer comprises only units of formula (I) and units of formula (II).
  • the copolymer is chosen from block copolymers and random copolymers.
  • the copolymer is a block copolymer.
  • the copolymer is at a standstill.
  • the group E of the formula (I) is chosen from:
  • - E -N (Z) - with Z represents H or a linear or branched, cyclic or acyclic, preferably acyclic, C 1 to C 6 alkyl group,
  • the group E of the formula (I) is chosen from: -O- and -N (Z) -, with Z representing H or a Ci-C 6 alkyl group.
  • the group E of the formula (I) is preferably the -O-CO- group, it being understood that the -O-CO- group is connected to the vinyl carbon by the oxygen atom.
  • the group E of the formula (I) is chosen from: -CO-O- and -CO-NH-, it being understood that the group E is connected to the vinyl carbon by the carbon atom.
  • the group E of the formula (I) is preferably the -CO-O- group, it being understood that the -CO-O- group is connected to the vinyl carbon by the carbon atom.
  • the group (G) of the formula (I) may be an alkyl group to C34, preferably an alkyl radical with C 4 to C34, preferably C 4 to C 30, more preferably C 6 to C 24, more preferably in Cs to C 18 .
  • the alkyl radical is a linear or branched radical, cyclic or acyclic, preferably acyclic. This alkyl radical can comprise a linear or branched part and a cyclic part.
  • the group (G) of formula (I) is advantageously a acyclic alkyl to C34, preferably an alkyl radical with C 4 to C34, preferably C 4 to C 30, more preferably C 6 to C 24, more preferably Cs to C 18 linear or branched, preferably branched .
  • alkyl groups such as butyl, octyl, decyl, dodecyl, ethyl-2-hexyl, isooctyl, isodecyl and isododecyl.
  • the group (G) of formula (I) may also be an aromatic ring, preferably a phenyl or aryl group.
  • aromatic groups there may be mentioned, without limitation, the phenyl or naphthyl group, preferably the phenyl group.
  • the group (G) of the formula (I) may, according to another preferred variant, be an aralkyl comprising at least one aromatic ring and at least one C 1 -C alkyl group.
  • the group (G) is aralkyl comprising at least one aromatic ring and one or more alkyl groups, C4 to C34, preferably C4 to C30, more preferably C 6 to C 24, more preferably in Cs to
  • the aromatic ring may be mono-substituted or substituted on a number of its carbon atoms. Preferably, the aromatic ring is monosubstituted.
  • the C1-C34 alkyl group may be in the ortho, meta or para position on the aromatic ring, preferably para.
  • the alkyl radical is a linear or branched radical, cyclic or acyclic, preferably acyclic.
  • the alkyl radical is preferably an acyclic radical, linear or branched, preferably branched.
  • the aromatic nucleus can be directly connected to the group
  • group G there may be mentioned a benzyl group substituted in the presence of a C 4 to C 34, preferably C 4 to C 30, alkyl group.
  • the group (G) of the formula (I) is an aralkyl comprising at least one aromatic ring and at least one C 4 to C 34, preferably C 4 to C 30, alkyl group, more preferably C 6 to C 24 , even more preferably C 8 to C 18 .
  • the group Q of formula (II) is the oxygen atom.
  • the group R comprises at least one quaternary amino group.
  • from 10 to 90% by weight of the R groups of the units of formula (II) comprise at least one quaternary amino group, more preferably from 20 to 80%, still more preferably from 40 to 60%. and more preferably from 45 to 55%, based on the total amount of the R groups of the units of formula (II).
  • the units of formula (II) in which the R group does not comprise a quaternary amino group comprise at least one non-quaternary amine group comprising at least one primary, secondary or tertiary amine function.
  • These units represent from 5 to 95% by mo les of the units of formula (II) of the copolymer according to the invention, preferably from 10 to 90%) in mo les, more preferably from 20 to 80%> in mo les, still more preferably from 40 to 60 mol%, and more preferably from 45 to 55 mol%.
  • said non-quaternary amine group is chosen from groups having at least one amine, imine, amidine, guanidine, aminoguanidine or biguanidine function, such as alkyl-amines, polyalkylene polyamines, polyalkylenimines, alkylimines, alkyls. -amidines, alkyl-guanidines and alkyl-biguanidines, the alkyl substituent may be linear or branched, cyclic or acyclic, and preferably having from 1 to 34 carbon atoms, more preferably from 1 to 12 carbon atoms.
  • said non-quaternary amine group is chosen from among monocyclic or polycyclic heterocyclic groups having from 3 to 34 atoms, preferably from 5 to 12 atoms, more preferably from 6 to 10 atoms, and at least one atom. nitrogen, it being understood that the polycyclic heterocyclic groups have, optionally, fused rings.
  • the number of atoms includes hetero atoms. By fused rings are meant rings having at least two atoms in common.
  • the heterocyclic groups may further comprise an oxygen atom and / or a carbonyl group and / or one or more unsaturations.
  • heterocyclic amine group By way of example of heterocyclic amine group, mention may be made of the following radicals: triazole, aminotriazole, pyrrolidone, piperidine imidazole, morpholine, isoxazole, oxazole and indole, said radical preferably being linked to the hydrocarbon-based chain by a nitrogen atom.
  • the group R comprising at least one non-quaternary amine group is represented:
  • R 2 ' is chosen from C 1 to C 34, preferably C 1 to C 18 , more preferably C 1 to C 8 , still more preferably C 2 to C 4 , cyclic or acyclic, linear or branched, optionally substituted hydrocarbon chains; by at least one hydroxyl group; preferably R 2 'is chosen from the groupings alkyls, optionally substituted with a hydroxyl group; and
  • L is selected from the group consisting of:
  • polyamine groups and polyalkylene polyamines especially those of the formulas -NH- (Rf-NH) kH; -NH- (Rf-NH) k-R a ; with R a , Rb, R c , Rd and R e represent, independently of each other, a C 1 -C 34 alkyl group, preferably a C 1 -C 12 alkyl group, optionally comprising one or more NH 2 functions and one or more than one -NH- bridges;
  • Rf representing a C 1 -C 6 alkyl group, preferably in C2-C4, k represents an integer ranging from 1 to 20, preferably from 2 to 12;
  • polyamines and polyalkylene polyamines examples include: ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine.
  • v is 0.
  • the group R comprising at least one non-quaternary amine group is represented by the formula (V):
  • the group R 2 ' is chosen from acyclic alkyl groups C 1 to C 34, preferably C 1 to C 18 , more preferably C 1 to C 8 , still more preferably C 2 to C 8. at C 4 , linear or branched, and which may be substituted by at least one hydroxyl group.
  • the group R comprising at least one non-quaternary amine group is represented by the formula (V) in which L is chosen from the groups: -NH 2 ; -NHR a , -NR a Rb, with R a and Rt, as defined above, and more preferably from tertiary amine groups -NR a Rb.
  • the group R of formula (II) comprising at least one quaternary amino group is a quaternized form of one of the groups of formulas (V) and
  • the quaternary amino group may, in particular, be obtained by quaternization of at least one amine, imine, amidine, guanidine, amino guanidine or biguanidine function; or a heterocyclic group having from 3 to 34 atoms and at least one nitrogen atom; and preferably by quaternization of tertiary amine functions.
  • the group R comprising at least one quaternary amino group is represented by one of the following formulas (III) and (IV):
  • X " is chosen from hydroxide ions, halides and organic anions, in particular the acetate ion,
  • R 2 is chosen from C 1 to C 34, preferably C 1 to C 18 , more preferably C 1 to C 8 , even more preferentially C 2 to C 4 , cyclic or acyclic, linear or branched, optionally substituted by at least one hydroxyl group; preferably, R 2 is chosen from alkyl groups, optionally substituted with at least one hydroxyl group,
  • R 3 and R 5 are identical or different and are chosen, independently, from C 1 to C 18 , preferably C 1 to C 12 hydrocarbon chains, which are linear or branched, cyclic or acyclic, it being understood that the R 3 alkyl groups, R 4 and R 5 may contain one or more nitrogen atoms and / or oxygen and / or carbonyl groups and may be connected together in pairs to form one or more rings,
  • R 6 and R 7 are identical or different and chosen, independently, from linear or branched, cyclic or acyclic C 1 to C 18 , preferably C 1 to C 12 , hydrocarbon chains, it being understood that the R 6 and R 7 groups may contain one or more nitrogen and / or oxygen atoms and / or carbonyl groups and may be joined together to form a ring.
  • the one or more nitrogen atoms and / or oxygen may be present in the groups R3, R 4 and R 5 in the form of ether bridges, bridges or amine in the form of an amino or hydroxyl substituent.
  • the organic anions of the group X " are advantageously the conjugated bases of the organic acids, preferably the conjugate bases of the carboxylic acids, in particular the acids chosen from monocarboxylic, polycarboxylic, cyclic or acyclic acids, preferably the organic anions of the group X ". are selected from the conjugated bases of saturated acyclic or cyclic aromatic carboxylic acids.
  • methanoic acid By way of example, mention may be made of methanoic acid, acetic acid, adipic acid, oxalic acid, malonic acid, succinic acid, citric acid, benzoic acid and phthalic acid, isophthalic acid and terephthalic acid.
  • the group R 2 is chosen from C 1 to C 34, preferably C 1 to C 18 , more preferably C 1 to C 8 , even more preferentially C 2 to C 4 , linear acyclic groups. or branched, substituted by at least one hydroxyl group.
  • the group R comprising at least one quaternary amino group is represented by formula (III) in which:
  • X " is chosen from organic anions, preferably conjugated bases of carboxylic acids,
  • R 2 is selected from C 1 to C 34 hydrocarbon chains, preferably C 1 to C 18 alkyl groups,
  • R 3, R 4 and R 5 are identical or different and independently selected from hydrocarbon chains to C 18, optionally substituted with at least one hydroxyl group, provided that at least one of the groups R3, R 4 and R 5 contains one or more hydroxyl group (s).
  • the unit of formula (I) is obtained from an apolar monomer (m a ).
  • the apolar monomer (m a ) has the following formula (VII):
  • Ri ', E, G and u are as defined above, the preferred variants of R 1', E, G and u according to formula (I) as defined above are also preferred variants of the formula (VII ).
  • the group R 1 ' is a hydrogen atom.
  • the monomer (m a ) is preferably chosen from vinyl esters having 1 to C34, preferably C 4 to C 30, more preferably C 6 to C 24 , more preferably C 8 to C 22.
  • the alkyl radical of the alkyl vinyl ester is linear or branched, cyclic or acyclic, preferably acyclic.
  • alkyl vinyl ester monomers mention may be made, for example, of vinyl octanoate, vinyl decanoate, vinyl dodecanoate, vinyl tetradecanoate, vinyl hexadecanoate, vinyl octodecanoate and docosanoate. vinyl, 2-ethylhexanoate vinyl.
  • the monomer (m a ) is, preferably selected from alkyl acrylates or methacrylates Ci-C34, preferably C 4 to C 30, more preferably C 6 to C 24, more preferably Cs to C22.
  • the alkyl radical of the acrylate or methacrylate is linear or branched, cyclic or acyclic, preferably acyclic.
  • alkyl (meth) acrylates which may be used, mention may be made, without limitation, of n-octyl acrylate, n-octyl methacrylate, n-decyl acrylate, n-octyl acrylate and n-octyl acrylate.
  • the unit of formula (II) is obtained from polar monomers (mb) chosen from those of formula (VIII):
  • Ri ", v, Q and R are as defined above, the preferred variants of R1", Q and R according to formula (II) as defined above are also preferred variants of formula (VIII), it being understood that 5 to 95 mol% of the polar monomers (mb) comprise a group R containing at least one quaternary amino group.
  • 5 to 95 mol% of the polar monomers (mb) are represented by at least one of the following formulas (IX) and (IX '):
  • R1 ", v and Q are as defined above, preferred variants of R1" and Q according to formula (II) as defined above are also preferred variants of formulas (IX), (IX ') and (X);
  • X " , R 2 , R 3 , R 4, R 5, R 6 and R 7 are as defined above, the preferred variants of X " , R 2 , R 3, R 4 , R 5, R 6 and R 7 according to the formulas III) and (IV) as defined above are also preferred variants of formulas (IX) and (IX ');
  • R ' 2 and L are as defined above, preferred variants of R' 2 and L according to formula (V) are also preferred variants of formula (X).
  • the unit of formula (II) is obtained from a polar monomer (mb) chosen from those of formula (VIII):
  • R 1" and Q are as defined above, preferred variants of R 1" and Q according to formula (II) as defined above are also preferred variants of formula (VIII), and R represents a C 1 to C 34 hydrocarbon chain which may also contain one or more nitrogen and / or oxygen atoms and / or carbonyl groups, substituted by at least one non-quaternary amine group.
  • the copolymerization of the monomer (mb) is followed by a partial quaternization of the quaternizable amine groups, for 5 to 95% by mo the units derived from said monomer (mb).
  • This second embodiment is preferred.
  • the copolymer can be obtained by copolymerization of at least one apolar monomer (m a ) and at least one polar monomer (mb) as described above.
  • the copolymer is obtained solely from apolar monomers (m a ) and from polar monomers (mb).
  • the copolymer may be prepared by any known method of polymerization.
  • the various techniques and conditions of polymerization are widely described in the literature and fall within the general knowledge of those skilled in the art.
  • the copolymer is a block copolymer comprising at least one block A and at least one block B.
  • Block A corresponds to the following formula (XI):
  • p is an integer ranging from 2 to 100, preferably from 5 to 80, preferably from 10 to 70, more preferably from 20 to 60.
  • n is an integer ranging from 2 to 50, preferably from 3 to 40, more preferably from 4 to 20, even more preferably from 5 to 10,
  • R 1 ", Q and R are as defined above, preferred variants of R 1", Q and R according to formula (II) as defined above are also preferred variants of formula (XII),
  • the block B comprises: from 5 to 95 mol% of units corresponding to at least one of the following formulas (XIII) and ( ⁇ ):
  • Q, R 1, n and v are as described above, preferred variants of Q and R 1 according to formula (II) as defined above are also preferred variants of formulas (XIII), ( ⁇ ) and
  • X " , R 2 , R 3 , R 4, R 5, R 6 and R 7 are as defined above, the preferred variants of X " , R 2 , R 3, R 4 , R 5, R 6 and R 7 according to the formulas III) and (IV) as defined above are also preferred variants of formulas (XIII) and ( ⁇ ),
  • R ' 2 and L are as defined above, preferred variants of R' 2 and L according to formula (V) are also preferred variants of formula (XIV).
  • the quaternary amino groups of the units of block B are advantageously chosen from quaternary ammoniums of trialkylammonium, iminium, amidinium, formamidinium, guanidinium and biguanidinium, preferably trialkylammonium.
  • the quaternary amino groups of the units of the block B may also be chosen from heterocyclic compounds containing at least one nitrogen atom, in particular chosen from the quaternary ammoniums of pyrrolinium, pyridinium, imidazolium, triazolium and triazinium. , oxazolium and isoxazolium.
  • the quaternary amino groups of the units of block B are advantageously trialkylammonium quaternary groups.
  • At least one of the alkyl groups of the quaternary ammonium of the block B is substituted by a hydroxyl group.
  • the blo B comprises from 5 to 95 mol% of units corresponding to formula (XIII):
  • Ri is chosen from hydrogen atom and methyl group
  • Q is chosen from the oxygen atom and the group -NR'- with R 'being chosen from a hydrogen atom and the C 1 -C 12 hydrocarbon chains,
  • X " is chosen from organic anions, preferably conjugated bases of carboxylic acids,
  • R 2 is selected from C 1 to C 34 hydrocarbon chains, preferably C 1 to C 18 alkyl groups,
  • R 3, R 4 and R 5 are identical or different and independently selected from hydrocarbon chains to C 18, optionally substituted with at least one hydroxyl group, provided that at least one of the groups R3, R 4 and R 5 contains at least one hydroxyl group.
  • the distribution within block B of the units whose group R comprises at least one quaternary ammonium function with respect to the other units of block B may be of any type, and in particular random, random or block. Preferably, this distribution is of random type.
  • the block A consists of a chain of structural units derived from at least one monomer (m a ) as described above.
  • block B consists of a chain of structural units derived from monomers (mb) such that described above.
  • block A consists of a chain of structural units derived from an alkyl acrylate or alkyl methacrylate monomer (m a ) and block B corresponds to formula (XII) described above. .
  • the block copolymer is obtained by copolymerization of at least the alkyl (meth) acrylate monomer (m a ) and at least one of the monomers (naked) described above.
  • blocks derived from an apolar monomer can be obtained from vinyl alcohol or acrylic acid, respectively by transesterification or amidification reaction.
  • the quaternary ammonium units of the block B may be obtained by post-functionalization of the intermediate units (Mi) resulting from the polymerization of an intermediate monomer (m) (meth) acrylate or (meth) acrylamide, of formulas:
  • R9 is chosen from hydrogen and alkyl groups in said post-functionalization corresponding to the reaction of said intermediate unit (Mi) with a tertiary amine NR3R4R5 where wherein R 3, R 4, R 5, R 6 and R 7 are as defined above in formulas (III) and (IV).
  • the copolymer according to the invention can also be obtained by post-functionalization of an intermediate block polymer, comprising at least one intermediate boc containing units (Mi) and at least one block A as described above.
  • the block B of formula (XII) is obtained by quaternization, according to any known method, from 5 to 95 mol% of the units of an intermediate block Bi comprising a single unit of formula (XII) in which the R groups contain a tertiary amine group of formula NR3R4R5 or wherein R 3, R 4, R 5, R 6 and R 7 are as defined above.
  • the quaternization step may be carried out before the copolymerization reaction, for example on an intermediate monomer carrying the tertiary amine, by reaction with an alkyl halide or an epoxide (oxirane) according to any known process, optionally followed by a anion exchange reaction.
  • an alkyl halide or an epoxide (oxirane) according to any known process, optionally followed by a anion exchange reaction.
  • the quaternization step may also be carried out by post-functionalization of an intermediate polymer carrying the tertiary amine, for example by reaction with an alkyl halide optionally followed by an anion exchange reaction.
  • an alkyl halide optionally followed by an anion exchange reaction.
  • a post-functionalization reaction of an intermediate polymer bearing the tertiary amine by reaction with an epoxide (oxirane) according to any known method.
  • the block copolymer can be obtained by sequential polymerization, preferably by sequential and controlled polymerization and optionally followed by one or more post-functionalizations.
  • the block copolymer described above is obtained by sequenced and controlled polymerization.
  • the polymerization is advantageously chosen from controlled radical polymerization; for example, by atom transfer radical polymerization (ATRP in English “Atom Transfer Radical Polymerization”); the radical polymerization by nitroxide (NMP in English “Nitroxide-mediated polymerization”); degenerative transfer processes (degenerative transfer processes) such as degenerative iodine transfer polymerization (ITRP-iodine transfer radical polymerization) or radical polymerization by reversible addition-fragmentation chain transfer ( RAFT in English "Reversible Addition-Fragmentation Chain Transfer”); polymerizations derived from ATRP such as polymerizations using initiators for the continuous regeneration of the activator (ICAR -Initiators for continuous activator regeneration) or using electron-regenerated activators regenerated by electron (ARGET) transfer ").
  • ATRP atom transfer radical polymerization
  • NMP nitroxide
  • degenerative transfer processes degenerative
  • NMP NMP
  • C. J. Hawker of an alkoxyamine capable of acting as a unimolecular agent, providing both the initiator reactive radical and the intermediate nitroxide radical in stable form (J. Hawker, J. Am Chem Soc, 1994, 116 , 1 1 1 85). Hawker has also developed a universal NMP initiator (D. Benoit et al., J. Am Chem Soc, 1999, 121, 3904).
  • the reversible Addition-Fragmentation Chain Transfer (RAFT) radical polymerization is a living radical polymerization technique.
  • the RAFT technique was discovered in 1988 by the Australian scientific research organization CSIRO (J. Chiefari et al., Macromolecules, 1998, 31, 5559).
  • the RAFT technique has very rapidly been the subject of intensive research by the scientific community as it allows the synthesis of macromolecules with complex architectures, including structures in blocks, grafts, combs or even stars. by controlling the molecular weight of the macromolecules obtained (G. Moad et al., Aust J. Chem, 2005, 58, 379).
  • RAFT polymerization can be applied to a very wide range of vinyl monomers and under various experimental conditions, including for the preparation of water-soluble materials (C.L. McCormick et al., Acc Chem Res.2004, 37, 312).
  • the RAFT method includes the conventional radical polymerization of a substituted monomer in the presence of a suitable chain transfer agent (RAFT agent or CTA in English "Chain Transfer Agent").
  • RAFT agent thiocarbonylthio compounds
  • RTA Mayadunne et al., Macromolecules, 1999, 32, 6977; et al., Macromol.
  • Rapid. Commun., 2000, 21, 1035 trithiocarbonates (RTA Mayadunne et al., Macromolecules, 2000, 33, 243) and xanthates (R. Francis et al., Macromolecules, 2000, 33, 4699), which operate polymerization by a reversible chain transfer method.
  • RTA Mayadunne et al., Macromolecules, 2000, 33, 243
  • xanthates R. Francis et al., Macromolecules, 2000, 33, 4699
  • the sequenced and controlled polymerization is typically carried out in a solvent, under an inert atmosphere, at a reaction temperature generally ranging from 0 to 200 ° C, preferably from 50 ° C to 130 ° C.
  • the solvent may be chosen from polar solvents, in particular ethers such as anisole (methoxybenzene) or tetrahydrofuran or apolar solvents, in particular paraffins, cycloparaffins, aromatics and alkylaromatics having from 1 to 19 carbon atoms. carbon, for example, benzene, toluene, cyclohexane, methylcyclohexane, n-butene, n-hexane, n-heptane and the like.
  • the reaction is generally carried out under vacuum in the presence of an initiator, a ligand and a catalyst.
  • ligand mention may be made of N, N, N ', N ", N" -Pentamethyldiethylenetriamine (PMDETA), 1,1,4,7,10,10-hexamethyltriethylene tetramine (HMTETA), 2,2'-Bipyridine (BPY) and Tris (2-pyridylmethyl) amine (TPMA).
  • the ATRP polymerization is preferably carried out in a solvent chosen from polar solvents.
  • the number of equivalents of apolar monomer (m a ) of block A and of polar monomer (naked) of block B reacted during the polymerization reaction may be identical or different.
  • the number of equivalents of apolar monomer (m a ) of block A is preferably from 2 to 100 eq, preferably from 5 to 80 eq, preferably from 10 to 70 eq, more preferably from 20 to 60 eq.
  • the number of polar monomer equivalents (mb) of the B block is preferably from 2 to 50 eq, preferably from 3 to 40 eq, more preferably from 4 to 20 eq, still more preferably from 5 to 10 eq. .
  • the number of monomer equivalents (m a ) of block A is advantageously greater than or equal to that of monomers (mb) of block B.
  • the number of monomer equivalents (m a ) of the block A is between 20 and 60 moles, and G is selected from C 4 to C 30 hydrocarbon chains.
  • the number of monomer equivalents (m a ) of the block A is from 20 to 60 moles, and G is selected from C 4 to C 30 hydrocarbon chains, and the copolymer has a number average molecular weight (M n) of from 1000 to 10,000 g. mol 1 .
  • the molar mass in weight M w of block A or block B is preferably less than or equal to 15000 g. mol. "1 , more preferably less than or equal to 10,000 g / mol. "
  • the block copolymer advantageously comprises at least one block sequence AB, ABA or BAB where said blocks A and B are linked together without the presence of intermediate blocks of different chemical nature.
  • block copolymers may optionally be present in the block copolymer described above insofar as these blocks do not fundamentally change the character of the block copolymer. However, block copolymers containing only A and B blocks will be preferred.
  • the blocks A and B represent at least 70% by mass, preferably at least 90% by mass, more preferably at least 95% by weight, even more preferably at least 99% by weight of the block copolymer.
  • the block copolymer is a diblock copolymer.
  • the block copolymer is an alternating block triblock copolymer comprising two Blocks A and one blo c B (ABA) or comprising two packs B and one block A (BAB).
  • the block copolymer also comprises a terminal chain I consisting of a linear or branched C 1 to C 32, preferably C 4 to C 24 , hydrocarbon, cyclic or acyclic, saturated or unsaturated hydrocarbon chain, more preferably preferably at C 10 to C 24.
  • cyclic hydrocarbon chain means a hydrocarbon chain at least a part of which is cyclic, in particular aromatic. This definition does not exclude hydrocarbon chains comprising both an acyclic and a cyclic moiety.
  • the terminal chain I may comprise an aromatic hydrocarbon chain, for example a benzene chain and / or a linear or branched, saturated and acyclic hydrocarbon-based chain, in particular an alkyl chain.
  • the terminal chain I is, preferably, chosen from alkyl chains, preferably linear chains, more preferably alkyl chains of at least 4 carbon atoms, even more preferably of at least 12 carbon atoms.
  • the terminal chain I is located in the terminal position of the block copolymer. It can be introduced into the block copolymer by means of the polymerization initiator.
  • the terminal chain I may, advantageously, constitute at least a part of the polymerization initiator and is positioned within the polymerization initiator to enable the introduction, during the first polymerization initiation step, of the polymerization initiator. , the terminal chain I in the terminal position of the block copolymer.
  • the polymerization initiator is, for example, selected from the free radical initiators used in the ATRP polymerization process. These free radical initiators well known to those skilled in the art are described in particular in the article "Atom Transfer Radical Polymerization: current status and future prospects, Macromolecules, 45, 4015-4039, 2012".
  • the polymerization initiator is, for example, chosen from alkyl esters of carboxylic acid substituted by a halide, preferably a bromine in the alpha position, for example ethyl 2-bromopropionate or ⁇ -bromoisobutyrate.
  • a halide preferably a bromine in the alpha position
  • ethyl 2-bromopropionate may make it possible to introduce into the copolymer the terminal chain I in the form of a C 2 alkyl chain and benzyl bromide in the form of a benzyl group.
  • the transfer agent can conventionally be removed from the copolymer at the end of the polymerization according to any known method.
  • the terminal chain I can also be obtained in the copolymer by RAFT polymerization according to the methods described in the article by Moad, G. et al., Australian Journal of Chemistry, 2012, 65, 985-1076.
  • the terminal chain I may, for example, be modified by aminolysis when a transfer agent is used to give a thiol function.
  • transfer agents of the thiocarbonylthio, dithiocarbonate, xanthate, dithiocarbamate and trithiocarbonate type for example S, N-dibenzyltrithiocarbonate (DBTTC), S, S-bis (a, a'- dimethyl- ⁇ -acetic acid) trithiocarbonate (BDMAT) or 2-cyano-2-propyl benzodithioate (CPD).
  • DBTTC N-dibenzyltrithiocarbonate
  • BDMAT S-bis (a, a'- dimethyl- ⁇ -acetic acid) trithiocarbonate
  • CPD 2-cyano-2-propyl benzodithioate
  • the transfer agent can be cleaved at the end of the polymerization by reacting a cleavage agent such as C2-C6 alkylamines, the terminal function of the copolymer can in this case be a thiol -SH group.
  • the sulfur of the copolymer obtained by RAFT polymerization introduced by the sulfur transfer agent such as thiocarbonylthio, dithiocarbonate, xanthate, dithiocarbamate and trithiocarbonate can be converted to remove sulfur from the copolymer.
  • the block copolymer is a diblock copolymer (also called diblocks).
  • the block copolymer structure may be of the IAB or IBA type, advantageously IAB.
  • the terminal chain I can be directly linked to the block A or B according to the structure IAB or IBA, respectively, or to be connected via a linking group, for example, an ester, amide, amine or ether function.
  • the linking group then forms a bridge between the terminal chain I and the block A or B.
  • the block copolymer can also be functionalized at the end of the chain according to any known method, in particular by hydrolysis, aminolysis and / or nucleophilic substitution.
  • aminolysis any chemical reaction in which a molecule is split into two parts by reaction of a molecule of ammonia or an amine.
  • a general example of aminolysis is to substitute a halogen of an alkyl group by reaction with an amine, with elimination of hydrogen halide.
  • Amino lysis may be used, for example, for ATRP polymerization which produces a copolymer having a terminal halide or for RAFT polymerization to transform the thio, dithio or trithio linkage introduced into the copolymer by the transfer agent. RAFT in function thio l.
  • the terminal chain ⁇ preferably comprises a hydrocarbon chain, linear or branched, cyclic or acyclic, C 1 to C 32, preferably C 1 to C 24, more preferably C 1 to C 10, still more preferably an alkyl group, optionally substituted with one or more groups containing at least one heteroatom selected from N and O, preferably N.
  • this functionalization can, for example, be carried out by treating the ATRP-derived IAB or IBA copolymer with a C 1 -C 32 primary alkylamine or a C 1 -C 32 alcohol under mild conditions. do not modify the functions present on blocks A, B and I.
  • copolymers described above are particularly useful as an additive for liquid fuels of an internal combustion engine.
  • copolymers are particularly advantageous as a detergent additive in a liquid fuel of an internal combustion engine.
  • detergent additive liquid fuel is meant an additive that is incorporated in a small amount in the liquid fuel and has an effect on the cleanliness of said engine compared to said liquid fuel not specially additivé.
  • copolymers are also particularly advantageous as a demulsifying additive in a liquid fuel of an internal combustion engine.
  • demulsifying additive an additive which is incorporated in a small amount in the liquid fuel and improves the separation of water and fuel when the latter contains water.
  • the use of the copolymers according to the invention in a liquid fuel makes it possible both to maintain the cleanliness of at least one of the internal parts of the internal combustion engine and / or to clean at least one of the internal parts of the engine. internal combustion and also improves the separation of water and fuel when the latter contains water.
  • “Improving the separation of water and fuel” means accelerating the separation, and / or increasing the separation rate fuel and residual water in this fuel compared to a fuel without said additive composition.
  • the liquid fuel is advantageously derived from one or more sources selected from the group consisting of mineral, animal, vegetable and synthetic sources. Oil will preferably be chosen as a mineral source.
  • the liquid fuel is preferably chosen from hydrocarbon fuels and non-essentially hydrocarbon fuels, alone or as a mixture.
  • Hydrocarbon fuel is a fuel consisting of one or more compounds consisting solely of carbon and hydrogen.
  • non-substantially hydrocarbon fuel means a fuel consisting of one or more compounds consisting essentially of carbon and hydrogen, that is to say which also contain other atoms, in particular oxygen atoms.
  • Hydrocarbon fuels include, in particular, medium distillates having a boiling point ranging from 100 to 500 ° C., or lighter distillates having a boiling point in the gasoline range. These distillates may for example be chosen from distillates obtained by direct distillation of crude hydrocarbons, vacuum distillates, hydrotreated distillates, distillates obtained from catalytic cracking and / or hydrocracking of distillates under vacuum, distillates resulting from methods of conversion type ARDS (in English "atmospheric residue desulfuration") and / or visbreaking, distillates from the valuation of Fischer Tropsch cuts. Hydrocarbon fuels are typically gasolines and gas oils (also called diesel fuel).
  • the hydrocarbon fuel is selected from gasolines and gas oils.
  • the gasolines include, in particular, all commercially available spark ignition engine fuel compositions.
  • gasoline fuels marketed in Europe, compliant with the NF EN 228 standard have an engine octane number (MON) greater than 85 and a research octane number (RON). Research Octane Number ") of a minimum of 95.
  • Gasoline fuels generally have an RON of 90 to 100 and a MON of 80 to 90, with RON and MON being measured according to ASTM D 2699- 86 or D 2700-86.
  • Gas oils include, in particular, any commercially available diesel fuel compositions. As a representative example, mention may be made of gas oils that comply with the NF EN 590 standard.
  • Non-essentially hydrocarbon fuels include oxygenates, for example distillates resulting from the conversion BTL (in English "biomass to liquid") of plant biomass and / or animal, taken alone or in combination; biofuels, for example oils and / or esters of vegetable and / or animal oils; bio diesels of animal and / or vegetable origin and bio ethano ls.
  • Mixtures of hydrocarbon fuel and non-substantially hydrocarbon fuel are typically type B x or type E x gasolines.
  • Diesel gasoline type B x is a diesel fuel that contains x% (v / v) of vegetable or animal oil esters (including used cooking oils) converted by a chemical process known as transesterification, obtained by reacting this oil with an alcohol to obtain fatty acid esters (EAG). Methanol and ethanol yield, respectively, fatty acid methyl esters (FAME) and fatty acid ethyl esters (EEAG).
  • FAME fatty acid methyl esters
  • EEAG fatty acid ethyl esters
  • the letter "B” followed by a number indicates the percentage of EAG contained in the diesel fuel.
  • a B99 contains 99% of EAG and 1% of medium distillates of foil origin (source mineral), B20, 20% of EAG and 80%> of middle distillates of foil origin etc. ....
  • Bx type gas oils which contain x% (v / v) esters of vegetable oils or fatty acids, most often methyl esters (EMHV or EMAG).
  • EAG methyl esters
  • E x type gasoline for spark ignition engines means a petrol fuel which contains x% (v / v) oxygenates, usually ethanol, bioethanol and / or ethyl tertiary butyl alcohol. ether (ETBE).
  • the sulfur content of the liquid fuel is preferably less than or equal to 5000 ppm, preferably less than or equal to 500 ppm, and more preferably less than or equal to 50 ppm, or even less than 10 ppm and advantageously without sulfur.
  • the use of the copolymer (s) according to the invention in the liquid fuel makes it possible to maintain the cleanliness of at least one of the internal parts of the internal combustion engine and / or to clean at minus one of the internal parts of the internal combustion engine.
  • the use of said copolymer in the liquid fuel makes it possible, in comparison with the liquid fuel that is not particularly additive, to limit or avoid the formation of deposits in at least one of the internal parts of said engine or to reduce the deposits existing in at least one of the internal parts. said engine.
  • the use of said copolymer as an additive in the liquid fuel makes it possible to observe both the effects, limitation (or prevention) and reduction of deposits ("keep-clean” and "clean-up” effects).
  • Deposits are distinguished according to the type of internal combustion engine and the location of deposits in the internal parts of said engine.
  • the internal combustion engine is a spark ignition engine, preferably direct injection (DISI in English "Direct Injection Spark Ignition Engine”).
  • the targeted deposits are located in at least one of the internal parts of said spark ignition engine.
  • the internal part of the spark ignition engine kept clean (keep-clean) and / or cleaned (clean-up) is advantageously chosen from the intake system of the engine, in particular the intake valves (IVD). Intake Valve Deposit "), the" Combustion Chamber Deposit “(CCD) and the fuel injection system, in particular the injectors of a fuel injection system.
  • indirect injection (Port Fuel Injector), or the injectors of a direct injection system (DISI).
  • the internal combustion engine is a diesel engine, preferably a diesel engine with direct injection, in particular a diesel engine with a Common Rail (IDRC) injection system. Injection).
  • the targeted deposits are located in at least one of the internal parts of said diesel engine.
  • the targeted deposits are located in the injection system of the diesel engine, preferably located on an external part of an injector of said injection system, for example the nose of the injector and / or or on an internal part of an injector of said injection system (IDID), for example on the surface of an injector needle.
  • IDID an injector of said injection system
  • the deposits may consist of deposits related to the phenomenon of coking ("coking" in English) and / or deposits soap and / or varnish (in English "lacquering”).
  • copolymer (s) as described above may, advantageously, be used as additives in the liquid fuel for reducing and / or preventing the loss of power due to the formation of deposits in the internal parts of a direct injection diesel engine, said power loss being determined according to the CEC standard engine test method F-98 -08.
  • Said copolymer may advantageously be used in the liquid fuel to reduce and / or avoid the restriction of the fuel flow emitted by the injector of a direct injection diesel engine during its operation, said flow restriction being determined by the CEC standard engine test method F - 23 - 1 - 01.
  • the use of said copolymer as a fuel additive makes it possible, in comparison with the liquid fuel that is not particularly additive, to limit or avoid the formation of deposits on at least one type of deposits previously described and / or to reduce the deposits existing on at least one type of deposits described previously.
  • the use of said copolymer as a fuel additive also makes it possible to reduce the fuel consumption of the internal combustion engine.
  • the use of said copolymer as a fuel additive also makes it possible to reduce the emissions of pollutants, in particular the particulate emissions of the internal combustion engine.
  • the use of said copolymer as a fuel additive reduces both fuel consumption and pollutant emissions.
  • copolymer (s) as described above may be used alone or in admixture with other additives in the form of an additive concentrate.
  • copolymers according to the invention may be added to the liquid fuel in a refinery and / or incorporated downstream of the refinery and / or optionally mixed with other additives in the form of an additive concentrate. , also referred to as "additive package”.
  • the copolymer according to the invention is used in admixture with an organic liquid in the form of a concentrated.
  • a fuel concentrate comprises one or more copolymers as described above, mixed with an organic liquid.
  • the organic liquid is inert with respect to the copolymer (s) according to the invention and miscible in the liquid fuel described above.
  • miscible means that the copolymer and the organic liquid form a solution or a dispersion so as to facilitate the mixing of the copolymer according to the invention in liquid fuels according to the conventional methods of additive fuel.
  • the organic liquid is advantageously chosen from aromatic hydrocarbon solvents such as the solvent sold under the name "SOLVES SO", alcohols, ethers and other oxygenated compounds and paraffinic solvents such as hexane and pentane. or isoparaffins, alone or in admixture.
  • aromatic hydrocarbon solvents such as the solvent sold under the name "SOLVES SO”
  • alcohols, ethers and other oxygenated compounds such as hexane and pentane. or isoparaffins, alone or in admixture.
  • the concentrate may advantageously comprise a total amount of copolymer (s) according to the invention ranging from 5 to 99% by weight, preferably from 10 to 80% by weight, more preferably from 25 to 70% by weight.
  • the concentrate may typically comprise from 1 to 95% by weight, preferably from 20 to 90% by weight, more preferably from 30 to 75% by weight of organic liquid, the remainder corresponding to the copolymer according to the invention being understood that the concentrate may comprise one or more copolymers as described above.
  • the copolymer according to the invention when the copolymer according to the invention is a block copolymer, its solubility in the organic liquids and the liquid fuels described above depends in particular on the average weight masses and in number, respectively M w and M n of the copolymer. .
  • the average molecular masses M w and M n of the copolymer according to the invention will be chosen so that the copolymer is soluble in the liquid fuel and / or the organic liquid of the concentrate for which it is intended.
  • the average molar masses M w and M n of the copolymer according to the invention may also have an influence on the effectiveness thereof as a detergent additive in fuels.
  • the average molar masses M w and M n will thus be chosen so as to optimize the effect of the copolymer according to the invention, in particular the detergency effect (engine cleanliness) in the liquid fuels described above.
  • the copolymer according to the invention advantageously has a weight average molecular weight (Mw) ranging from 500 to 30,000 g. mol "1 , preferably from 1000 to 10000 g, mol " 1 , more preferably less than or equal to 4000 g. mol "1 , and / or a number-average molar mass (Mn) ranging from 500 to 15000 g. mol- 1 , preferably from 1000 to 10000 g. mol "1 , more preferably less than or equal to 4000 g, mol " 1 .
  • the number and weight average molar masses are measured by Size Exclusion Chromatography (SEC). The operating conditions of the SEC, in particular, the choice of the solvent will be chosen according to the chemical functions present within the block copolymer.
  • the molar and / or mass ratio between the polar monomer (mb) and the apolar monomer (m a ) and / or between the block A and B in the block copolymer described above will also be chosen so that the copolymer in block is soluble in the fuel and / or the organic liquid of the concentrate for which it is intended. Likewise, this ratio can be optimized according to the fuel and / or the organic liquid so as to obtain the best effect on engine cleanliness.
  • the molar ratio between the apolar monomer (m a ) and the polar monomer (mb), or between the blocks A and B in molar percentage between the apolar monomer (m a ) of the block A and the polar monomer (mb) of the block B is preferably between 95: 5 and 50:50, more preferably between 90: 10 and 75:25, still more preferably between 85: 1 5 and 70: 30.
  • the copolymer according to the invention is used in the form of a concentrate of additives in combination with at least one other fuel additive for an internal combustion engine different from the copolymers according to the invention described above.
  • the additive concentrate may typically comprise one or more other additives selected from detergent additives different from the copolymers according to the invention, for example from anti-corrosion agents, dispersants, demulsifiers, anti-foam agents, biocides, deodorants, procetane additives, friction modifiers, lubricity additives or lubricity additives, combustion assistants (catalytic combustion promoters and soot), cloud point improvers, pour point, TLF ("Filterability Limit Temperature”), anti-settling agents, anti-wear agents and conductivity modifiers.
  • detergent additives different from the copolymers according to the invention, for example from anti-corrosion agents, dispersants, demulsifiers, anti-foam agents, biocides, deodorants, procetane additives, friction modifiers, lubricity additives or lubricity additives, combustion assistants (catalytic combustion promoters and soot), cloud point improvers, pour point, TLF ("Filterability Limit Temperature”), anti
  • procetane additives in particular (but not limited to) selected from alkyl nitrates, preferably 2-ethyl hexyl nitrate, aryl peroxides, preferably benzyl peroxide, and alkyl peroxides, preferably ter-butyl peroxide;
  • anti-foam additives in particular (but not limited to) selected from polysiloxanes, oxyalkylated polysiloxanes, and fatty acid amides from vegetable or animal oils. Examples of such additives are given in EP 861 882, EP663000, EP736590;
  • CFI Cold Flow Additives
  • EVA ethylene / vinyl acetate copolymers
  • EVE ethylene / vinyl propionate
  • EMMA ethylene / vinyl ethanoate
  • US3048479, US3627838, US3790359, US396196 1 and EP261957 ethylene / alkyl fumarate
  • lubricity additives or anti-wear agents in particular (but not limited to) selected from the group consisting of fatty acids and their ester or amide derivatives, in particular glycerol monooleate, and monocarboxylic acid derivatives and polycyclic.
  • lubricity additives or anti-wear agents are given in the following documents: EP680506, EP860494, WO98 / 04656, EP915944, FR2772783, FR2772784.
  • cloud point additives including (but not limited to) selected from the group consisting of long-chain olefin terpolymers / (meth) acrylic ester / maleimide, and fumaric acid / maleic acid ester polymers. Examples of such additives are given in FR252805 1, FR252805 1, FR2528423, EP 1 12195, EP 172758, EP271385, EP291367;
  • detergent additives including (but not limited to) selected from the group consisting of succinimides, polyetheramines and quaternary ammonium salts; for example those described in US4171959 and WO20061 3588 1.
  • polyfunctional cold operability additives selected from the group consisting of oolefin-based polymers and alkenyl nitrate as described in EP573490.
  • additives are generally added in an amount ranging from 10 to 1000 ppm (each), preferably from 100 to 1000 ppm by weight in the fuel composition.
  • a fuel composition is prepared according to any known method by adding the liquid fuel described above with at least one copolymer as described above.
  • the invention also relates to a fuel composition
  • a fuel composition comprising:
  • the fuel (1) is, in particular, chosen from hydrocarbon fuels and non-essentially hydrocarbon fuels previously described, taken alone or as a mixture.
  • this fuel composition comprising the copolymer according to the invention in an internal combustion engine has an effect on both the cleanliness of the engine and on the demulsification when the fuel contains water, compared to the liquid fuel not specifically additive.
  • the combustion of this fuel composition makes it possible, in particular, to prevent and / or reduce the fouling of the internal parts of said engine while maintaining or even improving the demulsification of said fuel.
  • the combustion of the fuel composition comprising the copolymer according to the invention in an internal combustion engine also makes it possible to reduce the fuel consumption and / or the emissions of pollutants.
  • the copolymer according to the invention is preferably incorporated in a small amount in the liquid fuel described above, the amount of copolymer being sufficient to produce on the one hand a detergent effect while maintaining or even improving the demulsification, and thus improving engine cleanliness.
  • the copolymer (s) according to the invention in a total content of at least 5 ppm by weight, preferably at least 10 ppm, more preferably at a content of 10 to 5000 ppm, still more preferably at 2000 ppm and more preferably from 50 to 1000 ppm.
  • the fuel composition may also comprise one or more other additives different from said copolymers.
  • additives are chosen in particular from the other known detergent additives, for example anti-corrosion agents, dispersants, demulsifiers, defoamers, biocides, deodorants, procetane additives, friction modifiers, lubricity additives or lubricity additives, combustion aids (catalytic combustion promoters and soot), cloud point improvers, pour point, TLF, anti-settling agents, anti-wear agents and / or conductivity modifiers .
  • the additives different from the copolymers according to the invention are, for example, the fuel additives listed above.
  • a method of keeping the cleanliness (keep-clean) and / or cleaning (clean-up) of at least one of the internal parts of an internal combustion engine comprises the preparation of a fuel composition by additivation of a fuel with at least one copolymer as described above and combustion of said fuel composition in the internal combustion engine.
  • the internal combustion engine is a spark ignition engine, preferably direct injection (DISI).
  • DISI direct injection
  • the inner part kept clean and / or cleaned of the spark ignition engine is preferably selected from the engine intake system, in particular the intake valves (IVD), the combustion chamber (CCD or TCD) and the fuel injector system, in particular the inj ectors of an indirect injection system (IFP) or the injectors of a direct injection system (DISI).
  • the engine intake system in particular the intake valves (IVD), the combustion chamber (CCD or TCD) and the fuel injector system, in particular the inj ectors of an indirect injection system (IFP) or the injectors of a direct injection system (DISI).
  • the internal combustion engine is a diesel engine, preferably a direct injection diesel engine, in particular a diesel engine with Common Rail injection systems (IDRC).
  • a direct injection diesel engine in particular a diesel engine with Common Rail injection systems (IDRC).
  • IDRC Common Rail injection systems
  • the internal part kept clean (keep-clean) and / or cleaned (clean-up) of the diesel engine is preferably the injection system of the diesel engine, preferably an external part of a inj ector said injector system, for example the nose of the injector and / or one of the internal parts of an injector of said inj ection system, for example the surface of an injector needle.
  • the keep-clean and / or clean-up method preferably comprises the successive steps of:
  • step 2) incorporation into the fuel of the copolymer (s) selected (s) at the rate determined in step 1) and possibly other fuel additives.
  • copolymer according to the invention and the other additives can be used in the form of a concentrate or an additive concentrate as described above.
  • Stage 1) is carried out according to any known process and is a standard practice in the field of fuel additives. This step involves defining at least one representative characteristic of the detergency properties of the fuel composition.
  • the characteristic characteristic of the fuel detergency properties will depend on the type of internal combustion engine, for example diesel or spark ignition, the direct or indirect injection system and the location in the engine of the targeted deposits for cleaning and / or or maintaining cleanliness.
  • the representative characteristic of the fuel detergency properties may, for example, correspond to the power loss due to the formation of deposits in the injectors or the restriction of the fuel flow emitted by the fuel. injector during operation of said engine.
  • the representative characteristic of the detergency properties may also correspond to the appearance of lacquering deposits at the injector needle (IDID).
  • the process of demulsifying the fuel or separating the water from the fuel preferably comprises the successive steps of:
  • the additive most suitable for the fuel said additive corresponding to the selection of the copolymer (s) described above to be incorporated in combination, optionally, with other fuel additives as described above. and determining the rate of treatment required to achieve a given specification relating to the demulsification of the fuel composition.
  • Stage 1 ' is carried out according to any known process and is a standard practice in the field of fuel additives. This step involves defining at least one representative characteristic of the demulsification properties of the fuel composition.
  • the representative characteristic of the demulsification properties may for example correspond to a measurement of the aqueous phase volume extracted from the fuel according to ASTM D 1094.
  • Step 3 ') is also carried out according to any method known to those skilled in the art.
  • step 3 ') can be carried out by decantation of the additive fuel composition and then separation of the water.
  • the amount of copolymer (s) according to the invention to be added to the fuel composition to achieve the specification (step 1) or step 1 ') described above) will be carried out typically by comparison with the fuel composition but without the (The) copolymer (s) according to the invention, the given specification relating to the detergency may for example be a target value of power loss according to the DW method 10 or a flow restriction value according to XUD9 method mentioned above.
  • the amount of copolymer (s) according to the invention may also vary according to the nature and origin of the fuel, for example as a function of the content of n-alkyl, iso-alkyl or n-alkenyl substituted compounds. or depending on its water content. Thus, the nature and origin of the fuel may also be a factor to be considered for step 1) or 1 ').
  • the keep-clean and / or clean-up method may also include an additional step 3) after step 2), verification of the target reached and / or adjustment of the target. rate of additivation with the copolymer (s) according to the invention as a detergent additive.
  • copolymers according to the invention have remarkable properties as a detergent additive in a liquid fuel, in particular in a diesel or gasoline fuel without damaging the demulsification of the water of said fuel when the latter contains water.
  • copolymers according to the invention are particularly remarkable in particular because they are effective as a detergent additive and as a demulsifying additive for a wide range of liquid fuel and / or for one or more types of motorization and / or against one or more types of deposit. that form in the internal parts of internal combustion engines.
  • a copolymer according to the present invention was synthesized according to the protocol described below. the step: Synthesis of a diblock EHMA / MME by RAFT radical polymerization:
  • HPLC method used HPLC Utitmate 300 from Thermo Fischer.
  • the stationary phase of the apparatus is a Symmetry Shield RP 18 column.
  • the mobile phase is composed of two eluents, a first whose composition is water / methanol with CH 2 O 2 at pH 5, the second is composed of methanol with acid methanoic pH5 also.
  • This mobile phase has a flow rate of 1 ml / min.
  • Temperature oven is stored at 40 ° C.
  • the injection volume is 5 ⁇ l.
  • the products are detected via a diode array detector.
  • a sample of 250 is taken at t0 (just after AIBN addition) and tf (final t) to measure the residual monomer content by HPLC (as described for block A above) and thus deduce the conversion.
  • GPC analyzes were performed in THF. In a typical analysis, ⁇ ⁇ of sample at 0.5% m / m previously filtered on a 0.45 ⁇ millipore filter is injected into WATERS Styragel columns operating at 40 ° C and 645 Psi with a THF flow rate of 1 ml / ml. min.
  • the number average magnetic masses (M n ) were determined by RI (refractive index) detection from calibration curves constructed for PMMA standards. The analyzes were carried out in a WATERS Styragel type column with the refractive index as a detector.
  • Microstructure by 1 H NMR and 13 C NMR based on the signals relating to the chain ends, 17 EHMA patterns, 6 MADAME patterns, are determined.
  • the relative molecular composition 71% EHMA, 29% MADAME.
  • Step 2 Quaternization of partial blo c B diblock EHMA / MRS: 28.5 g of the diblock polymer solution in toluene prepared above are removed and introduced into a 100 ml flask. 10.5 g of butanol, 912 mg (12.6 mmol) of epoxybutane and 735 mg (12.2 mmol) of acetic acid are introduced. The mixture is heated at 60 ° C for 24 hours, a vigorous on the balloon. At the end of the reaction the mixture is evaporated under reduced pressure.
  • the quaternization rate of block B (MADAME block) is 40 mol%.
  • the quaternization rate is determined by 13C NMR.
  • 13C NMR the bulk around 70 ppm is assigned to the CH 2 CH 2 CHOHCH 2 CH 3 group alpha to the quaternized nitrogen atom.
  • EHMA / MADAME 71/29
  • the performance in terms of detergency was evaluated using the XUD9 engine test, consisting in determining the flow loss defined as corresponding to the restriction of the flow of diesel fuel emitted by the injector of a prechamber diesel engine during its operation, according to the standard engine test method CEC F-23-1 - 01.
  • the objective of the XUD9 test is to evaluate the ability of the additive tested to maintain cleanliness, the so-called "keep clean" effect, of the injectors of a Peugeot XUD9 A / L four-cylinder engine and Diesel prechamber injection. , in particular to evaluate its ability to limit the formation of deposits on the injectors.
  • the test was carried out on a B0 type virgin diesel fuel according to EN590, additive with the polymer obtained at the result of the second step above, at a treatment rate of 50 ppm by weight (50 mg / kg).
  • the test is started with a Peugeot XUD9 A / L four-cylinder diesel injection engine equipped with clean injectors whose flow has been determined beforehand.
  • the engine follows a determined test cycle for 10 hours and 3 minutes (repetition of the same cycle 134 times).
  • the injector flow is again evaluated.
  • the quantity of fuel required for the test is 60L.
  • the loss of flow is measured on the four injectors.
  • the results are expressed as percentage loss of flow for different needle lifts.
  • the fouling values are usually compared to 0.1 mm needle lift because they are more discriminating and more precise and repeatable (repeatability ⁇ 5%).
  • the evolution of the loss of flow before / after the test makes it possible to deduce the loss of flow in percentage. Given the repeatability of the test, a significant detergent effect is affirmable for a loss of flow reduction or a gain in flow greater than 10 points (> 10%).
  • the above copolymer is also useful as a demulsifying additive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne un copolymère comprenant: -au moins un motif de formule (I) suivante: (I) et -des motifs de formule (II) suivante: (II) 5 à 95% en moles des groupements R des motifs de formule (II) comprenant au moins un groupement aminé quaternaire. L'invention concerne également la préparation d'un tel copolymère, et son utilisation comme additif détergent et/ou additif désémulsifiant dans un carburant liquide de moteur à combustion interne.

Description

Nouveau copolymère et son utilisation comme additif pour
carburant
La présente invention concerne un nouveau copolymère et son utilisation comme additif pour carburant liquide de moteur à combustion interne.
ETAT DE L'ART ANTERIEUR Les carburants liquides de moteurs à combustion interne contiennent des composants pouvant se dégrader au cours du fonctionnement du moteur. La problématique des dépôts dans les parties internes des moteurs à combustion est bien connue des motoristes. Il a été montré que la formation de ces dépôts a des conséquences sur les performances du moteur et notamment a un impact négatif sur la consommation et les émissions de particules . Les progrès de la technologie des additifs de carburant ont permis de faire face à cette problématique. Des additifs dits détergents utilisés dans les carburants ont déj à été proposés pour maintenir la propreté du moteur en limitant les dépôts (effet « keep-clean » en anglais) ou en réduisant les dépôts déjà présents dans les parties internes du moteur à combustion (effet « clean-up » en anglais). On peut citer à titre d' exemple le document US41 71959 qui décrit un additif détergent pour carburant essence contenant une fonction ammonium quaternaire. Le document WO200613588 1 décrit un additif détergent contenant un sel d'ammonium quaternaire utilisé pour réduire ou nettoyer les dépôts notamment sur les soupapes d'admission. Néanmoins, la technologie des moteurs évo lue sans cesse et les exigences sur les carburants doivent évo luer pour faire face à ces avancées technologiques des moteurs à combustion. En particulier, les nouveaux systèmes d' inj ection directe essence ou Diesel exposent les inj ecteurs à des conditions plus sévères en pression et température ce qui favorise la formation de dépôts . En outre, ces nouveaux systèmes d' inj ection présentent des géométries plus complexes pour optimiser la pulvérisation, notamment, des trous plus nombreux ayant des diamètres plus petits mais qui, en revanche, induisent une plus grande sensibilité aux dépôts . La présence de dépôts peut altérer les performances de la combustion notamment augmenter les émissions polluantes et les émissions de particules . D ' autres conséquences de la présence excessive de dépôts ont été rapportées dans la littérature, telles que l ' augmentation de la consommation de carburant et les problèmes de maniabilité .
La prévention et la réduction des dépôts dans ces nouveaux moteurs sont essentielles pour un fonctionnement optimal des moteurs d'aujourd'hui. Il existe donc un besoin de proposer des additifs détergents pour carburant favorisant un fonctionnement optimal des moteurs à combustion, notamment, pour les nouvelles techno logies moteur.
Il existe également un besoin d'un additif détergent universel capable d' agir sur les dépôts quelque soit la techno logie du moteur et/ou la nature du carburant.
Un autre problème important lié aux carburants liquides de moteurs à combustion interne est la présence d' eau résiduelle au sein de ces carburants. En effet, de par le procédé mis en œuvre pour l ' extraction du pétrole brut mais aussi en raison de la condensation d' eau au sein du carburant froid lors de son transport et de son stockage, les carburants comprennent une quantité variable d ' eau pouvant aller de quelques parties par million à quelques pourcents en masse par rapport à la masse totale du carburant. La présence de cette eau résiduelle aboutit généralement à la formation d' émulsions stables qui, étant en suspension au sein du carburant, sont la cause de nombreux problèmes survenant lors du transport et/ou lors de la combustion de ces carburants. Par exemple, ces émulsions peuvent provoquer l ' obstruction des filtres du moteur ou encore accélérer la corrosion du moteur. Les additifs détergents utilisés actuellement dégradent généralement la désémulsion des carburants liquides de moteurs à combustion interne, en particulier des gazoles et des essences .
Afin de surmonter ces problèmes, il est courant dans le domaine des carburants d'utiliser des additifs de désémulsion (ou désémulsifiants, en anglais « demulsifier ») . Ces additifs de désémulsion permettent alors de briser les émulsions eau-dans- carburant et de rendre possible la séparation de l ' eau et du carburant. On peut citer à titre d' exemple de composition d' additifs de désémulsion, celle décrite dans le document US4219508.
Plus récemment, le document US 201 6/0160144 propose d'utiliser un acide polyisobuténylsuccinique en association avec un ou plusieurs additifs détergent afin d' améliorer la séparation de l ' eau et du carburant.
De nombreux documents de l ' art antérieur décrivent le
« débrumage » (en anglais « dehazing ») de carburants comprenant de l ' eau. Ce phénomène de « débrumage » correspond en réalité à la stabilisation de l ' émulsion eau-dans-carburant afin d'obtenir une composition de carburant d' apparence monophasique (émulsification) . Le « débrumage », contrairement à la désémulsion, ne permet pas la séparation de l ' eau et du carburant et ne constitue donc pas une so lution aux inconvénients décrits précédemment.
Par conséquent, il existe toujours un besoin de proposer une so lution d' additivation permettant d ' apporter aux carburants de bonnes propriétés détergentes tout en maintenant, voire en améliorant la désémulsion dudit carburant.
OBJET DE L'INVENTION L 'obj et de l' invention concerne de nouveaux copolymères comprenant l ' association d' au mo ins deux types de motifs particuliers, tels que décrits ci-après . Ces copolymères sont utiles notamment comme aditifs dans les produits pétroliers, et en particulier dans les carburants liquides de moteur à combustion interne.
La demanderesse a découvert que les copolymères selon l' invention possèdent des propriétés remarquables comme additif détergent dans les carburants liquides de moteur à combustion interne. Utilisés dans ces carburants, les copolymères selon l' invention permettent de maintenir la propreté du moteur, en particulier, en limitant ou évitant la formation les dépôts (effet « keep-clean » en anglais) ou en réduisant les dépôts déj à présents dans les parties internes du moteur à combustion (effet « clean-up » en anglais) .
En outre, les copolymères selon l' invention présentent des propriétés remarquables comme additif désémulsifiant dans les carburants liquides de moteur à combustion interne. Ils permettent en effet d' améliorer la séparation de l ' eau et du carburant lorsque ce dernier contient de l ' eau.
Par « améliorer la séparation de l ' eau et du carburant », on entend accélérer la séparation, et/ou augmenter le taux de séparation du carburant et de l ' eau résiduelle présente dans ce carburant.
Les avantages additionnels associés à l'utilisation comme additifs pour carburants des copolymères selon l' invention sont :
- un fonctionnement optimal du moteur,
- une réduction de la consommation de carburant,
- une meilleure maniabilité du véhicule,
- des émissions de polluants réduites, et
- une économie due à moins d'entretien du moteur.
La présente invention a pour obj et un copolymère comprenant :
- au moins un motif de formule (I) suivante :
dans laquelle
u = 0 ou 1,
Ri' représente un atome d'hydrogène ou un groupement méthyle,
E représente -O- ou -N(Z)-, ou -O-CO-, ou -CO-O- ou -NH-CO- ou - CO-NH-, avec Z représentant H ou un groupement alkyle en Ci à C6, G représente un groupement choisi parmi un groupe alkyle en Ci à C34, un noyau aromatique, un groupe aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en Ci à C34, et - des motifs de formule (II) suivante :
dans laquelle
v = 0 ou 1,
Ri" est choisi parmi l'atome d'hydrogène et le groupement méthyle,
Q est choisi parmi l'atome d'oxygène et un groupement -NR'- avec R' étant choisi parmi un atome d'hydrogène et les chaînes hydrocarbonées en Ci à C12,
R représente une chaîne hydrocarbonée en Ci à C34 pouvant également contenir un ou plusieurs atomes d'azote et/ou d'oxygène et/ou groupements carbonyle, substituée par au moins un groupement aminé non quaternaire et/ou au moins un groupement aminé quaternaire, ledit groupement aminé non quaternaire comprenant au moins une fonction aminé primaire, secondaire ou tertiaire,
ledit groupement aminé quaternaire comprenant au mo ins une fonction ammonium quaternaire et éventuellement un ou plusieurs groupements hydroxyle,
5 à 95 % en mo les des groupements R des motifs de formule (II) comprenant au moins un groupement aminé quaternaire .
Préférentiellement, le groupement G de la formule (I) est choisi parmi un groupe alkyle en C4 à C 34 , un noyau aromatique, un groupe aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en C i à C34 , de préférence en C4 à C34.
Selon une première variante, le groupement G de la formule (I) est un groupe aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en C4 à C30.
Selon une seconde variante préférée, le groupement G de la formule (I) est un groupe alkyle en C4 à C 34 .
Selon un premier mode de réalisation, le groupement E de la formule (I) est choisi parmi : -O- et -N(Z)-, avec Z représentant H ou un groupement alkyle en C i à C6.
Selon un second mo de de réalisation, le groupement E de la formule (I) est choisi parmi : -O-CO- et -NH-CO- ; de préférence le groupement E est le groupement -O-CO- ; étant entendu que le groupement E=-0-CO- est relié au carbone vinylique par l ' atome d' oxygène et que le groupement E=-NH-CO- est relié au carbone vinylique par l ' atome d' azote.
Selon un troisième mode de réalisation, le groupement E de la formule (I) est choisi parmi : -CO-O- et -CO-NH-, de préférence le groupement E est le groupement -CO-O-, étant entendu que le groupement E est relié au carbone vinylique par l ' atome de carbone.
Comme exposé ci-avant, 5 à 95 % en mo les des groupements R des motifs de formule (II) comprennent au moins un groupement aminé quaternaire.
Les motifs de formule (II) dans lesquels le groupement R ne comprend pas de groupement aminé quaternaire comprennent dans le groupement R au moins un groupement aminé comprenant une fonction aminé primaire, secondaire, ou tertiaire. Ces motifs représentent de 5 à 95 % en mo les des motifs de formule (II) du copolymère selon l' invention.
Selon une première variante, ledit groupement aminé non quaternaire est choisi parmi les groupements ayant au moins une fonction aminé, imine, amidine, guanidine, aminoguanidine ou biguanidine, tels que les alkyl-amines, les polyalkylène polyamines, polyalkylènimines, alkyl-imines, alkyl-amidines, alkyl-guanidines et alkyl-biguanidines, le substituant alkyle pouvant être linéaire ou ramifié, cyclique ou acyclique, et ayant de préférence de 1 à 34 atomes de carbone, plus préférentiellement de 1 à 12 atomes de carbone.
Selon une seconde variante, ledit groupement aminé non quaternaire est choisi parmi les groupements hétérocycliques monocycliques ou polycycliques, ayant de 3 à 34 atomes, de préférence de 5 à 12 atomes, plus préférentiellement de 6 à 10 atomes, et au moins un atome d' azote, étant entendu que les groupements hétérocycliques polycycliques ont, éventuellement, des cycles fusionnés . Le nombre d' atomes inclut les hétéroatomes . On entend par cycles fusionnés, des cycles ayant au moins deux atomes en commun. Les groupements hétérocycliques peuvent comprendre, en outre, un atome d' oxygène et/ou un groupement carbonyle et/ou une ou plusieurs insaturations.
On peut citer à titre d' exemple de groupement aminé hétérocyclique les radicaux suivants : triazole, aminotriazo le, pyrrolidone, pipéridine imidazo le, morpholine, isoxazo le, oxazole, indo le, ledit radical étant de préférence relié à la chaîne hydrocarbonée par un atome d' azote.
Selon un mode de réalisation préféré, le groupement R de la formule (II) comprenant au moins un groupement aminé non quaternaire est représenté :
- lorsque v vaut 1 , par la formule (V) : - lorsque v vaut 0, par la formule (V) ou par la formule (V ) : L-R'— (v) L _ (v > ) formules (V) et (V) dans lesquelles :
R2 ' est choisi parmi les chaînes hydrocarbonées en C i à C 34 , éventuellement substituées par au moins un groupement hydroxyle, et - L est choisi parmi le groupe consistant en :
- les groupements :
aminé : -NH2 ; -NHRa, -NRaRb ;
• imine : -HC=NH ; -HC=NRa ; -N=CH2, -N=CRaH ; -N=CRaRb,
• amidine : -(C=NH)-NH2 ; -(C=NH)-NRaH ; -(C=NH)-NRaRb ;
-(C=NRa)-NH2 ; -(C=NRa)-NRbH ; -(C=NRa)-NRbRc ; -N=CH(NH2) ; - N=CRa (NH2) ; -N=CH(NRaH) ; -N=CRa(NRaH) ; -N=CH(NRaRb) ; - N=CRa (NRbRc) ;
• guanidine : -NH-(C=NH)-NH2 ; -NH-(C=NH)-NHRa ; -N=C(NH2)2 ; -N=C(NRaH)2 ;-N=C(NRaRb)2 ; -N=C(NRaH)(NRbH),
• aminoguanidine : -NH-(C=NH)-NH-NH2 ; -NH-(C=NH)-NH-NHRa ; -N=C(NH2)(NH-NH2) ; -N=C(NRaH)(NH-NH2);
-N=C(NRaH)(NRa-NH2) ; -N=C(NRaRb)(NH-NH2) ;
-N=C(NRaRb) (NRa-NH2),
• biguanidine : -NH-(C=NH)-NH-(C=NH)-NH2 ;
-NH-(C=NH)-NH-(C=NH)-NHRa ; -N=C(NH2)-NH-(C=NH)-NH2 ;
-N=C(NH2)-NH-(C=NRa)-NH2 ; -N=C(NH2)-NH-(C=NH)-NRaH ;
-N=C(NH2)-NH-(C=NRa)-NRbH ; -N=C(NH2)-NH-(C=NH)-NRaRb ;
-N=C(NH2)-NH-(C=NRa)-NRbRc ; -N=C(NRaH)-NH-(C=NH)-NH2 ;
-N=C(NRaH)-NH-(C=NRb)-NH2 ; -N=C(NRaH)-NH-(C=NH)-NRbH ;
-N=C(NRaH)-NH-(C=NRb)-NRcH ; -N=C(NRaH)-NH-(C=NH)-NRbRc ; -N=C(NRaH)-NH-(C=NRb)-NRcRd ; -N=C(NRaRb)-NH-(C=NH)-NH2 ;
-N=C(NRaRb)-NH-(C=NRc)-NH2 ; -N=C(NRaRb)-NH-(C=NH)-NRcH ;
-N=C(NRaRb)-NH-(C=NRc)-NRdH ; -N=C(NRaRb)-NH-(C=NH)-NRcRd ;
-N=C(NRaRb)-NH-(C=NRc)-NRdRe, et
les groupements polyamines et les polyalkylène-polyamines, notamment ceux de formules -NH-(Rf-NH)k-H ; -NH-(Rf-NH)k- Ra ; avec Ra, Rb, Rc, Rd et Re représentant indépendamment les uns des autres un groupement alkyle en C 1 - C 34 , de préférence en C 1 -C 12 , comprenant éventuellement une ou plusieurs fonctions NH2 et un ou plusieurs ponts -NH- ;
Rf représente un groupement alkyle en C i -C6 , de préférence en C2- C4 , k représente un entier allant de 1 à 20, de préférence de 2 à 12.
On peut citer à titre d' exemple de groupements polyamines et polyalkylène-polyamines : l ' éthylène diamine, la diéthylène triamine, la triéthylène tétramine, la tétraéthylène pentamine.
La ou les fonction(s) ammonium quaternaire du groupement aminé quaternaire peuvent être choisies parmi les ammoniums quaternaires de pyrrolinium, de pyridinium, d' imidazolium, de triazolium, de triazinium, d' oxazolium et d ' isoxazolium.
Selon une variante, la ou les fonction(s) ammonium quaternaire est (sont choisie(s) parmi les ammoniums quaternaires de trialkylammonium, d' iminium, d' amidinium, de formamidinium, de guanidinium et de biguanidinium, et de préférence de trialkylammonium.
Selon un mode de réalisation préféré, le groupement R de la formule (II) comprenant au moins un groupement aminé quaternaire est une forme quaternarisée de l 'un des groupements de formules (V) et (V) ci-avant, lorsque ceux-ci contiennent au moins un atome d' azote quaternisable.
Selon un mode de réalisation particulièrement préféré, le groupement R de la formule (II) comprenant au moins un groupement aminé quaternaire est représenté par l 'une des formules (III) et (IV) suivantes :
(III) (IV) dans lesquelles
X" est choisi parmi les ions hydroxyde, halogénures et les anions organiques, de préférence les anions organiques,
R2 est choisi parmi les chaînes hydrocarbonées en Ci à C34, éventuellement substituées par au moins un groupement hydroxyle,
R3, R4 et R5 sont identiques ou différents et choisis, indépendamment, parmi les chaînes hydrocarbonées en Ci à C18, étant entendu que les groupements R3, R4 et R5 peuvent contenir un ou plusieurs groupements choisis parmi : un atome d'azote, un atome d'oxygène et un groupement carbonyle et que les groupements R3, R4 et R5 peuvent être reliés ensemble deux à deux pour former un ou plusieurs cycles,
R6 et R7 sont identiques ou différents et choisis indépendamment parmi les chaînes hydrocarbonées en Ci à C18, étant entendu que les groupements R6 et R7 peuvent contenir un ou plusieurs groupements choisis parmi : un atome d'azote, un atome d'oxygène et un groupement carbonyle et que les groupements R6 et R7 peuvent être reliés ensemble pour former un cycle.
Selon un mode de réalisation particulièrement préféré, le groupement R de la formule (II) comprenant au moins un groupement aminé quaternaire est représenté par la formule (III) ci-avant, dans laquelle :
X" est choisi parmi les anions organiques, de préférence les bases conjuguées des acides carboxyliques,
R2 est choisi parmi les chaînes hydrocarbonées en Ci à C34, de préférence les groupements alkyles en Ci à C18,
R3, R4 et R5 sont identiques ou différents et choisis, indépendamment, parmi les chaînes hydrocarbonées en Ci à C18, éventuellement substituées par au moins un groupement hydroxyle, étant entendu qu'au moins un des groupements R3, R4 et R5 contient un ou plusieurs groupement(s) hydroxyle.
La présente invention a également pour objet un procédé de préparation du copolymère tel que décrit ci-avant.
Selon un premier mode de réalisation, le copolymère selon l'invention est obtenu par copolymérisation d'au moins :
- un monomère apolaire (ma) répondant à la formule suivante
(VII) :
dans laquelle
Ri', u, E et G sont tels que définis ci-dessus, et
- des monomères polaire (mb) répondant à la formule (VIII) suivante :
dans laquelle
Ri", v, Q et R sont tels que définis ci-dessus,
étant entendu que 5 à 95% en moles des monomères polaires (mb) comprennent un groupement R contenant au moins un groupement aminé quaternaire.
Selon un second mode de réalisation, le copolymère selon l'invention est obtenu par copolymérisation d'au moins :
- un monomère apolaire (ma) répondant à la formule suivante (VII) : (VII)
dans laquelle
Ri ' , u, E et G sont tels que définis ci-dessus, et
- un monomère polaire (mb) répondant à la formule (VIII) suivante :
dans laquelle
Ri " , v et Q et sont tels que définis ci-dessus,
et R représente une chaîne hydrocarbonée en C i à C34 pouvant également contenir un ou plusieurs atomes d' azote et/ou d' oxygène et/ou groupements carbonyle, substituée par au moins un groupement aminé non quaternaire,
la copolymérisation étant suivie d'une quaternisation partielle des groupements aminés des motifs issus du monomère (mb) .
Par "quaternisation partielle" , on entend une quaternisation de 5 à 95 % en mo les des groupements aminés des motifs issus du monomère (mb). Cette quaternisation desdits groupements aminés implique que ceux-ci comprennent au moins un atome d' azote quaternisable.
Selon un mode de réalisation préféré, le monomère (ma) est choisi parmi les acrylates d' alkyle en C i à C34 et les méthacrylates d' alkyle en C i à C34.
Selon un mode de réalisation préféré, le copolymère selon l'invention est choisi parmi les copolymères à blocs et les copolymères statistiques, et de préférence le copolymère selon l'invention est un copolymère à blocs.
De préférence, le copolymère selon l'invention est un copolymère à blocs comprenant :
- un bloc A répondant à la formule (XI) suivante :
(XI) dans laquelle
p est un entier allant de 2 à 100, de préférence allant de 5 à 80, de préférence allant de 10 à 70, plus préférentiellement allant de 20 à 60, Ri', u, E et G sont tels que définis ci-dessus, et
- un bloc B répondant à la formule (XII) suivante :
(XII)
dans laquelle
n est un entier allant de 2 à 50, de préférence de 3 à 40, plus préférentiellement de 4 à 20, encore plus préférentiellement de 5 à 10, Ri", v, Q et R sont tels que définis ci-dessus,
étant entendu que 5 à 95% en moles des motifs du bloc B comprennent un groupement R contenant au moins un groupement aminé quaternaire.
De préférence, le copolymère à blocs comprend au moins : - un bloc A consistant en une chaîne de motifs structuraux dérivés d'un ou de plusieurs monomères apolaires choisis parmi les monomères apolaires (ma) de formule (VII), et
- un bloc B consistant en une chaîne de motifs structuraux dérivés de monomères polaires choisis parmi les monomères polaires (mb) de formule (VIII).
Plus préférentiellement, le copolymère à blocs comprend au moins :
- le bloc A consistant en une chaîne de motifs structuraux dérivés d'un unique monomère apolaire choisi parmi les monomères apolaires (ma) de formule (VII), et
- le bloc B consistant en une chaîne de motifs structuraux dont 5 à 95% en moles sont dérivés d'un unique monomère polaire choisi parmi les monomères polaires (mb) de formule (VIII) dans lesquels le groupement R contient au moins un groupement aminé quaternaire, et dont 5 à 95% en moles sont dérivés d'un unique monomère polaire choisi parmi les monomères polaires (mb) de formule (VIII) dans lesquels le groupement R ne contient pas de groupement aminé quaternaire et comprend au moins un groupement aminé non quaternaire.
Encore plus préférentiellement, le copolymère à blocs comprend au moins :
- le bloc A consistant en une chaîne de motifs structuraux dérivés d'un monomère (méth)acrylate d'alkyle en C1-C34 (ma), et
- le bloc B consistant en une chaîne de motifs structuraux dérivés de monomères (méth)acrylate d'alkyle ou (méth)acrylamide d'alkyle (mb), dont 5 à 95% en moles ont un radical alkyle constitué par une chaîne hydrocarbonée en Ci à C34 substituée par un groupement aminé quaternaire et éventuellement un ou plusieurs groupements hydroxyle, et dont 5 à 95% en moles ont un radical alkyle constitué par une chaîne hydrocarbonée en Ci à C34 substituée par un groupement aminé non quaternaire choisi parmi les aminés primaires, secondaires ou tertiaires, de préférence les aminés tertiaires. De préférence, le nombre d' équivalents de monomère (ma) du blo c A est de 2 à 100 mo les.
De préférence, le nombre d' équivalents de monomère (mt) du blo c B est de 2 à 50 mo les .
De préférence, le copolymère comprend au moins une séquence de blocs AB, ABA ou BAB où lesdits blocs A et B s ' enchaînent sans présence de blo c intermédiaire de nature chimique différente.
Préférentiellement, le copolymère à blo cs est obtenu par polymérisation séquencée, éventuellement suivie d'une ou plusieurs post- fonctionnalisât ions.
L 'invention concerne également un concentré pour carburant comprenant un ou plusieurs copolymère(s) selon l' invention tel(s) que défini(s) ci-dessus, en mélange avec un liquide organique, ledit liquide organique étant inerte vis-à-vis dudit (desdits) copolymère(s), et miscible audit carburant.
L 'invention concerne également une composition de carburant comprenant :
( 1 ) un carburant issu d'une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques, et
(2) un ou plusieurs copolymère(s) tel que décrit(s) précédemment.
De préférence, la composition de carburant selon l' invention comprend le ou les copolymère(s) selon l' invention en une teneur minimale de 5 ppm.
De préférence, le carburant ( 1 ) est choisi parmi les carburants hydrocarbonés, les carburants non essentiellement hydrocarbonés et leurs mélanges.
Avantageusement, le carburant hydrocarboné est choisi parmi les essences et les gazoles, également appelés carburant Diesel.
L 'invention concerne également l 'utilisation d'un copolymère tel que décrit précédemment, comme additif détergent dans un carburant liquide de moteurs à combustion interne, ledit copolymère étant utilisé seul ou sous forme d'un concentré tel que défini précédemment.
Selon un mode de réalisation particulier, ledit copolymère est utilisé dans le carburant liquide pour maintenir la propreté et/ou nettoyer au moins une des parties internes dudit moteur à combustion interne.
Selon un mode de réalisation particulier, ledit copolymère est utilisé dans le carburant liquide pour limiter ou éviter la formation de dépôts dans au moins une des parties internes dudit moteur et/ou réduire les dépôts existant dans au moins une des parties internes dudit moteur.
Avantageusement, les dépôts sont localisés dans au moins une des parties internes choisie parmi le système d' admission du moteur, la chambre de combustion et le système d' inj ection de carburant.
Selon un mode de réalisation particulier, ledit copolymère est utilisé dans le carburant liquide pour réduire la consommation de carburant du moteur à combustion interne.
Selon un mode de réalisation particulier, ledit copolymère est utilisé pour réduire les émissions de polluants, en particulier, les émissions de particules du moteur à combustion interne.
Selon un mode de réalisation particulier, le moteur à combustion interne est un moteur à allumage commandé.
Selon un autre mode de réalisation particulier, le moteur à combustion interne est un moteur Diesel, de préférence un moteur Diesel à inj ection directe.
Avantageusement, le copolymère est utilisé pour éviter et/ou réduire la formation de dépôts dans le système d' inj ection du moteur Diesel.
En particulier, le copolymère est utilisé pour éviter et/ou réduire la formation de dépôts liés au phénomène de cokage et/ou les dépôts de type savon et/ou vernis .
L 'invention concerne également l 'utilisation d'un copolymère tel que décrit précédemment, comme additif désémulsifiant dans un carburant liquide de moteurs à combustion interne, ledit copolymère étant utilisé seul ou sous forme d'un concentré tel que défini précédemment.
Selon un mode de réalisation particulier, le copolymère est utilisé dans le carburant liquide pour accélérer la séparation, et/ou augmenter le taux de séparation du carburant et de l ' eau résiduelle éventuellement présente dans ce carburant.
L 'invention concerne en outre un procédé de maintien de la propreté et/ou de nettoyage d' au moins une des parties internes d'un moteur à combustion interne comprenant au moins les étapes suivantes :
- la préparation d'une composition de carburant par additivation d'un carburant avec un copolymère tel que décrit ci- dessus ou avec un concentré tel que décrit ci-dessus puis,
- la combustion de ladite composition de carburant dans ledit moteur à combustion interne.
L 'invention concerne enfin un procédé de désémulsion d'un carburant contenant de l ' eau, ou de séparation de l ' eau d'un carburant en contenant. Ce procédé comprend au moins les étapes suivantes :
la préparation d'une composition de carburant par additivation d'un carburant avec un copolymère tel que décrit ci- dessus ou avec un concentré tel que décrit ci-dessus puis,
- la séparation de l ' eau et du carburant.
DE SCRIPTION DETAILLEE D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre. Les modes particuliers de réalisation de l'invention sont donnés à titre d'exemples non limitatifs.
Pour des raisons de simplification, les termes suivants sont employés dans la présente description:
- (méth)acrylate d' alkyle pour désigner un acrylate d' alkyle ou un méthacrylate d' alkyle ;
- (méth)acrylamide d' alkyle pour désigner un acrylamide d' alkyle ou un méthacrylamide d' alkyle ; et
- ammonium quaternaire pour désigner un sel d' ammonium quaternaire.
Le copolymère:
L'invention concerne un copolymère comprenant
- au moins un motif de formule (I) suivante :
dans laquelle
u = 0 ou 1,
Ri' représente un atome d'hydrogène ou un groupement méthyle, E représente -O- ou -N(Z)-, ou -O-CO-, ou -CO-O- ou -NH-CO- ou -CO-NH-, avec Z représentant H ou un groupement alkyle en Ci à C6, G représente un groupement choisi parmi un groupe alkyle en Ci à C34, un noyau aromatique, un groupe aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en Ci à C34, et - des motifs de formule (II) suivante :
dans laquelle
v = 0 ou 1,
Ri" est choisi parmi l'atome d'hydrogène et le groupement méthyle, Q est choisi parmi l' atome d ' oxygène et un groupement -NR' - avec R' étant choisi parmi un atome d' hydrogène et les chaînes hydrocarbonées en C i à C 1 2,
R représente une chaîne hydrocarbonée en C i à C34 pouvant également contenir un ou plusieurs atomes d' azote et/ou d' oxygène et/ou groupements carbonyle, substituée par au moins un groupement aminé non quaternaire et/ou au moins un groupement aminé quaternaire, ledit groupement aminé non quaternaire comprenant au moins une fonction aminé primaire, secondaire ou tertiaire,
ledit groupement aminé quaternaire comprenant au mo ins une fonction ammonium quaternaire et éventuellement un ou plusieurs groupements hydroxyle,
5 à 95 % en mo les des groupements R des motifs de formule (II) comprenant au moins un groupement aminé quaternaire .
Selon un mode de réalisation particulier, le copolymère comprend uniquement des motifs de formule (I) et des motifs de formule (II) .
Selon un mode de réalisation particulier, le copolymère est choisi parmi les copolymères à blo cs et les copolymères statistiques .
Selon un mode de réalisation particulièrement préféré, le copolymère est un copolymère à blocs .
Selon une première variante, le motif de formule (I) est choisi parmi ceux vérifiant u=0.
Préférentiellement, et selon cette première variante, le copolymère est à blo cs.
Selon une autre variante, le motif de formule (I) est choisi parmi ceux vérifiant u= l .
Le groupement E de la formule (I) est choisi parmi :
- E = -O-,
- E= -N(Z)- avec Z représente H ou un groupement alkyle en C i à C6, linéaire ou ramifié, cyclique ou acyclique, de préférence acyclique,
- E = -O-CO- étant entendu que E est alors relié au carbone vinylique par l ' atome d' oxygène, - E = -CO-O- étant entendu que E est alors relié au carbone vinylique par l'atome de carbone,
- E = -NH-CO-, et
- E = -CO-NH-.
Selon un premier mode de réalisation, le groupement E de la formule (I) est choisi parmi : -O- et -N(Z)-, avec Z représentant H ou un groupement alkyle en Ci à C6.
Selon un second mode de réalisation, le groupement E de la formule (I) est choisi parmi : -O-CO- et -NH-CO-, étant entendu que le groupement E=-0-CO- est relié au carbone vinylique par l'atome d'oxygène et que le groupement E=-NH-CO- est relié au carbone vinylique par l'atome d'azote.
Selon ce même mode de réalisation, le groupement E de la formule (I) est de préférence le groupement -O-CO-, étant entendu que le groupement -O-CO- est relié au carbone vinylique par l'atome d'oxygène.
Selon un troisième mode de réalisation, le groupement E de la formule (I) est choisi parmi : -CO-O- et -CO-NH-, étant entendu que le groupement E est relié au carbone vinylique par l'atome de carbone.
Selon ce même troisième de réalisation, le groupement E de la formule (I) est de préférence le groupement -CO-O-, étant entendu que le groupement -CO-O- est relié au carbone vinylique par l'atome de carbone.
Selon un mode de réalisation préféré, le motif de formule (I) est tel que u=l, et le groupement E est un groupement -CO-O-, E étant relié au carbone vinylique par l'atome de carbone.
Le groupement (G) de la formule (I) peut être un groupe alkyle en Ci à C34, de préférence un radical alkyle en C4 à C34, de préférence en C4 à C30, plus préférentiellement en C6 à C24, encore plus préférentiellement en Cs à C18. Le radical alkyle est un radical linéaire ou ramifié, cyclique ou acyclique, de préférence acyclique. Ce radical alkyle peut comprendre une partie linéaire ou ramifiée et une partie cyclique.
Le groupement (G) de la formule (I) est avantageusement un alkyle acyclique en Ci à C34, de préférence un radical alkyle en C4 à C34, de préférence en C4 à C30, plus préférentiellement en C6 à C24, encore plus préférentiellement en Cs à C18, linéaire ou ramifié, de préférence ramifié.
On peut citer, de façon non limitative, les groupements alkyles tels que le butyle, l'octyle, le décyle, le dodécyle, l'éthyl-2-hexyle, l'isooctyle, l'isodécyle et l'isododécyle.
Le groupement (G) de la formule (I) peut également être un noyau aromatique, de préférence un groupement phényle ou aryle. Parmi les groupements aromatiques, on peut citer, de façon non limitative, le groupement phényle ou naphtyle, de préférence le groupement phényle.
Le groupement (G) de la formule (I) peut, selon une autre variante préférée, être un aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en Ci à C34. De préférence, selon cette variante, le groupement (G) est un aralkyle comprenant au moins un noyau aromatique et un ou plusieurs groupements alkyles en C4 à C34, de préférence en C4 à C30, plus préférentiellement en C6 à C24, encore plus préférentiellement en Cs à
Le noyau aromatique peut être mono-substitué ou être substitué sur plusieurs de ses atomes de carbone. De préférence, le noyau aromatique est monosubstitué.
Le groupement alkyle en Ci à C34 peut être en position ortho, méta ou para sur le noyau aromatique, de préférence en para.
Le radical alkyle est un radical linéaire ou ramifié, cyclique ou acyclique, de préférence acyclique.
Le radical alkyle est, de préférence, un radical acyclique, linéaire ou ramifié, de préférence ramifié.
Le noyau aromatique peut être directement relié au groupement
E ou au carbone vinylique mais il peut aussi lui être relié par l'intermédiaire d'un substituant alkyle. On peut citer, à titre d' exemple de groupement G un groupement benzyle substitué en para par un groupement alkyle en C4 à C34 , de préférence en C4 à C30.
De préférence, selon cette variante, le groupement (G) de la formule (I) est un aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en C4 à C34 , de préférence en C4 à C30 , plus préférentiellement en C6 à C24 , encore plus préférentiellement en Cs à C 1 8.
Selon un mode de réalisation particulier, le groupement Q de la formule (II) est l ' atome d 'oxygène.
Pour 5 à 95 % en mo les des motifs de formule (II), le groupement R comprend au moins un groupement aminé quaternaire.
Selon un mode de réalisation préféré, 1 0 à 90%> en mo les des groupements R des motifs de formule (II) comprennent au moins un groupement aminé quaternaire, plus préférentiellement de 20 à 80%, encore plus préférentiellement de 40 à 60%, et mieux encore de 45 à 55 %o , par rapport à la quantité totale des groupements R des motifs de formule (II) .
De plus, les motifs de formule (II) dans lesquels le groupement R ne comprend pas de groupement aminé quaternaire comprennent au moins un groupement aminé non quaternaire comprenant au moins une fonction aminé primaire, secondaire, ou tertiaire.
Ces motifs représentent de 5 à 95 % en mo les des motifs de formule (II) du copolymère selon l' invention, de préférence de 10 à 90%) en mo les, plus préférentiellement de 20 à 80%> en mo les, encore plus préférentiellement de 40 à 60% en moles, et mieux encore de 45 à 55 %o en mo les .
Selon une première variante, ledit groupement aminé non quaternaire est choisi parmi les groupements ayant au moins une fonction aminé, imine, amidine, guanidine, aminoguanidine ou biguanidine, tels que les alkyl-amines, les polyalkylène polyamines, polyalkylènimines, alkyl-imines, alkyl-amidines, alkyl-guanidines et alkyl-biguanidines, le substituant alkyle pouvant être linéaire ou ramifié, cyclique ou acyclique, et ayant de préférence de 1 à 34 atomes de carbone, plus préférentiellement de 1 à 12 atomes de carbone.
Selon une seconde variante, ledit groupement aminé non quaternaire est choisi parmi choisi parmi les groupements hétérocycliques monocycliques ou polycycliques, ayant de 3 à 34 atomes, de préférence de 5 à 12 atomes, plus préférentiellement de 6 à 10 atomes, et au moins un atome d'azote, étant entendu que les groupements hétérocycliques polycycliques ont, éventuellement, des cycles fusionnés. Le nombre d'atomes inclut les hétéroatomes. On entend par cycles fusionnés, des cycles ayant au moins deux atomes en commun. Les groupements hétérocycliques peuvent comprendre, en outre, un atome d'oxygène et/ou un groupement carbonyle et/ou une ou plusieurs insaturations.
On peut citer à titre d'exemple de groupement aminé hétérocyclique les radicaux suivants : triazole, aminotriazole, pyrrolidone, pipéridine imidazole, morpholine, isoxazole, oxazole, indole, ledit radical étant de préférence relié à la chaîne hydrocarbonée par un atome d'azote.
Selon un mode de réalisation préféré, le groupement R comprenant au moins un groupement aminé non quaternaire est représenté :
lorsque v vaut 1, par la formule (V) suivante:
lorsque v vaut 0, par l'une des formules (V) et (V) suivantes:
Formules (V) et (V) dans lesquelles :
R2' est choisi parmi les chaînes hydrocarbonées en Ci à C34, de préférence en Ci à C18, plus préférentiellement en Ci à C8, encore plus préférentiellement en C2 à C4, cycliques ou acycliques, linéaires ou ramifiées, éventuellement substituées par au moins un groupement hydroxyle ; de préférence R2' est choisi parmi les groupements alkyles, éventuellement sub stitués p ar au mo ins un groupement hydro xyle ; et
- L est cho isi parmi le groupe consistant en :
- les groupements :
· aminé : -NH2 ; -NHRa, -NRaRb ;
imine : -HC=NH ; -HC=NRa ; -N=CH2, -N=CRaH ; -N=CRaRb,
amidine : -(C=NH)-NH2 ; -(C=NH)-NRaH ; -(C=NH)-NRaRb ;
-(C=NRa)-NH2 ;-(C=NRa)-NRbH ; -(C=NRa)-NRbRc ; -N=CH(NH2) ; -N=CRa (NH2) ; -N=CH(NRaH) ; -N=CRa(NRaH) ; -N=CH(NRaRb) ; -N=CRa (NRbRc) ;
guanidine : -NH-(C=NH)-NH2 ; -NH-(C=NH)-NHRa ; -N=C(NH2)2 ; -N=C(NRaH)2 ;-N=C(NRaRb)2 ; -N=C(NRaH)(NRbH),
• aminoguanidine : -NH-(C=NH)-NH-NH2 ; -NH-(C=NH)-NH-NHRa ; -N=C(NH2)(NH-NH2) ; -N=C(NRaH)(NH-NH2);
-N=C(NRaH)(NRa-NH2) ; -N=C(NRaRb)(NH-NH2) ;
-N=C(NRaRb) (NRa-NH2),
• biguanidine : -NH-(C=NH)-NH-(C=NH)-NH2 ;
-NH-(C=NH)-NH-(C=NH)-NHRa ; -N=C(NH2)-NH-(C=NH)-NH2 ;
-N=C(NH2)-NH-(C=NRa)-NH2 ; -N=C(NH2)-NH-(C=NH)-NRaH ; -N=C(NH2)-NH-(C=NRa)-NRbH ; -N=C(NH2)-NH-(C=NH)-NRaRb ;
-N=C(NH2)-NH-(C=NRa)-NRbRc ; -N=C(NRaH)-NH-(C=NH)-NH2 ;
-N=C(NRaH)-NH-(C=NRb)-NH2 ; -N=C(NRaH)-NH-(C=NH)-NRbH ;
-N=C(NRaH)-NH-(C=NRb)-NRcH ;-N=C(NRaH)-NH-(C=NH)-NRbRc ;
-N=C(NRaH)-NH-(C=NRb)-NRcRd ;-N=C(NRaRb)-NH-(C=NH)-NH2 ; -N=C(NRaRb)-NH-(C=NRc)-NH2 ; -N=C(NRaRb)-NH-(C=NH)-NRcH ;
-N=C(NRaRb)-NH-(C=NRc)-NRdH ;-N=C(NRaRb)-NH-(C=NH)-NRcRd ;
-N=C(NRaRb)-NH-(C=NRc)-NRdRe, et
- les groupements polyamines et les polyalkylène-po lyamines, notamment ceux de formules -NH-(Rf-NH)k-H ; -NH-(Rf-NH)k- Ra ; avec Ra, Rb, Rc, Rd et Re représentant indépendamment les uns des autres un groupement alkyle en C 1 - C 34 , de préférence en C i -C i 2, comprenant éventuellement une ou p lusieurs fonctions NH2 et un ou p lusieurs ponts -NH- ;
Rf représentant un groupement alkyle en C i -C6, de préférence en C2- C4 , k représente un entier allant de 1 à 20, de préférence de 2 à 12 ;
On peut citer à titre d' exemple de groupements polyamines et polyalkylène-polyamines : l ' éthylène diamine, la diéthylène triamine, la triéthylène tétramine, la tétraéthylène pentamine.
Selon un mode de réalisation particulier, v vaut 0. Dans ce mode de réalisation, de préférence le groupement R comprenant au moins un groupement aminé non quaternaire est représenté par la formule (V ) :
L (V)
L étant tel que défini ci-avant.
Selon un mode de réalisation particulier, le groupement R2 ' est choisi parmi les groupements alkyles acycliques en C i à C34 , de préférence en C i à C 1 8 , plus préférentiellement en C i à C8 , encore plus préférentiellement en C2 à C4 , linéaires ou ramifiés, et pouvant être substitués par au moins un groupement hydroxyle.
Selon un mode de réalisation particulièrement préféré, le groupement R comprenant au moins un groupement aminé non quaternaire est représenté par la formule (V) dans laquelle L est choisi parmi les groupements : -NH2 ; -NHRa, -NRaRb , avec Ra et Rt, tels que définis ci-avant, et plus préférentiellement parmi les groupements aminé tertiaire -NRaRb .
Selon un mode de réalisation préféré, le groupement R de la formule (II) comprenant au moins un groupement aminé quaternaire est une forme quaternisée de l 'un des groupements de formules (V) et
(V) ci-avant, lorsque ceux-ci contiennent au moins un atome d' azote quaternisable.
Le groupement aminé quaternaire peut, en particulier, être obtenu par quaternisation d' au moins une fonction aminé, imine, amidine, guanidine, amino guanidine ou biguanidine; ou encore d'un groupement hétérocyclique ayant de 3 à 34 atomes et au moins un atome d' azote ; et de préférence par quaternisation de fonctions aminé tertiaire.
Selon un mode de réalisation particulier, le groupement R comprenant au moins un groupement aminé quaternaire est représenté par l'une des formules (III) et (IV) suivantes:
(III) (IV)
dans laquelle
X" est choisi parmi les ions hydroxyde, halogénures et les anions organiques, en particulier l'ion acétate,
R2 est choisi parmi les chaînes hydrocarbonées en Ci à C34, de préférence en Ci à C18, plus préférentiellement en Ci à C8, encore plus préférentiellement en C2 à C4, cycliques ou acycliques, linéaires ou ramifiées, éventuellement substituées par au moins un groupement hydroxyle ; de préférence R2 est choisi parmi les groupements alkyles, éventuellement substitués par au moins un groupement hydroxyle,
R3, R4 et R5 sont identiques ou différents et choisis, indépendamment, parmi les chaînes hydrocarbonées en Ci à C18, de préférence en Ci à C12, linéaires ou ramifiées, cycliques ou acycliques, étant entendu que les groupements alkyles R3, R4 et R5 peuvent contenir un ou plusieurs atomes d'azote et/ou d'oxygène et/ou groupements carbonyle et peuvent être reliés ensemble deux à deux pour former un ou plusieurs cycles,
R6 et R7 sont identiques ou différents et choisis, indépendamment, parmi les chaînes hydrocarbonées en Ci à C18, de préférence en Ci à C12, linéaires ou ramifiées, cycliques ou acycliques, étant entendu que les groupements R6 et R7 peuvent contenir un ou plusieurs atomes d'azote et/ou d'oxygène et/ou groupements carbonyle et peuvent être reliés ensemble pour former un cycle.
Le ou les atomes d'azote et/ou d'oxygène peuvent être présents dans les groupements R3, R4 et R5 sous forme de ponts éther, de ponts aminé ou sous forme d'un substituant aminé ou hydroxyle. Les anions organiques du groupement X" sont avantageusement les bases conjuguées des acides organiques, de préférence les bases conjuguées des acides carboxyliques, en particulier les acides choisis parmi les acides monocarboxyliques, polycarboxyliques, cycliques ou acycliques. De préférence les anions organiques du groupement X" sont choisis parmi les bases conjuguées des acides carboxyliques acycliques saturés ou cycliques aromatiques. On citera à titre d'exemple l'acide méthanoïque, l'acide acétique, l'acide adipique, l'acide oxalique, l'acide malonique, l'acide succinique, l'acide citrique, l'acide benzoïque, l'acide phtalique, l'acide isophtalique et l'acide téréphtalique.
Selon un mode de réalisation particulier, le groupement R2 est choisi parmi les groupements alkyles acycliques en Ci à C34, de préférence en Ci à C18, plus préférentiellement en Ci à C8, encore plus préférentiellement en C2 à C4, linéaires ou ramifiés, substitués par au moins un groupement hydroxyle.
Avantageusement, le groupement R comprenant au moins un groupement aminé quaternaire est représenté par la formule (III) dans laquelle :
X" est choisi parmi les anions organiques, de préférence les bases conjuguées des acides carboxyliques,
R2 est choisi parmi les chaînes hydrocarbonées en Ci à C34, de préférence les groupements alkyles en Ci à C18,
R3, R4 et R5 sont identiques ou différents et choisis, indépendamment, parmi les chaînes hydrocarbonées en Ci à C18, éventuellement substituées par au moins un groupement hydroxyle, étant entendu qu'au moins un des groupements R3, R4 et R5 contient un ou plusieurs groupement(s) hydroxyle.
Selon un mode de réalisation particulier, le motif de formule (I) est obtenu à partir d'un monomère apolaire (ma).
De préférence, le monomère apolaire (ma) répond à la formule suivante (VII) :
dans laquelle
Ri', E, G et u sont tels que définis ci-dessus, les variantes préférées de Ri', E, G et u selon la formule (I) telles que définies ci- dessus sont également des variantes préférées de la formule (VII).
Avantageusement, le groupement Ri' est un atome d'hydrogène.
Lorsque le groupement E du monomère apolaire (ma) est le groupement -O-CO-, étant entendu que le groupement -O-CO- est relié au carbone vinylique par l'atome d'oxygène, le monomère (ma) est, de préférence, choisi parmi les alkyl esters vinyliques en Ci à C34, de préférence en C4 à C30, plus préférentiellement en C6 à C24, plus préférentiellement en Cs à C22. Le radical alkyle de l'alkyl ester vinylique est linéaire ou ramifié, cyclique ou acyclique, de préférence acyclique.
Parmi les monomères ester vinylique d'alkyle, on peut citer par exemple le l'octanoate de vinyle, le décanoate de vinyle, le dodécanoate de vinyle, le tétradécanoate de vinyle, l'hexadécanoate de vinyle, l'octodécanoate de vinyle, le docosanoate de vinyle, le 2- éthylhexanoate de vinyle.
Lorsque le groupement E du monomère apolaire (ma) est le groupement -CO-O-, étant entendu que le groupement -CO-O- est relié au carbone vinylique par l'atome de carbone, le monomère (ma) est, de préférence, choisi parmi les acrylates ou méthacrylates d'alkyle en Ci à C34, de préférence en C4 à C30, plus préférentiellement en C6 à C24, plus préférentiellement en Cs à C22. Le radical alkyle de l'acrylate ou méthacrylate est linéaire ou ramifié, cyclique ou acyclique, de préférence acyclique. Parmi les (méth)acrylates d'alkyle susceptibles d'être utilisés on peut citer, de façon non limitative : l'acrylate de n-octyle, le méthacrylate de n-octyle, l'acrylate de n-décyle, le méthacrylate de n- décyle, l'acrylate de n-dodécyle, le méthacrylate de n-dodécyle, l'acrylate d'éthyl-2-hexyle, le méthacrylate d'éthyl-2-hexyle, l'acrylate d'isooctyle, le méthacrylate d'isooctyle, l'acrylate d'isodécyle, le méthacrylate d'isodécyle.
Selon un premier mode de réalisation, le motif de formule (II) est obtenu à partir de monomères polaires (mb) choisis parmi ceux de formule (VIII) :
dans laquelle
Ri", v, Q et R sont tels que définis ci-dessus, les variantes préférées de Ri", Q et R selon la formule (II) telles que définies ci- dessus sont également des variantes préférées de la formule (VIII), étant entendu que 5 à 95% en moles des monomères polaires (mb) comprennent un groupement R contenant au moins un groupement aminé quaternaire.
Selon un mode de réalisation particulier, 5 à 95% en moles des monomères polaires (mb) sont représentés par l'une au moins des formules (IX) et (IX') suivantes:
(IX) (IX') et 5 à 95 % en mo les des monomères polaires (mb) sont représentés par la formule (X) suivante :
(X)
Formules (IX), (IX' ) et (X) dans lesquelles :
RI " , v et Q sont tels que définis ci-dessus, les variantes préférées de RI " et Q selon la formule (II) telles que définies ci- dessus sont également des variantes préférées des formules (IX), (IX ' ) et (X);
X", R2, R3 , R4 , R5 , R6 et R7 sont tels que définis ci-dessus, les variantes préférées de X", R2, R3 , R4, R5 , R6 et R7 selon les formules (III) et (IV) telles que définies ci-dessus sont également des variantes préférées des formules (IX) et (IX' ) ;
R'2 et L sont tels que définis ci-dessus, les variantes préférées de R'2 et L selon la formule (V) sont également des variantes préférées de la formule (X) .
Selon un second mo de de réalisation, le motif de formule (II) est obtenu à partir d'un monomère polaire (mb) choisis parmi ceux de formule (VIII) :
(VIII)
dans laquelle
Ri " , v et Q et sont tels que définis ci-dessus, les variantes préférées de Ri " et Q selon la formule (II) telles que définies ci- dessus sont également des variantes préférées de la formule (VIII), et R représente une chaîne hydrocarbonée en C i à C 34 pouvant également contenir un ou plusieurs atomes d' azote et/ou d'oxygène et/ou groupements carbonyle, substituée par au moins un groupement aminé non quaternaire.
Dans ce second mode de réalisation, la copolymérisation du monomère (mb) est suivie d'une quaternisation partielle des groupements aminés quaternisables, pour 5 à 95 % en mo les des motifs issus dudit monomère (mb) .
Ce second mode de réalisation est préféré.
Selon un mode de réalisation particulier, le copolymère peut être obtenu par copolymérisation d' au moins un monomère apo laire (ma) et d' au moins un monomère polaire (mb) tels que décrits ci-avant.
Selon un mode de réalisation particulier préféré, le copolymère est obtenu uniquement à partir de monomères apo laires (ma) et de monomères polaires (mb) .
Le copolymère peut être préparé selon tout procédé connu de polymérisation. Les différentes techniques et conditions de polymérisation sont largement décrites dans la littérature et relèvent des connaissances générales de l ' homme de l ' art.
Selon un mode de réalisation particulier, le copolymère est un copolymère à blocs comprenant au moins un bloc A et au moins un blo c B .
Le bloc A répond à la formule (XI) suivante :
U (XI)
dans laquelle
p est un entier allant de 2 à 100, de préférence de 5 à 80, de préférence de 10 à 70, plus préférentiellement de 20 à 60.
Ri ' , E, G et u sont tels que définis ci-dessus, les variantes préférées de Ri ' , E, G et u selon la formule (I) telles que définies ci- dessus sont également des variantes préférées de la formule (XI). Le bloc B répond à la formule (XII) suivante :
(XII) dans laquelle
v = 0 ou 1,
n est un entier allant de 2 à 50, de préférence de 3 à 40, plus préférentiellement de 4 à 20, encore plus préférentiellement de 5 à 10,
Ri", Q et R sont tels que définis ci-dessus, les variantes préférées de Ri", Q et R selon la formule (II) telles que définies ci- dessus sont également des variantes préférées de la formule (XII),
étant entendu que 5 à 95% en moles des motifs du bloc B comprennent un groupement R contenant au moins un groupement aminé quaternaire.
Selon un mode de réalisation particulier, le bloc B comprend : de 5 à 95% en moles de motifs correspondant à l'une au moins des formules (XIII) et (ΧΙΙΓ) suivantes :
(XIII) (Xi""') et de 5 à 95% en moles de motifs correspondant à la formule (XIV) suivante :
formules (XIII), (ΧΙΙΓ ) et (XIV) dans lesquelles
Q, Ri " , n et v sont tels que décrits ci-dessus, les variantes préférées de Q et Ri " selon la formule (II) telle que définie ci-dessus sont également des variantes préférées des formules (XIII), (ΧΙΙΓ ) et
(XIV),
X", R2, R3 , R4 , R5 , R6 et R7 sont tels que définis ci-dessus, les variantes préférées de X", R2, R3 , R4, R5 , R6 et R7 selon les formules (III) et (IV) telles que définies ci-dessus sont également des variantes préférées des formules (XIII) et (ΧΙΙΓ ),
R'2 et L sont tels que définis ci-dessus, les variantes préférées de R'2 et L selon la formule (V) sont également des variantes préférées de la formule (XIV) .
Les groupements aminés quaternaire des motifs du bloc B sont avantageusement choisis parmi les ammoniums quaternaires de trialkylammonium, d' iminium, d' amidinium, de formamidinium, de guanidinium et de biguanidinium, de préférence de trialkylammonium.
Les groupements aminés quaternaire des motifs du blo c B peuvent également être choisis parmi les composés hétérocycliques contenant au moins un atome d' azote, en particulier choisi parmi les ammoniums quaternaires de pyrrolinium, de pyridinium, d' imidazo lium, de triazolium, de triazinium, d' oxazolium et d'isoxazo lium.
Les groupements aminés quaternaire des motifs du bloc B sont avantageusement des groupements trialkylammonium quaternaire.
Selon une variante préférée, au moins un des groupements alkyles de l ' ammonium quaternaire du blo c B est substitué par un groupement hydroxyle.
Selon un mode de réalisation particulièrement préférée, le blo c B comprend de 5 à 95% en moles de motifs correspondant à la formule (XIII):
(XIII)
dans laquelle
v = 0 ou 1,
Ri" est choisi parmi l'atome d'hydrogène et le groupement méthyle,
Q est choisi parmi l'atome d'oxygène et le groupement -NR'- avec R' étant choisi parmi un atome d'hydrogène et les chaînes hydrocarbonées en Ci à C12,
X" est choisi parmi les anions organiques, de préférence les bases conjuguées des acides carboxyliques,
R2 est choisi parmi les chaînes hydrocarbonées en Ci à C34, de préférence les groupements alkyles en Ci à C18,
R3, R4 et R5 sont identiques ou différents et choisis, indépendamment, parmi les chaînes hydrocarbonées en Ci à C18, éventuellement substituées par au moins un groupement hydroxyle, étant entendu qu'au moins un des groupements R3, R4 et R5 contient au moins un groupement hydroxyle.
La répartition au sein du bloc B des motifs dont le groupement R comprend au moins une fonction ammonium quaternaire par rapport aux autres motifs du bloc B peut être de tout type, et notamment aléatoire, statistique ou en bloc. De préférence, cette répartition est de type aléatoire.
Selon un mode de réalisation particulier, le bloc A consiste en une chaîne de motifs structuraux dérivés d'au moins un monomère (ma) tel que décrit ci-dessus.
Selon un mode de réalisation particulier, le bloc B consiste en une chaîne de motifs structuraux dérivés de monomères (mb) tels que décrits ci-dessus .
Selon un mode de réalisation particulier, le bloc A consiste en une chaîne de motifs structuraux dérivés d'un monomère acrylate d' alkyle ou méthacrylate d' alkyle (ma) et le bloc B répond à la formule (XII) décrite ci-dessus .
Selon un mode de réalisation particulier, le copolymère à blocs est obtenu par copolymérisation d' au moins le monomère (méth)acrylate d' alkyle (ma) et d' au mo ins le ou les monomères (nu) décrits ci-avant.
Il est entendu que l'on ne sortirait pas de l 'invention si l'on obtenait le copolymère (a) selon l' invention à partir de monomères différents de (ma) et (mb), dans la mesure où le copolymère final correspond à celui de l' invention c ' est-à-dire comprends des motifs de formule (I) et des motifs de formule (II) tels que décrits ci-avant. Par exemple, on ne sortirait pas de l ' invention, si l'on obtenait le copolymère par copolymérisation de monomères différents de (ma) et (mb) suivie d'une post-fonctionnalisation.
Par exemple, les blocs dérivant d'un monomère apo laire (ma) peuvent être obtenus à partir de l ' alcool vinylique ou de l ' acide acrylique, respectivement par réaction de transestérification ou d' amidification.
Par exemple, les motifs ammonium quaternaire du blo c B peuvent être obtenus par post-fonctionnalisation des motifs intermédiaires (Mi) issus de la polymérisation d'un monomère intermédiaire (m;) (méth)acrylate ou (méth)acrylamide, de formules :
avec v, Q et Ri"sont tels que décrits ci-dessus,
Rs est choisi parmi les chaînes hydrocarbonées en Ci à C32, R9 est choisi parmi l'hydrogène et les groupements alkyle en ladite post-fonctionnalisation correspondant à la réaction dudit motif intermédiaire (Mi) avec une aminé tertiaire NR3R4R5 où où R3, R4, R5, R6 et R7 sont tels que définis ci-dessus dans les formules (III) et (IV).
Le copolymère selon l'invention peut également être obtenu par post-fonctionnalisation d'un polymère intermédiaire à blocs, comprenant au moins un boc intermédiaire contenant des motifs (Mi) et au moins un bloc A tel que décrit ci-dessus.
Selon un mode de réalisation particulièrement préféré, le bloc B de formule (XII) est obtenu par quaternisation, selon tout procédé connu, de 5 à 95% en moles des motifs d'un bloc Bi intermédiaire comprenant un unique motif de formule (XII) dans lequel les groupements R contiennent un groupement aminé tertiaire de formule NR3R4R5 ou dans laquelle R3, R4, R5, R6 et R7 sont tels que définis ci-dessus.
L'étape de quaternisation peut être réalisée avant la réaction de copolymérisation, sur un monomère intermédiaire portant l'aminé tertiaire par exemple, par réaction avec un halogénure d'alkyle ou un époxyde (oxirane) selon tout procédé connu, suivie éventuellement d'une réaction d'échange d'anion.
L'étape de quaternisation peut également être réalisée par post- fonctionnalisation d'un polymère intermédiaire portant l'aminé tertiaire, par exemple, par réaction avec un halogénure d'alkyle suivie éventuellement d'une réaction d'échange d'anion. On peut citer, à titre d'exemple de quaternisation, une réaction de post-fonctionnalisation d'un polymère intermédiaire portant l'aminé tertiaire, par réaction avec un époxyde (oxirane) selon tout procédé connu.
On préfère copolymériser des monomères intermédiaires portant une fonction aminé tertiaire puis dans une seconde étape fonctionnaliser le copolymère intermédiaire obtenu par quaternisation de l ' aminé tertiaire présent dans le copolymère intermédiaire, plutôt que de copolymériser des monomères déj à quaternarisés.
En outre, on préférera réaliser la quaternisation faisant intervenir un époxyde.
Le copolymère à blocs peut être obtenu par polymérisation séquencée, de préférence par polymérisation séquencée et contrôlée et, éventuellement suivie d'une ou plusieurs post-fonctionnalisations.
Selon un mode de réalisation particulier, le copolymère à blocs décrit ci-dessus est obtenu par polymérisation séquencée et contrôlée. La polymérisation est avantageusement, choisie parmi la polymérisation radicalaire contrôlée ; par exemple, par polymérisation radicalaire par transfert d' atome (ATRP en anglais « Atom Transfer Radical Polymerization») ; la polymérisation radicalaire par le nitroxyde (NMP en anglais « Nitroxide-mediated polymerization ») ; les procédés de transfert dégénératif (en anglais « degenerative transfer processes ») tels que la polymérisation par transfert d'iode dégénérative (en anglais « ITRP- iodine transfer radical polymerization ») ou la polymérisation radicalaire par transfert de chaîne réversible par addition-fragmentation (RAFT en anglais « Réversible Addition-Fragmentation Chain Transfer ») ; les polymérisations dérivées de l'ATRP telles que les polymérisations utilisant des initiateurs pour la régénération continue de l'activateur (ICAR -Initiators for continuous activator régénération) ou utilisant des activateurs régénérés par transfert d' électron (ARGET en anglais « activators regenerated by électron transfer »).
On citera, à titre d' exemple, la publication « Macromo lecular Engineering by atom transfer radical polymerization », JACS , 136, 65 13 -6533 (2014) qui décrit un procédé de polymérisation séquencée et contrôlée pour former des copolymères à blo cs.
On peut citer à titre d' exemple pour la NMP l 'identification par C . J. Hawker d'une alkoxyamine capable d' agir comme agent unimo léculaire, fournissant à la fois le radical réactif initiateur et le radical nitroxide intermédiaire sous forme stable (C . J. Hawker, J. Am. Chem. Soc , 1994, 116, 1 1 1 85 ). Hawker a également développé un initiateur NMP universel (D. Benoit et al., J. Am. Chem. Soc, 1999, 121, 3904).
La polymérisation radicalaire par transfert de chaîne réversible par addition-fragmentation (RAFT en anglais « Réversible Addition- Fragmentation Chain Transfer ») est une technique de polymérisation radicalaire vivante. La technique RAFT a été découverte en 1988 par l'organisme australien de la recherche scientifique CSIRO (J. Chiefari et al., Macromolecules, 1998, 31, 5559). La technique RAFT a très rapidement fait l'objet de recherches intensives de la part de la communauté scientifique dans la mesure où elle permet la synthèse de macromolécules présentant des architectures complexes, notamment des structures en blocs, greffées, en peigne ou encore en étoiles tout en permettant de contrôler la masse moléculaire des macromolécules obtenues (G. Moad et al., Aust. J. Chem, 2005, 58, 379). La polymérisation RAFT peut être appliquée à une très large gamme de monomères vinyliques et dans diverses conditions expérimentales, y compris pour la préparation de matériaux hydrosolubles (C. L. McCormick et al., Acc. Chem. Res.2004, 37, 312). Le procédé RAFT inclut la polymérisation radicalaire classique d'un monomère substitué en présence d'un agent de transfert de chaîne adapté (agent RAFT ou CTA en anglais « Chain Transfer Agent »). Les agents RAFT couramment utilisés comprennent les composés thiocarbonylthio tels que les dithioesters (J. Chiefari et al., Macromolecules, 1998, 31, 5559), les dithiocarbamates (R. T. A. Mayadunne et al., Macromolecules, 1999, 32, 6977 ; M. Destarac et al., Macromol.
Rapid. Commun., 2000, 21, 1035), les trithiocarbonates (R. T. A. Mayadunne et al., Macromolecules, 2000, 33, 243) et les xanthates (R. Francis et al., Macromolecules, 2000, 33, 4699), qui opèrent la polymérisation par un procédé de transfert de chaîne réversible. L'utilisation d'un agent RAFT adapté permet la synthèse de polymères présentant un haut degré de fonctionnalité et présentant une répartition étroite des poids moléculaires, c'est-à-dire un faible indice de polydispersité (PDI en anglais « Polydispersity index »).
On peut citer à titre d'exemple de description de polymérisation radicalaire RAFT les documents suivants WO1998/01478, W01999/31144, WO2001/77198, WO2005/00319, WO2005/000924.
La polymérisation séquencée et contrôlée est typiquement réalisée dans un solvant, sous atmosphère inerte, à une température de réaction allant en général de 0 à 200°C, de préférence de 50°C à 130°C. Le solvant peut être choisi parmi les solvants polaires, en particulier les éthers comme l'anisole (méthoxybenzène) ou le tétrahydrofuranne ou les solvants apolaires, en particulier, les paraffines, les cycloparaffines, les aromatiques et les alkylaromatiques ayant de 1 à 19 atomes de carbone, par exemple, le benzène, le toluène, le cyclohexane, le méthylcyclohexane, le n-butène, le n- hexane, le n-heptane et similaire.
Pour la polymérisation radicalaire par transfert d'atome (ATRP en anglais «Atom Transfer Radical Polymerization»), la réaction est généralement réalisée sous vide en présence d'un amorceur, d'un ligand et d'un catalyseur. A titre d'exemple de ligand, on peut citer la N,N,N',N",N"-Pentaméthyldiéthylenetriamine (PMDETA), la 1,1,4,7,10,10-hexaméthyltriéthylène-tétramine (HMTETA), la 2,2'- Bipyridine (BPY) et la Tris(2-pyridylmethyl)amine (TPMA). A titre d'exemple de catalyseur, on peut citer : CuX, CuX2, avec X=C1, Br et les complexes à base de ruthénium Ru2+/Ru3 + .
La polymérisation ATRP est, de préférence, réalisée dans un solvant choisi parmi les solvants polaires.
Selon la technique de polymérisation séquencée et contrôlée, il peut également être envisagé de travailler sous pression.
Les nombres d'équivalents de monomère apolaire (ma) du bloc A et de monomère polaire (nu) du bloc B mis en réaction lors de la réaction de polymérisation peuvent être identiques ou différents.
On entend par nombre d'équivalents, les quantités de matière
(en moles) des monomères (ma) du bloc A et des monomères (mb) du bloc B, mises en œuvre lors de la réaction de polymérisation.
Le nombre d'équivalents de monomère apolaire (ma) du bloc A est, de préférence, compris de 2 à 100 eq, de préférence de 5 à 80 eq, de préférence de 10 à 70 eq, plus préférentiellement de 20 à 60 eq.
Le nombre d'équivalents de monomères polaires (mb) du bloc B est, de préférence, compris de 2 à 50 eq, de préférence de 3 à 40 eq, plus préférentiellement de 4 à 20 eq, encore plus préférentiellement de 5 à 10 eq.
Le nombre d'équivalents de monomère (ma) du bloc A est, avantageusement, supérieur ou égal à celui des monomères (mb) du bloc B.
De préférence, lorsque le groupement E du monomère apolaire (ma) est un groupement -CO-O-, E étant relié au carbone vinylique par l'atome de carbone, le nombre d'équivalents de monomère (ma) du bloc A est compris entre 20 et 60 moles, et G est choisi parmi les chaînes hydrocarbonées en C4 à C30.
Encore plus préférentiellement, lorsque le groupement E du monomère apolaire (ma) est un groupement -CO-O-, E étant relié au carbone vinylique par l'atome de carbone, le nombre d'équivalents de monomère (ma) du bloc A est compris entre 20 et 60 moles, et G est choisi parmi les chaînes hydrocarbonées en C4 à C30, et le copolymère a une masse moléculaire moyenne en nombre (Mn) allant de 1 000 à 10 000 g. mol 1.
En outre, la masse molaire en poids Mw du bloc A ou du bloc B est, de préférence, inférieure ou égale à 15000 g. mol."1, plus préférentiellement inférieure ou égale à 10000 g. mol."1.
Le copolymère à blocs comprend avantageusement au moins une séquence de blocs AB, ABA ou BAB où lesdits blocs A et B s'enchaînent sans présence de bloc intermédiaire de nature chimique différente.
D'autres blocs peuvent éventuellement être présents dans le copolymère à blocs décrit précédemment dans la mesure où ces blocs ne changent pas fondamentalement le caractère du copolymère à blocs. On privilégiera néanmoins les copolymères à blocs contenant uniquement des blocs A et B.
Avantageusement, les blocs A et B représentent au moins 70% massique, de préférence au moins 90%> massique, plus préférentiellement au moins 95 % massique, encore plus préférentiellement au moins 99% massique du copolymère à blocs .
Selon un mode de réalisation particulier, le copolymère à blocs est un copolymère diséquencé.
Selon un autre mode de réalisation particulier, le copolymère à blo cs est un copolymère triséquencé à blocs alternés comprenant deux blo cs A et un blo c B (ABA) ou comprenant deux blo cs B et un bloc A (BAB) .
Selon un mode de réalisation particulier, le copolymère à blocs comprend également une chaîne terminale I consistant en une chaîne hydrocarbonée, cyclique ou acyclique, saturée ou insaturée, linéaire ou ramifiée, en C i à C32 , de préférence en C4 à C24 , plus préférentiellement en C 10 à C24.
On entend par chaîne hydrocarbonée cyclique, une chaîne hydrocarbonée dont au moins une partie est cyclique, notamment aromatique. Cette définition n' exclut pas les chaînes hydrocarbonées comprenant à la fois une partie acyclique et une partie cyclique.
La chaîne terminale I peut comprendre une chaîne hydrocarbonée aromatique, par exemple benzénique et/ou une chaîne hydrocarbonée, saturée et acyclique, linéaire ou ramifiée, en particulier une chaîne alkyle.
La chaîne terminale I est, de préférence, choisie parmi les chaînes alkyles, de préférence linéaires, plus préférentiellement les chaînes alkyles d' au moins 4 atomes de carbone, encore plus préférentiellement d' au moins 12 atomes de carbone.
Pour la polymérisation ATRP, la chaîne terminale I est située en position terminale du copolymère à blocs. Elle peut être introduite dans le copolymère à blocs grâce à l ' amorceur de polymérisation. Ainsi, la chaîne terminale I peut, avantageusement, constituer au moins une partie de l' amorceur de polymérisation et est positionnée au sein de l' amorceur de polymérisation afin de permettre d' introduire, lors de la première étape d' amorçage de la polymérisation, la chaîne terminale I en position terminale du copolymère à blocs .
L' amorceur de polymérisation est, par exemple, choisi parmi les amorceurs de radicaux libres mis en œuvre dans le procédé de polymérisation ATRP. Ces amorceurs de radicaux libres bien connus de l'homme du métier sont notamment décrits dans l'article « Atom Transfer Radical Polymerization : current status and future perspectives, Macromolecules, 45, 4015-4039, 2012 ».
L'amorceur de polymérisation est, par exemple, choisi parmi les esters d'alkyle d'acide carboxylique substitué par un halogénure, de préférence, un brome en position alpha, par exemple, le 2- bromopropionate d'éthyle, le α-bromoisobutyrate d'éthyle, le chorure ou bromure de benzyle, le α-bromophénylacétate d'éthyle et le chloroéthylbenzene. Ainsi, par exemple, le 2-bromopropionate d'éthyle pourra permettre d'introduire dans le copolymère la chaîne terminale I sous forme d'une chaîne alkyle en C2 et le bromure de benzyle sous forme d'un groupement benzyle.
Pour la polymérisation RAFT, l'agent de transfert peut classiquement être éliminé du copolymère en fin de polymérisation selon tout procédé connu.
Selon une variante, la chaîne terminale I peut également être obtenue dans le copolymère par polymérisation RAFT selon les méthodes décrites dans l'article de Moad, G. and co., Australian Journal of Chemistry, 2012, 65, 985-1076. La chaîne terminale I peut, par exemple, être modifiée par aminolyse lorsque l'on utilise un agent de transfert pour donner une fonction thiol. On peut citer à titre d'exemple, les agents de transfert de type thiocarbonylthio, dithiocarbonate, xanthate, dithiocarbamate et trithiocarbonate, par exemple le S,So-dibenzyl trithiocarbonate (DBTTC), le S,S-bis(a,a'- dimethyl-a"-acide acétique) trithiocarbonate (BDMAT) ou le 2-cyano- 2-propyl benzodithioate (CPD).
Selon un procédé connu, l'agent de transfert peut être clivé en fin de polymérisation en faisant réagir un agent de clivage tel que les alkylamines en C2-C6, la fonction terminale du copolymère peut dans ce cas être un groupement thiol -SH.
Selon un autre procédé décrit dans le brevet EP1751194, le soufre du copolymère obtenu par polymérisation RAFT introduit par l ' agent de transfert soufré tel que le thiocarbonylthio , dithiocarbonate, xanthate, dithiocarbamate et trithiocarbonate, peut être transformé afin d' éliminer le soufre du copolymère.
Selon un mode de réalisation particulier, le copolymère à blocs est un copolymère diséquencé (encore appelé diblocs) . La structure copolymère à blocs peut être du type IAB ou IBA, avantageusement IAB . La chaîne terminale I peut être directement liée au blo c A ou B selon la structure respectivement IAB ou IBA ou, être reliée par l' intermédiaire d'un groupement de liaison, par exemp le, une fonction ester, amide, aminé ou éther. Le groupement de liaison forme alors un pont entre la chaîne terminale I et le bloc A ou B .
Selon un mode de réalisation particulier, le copolymère à blocs peut également être fonctionnalisé en bout de chaîne selon tout procédé connu, notamment par hydro lyse, aminolyse et/ou substitution nucléophile.
On entend par aminolyse, toute réaction chimique dans laquelle une mo lécule est scindée en deux parties par réaction d'une mo lécule d' ammoniac ou d'une aminé . Un exemple général d' aminolyse consiste à remp lacer un halogène d 'un groupement alkyle par réaction avec une aminé, avec élimination d' halogénure d' hydrogène. L ' amino lyse peut être utilisée, par exemp le, pour une polymérisation ATRP qui produit un copolymère ayant un halogénure en position terminale ou pour une polymérisation RAFT pour transformer la liaison thio , dithio ou trithio introduite dans le copolymère par l ' agent de transfert RAFT en fonction thio l.
On peut ainsi introduire une chaîne terminale Γ par post- fonctionnalisation du copolymère à blo cs obtenu par polymérisation séquencée et contrôlée des monomères ma et mb décrite ci-dessus .
La chaîne terminale Γ comprend, avantageusement, une chaîne hydrocarbonée, linéaire ou ramifiée, cyclique ou acyclique, en C i à C32 , de préférence en C i à C24 , plus préférentiellement C i à C 10 , encore plus préférentiellement un groupement alkyle, éventuellement substituée par un ou plusieurs groupements contenant au moins un hétéroatome choisi parmi N et O, de préférence N. Pour une polymérisation ATRP utilisant un halogénure métallique comme catalyseur, cette fonctionnalisation peut, par exemple, être réalisée en traitant le copolymère IAB ou IBA obtenu par ATRP avec une alkylamine primaire en Ci à C32 ou un alcool en Ci à C32 dans des conditions douces pour ne pas modifier les fonctions présentes sur les blocs A, B et I.
Utilisations Les copolymères décrits ci-avant sont tout particulièrement utiles comme additif pour carburants liquides de moteur à combustion interne.
L'utilisation de tels copolymères est particulièrement avantageuse comme additif détergent dans un carburant liquide de moteur à combustion interne.
On entend par additif détergent pour carburant liquide, un additif qui est incorporé à faible quantité dans le carburant liquide et produit un effet sur la propreté dudit moteur comparativement audit carburant liquide non spécialement additivé.
L'utilisation de tels copolymères est également particulièrement avantageuse comme additif désémulsifiant dans un carburant liquide de moteur à combustion interne.
Par additif désémulsifiant, on entend un additif qui est incorporé à faible quantité dans le carburant liquide et permet d'améliorer la séparation de l'eau et du carburant lorsque ce dernier contient de l'eau.
En particulier, l'utilisation des copolymères selon l'invention dans un carburant liquide permet à la fois de maintenir la propreté d'au moins une des parties internes du moteur à combustion interne et/ou de nettoyer au moins une des parties internes du moteur à combustion interne et permet également d'améliorer la séparation de l'eau et du carburant lorsque ce dernier contient de l'eau.
Par « améliorer la séparation de l'eau et du carburant », on entend accélérer la séparation, et/ou augmenter le taux de séparation du carburant et de l ' eau résiduelle présente dans ce carburant comparativement à un carburant dépourvu de ladite composition d' additifs .
Le carburant liquide est avantageusement issu d'une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques . On choisira, de préférence, le pétrole comme source minérale.
Le carburant liquide est, de préférence, choisi parmi les carburants hydrocarbonés et les carburants non essentiellement hydrocarbonés, seuls ou en mélange.
On entend par carburant hydrocarboné, un carburant constitué d'un ou de plusieurs composés constitués uniquement de carbone et d' hydrogène.
On entend par carburant non essentiellement hydrocarboné, un carburant constitué d'un ou de plusieurs composés constitués non essentiellement de carbone et d' hydrogène c ' est-à-dire qui contiennent également d' autres atomes, en particulier des atomes d' oxygène.
Les carburants hydrocarbonés comprennent notamment des distillais moyens de température d'ébullition allant de 100 à 500° C ou les distillais plus légers ayant une température d' ébullition dans la gamme des essences. Ces distillais peuvent par exemple être choisis parmi les distillais obtenus par distillation directe d'hydrocarbures bruts, les distillais sous vide, les distillais hydrotraités, les distillais issus du craquage catalytique et/ou de l'hydrocraquage de distillais sous vide, les distillais résultant de procédés de conversion type ARDS (en anglais « atmospheric residue desulfuration ») et/ou de viscoréduction, les distillais issus de la valorisation des coupes Fischer Tropsch. Les carburants hydrocarbonés sont typiquement les essences et les gazoles (également appelé carburant Diesel) .
Avantageusement, le carburant hydrocarboné est choisi parmi les essences et les gazoles .
Les essences comprennent, en particulier, toutes compositions de carburant pour moteur par allumage commandé disponibles dans le commerce . On peut citer à titre d' exemple représentatif, les essences répondant à la norme NF EN 228. Les essences ont généralement des indices d' octane suffisamment élevés pour éviter le phénomène de cliquetis. Typiquement, les carburants de type essence commercialisés en Europe, conformes à la norme NF EN 228 ont un indice d' octane moteur (MON en anglais « Motor Octane Number ») supérieur à 85 et un indice d' octane recherche (RON en anglais « Research Octane Number ») d'un minimum de 95. Les carburants de type essence ont, généralement, un RON allant de 90 à 100 et un MON allant de 80 à 90, les RON et MON étant mesurés selon la norme ASTM D 2699-86 ou D 2700-86.
Les gazoles (carburants Diesel) comprennent, en particulier, toutes compositions de carburant pour moteur Diesel disponibles dans le commerce. On peut citer, à titre d' exemple représentatif, les gazoles répondant à la norme NF EN 590.
Les carburants non essentiellement hydrocarbonés comprennent notamment les oxygénés, par exemple les distillais résultant de la conversion BTL (en anglais « biomass to liquid ») de la biomasse végétale et/ou animale, pris seuls ou en combinaison ; les bio carburants, par exemple les huiles et/ou esters d'huiles végétales et/ou animales ; les bio diesels d'origine animale et/ou végétale et les bio éthano ls.
Les mélanges de carburant hydrocarboné et de carburant non essentiellement hydrocarboné sont typiquement les gazo les de type Bx ou les essences de type Ex.
On entend par gazole de type Bx pour moteur Diesel, un carburant gazole qui contient x% (v/v) d' esters d' huiles végétales ou animale (y compris huiles de cuisson usagées) transformés par un procédé chimique appelé transestérification, obtenu en faisant réagir cette huile avec un alcool afin d'obtenir des esters d' acide gras (EAG) . Avec le méthano l et l' éthano l, on obtient, respectivement, des esters méthyliques d' acides gras (EMAG) et des esters éthyliques d' acides gras (EEAG) . La lettre "B" suivie par un nombre indique le pourcentage d' EAG contenu dans le gazole. Ainsi, un B99 contient 99% de EAG et 1 % de distillais moyens d' origine fo ssile (source minérale), le B20, 20% de EAG et 80%> de distillais moyens d' origine fo ssile etc.... On distingue donc les gazo les de type Bo qui ne contiennent pas de composés oxygénés, des gazoles de type Bx qui contiennent x% (v/v) d' esters d' huiles végétales ou d' acides gras, le plus souvent esters méthyliques (EMHV ou EMAG) . Lorsque l ' EAG est utilisé seul dans les moteurs, on désigne le carburant par le terme B 100.
On entend par essence de type Ex pour moteur par allumage commandé, un carburant essence qui contient x% (v/v) d' oxygénés, généralement de l ' éthano l, du bioéthanol et/ou l ' éthyl-tertio-butyl- éther (ETBE) .
La teneur en soufre du carburant liquide est, de préférence, inférieure ou égale à 5000 ppm, de préférence inférieure ou égale à 500 ppm, et plus préférentiellement inférieure ou égale à 50 ppm, voire même inférieure à 10 ppm et avantageusement sans soufre.
Selon un mode de réalisation particulier, l 'utilisation du ou des copolymère(s) selon l' invention dans le carburant liquide permet de maintenir la propreté d' au mo ins une des parties internes du moteur à combustion interne et/ou de nettoyer au moins une des parties internes du moteur à combustion interne.
L 'utilisation dudit copolymère dans le carburant liquide permet, en particulier, de limiter ou éviter la formation de dépôts dans au moins une des parties internes dudit moteur (effet « keep-clean » en anglais) et/ou réduire les dépôts existant dans au moins une des parties internes dudit moteur (effet « clean-up » en anglais) .
Ainsi, l 'utilisation dudit copolymère dans le carburant liquide permet, comparativement au carburant liquide non spécialement additivé, de limiter ou éviter la formation de dépôts dans au moins une des parties internes dudit moteur ou réduire les dépôts existant dans au moins une des parties internes dudit moteur.
Avantageusement, l'utilisation dudit copolymère comme d' additif dans le carburant liquide permet d ' observer à la fois les deux effets, limitation (ou empêchement) et réduction de dépôts (effets « keep-clean » et « clean-up »). On distingue les dépôts en fonction du type de moteur à combustion interne et de la localisation des dépôts dans les parties internes dudit moteur.
Selon un mode de réalisation particulier, le moteur à combustion interne est un moteur à allumage commandé, de préférence à inj ection directe (DISI en anglais « Direct Inj ection Spark Ignition engine ») . Les dépôts visés sont localisés dans au moins une des parties internes dudit moteur à allumage commandé. La partie interne du moteur à allumage commandé maintenue propre (keep-clean) et/ou nettoyée (clean-up) est, avantageusement, choisie parmi le système d' admission du moteur, en particulier les soupapes d' admission (IVD en anglais « Intake Valve Deposit »), la chambre de combustion (CCD en anglais « Combustion Chamber Deposit » ou TCD en anglais « Total Chamber Deposit ») et le système d' inj ection de carburant, en particulier les inj ecteurs d'un système d' inj ection indirecte (PFI en anglais « Port Fuel Inj ector ») ou les inj ecteurs d'un système d' inj ection directe (DISI) .
Selon un autre mode de réalisation particulier, le moteur à combustion interne est un moteur Diesel, de préférence un moteur Diesel à inj ection directe, en particulier un moteur Diesel à système d' inj ection Common-Rail (CRDI en anglais « Common Rail Direct Inj ection ») . Les dépôts visés sont localisés dans au mo ins une des parties internes dudit moteur Diesel.
Avantageusement, les dépôts visés sont localisés dans le système d' inj ection du moteur Diesel, de préférence, localisés sur une partie externe d'un inj ecteur dudit système d' inj ection, par exemp le le nez de l' inj ecteur et/ou sur une partie interne d'un inj ecteur dudit système d' inj ection (IDID en anglais « Internai Diesel Inj ector Deposits »), par exemple à la surface d'une aiguille d 'inj ecteur.
Les dépôts peuvent être constitués de dépôts liés au phénomène de cokage (« coking » en anglais) et/ou des dépôts de type savon et/ou vernis (en anglais « lacquering ») .
Le ou les copolymère(s) tels que décrits précédemment peuvent, avantageusement, être utilisés comme additifs dans le carburant liquide pour réduire et/ou éviter la perte de puissance due à la formation des dépôts dans les parties internes d'un moteur Diesel à inj ection directe, ladite perte de puissance étant déterminée selon la méthode d ' essai moteur normée CEC F-98 -08.
Ledit copolymère peut, avantageusement, être utilisé dans le carburant liquide pour réduire et/ou éviter la restriction du flux de carburant émis par l ' inj ecteur d'un moteur Diesel à inj ection directe au cours de son fonctionnement, ladite restriction de flux étant déterminée selon la méthode d' essai moteur normée CEC F-23 - 1 -01 .
Avantageusement, l 'utilisation dudit copolymère comme additif pour carburant permet, comparativement au carburant liquide non spécialement additivé, de limiter ou éviter la formation de dépôts sur au moins un type de dépôts décrits précédemment et/ou réduire les dépôts existant sur au moins un type de dépôts décrits précédemment.
Selon un mode de réalisation particulier, l'utilisation dudit copolymère comme additif pour carburant permet également de réduire la consommation de carburant du moteur à combustion interne.
Selon un autre mode de réalisation particulier, l'utilisation dudit copolymère comme additif pour carburant permet également de réduire les émissions de polluants, en particulier, les émissions de particules du moteur à combustion interne.
Avantageusement, l 'utilisation dudit copolymère comme additif pour carburant permet de réduire à la fois la consommation de carburant et les émissions de polluants .
Les ou les copolymère(s) tel(s) que décrit(s) ci-dessus peuvent être utilisée seul ou en mélange avec d ' autres additifs sous forme d 'un concentré d ' additifs .
Les copolymères selon l' invention peuvent être ajoutés dans le carburant liquide au sein d'une raffinerie et/ou être incorporée en aval de la raffinerie et/ou éventuellement, en mélange avec d'autres additifs sous forme d'un concentré d' additifs, encore appelé selon l 'usage « package d'additifs » .
Selon un mode de réalisation, le copolymère selon l 'invention est utilisé en mélange avec un liquide organique sous forme d'un concentré.
Selon un mode de réalisation particulier, un concentré pour carburant comprend un ou plusieurs copolymères tels que décrits ci- dessus, en mélange avec un liquide organique.
Le liquide organique est inerte vis-à-vis du ou des copolymère(s) selon l' invention et miscible dans le carburant liquide décrit précédemment. On entend par miscible, le fait que le copolymère et le liquide organique forment une so lution ou une dispersion de manière à faciliter le mélange du copolymère selon l' invention dans les carburants liquides selon les procédés classiques d' additivation des carburants .
Le liquide organique est, avantageusement, choisi parmi les so lvants hydrocarbonés aromatiques tels que le so lvant commercialisé sous le nom « SOLVES SO », les alcools, les éthers et autres composés oxygénés et les so lvants paraffiniques tels que l ' hexane, le pentane ou les isoparaffines, seuls ou en mélange.
Le concentré peut, avantageusement, comprendre une quantité totale de copolymère(s) selon l' invention allant de 5 à 99% en poids, de préférence de 10 à 80%> en poids, plus préférentiellement de 25 à 70% en poids .
Le concentré peut, typiquement, comprendre de 1 à 95 % en poids, de préférence de 20 à 90% en poids, plus préférentiellement de 30 à 75 %) en poids de liquide organique, le reste correspondant au copolymère selon l' invention, étant entendu que le concentré peut comprendre un ou plusieurs copolymères tels que décrits ci-dessus .
De façon générale, lorsque le copolymère selon l' invention est un copolymère à blocs, sa solubilité dans les liquides organiques et les carburants liquides décrits précédemment dépend notamment des masses mo laires moyennes en poids et en nombre, respectivement Mw et Mn du copolymère. On choisira les masses mo laires moyennes Mw et Mn du copolymère selon l ' invention de manière à ce que le copolymère soit so luble dans le carburant liquide et/ou le liquide organique du concentré pour lesquels il est destiné.
Les masses mo laires moyennes Mw et Mn du copolymère selon l'invention peuvent également avoir une influence sur l'efficacité de celui-ci comme additif détergent dans des carburants. On choisira donc les masses molaires moyennes Mw et Mn de manière à optimiser l'effet du copolymère selon l'invention, notamment l'effet de détergence (propreté moteur) dans les carburants liquides décrits ci- dessus.
L'optimisation des masses molaires moyennes Mw et Mn peut être effectuée par des essais de routine accessibles à l'homme du métier.
Selon un mode de réalisation particulier, le copolymère selon l'invention présente avantageusement, une masse molaire moyenne en poids (Mw) allant de 500 à 30 000 g. mol"1, de préférence de 1000 à 10000 g. mol"1, plus préférentiellement inférieure ou égale à 4000 g. mol"1, et/ou une masse molaire moyenne en nombre (Mn) allant de 500 à 15000 g. mol"1, de préférence de 1000 à 10000 g. mol"1, plus préférentiellement inférieure ou égale à 4000 g. mol"1. Les masses molaires moyennes en nombre et en poids sont mesurées par chromatographie d'exclusion stérique (SEC en anglais « Size Exclusion Chromatography). Les conditions opératoires de la SEC, notamment, le choix du solvant seront choisies en fonction des fonctions chimiques présentent au sein du copolymère à blocs.
Le rapport molaire et/ou massique entre le monomère polaire (mb) et le monomère apolaire (ma) et/ou entre le bloc A et B dans le copolymère à blocs décrit ci-dessus sera également choisi de manière à ce que le copolymère à blocs soit soluble dans le carburant et/ou le liquide organique du concentré pour lesquels il est destiné. De même, ce rapport pourra être optimisé en fonction du carburant et/ou du liquide organique de manière à obtenir le meilleur effet sur la propreté moteur.
L'optimisation du rapport molaire et/ou massique peut être effectuée par des essais de routine accessibles à l'homme du métier.
Selon un mode de réalisation particulier, le rapport molaire entre le monomère apolaire (ma) et le monomère polaire (mb), ou entre les blocs A et B en pourcentage molaire entre le monomère apolaire (ma) du bloc A et le monomère polaire (mb) du blo c B est, de préférence compris entre 95 : 5 et 50 : 50, plus préférentiellement entre 90 : 1 0 et 75 : 25 , encore plus préférentiellement entre 85 : 1 5 et 70 : 30.
Selon un mode de réalisation particulier, le copolymère selon l' invention est utilisé sous forme d'un concentré d' additifs en association avec au moins un autre additif pour carburant de moteur à combustion interne différent des copolymères selon l' invention décrits précédemment.
Le concentré d' additifs peut, typiquement, comprendre un ou plusieurs autres additifs choisis parmi des additifs détergents différents des copolymères selon l' invention, par exemple parmi les agents anti-corrosion, les dispersants, les désémulsifiants, les agents anti-mousse, les biocides, les réodorants, les additifs procétane, les modificateurs de friction, les additifs de lubrifiance ou additifs d'onctuosité, les agents d'aide à la combustion (promoteurs catalytiques de combustion et de suie), les agents améliorant le point de trouble, le point d'écoulement, la TLF (« Température limite de filtrabilité »), les agents anti-sédimentation, les agents anti-usure et les agents modifiant la conductivité.
Parmi ces additifs, on peut citer en particulier :
a) les additifs procétane, notamment (mais non limitativement) choisis parmi les nitrates d'alkyle, de préférence le nitrate de 2-éthyl hexyle, les peroxydes d'aryle, de préférence le peroxyde de benzyle, et les peroxydes d'alkyle, de préférence le peroxyde de ter-butyle ;
b) les additifs anti-mousse, notamment (mais non limitativement) choisis parmi les polysiloxanes, les polysiloxanes oxyalkylés, et les amides d'acides gras issus d'huiles végétales ou animales. Des exemp les de tels additifs sont donnés dans EP861 882, EP663000 , EP736590 ;
c) Les additifs fluidifiants à froid (CFI en anglais « Co ld Flow Improver ») choisis parmi les copolymères d'éthylène et d'ester insaturé, tels que copolymères éthylène/acétate de vinyle (EVA), éthylène/propionate de vinyle (EVP), éthylène/éthanoate de vinyle (EVE), éthylène/méthacrylate de méthyle (EMMA), et éthylène/fumarate d'alkyle décrits, par exemple, dans les documents US3048479, US3627838 , US3790359, US396196 1 et EP261957.
d) les additifs de lubrifiance ou agents anti-usure, notamment (mais non limitativement) choisis dans le groupe constitué par les acides gras et leurs dérivés ester ou amide, notamment le monooléate de glycérol, et les dérivés d'acides carboxyliques mono- et polycycliques. Des exemples de tels additifs sont donnés dans les documents suivants : EP680506, EP860494, WO98/04656, EP915944, FR2772783 , FR2772784.
e) les additifs de point de trouble, notamment (mais non limitativement) choisis dans le groupe constitué par les terpolymères oléfine à chaîne longue/ester (méth)acrylique /maléimide, et les polymères d'esters d'acides fumarique /maléique. Des exemples de tels additifs sont donnés dans FR252805 1 , FR252805 1 , FR2528423 , EP 1 12195 , EP 172758 , EP271385 , EP291367 ;
f) les additifs détergents notamment (mais non limitativement) choisis dans le groupe constitué par les succinimides, les polyétheramines et les sels d ' ammonium quaternaire ; par exemple ceux décrits dans les documents US4171959 et WO20061 3588 1 .
g) les additifs polyfonctionnels d'opérabilité à froid choisis dans le groupe constitué par les polymères à base d'o léfine et de nitrate d'alkényle tels que décrits dans EP573490.
Ces autres additifs sont en général ajoutés en quantité allant de 10 à 1 000 ppm (chacun), de préférence de 100 à 1 000 ppm en poids dans la composition de carburant.
Selon un mode de réalisation particulier, une composition de carburant est préparée selon tout procédé connu en additivant le carburant liquide décrit précédemment avec au moins un copolymère tel que décrit ci-dessus .
L 'invention concerne également une composition de carburant comprenant :
( 1 ) un carburant tel que décrit ci-dessus, et
(2) un ou plusieurs copolymère(s) tel(s) que décrit(s) précédemment.
Le carburant ( 1 ) est, en particulier, choisi parmi les carburants hydrocarbonés et les carburants non essentiellement hydrocarbonés décrits précédemment, pris seuls ou en mélange.
La combustion de cette composition de carburant comprenant le copolymère selon l' invention dans un moteur à combustion interne produit un effet à la fois sur la propreté du moteur et sur la désémulsion lorsque le carburant contient de l ' eau, comparativement au carburant liquide non spécialement additivé. La combustion de cette composition de carburant permet, en particulier, de prévenir et/ou réduire l ' encrassement des parties internes dudit moteur tout en maintenant, voire en améliorant la désémulsion dudit carburant. Ces effets sur la propreté du moteur et sur la désémulsion sont tels que décrits précédemment dans le cadre de l 'utilisation des copolymères selon l' invention comme additifs pour carburant.
Selon un mo de de réalisation particulier, la combustion de la composition de carburant comprenant le copolymère selon l' invention dans un moteur à combustion interne permet également de réduire la consommation de carburant et/ou les émissions de polluants .
Le copolymère selon l' invention est incorporé, de préférence, à faible quantité dans le carburant liquide décrit précédemment, la quantité de copolymère étant suffisante pour produire d'une part un effet détergent tout en maintenant, voire en améliorant la désémulsion, et améliorer ainsi la propreté moteur.
La composition de carburant comprend avantageusement le
(les) copolymère(s) selon l' invention en une teneur totale d' au moins 5 ppm en poids, de préférence d' au moins 10 ppm, plus préférentiellement à une teneur de 1 0 à 5000 ppm, encore plus préférentiellement de 20 à 2000 ppm et mieux encore de 50 à 1000 ppm.
Outre les copolymères selon l' invention décrits ci-dessus, la composition de carburant peut également comprendre un ou plusieurs autres additifs différents desdits copolymères. Ces additifs sont notamment choisis parmi les autres additifs détergents connus, par exemple parmi les agents anti-corrosion, les dispersants, les désémulsifiants, les agents anti-mousse, les bio cides, les réodorants, les additifs procétane, les modificateurs de friction, les additifs de lubrifiance ou additifs d'onctuosité, les agents d'aide à la combustion (promoteurs catalytiques de combustion et de suie), les agents améliorant le point de trouble, le point d'écoulement, la TLF, les agents anti-sédimentation, les agents anti-usure et/ou les agents modifiant la conductivité.
Les additifs différents des copolymères selon l' invention sont, par exemple, les additifs pour carburant listés ci-dessus.
Selon un mode de réalisation particulier, un procédé de maintien de la propreté (keep-clean) et/ou de nettoyage (clean-up) d' au moins une des parties internes d'un moteur à combustion interne comprend la préparation d'une composition de carburant par additivation d'un carburant avec au moins un copolymère tel que décrit ci-dessus et la combustion de ladite composition de carburant dans le moteur à combustion interne.
Selon un mode de réalisation particulier, le moteur à combustion interne est un moteur à allumage commandé, de préférence à inj ection directe (DISI) .
La partie interne maintenue propre et/ou nettoyée du moteur à allumage commandé est, de préférence, choisie parmi le système d' admission du moteur, en particulier les soupapes d' admission (IVD), la chambre de combustion (CCD ou TCD) et le système d' inj ection de carburant, en particulier les inj ecteurs d'un système d' inj ection indirecte (PFI) ou les inj ecteurs d'un système d' inj ection directe (DISI) .
Selon un autre mode de réalisation particulier, le moteur à combustion interne est un moteur Diesel, de préférence un moteur Diesel à inj ection directe, en particulier un moteur Diesel à systèmes d'inj ection Common-Rail (CRDI) .
La partie interne maintenue propre (keep-clean) et/ou nettoyée (clean-up) du moteur Diesel est, de préférence, le système d' inj ection du moteur Diesel, de préférence une partie externe d'un inj ecteur dudit système d' inj ection, par exemp le le nez de l ' inj ecteur et/ou une des parties internes d'un inj ecteur dudit système d' inj ection, par exemple la surface d 'une aiguille d' inj ecteur.
Le procédé de maintien de la propreté (keep-clean) et/ou de nettoyage (clean-up) comprend de préférence les étapes successives de :
1 ) détermination de l' additivation la plus adaptée au carburant, ladite additivation correspondant à la sélection du ou des copolymère(s) décrit(s) ci-dessus à incorporer en association, éventuellement, avec d' autres additifs pour carburant tels que décrits précédemment et la détermination du taux de traitement nécessaire pour atteindre une spécification donnée relative à la détergence de la composition de carburant.
2) incorporation dans le carburant du ou des copolymère(s) sélectionné(s) au taux déterminé à l ' étape 1 ) et, éventuellement, des autres l ' additifs pour carburant.
Alternativement, le copolymère selon l' invention et les autres additifs le cas échéant peuvent être utilisés sous forme d'un concentré ou d'un concentré d' additifs tel que décrit ci-dessus .
L ' étape 1 ) est réalisée selon tout procédé connu et relève de la pratique courante dans le domaine de l' additivation des carburants. Cette étape implique de définir au moins une caractéristique représentative des propriétés de détergence de la composition de carburant.
La caractéristique représentative des propriétés de détergence du carburant dépendra du type de moteur à combustion interne, par exemple Diesel ou par allumage commandé, du système d' inj ection directe ou indirecte et de la localisation dans le moteur des dépôts visés pour le nettoyage et/ou le maintien de la propreté.
Pour les moteurs Diesel à inj ection directe, la caractéristique représentative des propriétés de détergence du carburant peut, par exemple, correspondre à la perte de puissance due à la formation des dépôts dans les inj ecteurs ou la restriction du flux de carburant émis par l ' inj ecteur au cours du fonctionnement dudit moteur. La caractéristique représentative des propriétés de détergence peut également correspondre à l'apparition de dépôts de type lacquering au niveau de l'aiguille de l'injecteur (IDID).
Des méthodes d'évaluation des propriétés détergentes des carburants ont largement été décrites dans la littérature et relèvent des connaissances générales de l'homme du métier. On citera, à titre d'exemple non limitatif, les essais normalisés ou reconnus par la profession ou les méthodes décrites dans la littérature suivants :
Pour les moteurs Diesel à injection directe :
- la méthode DW10, méthode d'essai moteur normée CEC F-
98-08, pour mesurer de la perte de puissance des moteurs Diesel à injection directe
- la méthode XUD9, méthode d'essai moteur normée CEC F- 23-1-01 Issue 5, pour mesurer la restriction de flux de carburant émise par l'injecteur
- la méthode décrite par la demanderesse dans la demande WO2014/029770 page 17 à 20, pour l'évaluation des dépôts lacquering (IDID), cette méthode étant citée à titre d'exemple et/ou incorporée par référence à la présente demande.
Pour les moteurs par allumage commandé à injection indirecte :
- la méthode Mercedes Benz M102E, méthode d'essai normée CEC F-05-A-93, et
- la méthode Mercedes Benz Ml 11, méthode d'essai normée CEC F-20-A-98.
Ces méthodes permettent de mesurer les dépôts sur les soupapes d'admission (IVD), les tests étant généralement réalisés sur une essence Eurosuper répondant à la norme EN228.
Pour les moteurs par allumage commandé à injection directe :
- la méthode décrite par la demanderesse dans l'article « Evaluating Injector Fouling in Direct Injection Spark Ignition
Engines», Mathieu Arondel, Philippe China, Julien Gueit ; Conventional and future energy for automobiles ; 10th international colloquium ; January 20-22, 2015, p.375-386 (Technische Akademie Esslingen par Techn. Akad. Esslingen, Ostfildern), pour l'évaluation des dépôts de type coking sur l' inj ecteur, cette méthode étant citée à titre d' exemple et/ou incorporée par référence à la présente demande .
- la méthode décrite dans le document US20130104826, pour l ' évaluation des dépôts de type coking sur l ' inj ecteur, cette méthode étant citée à titre d' exemple et/ou incorporée par référence à la présente demande.
Le procédé de désémulsion du carburant ou de séparation de l ' eau du carburant comprend de préférence les étapes successives de :
) détermination de l ' additivation la plus adaptée au carburant, ladite additivation correspondant à la sélection du ou des copolymère(s) décrit(s) ci-dessus à incorporer en association, éventuellement, avec d' autres additifs pour carburant tels que décrits précédemment et la détermination du taux de traitement nécessaire pour atteindre une spécification donnée relative à la désémulsion de la composition de carburant.
2') incorporation dans le carburant du ou des copolymère(s) sélectionné(s) au taux déterminé à l ' étape 1 ') et, éventuellement, des autres l ' additifs pour carburant.
3 ') la séparation de l ' eau et du carburant.
L ' étape 1 ' ) est réalisée selon tout procédé connu et relève de la pratique courante dans le domaine de l' additivation des carburants . Cette étape implique de définir au moins une caractéristique représentative des propriétés de désémulsion de la composition de carburant.
La caractéristique représentative des propriétés de désémulsion peut par exemple correspondre à une mesure du vo lume de phase aqueuse extraite du carburant selon la norme ASTM D 1094.
L ' étape 3 ' ) est également réalisée selon tout procédé connu par l' homme du métier. Par exemple, l ' étape 3 ') peut être réalisée par décantation de la composition de carburant additivée, puis séparation de l ' eau.
La détermination de la quantité de copolymère(s) selon l' invention à ajouter à la composition de carburant pour atteindre une spécification donnée sera réalisée typiquement par comparaison avec la composition de carburant mais sans le (les) copolymère(s) selon l' invention.
La détermination de la quantité de copolymère(s) selon l' invention à ajouter à la composition de carburant pour atteindre la spécification (étape 1 ) ou étape 1 ' ) décrite précédemment) sera réalisée typiquement par comparaison avec la composition de carburant mais sans le (les) copolymère(s) selon l' invention, la spécification donnée relative à la détergence pouvant par exemple être une valeur cible de perte de puissance selon la méthode DW 10 ou une valeur de restriction de flux selon méthode XUD9 mentionnée ci- dessus .
La quantité de copolymère(s) selon l' invention peut, également, varier en fonction de la nature et l ' origine du carburant, par exemple en fonction du taux de composés à substituants n-alkyle, iso-alkyle ou n-alcényle, ou en fonction de sa teneur en eau. Ainsi, la nature et l ' origine du carburant peuvent également être un facteur à prendre en compte pour l ' étape 1 ) ou 1 ' ) .
Le procédé de maintien de la propreté (keep-clean) et/ou de nettoyage (clean-up) peut également comprendre une étape 3 ) supplémentaire après l ' étape 2), de vérification de la cible atteinte et/ou d' ajustement du taux d' additivation avec le(les) copolymère(s) selon l' invention comme additif détergent.
Les copolymères selon l' invention présentent des propriétés remarquables en tant qu ' additif détergent dans un carburant liquide, en particulier dans un carburant gazole ou essence sans détériorer la désémulsion de l ' eau dudit carburant quand ce dernier contient de l ' eau.
Les copolymères selon l' invention sont particulièrement remarquables notamment parce qu' ils sont efficaces comme additif détergent et comme additif désémulsifiant pour une large gamme de carburant liquide et/ou pour un ou plusieurs types de motorisation et/ou contre un ou plusieurs types de dépôt qui se forment dans les parties internes des moteurs à combustion interne. EXEMPLE
Un copolymère conforme à la présente invention a été synthétisé, conformément au protocole décrit ci-dessous. lère étape : Synthèse d'un copolymère dibloc EHMA/MADAME par polymérisation radicalaire de type RAFT :
Bloc A EHMA :
30.01 g (0.26 mol) de méthacrylate de 2-ethylhexyle (EHMA), 2.89 g (13 mmol) de 2-cyano-2-propyl benzodithioate et 35 mL de toluène sont introduits dans un ballon de 250 mL.210 mg (1.29 mmol) d'azobisisobutyronitrile (AIBN) sont pesés dans un ballon de 20mL puis solubilisé dans 4mL de toluène. Les deux solutions sont dégazées à l'azote durant 30 minutes. La solution contenant le monomère EHMA est chauffée à 80°C. Lorsque la température est atteinte, la solution d'AIBN est ajoutée en utilisant une seringue purgée à l'azote auparavant. Le milieu réactionnel est agité durant 24h à 80°C sous atmosphère inerte (N2).
Un prélèvement de 250 est réalisé à tO (juste après ajout d'AIBN) et à tf (t final) pour mesurer la teneur en monomères résiduels par HPLC et ainsi en déduire la conversion. Résultat : le rapport d'aires des pics du monomère EHMA donne une conversion de 98% (98% du monomère EHMA a été converti en polymère).
Méthode HPLC employée: HPLC Utitmate 300 de Thermo Fischer. La phase stationnaire de l'appareil est une colonne Symmetry Shield RP 18. La phase mobile est composée de deux éluants, un premier dont la composition est eau/méthanol avec du CH202 à pH5, le second est composé de méthanol avec de l'acide méthanoïque à pH5 également. Cette phase mobile a un débit de lmL/min. La température du four est consignée à 40°C. Le volume d'injection est de 5 μΐ,. Les produits sont détectés via un détecteur à barrettes de diodes.
Bloc B MADAME :
10.22 g (88.7 mmol) de 2-(diméthylamino)ethyle méthacrylate (MADAME) sont pesés dans un ballon de 50mL. llmL de toluène sont ajoutés. Par ailleurs, 221 mg (1.35 mmol) d'AIBN sont pesés dans un ballon de 20mL puis solubilisé via 3mL de toluène. Après 30 minutes de dégazage à l'azote des 2 solutions, le monomère MADAME est ajouté via une seringue purgée à l'azote au préalable dans un ballon contenant le bloc A EHMA chauffé à 80°C, la solution d'AIBN est ajoutée ensuite. Le milieu réactionnel est agité durant 24h sous atmosphère inerte (N2).
Un prélèvement de 250 est réalisé à tO (juste après ajout d'AIBN) et à tf (t final) pour mesurer la teneur en monomères résiduels par HPLC (comme décrit pour le bloc A ci-avant) et ainsi en déduire la conversion.
Un prélèvement est également réalisé pour déterminer par RMN1 H et 13C les nombres de motifs EHMA et MADAME et le ratio molaire des 2 monomères.
Méthodes d'analyse :
Les analyses de spectroscopie RMN 1H et 13C ont été effectuées dans du chloroforme deutéré CDCb avec un spectromètre RMN BRUKER Avance III 400MHz (fréquence Larmor du lU) opérant sous TopSpin 3.2 : Sonde 13C SEXIOmm avec gradient de champ magnétique puisé z et lock 2H opérant à 300K et sonde JH BBI 5mm avec gradient de champ magnétique puisé z et lock 2H opérant à 300K. Pour effectuer les mesures, un étalon externe (le 1 ,2,4,5-tétrachloro- 3-nitrobenzène) est utilisé.
Enfin, les masses molaires en nombre Mn et en masse Mw, ainsi que l'indice de dispersité, qui traduit la dispersité en taille Ip (Ip=Mw/Mn), ont été déterminés par GPC. Les analyses GPC ont été réalisées dans du THF. Dans une analyse typique, Ι ΟΟμί d' échantillon à 0.5 % m/m préalablement filtré sur filtre millipore de 0.45 μιη sont inj ectés dans des co lonnes WATERS Styragel opérant à 40°C et 645 Psi avec un débit de THF de l ml/min. Les masses mo laires moyennes en nombre (Mn) ont été déterminées par détection RI (indice de réfraction) à partir des courbes de calibration construites pour des standards PMMA. Les analyses ont été effectuées au sein d'une co lonne de type WATERS Styragel avec l ' indice de réfraction comme détecteur.
Résultats :
- Conversion par HPLC : le rapport d' aires des pics du monomère MADAME donne une conversion de 97% (97% du monomère MADAME a été converti en polymère) ;
- Microstructure par RMN 1 H et 13 C : sur base des signaux relatifs aux bouts de chaîne, on détermine 17 motifs EHMA, 6 motifs MADAME. La composition relative mo laire : 71 % EHMA, 29% MADAME .
Pour le calcul du nombre de motifs, par RMN 13 C , en fixant l' intégrale du signal à 132.3 ppm (lié à 1 groupement CH aromatique du benzodithioate) à 1 , on obtient une intégrale pour le massif des groupements OCH2 ( I C) des unités EHMA (67.8-66.5 ppm) et une intégrale pour le massif des groupements NCH2 ( I C) des unités MADAME (57.4-56.8 ppm) respectivement de 17 et 6. Ainsi, si l'on suppose que toutes les chaînes polymériques comportent le groupement benzodithio ate comme groupement terminal, alors le copolymère comporte 17 motifs EHMA et 6 motifs MADAME .
- GPC : Mn=2800 g/mo l, Mw = 3400 g/mo l, Ip = 1 .28
2eme étape : Quaternisation partielle du blo c B du copolymère dibloc EHMA/MADAME : 28,5 g de la solution de polymère dibloc dans le toluène préparée précédemment sont prélevés et introduits dans un ballon de lOOmL. 10,5g de butanol, 912 mg (12,6 mmol) d'epoxybutane et 735 mg (12,2 mmol) d'acide acétique sont introduits. Le mélange est chauffé à 60°C durant 24h, un vigreux sur le ballon. A la fin de la réaction le mélange est évaporé sous pression réduite.
Après séchage, un échantillon du polymère est analysé par RMN lH et 13C. Résultats :
Le taux de quaternisation du bloc B (bloc MADAME) est de 40% en moles.
Le taux de quaternisation est déterminé par RMN 13C. En RMN 13C, le massif vers 70 ppm est attribué au CH2 du groupement CH2CHOHCH2CH3 en alpha de l'atome d'azote quaternisé. Sur la base de la proportion molaire EHMA/MADAME (71/29), et en comparant l'intégrale du massif à 70 ppm et l'intégrale du signal à 11 ppm (lié à l'un des 2 groupements CH3 de la chaîne pendante d'EHMA), on en déduit le taux de quaternisation, qui est de 40%.
Test de détergence :
Les performances en termes de détergence ont été évaluées en utilisant le test moteur XUD9, consistant à déterminer la perte de débit définie comme correspondant à la restriction du flux d'un gazole émis par l'injecteur d'un moteur Diesel à préchambre au cours de son fonctionnement, selon la méthode d'essai moteur normée CEC F-23-1 - 01 . L'objectif du test XUD9 est d'évaluer l'aptitude de l'additif testé à maintenir la propreté, effet dit « keep clean », des injecteurs d'un moteur Peugeot XUD9 A/L à quatre cylindres et à injection à préchambre Diesel, en particulier d'évaluer son aptitude à limiter la formation de dépôts sur les injecteurs.
Le test a été effectué sur un gazole vierge de type B0 répondant à la norme EN590, additivé avec le polymère obtenu à l' issue de la seconde étape ci-avant, à un taux de traitement de 50 ppm en poids (50 mg / kg) .
On débute le test avec un moteur Peugeot XUD9 A/L à quatre cylindres et à inj ection à préchambre Diesel équipé d'inj ecteurs propres dont on a déterminé le débit au préalable. Le moteur suit un cycle d'essai déterminé pendant 10 heures et 3 minutes (répétition du même cycle 134 fois). En fin d'essai, le débit des inj ecteurs est à nouveau évalué. La quantité de carburant nécessaire à l'essai est de 60L . La perte de débit est mesurée sur les quatre inj ecteurs. Les résultats sont exprimés en pourcentage de perte de débit pour différentes levées d'aiguille. Usuellement on compare les valeurs d'encrassement à 0, 1 mm de levée d'aiguille car elles sont plus discriminantes et plus précises et répétables (répétabilité < 5 %) . L'évo lution de la perte de débit avant / après essai permet de déduire la perte de débit en pourcentage. Compte tenu de la répétabilité de l'essai, un effet détergent significatif est affirmable pour une réduction de perte de débit soit un gain en débit supérieure à 10 points (> 10%) .
Les résultats obtenus figurent dans le tableau ci-dessous :
Les résultats ci-dessus montrent que, à un taux de traitement très faible de 50 ppm (50 mg/kg), le copolymère selon l' invention conduit à d' excellent résultats de détergence (effet « keep-clean ») puisque la perte de débit est non significative (inférieure à 10%>) .
Le copolymère ci-avant est également utile comme additif désémulsifiant.

Claims

REVENDICATIONS
1. Copolymère comprenant :
- au moins un motif de formule (I) suivante
dans laquelle
u = 0 ou 1,
Ri' représente un atome d'hydrogène ou un groupement méthyle, E représente -O- ou -N(Z)-, ou -O-CO-, ou -CO-O- ou -NH-CO- ou -CO-NH-, avec Z représentant H ou un groupement alkyle en Ci à C6, G représente un groupement choisi parmi un groupe alkyle en Ci à C34, un noyau aromatique, un groupe aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en Ci à C34, et - des motifs de formule (II) sui
(H)
dans laquelle
v = 0 ou 1 ,
Ri" est choisi parmi l'atome d'hydrogène et le groupement méthyle, Q est choisi parmi l'atome d'oxygène et un groupement -NR'- avec R' étant choisi parmi un atome d'hydrogène et les chaînes hydrocarbonées en C i à C 1 2,
R représente une chaîne hydrocarbonée en C i à C 34 pouvant également contenir un ou plusieurs atomes d' azote et/ou d' oxygène et/ou groupements carbonyle, substituée par au moins un groupement aminé non quaternaire et/ou un moins un groupement aminé quaternaire, ledit groupement aminé non quaternaire comprenant au moins une fonction aminé primaire, secondaire ou tertiaire,
ledit groupement aminé quaternaire comprenant au mo ins une fonction ammonium quaternaire et éventuellement un ou plusieurs groupements hydroxyle,
5 à 95 % en mo les des groupements R des motifs de formule (II) comprenant au moins un groupement aminé quaternaire .
2. Copolymère selon la revendication 1 , dans lequel le groupement aminé non quaternaire est choisi parmi :
- les groupements ayant au moins une fonction aminé, imine, amidine, guanidine, amino guanidine ou biguanidine, de préférence parmi les alkyl-amines, les polyalkylène polyamines, polyalkylènimines, alkyl-imines, alkyl-amidines, alkyl-guanidines et alkyl-biguanidines, le substituant alkyle pouvant être linéaire ou ramifié, cyclique ou acyclique, et ayant de préférence de 1 à 34 atomes de carbone, plus préférentiellement de 1 à 12 atomes de carbone ; et
les groupements hétérocycliques monocycliques ou polycycliques, ayant de 3 à 34 atomes, de préférence de 5 à 12 atomes, plus préférentiellement de 6 à 10 atomes, et comprenant au moins un atome d' azote, étant entendu que les groupements hétérocycliques polycycliques ont, éventuellement, des cycles fusionnés .
3. Copolymère selon l 'une quelconque des revendications précédentes, dans lequel le groupement R de la formule (II) comprenant au moins un groupement aminé non quaternaire est représenté :
- lorsque v vaut 1 , par la formule (V) : - lorsque v vaut 0, par la formule (V) ou la formule (V ) :
(V) L— m formules (V) et (V) dans lesquelles :
- R2 ' est choisi parmi les chaînes hydrocarbonées en C i à C 34 , éventuellement substituées par au moins un groupement hydroxyle, et
- L est choisi parmi le groupe consistant en :
- les groupements :
aminé : -NH2 ; -NHRa, -NRaRb ;
· imine : -HC=NH ; -HC=NRa ; -N=CH2, -N=CRaH ; -N=CRaRb,
• amidine : -(C=NH)-NH2 ; -(C=NH)-NRaH ; -(C=NH)-NRaRb ; -(C=NRa)-NH2 ; -(C=NRa)-NRbH ; -(C=NRa)-NRbRc ; -N=CH(NH2) ; -N=CRa (NH2) ; -N=CH(NRaH) ; -N=CRa(NRaH) ; -N=CH(NRaRb) ; -N=CRa (NRbRc) ;
· guanidine : -NH-(C=NH)-NH2 ; -NH-(C=NH)-NHRa ;
-N=C(NH2)2 ; -N=C(NRaH)2 ; -N=C(NRaRb)2 ; -N=C(NRaH)(NRbH) ;
• aminoguanidine : -NH-(C=NH)-NH-NH2 ;
-NH-(C=NH)-NH-NHRa ; -N=C(NH2)(NH-NH2) ;
-N=C(NRaH)(NH-NH2) ; -N=C(NRaH)(NRa-NH2);
-N=C(NRaRb)(NH-NH2) ; -N=C(NRaRb) (NRa-NH2) ;
• biguanidine : -NH-(C=NH)-NH-(C=NH)-NH2 ;
-NH-(C=NH)-NH-(C=NH)-NHRa ; -N=C(NH2)-NH-(C=NH)-NH2 ;
-N=C(NH2)-NH-(C=NRa)-NH2 ; -N=C(NH2)-NH-(C=NH)-NRaH ;
-N=C(NH2)-NH-(C=NRa)-NRbH ; -N=C(NH2)-NH-(C=NH)-NRaRb ; -N=C(NH2)-NH-(C=NRa)-NRbRc ; -N=C(NRaH)-NH-(C=NH)-NH2 ;
-N=C(NRaH)-NH-(C=NRb)-NH2 ; -N=C(NRaH)-NH-(C=NH)-NRbH ;
-N=C(NRaH)-NH-(C=NRb)-NRcH ; -N=C(NRaH)-NH-(C=NH)-NRbRc ;
-N=C(NRaH)-NH-(C=NRb)-NRcRd ; -N=C(NRaRb)-NH-(C=NH)-NH2 ;
-N=C(NRaRb)-NH-(C=NRc)-NH2 ; -N=C(NRaRb)-NH-(C=NH)-NRcH ; -N=C(NRaRb)-NH-(C=NRc)-NRdH ; -N=C(NRaRb)-NH-(C=NH)-NRcRd ;
-N=C(NRaRb)-NH-(C=NRc)-NRdRe, et
- les groupements polyamines et les polyalkylène-polyamines, notamment ceux de formules -NH-(Rf-NH)k-H ; -NH-(Rf-NH)k- Ra ; avec Ra, Rb, Rc, Rd et Re représentant indépendamment les uns des autres un groupement alkyle en C1-C34, de préférence en C1-C12, comprenant éventuellement une ou plusieurs fonctions NH2 et un ou plusieurs ponts -NH- ;
Rf représente un groupement alkyle en Ci-C6, de préférence en C2-C4, k représente un entier allant de 1 à 20, de préférence de 2 à 12.
4. Copolymère selon la revendication précédente, dans lequel le groupement R de la formule (II) comprenant au moins un groupement aminé quaternaire est une forme quaternarisée de l'un des groupements de formules (V) et (V), ceux-ci contenant au moins un atome d'azote quaternisable, et de préférence le groupement aminé quaternaire est obtenu par quaternisation partielle de fonctions aminé tertiaire.
5. Copolymère selon l'une quelconque des revendications précédentes, dans lequel le groupement R de la formule (II) comprenant au moins un groupement aminé quaternaire est représenté par l'une des formules (III) et (IV) suivantes :
(III) (IV)
dans lesquelles
X" est choisi parmi les ions hydroxyde, halogénures et les anions organiques, de préférence les anions organiques,
R2 est choisi parmi les chaînes hydrocarbonées en Ci à C34, éventuellement substituées par au moins un groupement hydroxyle, R3, R4 et R5 sont identiques ou différents et choisis, indépendamment, parmi les chaînes hydrocarbonées en Ci à C18, étant entendu que les groupements R3, R4 et R5 peuvent contenir un ou plusieurs groupements choisis parmi : un atome d'azote, un atome d'oxygène et un groupement carbonyle et que les groupements R3, R4 et R5 peuvent être reliés ensemble deux à deux pour former un ou plusieurs cycles, R6 et R7 sont identiques ou différents et choisis indépendamment parmi les chaînes hydrocarbonées en C i à C 1 8 , étant entendu que les groupements R6 et R7 peuvent contenir un ou plusieurs groupements choisis parmi : un atome d' azote, un atome d' oxygène et un groupement carbonyle et que les groupements R6 et R7 peuvent être reliés ensemble pour former un cycle.
6. Copolymère selon la revendication 5 , dans lequel le groupement R de la formule (II) comprenant au moins un groupement aminé quaternaire est représenté par la formule (III) dans laquelle :
- X" est choisi parmi les anions organiques, de préférence les bases conjuguées des acides carboxyliques,
- R2 est choisi parmi les chaînes hydrocarbonées en C i à C34 , de préférence les groupements alkyles en C i à C 1 8,
- R3 , R4 et R5 sont identiques ou différents et choisis, indépendamment, parmi les chaînes hydrocarbonées en C i à C 1 8 , éventuellement substituées par au mo ins un groupement hydroxyle, étant entendu qu' au moins un des groupements R3 , R4 et R5 contient un ou plusieurs groupement(s) hydroxyle.
7. Copolymère selon l 'une quelconque des revendications précédentes, dans lequel dans la formule (I), le groupement G est un alkyle en C4 à C34.
8. Copolymère selon l 'une quelconque des revendications précédentes, dans lequel dans la formule (I), Ri ' est un atome d' hydrogène.
9. Copolymère selon l 'une quelconque des revendications précédentes, dans lequel dans la formule (I), le groupement E est choisi parmi : -O- et -N(Z)-, avec Z représentant H ou un groupement alkyle en C i à C6.
10. Copolymère selon l'une quelconque des revendications 1 à 8 , dans lequel dans la formule (I) le groupement E est choisi parmi : -O-CO- et -NH-CO-, de préférence le groupement E est le groupement -O-CO-, étant entendu que le groupement E=-0-CO- est relié au carbone vinylique par l ' atome d 'oxygène et que le groupement E=-NH-CO- est relié au carbone vinylique par l ' atome d' azote.
1 1 . Copolymère selon l'une quelconque des revendications 1 à 8, dans lequel dans la formule (I) le groupement E est choisi parmi : -CO-O- et -CO-NH-, de préférence le groupement E est le groupement -CO-O-, étant entendu que le groupement E est relié au carbone vinylique par l'atome de carbone.
12. Copolymère selon l'une quelconque des revendications précédentes, dans lequel 10 à 90% en moles des groupements R des motifs de formule (II) comprennent au moins un groupement aminé quaternaire, de préférence de 20 à 80%, plus préférentiellement de 40 à 60%, et mieux encore de 45 à 55% par rapport à la quantité totale des groupements R des motifs de formule (II).
13. Copolymère selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est choisi parmi les copolymères à blocs et les copolymères statistiques, de préférence le copolymère est un copolymère à blocs.
14. Copolymère selon la revendication 13, caractérisé en ce qu'il est un copolymère à blocs comprenant au moins:
- un bloc A répondant à la formule (XI) suivante :
(XI)
dans laquelle
p est un entier allant de 2 à 100, de préférence allant de 5 à 80, de préférence allant de 10 à 70, plus préférentiellement allant de 20 à 60,
Ri', u, E et G sont tels que définis dans l'une quelconque des revendications 1 et 7 à 11, et
- un bloc B répondant à la formule (XII) suivante :
dans laquelle
n est un entier allant de 2 à 50, de préférence de 3 à 40, plus préférentiellement de 4 à 20, encore plus préférentiellement de 5 à 10,
Ri " , v, Q et R sont tels que définis dans l 'une quelconque des revendications 1 à 6 et 12.
15. Copolymère selon la revendication précédente, dans lequel :
- le bloc A consiste en une chaîne de motifs structuraux dérivés d'un monomère (méth)acrylate d' alkyle en C 1 - C34 , et
- le bloc B consiste en une chaîne de motifs structuraux dérivés de monomères (méth)acrylate d' alkyle ou (méth)acrylamide d' alkyle, dont 5 à 95 % en mo les ont un radical alkyle constitué par une chaîne hydrocarbonée en C i à C34 substituée par un groupement aminé quaternaire et éventuellement un ou plusieurs groupements hydroxyle, et dont 5 à 95 % en mo les ont un radical alkyle constitué par une chaîne hydrocarbonée en C i à C34 substituée par un groupement aminé non quaternaire choisi parmi les aminés primaires, secondaires ou tertiaires, de préférence les aminés tertiaires .
16. Procédé de préparation d'un copolymère selon l'une quelconque des revendications précédentes, par copolymérisation d ' au moins :
- un monomère apo laire (ma) répondant à la formule suivante
(VII) :
dans laquelle Ri', u, E et G sont tels que définis dans l'une quelconque des revendications 1 et 7 à 11, et,
- des monomères polaire (nu) répondant à la formule (VIII) suivante :
dans laquelle Ri", v, Q et R sont tels que définis dans l'une quelconque des revendications 1 à 6 et 12.
17. Procédé de préparation d'un copolymère selon l'une quelconque des revendications 1 à 15, par copolymérisation d'au moins :
- un monomère apolaire (ma) répondant à la formule suivante (VII) :
(VII)
dans laquelle Ri', u, E et G sont tels que définis dans l'une quelconque des revendications 1 et 7 à 11, et
- un monomère polaire (mb) répondant à la formule (VIII) suivante :
dans laquelle
Ri " , v, et Q sont tels que définis dans la revendication 1 , et R représente une chaîne hydrocarbonée en C i à C 34 pouvant également contenir un ou plusieurs atomes d' azote et/ou d' oxygène et/ou groupements carbonyle, substituée par au moins un groupement aminé non quaternaire tel que défini dans l 'une des revendications 1 à 3 ,
la copolymérisation du monomère (nu) étant suivie d' une quaternisation partielle des groupements aminés quaternisables, pour 5 à 95 % en mo les des motifs issus dudit monomère (mb) .
1 8. Concentré pour carburant comprenant un ou plusieurs copolymère(s) selon l'une quelconque des revendications 1 à 15 , en mélange avec un liquide organique, ledit liquide organique étant inerte vis-à-vis dudit (desdits) copolymère(s), et miscible audit carburant.
19. Composition de carburant comprenant :
( 1 ) un carburant issu d'une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques, et
(2) un ou plusieurs copolymère(s) selon l 'une quelconque des revendications 1 à 15.
20. Composition de carburant selon la revendication 1 9, caractérisée en ce qu' elle comprend ledit (lesdits) copolymère(s) en une teneur totale d ' au moins 5 ppm en poids, de préférence d' au mo ins 10 ppm, plus préférentiellement à une teneur de 10 à 5000 ppm, encore plus préférentiellement de 20 à 2000 ppm et mieux encore de 50 à 1000 ppm.
21 . Composition de carburant selon l'une quelconque des revendications 19 et 20, dans laquelle le carburant ( 1 ) est choisi parmi les carburants hydrocarbonés, les carburants non essentiellement hydrocarbonés et leurs mélanges.
22. Composition de carburant selon la revendication 2 1 , dans laquelle le carburant hydrocarboné est choisi parmi les essences et les gazoles .
23. Utilisation du copolymère selon l 'une quelconque des revendications 1 à 15 , comme additif détergent dans un carburant liquide de moteurs à combustion interne, ladite composition d ' additifs pour carburant étant utilisée seule, ou sous forme d'un concentré tel que défini à la revendication 1 8.
24. Utilisation selon la revendication 23 , dans laquelle le copolymère est utilisé dans le carburant pour :
- maintenir la propreté et/ou nettoyer au moins une des parties internes dudit moteur à combustion interne, et/ou
réduire la consommation de carburant du moteur à combustion interne, et/ou
- réduire les émissions de polluants, en particulier, les émissions de particules du moteur à combustion.
25. Utilisation selon l 'une quelconque des revendications
23 et 24, dans laquelle le moteur à combustion interne est un moteur à allumage commandé.
26. Utilisation selon l 'une quelconque des revendications
24 et 25 , dans laquelle le moteur à combustion interne est un moteur Diesel, de préférence un moteur Diesel à inj ection directe.
27. Utilisation selon la revendication 26, pour éviter et/ou réduire la formation de dépôts dans le système d' inj ection du moteur Diesel.
28. Utilisation du copolymère selon l 'une quelconque des revendications 1 à 15 , comme additif désémulsifiant dans un carburant liquide de moteurs à combustion interne, ladite composition d ' additifs pour carburant étant utilisée seule, ou sous forme d'un concentré tel que défini à la revendication 1 8.
29. Procédé de maintien de la propreté et/ou de nettoyage d' au moins une des parties internes d'un moteur à combustion interne, comprenant au moins les étapes suivantes :
la préparation d'une composition de carburant par additivation d'un carburant avec un ou plusieurs copolymère(s) selon l 'une quelconque des revendications 1 à 15 , ou avec un concentré selon la revendication 1 8 , puis
- la combustion de ladite composition de carburant dans ledit moteur à combustion interne.
30. Procédé de désémulsion d'un carburant contenant de l ' eau, ou de séparation de l ' eau d' un carburant en contenant, comprenant au moins les étapes suivantes :
la préparation d'une composition de carburant par additivation d'un carburant avec un ou plusieurs copolymère(s) selon l 'une quelconque des revendications 1 à 15 , ou avec un concentré selon la revendication 1 8 , puis
- la séparation de l ' eau et du carburant.
EP18795674.3A 2017-11-10 2018-11-06 Nouveau copolymère et son utilisation comme additif pour carburant Withdrawn EP3707179A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760585A FR3073522B1 (fr) 2017-11-10 2017-11-10 Nouveau copolymere et son utilisation comme additif pour carburant
PCT/EP2018/080257 WO2019091950A1 (fr) 2017-11-10 2018-11-06 Nouveau copolymère et son utilisation comme additif pour carburant

Publications (1)

Publication Number Publication Date
EP3707179A1 true EP3707179A1 (fr) 2020-09-16

Family

ID=60955260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18795674.3A Withdrawn EP3707179A1 (fr) 2017-11-10 2018-11-06 Nouveau copolymère et son utilisation comme additif pour carburant

Country Status (4)

Country Link
US (1) US20200362083A1 (fr)
EP (1) EP3707179A1 (fr)
FR (1) FR3073522B1 (fr)
WO (1) WO2019091950A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020109568A1 (fr) 2018-11-30 2020-06-04 Total Marketing Services Composé d'amidoamine grasse quaternaire destiné à être utilisé comme additif pour carburant

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048479A (en) 1959-08-03 1962-08-07 Exxon Research Engineering Co Ethylene-vinyl ester pour depressant for middle distillates
US3627838A (en) 1964-12-11 1971-12-14 Exxon Research Engineering Co Process for manufacturing potent pour depressants
US3790359A (en) 1969-03-17 1974-02-05 Exxon Research Engineering Co Middle distillate fuel having increased low temperature flowability
US3961961A (en) 1972-11-20 1976-06-08 Minnesota Mining And Manufacturing Company Positive or negative developable photosensitive composition
DE2721186C2 (de) 1977-05-11 1986-04-24 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung eines Gemisches von niedermolekularen Polyhydroxylverbindungen
US4171959A (en) 1977-12-14 1979-10-23 Texaco Inc. Fuel composition containing quaternary ammonium salts of succinimides
FR2528051B1 (fr) 1982-06-08 1986-05-02 Inst Francais Du Petrole Additifs azotes utilisables comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2528423B1 (fr) 1982-06-10 1987-07-24 Inst Francais Du Petrole Additifs azotes utilisables comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2535723A1 (fr) 1982-11-09 1984-05-11 Inst Francais Du Petrole Additifs azotes utilisables comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2567536B1 (fr) 1984-07-10 1986-12-26 Inst Francais Du Petrole Compositions d'additifs destinees notamment a ameliorer les proprietes de filtrabilite a froid des distillats moyens de petrole
IN184481B (fr) 1986-09-24 2000-08-26 Exxon Chemical Patents Inc
FR2607139B1 (fr) 1986-11-21 1989-08-18 Inst Francais Du Petrole Polymeres a fonctions azotees derives de polyesters insatures et leur utilisation comme additifs d'abaissement du point d'ecoulement des distillats moyens d'hydrocarbures
FR2613371B1 (fr) 1987-04-01 1989-07-07 Inst Francais Du Petrole Copolymeres azotes, leur preparation et leur utilisation comme additifs pour ameliorer les proprietes d'ecoulement des distillats moyens d'hydrocarbures
US5011504A (en) * 1989-09-08 1991-04-30 E. I. Du Pont De Nemours And Company Fuel oil additives
GB9104138D0 (en) 1991-02-27 1991-04-17 Exxon Chemical Patents Inc Polymeric additives
GB9219962D0 (en) 1992-09-22 1992-11-04 Exxon Chemical Patents Inc Additives for organic liquids
GB9301119D0 (en) 1993-01-21 1993-03-10 Exxon Chemical Patents Inc Fuel composition
KR100479628B1 (ko) 1996-07-10 2005-04-06 이.아이,듀우판드네모아앤드캄파니 리빙 특성을 갖는 중합 방법
FR2751982B1 (fr) 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
JPH10237467A (ja) 1997-02-26 1998-09-08 Tonen Corp ディーゼルエンジン用燃料油組成物
US5730029A (en) 1997-02-26 1998-03-24 The Lubrizol Corporation Esters derived from vegetable oils used as additives for fuels
NZ505654A (en) 1997-12-18 2002-03-28 John Chiefair Living polymerisation process whereby photo-initiators of polymerisation utilises a thermal process resulting in polymers of controlled molecular weight and low polydispersity
FR2772783A1 (fr) 1997-12-24 1999-06-25 Elf Antar France Additif d'onctuosite pour carburant
FR2772784B1 (fr) 1997-12-24 2004-09-10 Elf Antar France Additif d'onctuosite pour carburant
AUPQ679400A0 (en) 2000-04-07 2000-05-11 Commonwealth Scientific And Industrial Research Organisation Microgel synthesis
TWI329024B (en) 2003-06-26 2010-08-21 Suntory Holdings Ltd Composition for skin, kit for skin and skin permeation enhancer
JP2007522262A (ja) 2003-06-26 2007-08-09 シミックス・テクノロジーズ・インコーポレイテッド フォトレジストポリマー
US7807755B2 (en) 2004-05-12 2010-10-05 Commonwealth Scientific And Industrial Research Organisation Method for removing sulfur-containing end groups
EP3406692A1 (fr) 2005-06-16 2018-11-28 The Lubrizol Corporation Carburants comprenant un détergent à base de sel d'ammonium quaternaire
GB201007756D0 (en) 2010-05-10 2010-06-23 Innospec Ltd Composition, method and use
FR2994695B1 (fr) 2012-08-22 2015-10-16 Total Raffinage Marketing Additifs ameliorant la resistance a l'usure et au lacquering de carburants de type gazole ou biogazole
CA2917934A1 (fr) 2013-07-12 2015-01-15 Basf Se Utilisation d'un acide dicarboxylique a substitution hydrocarbyle pour ameliorer ou augmenter la separation de l'eau du fioul et de l'essence
FR3041349B1 (fr) * 2015-09-18 2020-01-24 Total Marketing Services Copolymere utilisable comme additif detergent pour carburant
FR3041362B1 (fr) * 2015-09-18 2017-10-13 Total Marketing Services Additif detergent pour carburant

Also Published As

Publication number Publication date
US20200362083A1 (en) 2020-11-19
FR3073522A1 (fr) 2019-05-17
FR3073522B1 (fr) 2019-12-13
WO2019091950A1 (fr) 2019-05-16

Similar Documents

Publication Publication Date Title
EP3350232B1 (fr) Composition de carburant comprenant un copolymere blocs comme additif detergent
EP3487894A1 (fr) Copolymere utilisable comme additif detergent pour carburant
EP3692117A1 (fr) Composition d&#39;additifs pour carburant
WO2018015665A1 (fr) Copolymere et son utilisation comme additif detergent pour carburant
EP3394226A1 (fr) Utilisation d&#39;un additif detergent pour carburant
WO2017046525A1 (fr) Additif detergent pour carburant
EP3707179A1 (fr) Nouveau copolymère et son utilisation comme additif pour carburant
WO2019068845A1 (fr) Composition d&#39;additifs pour carburant
WO2018015667A1 (fr) Utilisation de copolymeres pour ameliorer les proprietes a froid de carburants ou combustibles
WO2019110937A1 (fr) Utilisation d&#39;un copolymere particulier pour prevenir les depôts sur les soupapes des moteurs a injection indirecte essence
WO2019110911A1 (fr) Composition d&#39;additifs pour carburant
WO2017109368A1 (fr) Additif détergent pour carburant
EP3394118A1 (fr) Additif détergent pour carburant et copolymères utilisables dans cette application
FR3041361A1 (fr) Additif detergent pour carburant
EP3870684A1 (fr) Association d&#39;additifs pour carburant
WO2019110912A1 (fr) Composition d&#39;additifs pour carburant
EP3487893A1 (fr) Copolymere et son utilisation comme additif detergent pour carburant

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TOTALENERGIES ONETECH

17Q First examination report despatched

Effective date: 20220609

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221020