EP3701624A1 - Elektrische kfz-fluidpumpe - Google Patents

Elektrische kfz-fluidpumpe

Info

Publication number
EP3701624A1
EP3701624A1 EP17788241.2A EP17788241A EP3701624A1 EP 3701624 A1 EP3701624 A1 EP 3701624A1 EP 17788241 A EP17788241 A EP 17788241A EP 3701624 A1 EP3701624 A1 EP 3701624A1
Authority
EP
European Patent Office
Prior art keywords
sensor
rotor
magnets
motor vehicle
hall sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17788241.2A
Other languages
English (en)
French (fr)
Inventor
Alessandro MALVASI
Christian Schulz
Frank Bürger
Martin Glogasa
Witold Joschko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg Pump Technology GmbH
Original Assignee
Pierburg Pump Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg Pump Technology GmbH filed Critical Pierburg Pump Technology GmbH
Publication of EP3701624A1 publication Critical patent/EP3701624A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to an electric vehicle fluid pump with an electric drive motor which is brushless and electronically commutated, the drive motor comprising: a permanent magnet motor rotor with a motor shaft and at least two rotor poles, in each of which a permanent magnet is embedded, a plurality stator-side magnetic coils, at least two sensor magnets, at least one stator-side Hall sensor, which is arranged eccentrically lying in a transverse plane such that it detects the axial magnetic fields of the sensor magnets.
  • Hall sensors are used, which are arranged axially of the permanent magnetically excited motor rotor, for example, on the radius of the rotor poles, and on Detecting magnetic fields.
  • the absolute field strength of the detected by the respective half sensor magnetic field of the rotor poles and the size of interference signals are crucial.
  • an electric vehicle hydraulic pump with a brushless and electronically commutated drive motor which has a permanent magnet motor rotor with a plurality of rotor poles.
  • the position detection takes place via a plurality of end-side Hall sensors which detect the magnetic field generated by the permanent magnet motor rotor radially.
  • the object of the invention is to provide a motor vehicle fluid pump with an electronically commutated drive motor, which has a high reliability and energy efficiency at low production costs.
  • the at least two sensor magnets are diametrically magnetized, wherein the at least one Halisensor is arranged such that at a rotor rotation of each sensor magnet both polarities (N, S) are detectable.
  • the motor vehicle fluid pump according to the invention has a brushless and electrically commutated drive motor, wherein the permanent magnetically excited motor rotor has a plurality of rotor poles and a plurality of magnet coils are provided on the stator side.
  • the permanent magnetically excited motor rotor has a plurality of rotor poles and a plurality of magnet coils are provided on the stator side.
  • at least one Hall sensor is provided, which is arranged lying in a transverse plane to the Motoraxialen.
  • the at least one Hall sensor is arranged at a distance from the motor axial, so that it detects the axial magnetic fields of the passing sensor magnets.
  • the at least one Hall sensor is preferably arranged at a radius r from the axis of rotation of the motor shaft, the radius r being greater than or equal to a distance r m m from the axis of rotation to a center point of a sensor magnet and less than or equal to a distance r max from the axis of rotation Point of a sensor magnet with maximum distance from the axis of rotation.
  • the at least one Hall sensor is arranged such that in a rotor circulation of each sensor magnet both polarities (N, S) are detected.
  • the at least two sensor magnets are embedded in the rotor poles
  • Permanent magnets formed so that no additional elements are required for the detection of the rotor position.
  • the at least two sensor magnets are formed by permanent magnets attached to the rotor poles.
  • the magnetic field detectable by the Hall sensor can be amplified, so that the signal / noise ratio is improved.
  • additional permanent magnets are therefore provided as sensor magnets.
  • the sensor magnets are cuboid. provided on which all Hall sensors are arranged. Furthermore, both the control electronics and the power electronics of the motor control can be located on the printed circuit board. The Hall sensors are therefore not located away from the board with the control and power electronics. As a result, the signal paths between the Hall sensor and the control electronics are short.
  • the Hall sensors are provided on the motor rotor facing the proximal side of the printed circuit board.
  • the Hall sensors are thus arranged axially between the printed circuit board and the motor rotor, so they are placed in the shortest possible distance to the motor rotor.
  • the printed circuit board can have a motor shaft opening through which the motor shaft of the motor rotor protrudes.
  • the printed circuit board is cast in a plastic core.
  • the printed circuit board including all Hall sensors and electronic components is well shielded against mechanical and other disturbances. Potting the printed circuit board is also advantageous, since this is usually the cooling of the electronic components and in particular the power electronics or
  • FIG. 1 shows a schematic representation of an electric motor vehicle fluid pump with an electric drive motor and a pump module
  • Figure 2 is a longitudinal section of the drive motor of the motor vehicle fluid pump
  • FIG. 3 shows a cross section of the drive motor of the motor vehicle fluid pump of Figure 1.
  • the pump module 14 may be a positive displacement pump, for example a diaphragm pump, rotary vane pump, vane pump or piston pump, however also be a flow pump, such as a centrifugal or Impeiler pump.
  • the drive motor 12 is shown in longitudinal section.
  • the drive motor 12 is a brushless and electronically commutated drive motor.
  • the drive motor 12 has a permanent magnetically excited motor rotor 30 with four rotor poles 381,382,383,384, in each of which a diametrically magnetized permanent magnet 36i, 362,36 3 , 36 4 is stored.
  • the motor rotor 30 has a motor shaft 32 with a rotation axis 33, which drives a pump shaft of the pump module 14.
  • a printed circuit board 50 lying in a transverse plane, which has a board body 52 with printed conductors 54 on its proximal side.
  • the proximal side of the board body 52 is the motor rotor 30 axially facing side, whereas the motor rotor 30 axially facing away from the side is the distal side, the track board 50 has a motor shaft opening 56 through which the motor shaft 32 protrudes.
  • On the proximal side of the board body 52 both the control electronics and the power electronics of the motor control are arranged.
  • a Hall sensor 60 is arranged on the proximal side of the board body. Hall sensor 60 detects that of the sensor magnets which are formed by the permanent magnets embedded in the rotor poles
  • the power electronics of the printed circuit board 50 is electrically connected to the magnet coils 40 via the conductor tracks 54 and via axial connecting lines 66.
  • the printed circuit board 50 is arranged axially such that the Hall sensor 60 has the smallest possible distance to the axially opposite end of the motor rotor 30.
  • the entire circuit board 50 including the control electronics, the power electronics and the Hall sensor 60 and the connecting lines 66 are in a monolithic plastic Connecting cables connected to a motor connector 68.
  • FIG. 3 now shows a sectional view in the transverse direction of the drive motor 12 of the motor vehicle fluid pump 10.
  • the Hall sensor 60 can not be seen, but is to illustrate the invention, the position of the Hall sensor 60 is shown by its reference numeral.
  • the Hall sensor 60 is arranged here with a radius r from the axis of rotation 33 of the motor shaft 32.
  • the position of the Hall sensor 60 is in this case selected so that the circle described by the radius r by a respective, outwardly polarity region in the region of the cross-sectional center of the sensor magnet

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Brushless Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

Elektrische Kfz-Fluidpumpe mit einem elektrischen Antriebsmotor (12), der bürstenlos und elektronisch kommutiert ist, wobei der Antriebsmotor (12) aufweist einen permanentmagnetischen Motorrotor (30) mit einer Motorwelle (32) und mit mindestens zwei Rotorpolen (361,363), in denen jeweils ein Permanentmagnet (361,363) eingelagert ist, mehrere statorseitige Magnetspulen (40), mindestens zwei Sensormagnete (361,363), mindestens einen Hallsensor (60), der in einer Querebene liegend exzentrisch derart angeordnet ist, dass er die axialen Magnetfelder der Sensormagnete (361,363) erfasst, wobei die mindestens zwei Sensormagnete (361,363) diametral magnetisiert sind, wobei der mindestens eine Hallsensor (60) derart angeordnet ist, dass bei einem Rotorumlauf von jedem Sensormagneten (361,363) beide Polaritäten detektierbar sind.

Description

Elektrische Kfz-Fluidpumpe
Die Erfindung bezieht sich auf eine elektrische Kfz-Fluidpumpe mit einem elektrischen Antriebsmotor, der bürstenlos und elektronisch kommutiert Ist, wobei der Antriebsmotor aufweist: einen permanentmagnet!schen Motorrotor mit einer Motorwelle und mit mindestens zwei Rotorpolen, in denen jeweils ein Permanentmagnet eingelagert ist, mehrere statorseitige Magnetspulen, mindestens zwei Sensormagnete, mindestens einen statorseitigen Hallsensor, der in einer Querebene liegend exzentrisch derart angeordnet ist, dass er die axialen Magnetfelder der Sensormagnete erfasst.
Für einen möglichst sicheren und energieeffizienten Betrieb einer Kfz- Fluidpumpe, die durch einen elektronisch kommutierten Antriebsmotor angetrieben wird, ist die exakte Detektion der rotatorischen Rotorlage des Motorrotors von großer Bedeutung, da erst hierdurch eine exakte Steuerung und Regelung des Antriebsmotors realisiert werden kann. Hierbei können einerseits unerwünschte Betriebszustände, wie beispielsweise Anlaufprobleme, das sogenannte Toggeln etc. vermieden werden, die insbesondere bei Verdränger-Fluidpumpen wegen der stark variierenden Drehmomente auftreten können. Zum anderen wird durch eine exakte Terminierung der Stromwendung in den statorseitigen Magnetspulen der absolute Energieverbrauch minimiert.
Für eine exakte Rotorlage- Detektion werden daher Hallsensoren verwendet, die axial des permanentmagnetisch erregten Motorrotors beispielsweise auf dem Radius der Rotorpole angeordnet sind, und auf Magnetfelder detektieren. Für die Genauigkeit der Rotorlage-Detektion mit den Hallsensoren sind die absolute Feldstärke des durch den betreffenden Halfsensor detektieren Magnetfeldes der Rotorpole sowie die Größe von Störsignalen ausschlaggebend.
Aus EP 1 146 625 A2 ist eine elektrische Kfz- Hydraulikpumpe mit einem bürstenlosen und elektronisch kommutierten Antriebsmotor bekannt, der einen permanentmagnetischen Motorrotor mit mehreren Rotorpolen aufweist. Die Lagedetektion erfolgt über mehrere stirnseitige Hallsensoren, die das von dem permanentmagnetischen Motorrotor generierte Permanent-Magnetfeld radial erfassen.
Aufgabe der Erfindung ist es, eine Kfz-Fluidpumpe mit einem elektronisch kommutierten Antriebsmotor zu schaffen, der eine hohe Betriebssicherheit und Energieeffizienz bei niedrigen Herstellungskosten aufweist.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die mindestens zwei Sensormagnete diametral magnetisiert sind, wobei der mindestens eine Halisensor derart angeordnet ist, dass bei einem Rotorumlauf von jedem Sensormagneten beide Polaritäten (N,S) detektierbar sind.
Die erfindungsgemäße Kfz-Fluidpumpe weist einen bürstenlosen und elektrisch kommutierten Antriebsmotor auf, wobei der permanentmagnetisch erregte Motorrotor mehrere Rotorpole aufweist und statorseitig mehrere Magnetspulen vorgesehen sind. Für die Rotorlage- Detektion ist mindestens ein Hallsensor vorgesehen, der in einer Querebene zur Motoraxialen liegend angeordnet ist. Der mindestens eine Hallsensor ist beabstandet zur Motoraxialen angeordnet, so dass er die axialen Magnetfelder der vorbeidrehenden Sensormagnete erfasst. Durch möglich, mit einem Hallsensor pro Sensormagnet drei Schaltzustände anstatt eines Schaltzustands zu erfassen, wodurch die Auflösung der Roto rl a ge- Dete kt!o n wesentlich erhöht wird.
Vorzugsweise ist der mindestens eine Hallsensor In einem Radius r von der Drehachse der Motorwelle angeordnet, wobei der Radius r größer/gleich einem Abstand rmm von der Drehachse zu einem Mittelpunkt eines Sensormagneten und kleiner/gleich einem Abstand rmax von der Drehachse zu einem Punkt eines Sensormagneten mit maximalem Abstand von der Drehachse ist. Auf diese Weise ist der mindestens eine Hallsensor derart angeordnet, dass bei einem Rotorumlauf von jedem Sensormagneten beide Polaritäten (N,S) detektiert werden.
Gemäß einer bevorzugten Ausgestaltung sind die mindestens zwei Sensormagnete durch die in den Rotorpolen eingelassenen
Permanentmagnete ausgebildet, so dass für die Detektion der Rotorlage keine zusätzlichen Elemente erforderlich sind.
Alternativ sind die mindestens zwei Sensormagnete durch an den Rotorpolen angebrachte Permanentmagnete ausgebildet. Hierdurch kann das vom Hallsensor detektierbare Magnetfeld verstärkt werden, so dass das Signal/Rauschverhältnis verbessert wird. Neben den in den Rotorpolen des Motorrotors eingelagerten Permanentmagneten sind also zusätzliche Permanentmagnete als Sensormagnete vorgesehen.
In einer vorteilhaften Ausführungsform sind die Sensormagnete quaderförmig ausgebildet. vorgesehen, auf der alle Hallsensoren angeordnet sind. Auf der Leiterbahn-Platine können sich ferner sowohl die Steuerungselektronik und die Leistungselektronik der Motorsteuerung befinden. Die Hallsensoren sind also nicht entfernt von der Platine mit der Steuerungsund Leistungselektronik angeordnet. Hierdurch sind die Signalwege zwischen dem Hallsensor und der Steuerungselektronik kurz.
Gemäß einer bevorzugten Ausgestaltung sind die Hallsensoren auf der dem Motorrotor zugewandten proximalen Seite der Leiterbahn-Platine vorgesehen. Die Hallsensoren sind also axial zwischen der Leiterbahn- Platine und dem Motorrotor angeordnet, sind also in räumlich möglichst geringer Entfernung zum Motorrotor platziert.
Die Leiterbahn-Platine kann eine Motorwellenöffnung aufweisen, durch die die Motorwelle des Motorrotors hindurch ragt.
Vorzugsweise ist die Leiterbahn-Platine in einen Ku n ststoff- G u ss kö rpe r eingegossen. Hierdurch wird die Leiterbahn-Platine einschließlich aller Hallsensoren und elektronischen Bauteile gut gegen mechanische und andere Störungen abgeschirmt. Ein Vergießen der Leiterbahn-Platine ist darüber hinaus vorteilhaft, da sich hierdurch in der Regel die Kühlung der elektronischen Bauteile und insbesondere der Leistungselektronik bzw.
-halblelter verbessert. Da sich durch die Verbesserung des magnetischen Schlusses zwischen den Hallsensoren und den Rotorpolen zudem die Regelungsgenauigkeit verbessert und damit die in den Antriebsmotor eingespeiste elektrische Energie verringert wird, verringert sich auch die thermische Verlustleistung insbesondere der Leistungshalbleiter. Zeichnungen näher erläutert.
Es zeigen :
Figur 1 eine schematische Darstellung einer elektrischen Kfz-Fluidpumpe mit einem elektrischen Antriebsmotor und einem Pumpenmodul,
Figur 2 einen Längsschnitt des Antriebsmotors der Kfz-Fluidpumpe der
Figur i, und
Figur 3 einen Querschnitt des Antriebsmotors der Kfz-Fluidpumpe der Figur 1.
In der Figur 1 ist schematisch eine elektrische Kfz-Fluidpumpe 10 dargestellt, die aus zwei Modulen besteht, nämlich einem elektrischen Antriebsmotor 12 und einem Pumpenmodul 14. Das Pumpenmodul 14 kann eine Verdrängerpumpe sein, beispielsweise eine Membranpumpe, Drehschieberpumpe, Flügelzellenpumpe oder Kolbenpumpe, kann jedoch auch eine Strömungspumpe sein, beispielsweise eine Zentrifugal- oder Impeiler-Pumpe.
In der Figur 2 ist der Antriebsmotor 12 im Längsschnitt abgebildet. Der Antriebsmotor 12 ist ein bürstenloser und elektronisch kommutierter Antriebsmotor. Der Antriebsmotor 12 weist einen permanentmagnetisch erregten Motorrotor 30 mit vier Rotorpolen 381,382,383,384 auf, in denen jeweils ein diametral magnetisierter Permanentmagnet 36i,362,363,364 eingelagert Ist.
Statorseitig sind sechs Hagnetspulen 40i-40e vorgesehen, die ein umlaufendes Statormagnetfeld erzeugen. Die sechs Magnetspulen 40i-406 und einem Gehäusedeckel 24 gebildet ist. Der Motorrotor 30 weist eine Motorwelle 32 mit einer Drehachse 33 auf, die eine Pumpenwelle des Pumpenmoduls 14 antreibt.
An dem Pumpenmodui 14 abgewandten gegenüberliegenden Längsende ist eine In einer Querebene liegende Leiterbahn-Platine 50 vorgesehen, die einen Platinenkörper 52 mit Leiterbahnen 54 auf ihrer proximalen Seite aufweist. Die proximale Seite des Platinenkörpers 52 ist die dem Motorrotor 30 axial zugewandte Seite, wohingegen die dem Motorrotor 30 axial abgewandte Seite die distale Seite ist, Die Leiterbahn-Platine 50 weist eine Motorwellenöffnung 56 auf, durch die die Motorwelle 32 hindurch ragt. Auf der proximalen Seite des Platinenkörpers 52 sind sowohl die Steuerungselektronik als auch die Leistungselektronik der Motorsteuerung angeordnet. Ferner Ist auf der proximalen Seite des Platinenkörpers ein Hallsensor 60 angeordnet. Der Hallsensor 60 detektiert die von den Sensormagneten, welche durch die in den Rotorpolen eingelassenen Permanentmagnete ausgebildet
sind, erzeugten Magnetfelder. Die Herleitung der Position dieses Hallsensors 60 erfolgt im Zuge der Beschreibung von Figur 3.
Die Leistungselektronik der Leiterbahn-Platine 50 ist über die Leiterbahnen 54 und über axiale Verbindungsleitungen 66 elektrisch mit den Magnetspulen 40 verbunden. Die Leiterbahn-Platine 50 Ist axial derart angeordnet, dass der Hallsensor 60 einen möglichst geringen Abstand zu der axial gegenüberliegenden Stirnselte des Motorrotors 30 aufweist.
Die gesamte Leiterbahn-Platine 50 einschließlich der Steuerungselektronik, der Leistungselektronik und des Hallsensors 60 und die Verbindungsleitungen 66 sind In einen monolithischen Kunststoff- Anschlussleitungen mit einem Motorstecker 68 verbunden.
Figur 3 zeigt nun eine Schnittansicht in Querrichtung des Antriebsmotors 12 der Kfz-Fluidpumpe 10. Die bereits beschriebenen Bauteile sind mit den gleichen Bezugszeichen bezeichnet. In dieser Schnittansicht ist der Hallsensor 60 nicht zu erkennen, jedoch Ist zur Verdeutlichung der Erfindung die Position des Hallsensors 60 mit seinem Bezugszeichen dargestellt. Der Hallsensor 60 ist hier mit einem Radius r von der Drehachse 33 der Motorwelle 32 angeordnet. Die Position des Hallsensors 60 ist hierbei so gewählt, dass der durch den Radius r beschriebene Kreis durch einen jeweiligen, nach außen gerichteten Polaritätsbereich im Bereich der Querschnittsmitte der Sensormagnete
führt. Durch diese Anordnung kann der Hallsensor 60 bei einer
Umdrehung des Motorrotors 30 von jedem Sensormagnet beide Polaritäten (N,S) erfassen und somit drei Schaltzustände pro Sensormagnet

Claims

Pierburg Pump Technology GmbH, 41460 Neuss A N S P R Ü C H E
1. Elektrische Kfz-Fluidpumpe (10) mit einem elektrischen Antriebsmotor (12), der bürstenlos und elektronisch kommutiert ist, wobei der Antriebsmotor (12) aufweist:
einen permanentmagnetischen Motorrotor (30) mit einer Motorwelle (32) und mit mindestens zwei Rotorpolen in denen jeweils ein Permanentmagnet eingelagert
ist,
mehrere statorseitige Magnetspulen
mindestens zwei Sensormagnete
mindestens einen Hallsensor (60), der in einer Querebene liegend exzentrisch derart angeordnet ist, dass er die axialen Magnetfelder der Sensormagnete erfasst, dadurch gekennzeichnet, dass
die mindestens zwei Sensormagnete diametral magnetisiert sind, wobei der mindestens eine Hallsensor (60) derart angeordnet ist, dass bei einem Rotorumlauf von jedem Sensormagneten beide Polaritäten detektierbar sind.
2. Elektrische Kfz-Fluidpumpe (10) nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine Hallsensor (60) in einem Radius r von der Drehachse (33) der Motorweile (32) angeordnet ist, wobei der Radius r größer/gleich einem Abstand von der
Drehachse (33) zu einem Mittelpunkt eines Sensormagneten (36i-364) und kleiner/gleich einem Abstand rmax von der Drehachse maximalem Abstand von der Drehachse (33) ist.
3. Elektrische Kfz-Fiuidpumpe (10) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die mindestens zwei
Sensormagnete durch die in den Rotorpolen eingelassenen
Permanentmagnete ausgebildet sind.
4. Elektrische Kfz-Fiuidpumpe (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mindestens zwei Sensormagnete durch an den Rotorpolen angebrachte Permanentmagnete
ausgebildet sind.
5. Elektrische Kfz-Fiuidpumpe (10) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Sensormagnete
(36i-364) quaderförmig ausgebildet sind.
6. Elektrische Kfz-Fiuidpumpe (10) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass eine in einer Querebene liegende Leiterbahn-Platine (50) vorgesehen ist, auf der der mindestens eine Hallsensor (60) angeordnet ist.
7. Elektrische Kfz-Fiuidpumpe (10) nach Anspruch 6, dadurch gekennzeichnet, dass der mindestens eine Hallsensor (60) auf der dem Motorrotor (30) axial zugewandten proximalen Seite der Leiterbahn-Platine (50) vorgesehen ist,
8. Elektrische Kfz-Fiuidpumpe (10) nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Leiterbahn-Platine (50) eine hindurch ragt.
9. Elektrische Kfz-Fluidpumpe (10) nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Leiterbahn-Platine (50) in einen
Kunststoff-Gusskörper (55) eingegossen ist.
EP17788241.2A 2017-10-25 2017-10-25 Elektrische kfz-fluidpumpe Withdrawn EP3701624A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/077309 WO2019081011A1 (de) 2017-10-25 2017-10-25 Elektrische kfz-fluidpumpe

Publications (1)

Publication Number Publication Date
EP3701624A1 true EP3701624A1 (de) 2020-09-02

Family

ID=60164727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17788241.2A Withdrawn EP3701624A1 (de) 2017-10-25 2017-10-25 Elektrische kfz-fluidpumpe

Country Status (5)

Country Link
US (1) US11462971B2 (de)
EP (1) EP3701624A1 (de)
JP (1) JP7083895B2 (de)
CN (1) CN111226384B (de)
WO (1) WO2019081011A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869038A1 (de) * 2020-02-20 2021-08-25 Power Packer North America, Inc. Pumpeneinheit mit pumpe und elektromotor
NL2028179B1 (en) * 2021-05-10 2022-11-24 Power Packer North America Inc Recreational vehicle leveling system.
US11555716B1 (en) * 2021-10-20 2023-01-17 Allegro Microsystems, Llc Harmonic compensation with magnitude feedback for magnetic field sensors

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2681958B2 (ja) * 1988-01-20 1997-11-26 松下電工株式会社 無刷子電動機
EP0650246B1 (de) * 1992-07-09 2001-11-21 Seiko Epson Corporation Bürstenloser motor
EP1146625A3 (de) 2000-04-10 2004-04-28 Kabushiki Kaisha MORIC Rotierende elektrische Maschine
JP2001128417A (ja) 2000-09-18 2001-05-11 Hitachi Ltd 電動機
WO2007012370A1 (de) * 2005-07-26 2007-02-01 Ebm-Papst St. Georgen Gmbh & Co. Kg Bürstenloser elektromotor
JP2007221976A (ja) 2006-02-20 2007-08-30 Hitachi Car Eng Co Ltd ブラシレスモータ
JP2012205355A (ja) 2011-03-24 2012-10-22 Toshiba Corp モータ
DE102011079962A1 (de) * 2011-07-28 2013-01-31 Robert Bosch Gmbh Elektromotor mit einem Rotorpositionssensor
JP5858220B2 (ja) * 2011-10-05 2016-02-10 日本電産株式会社 モータ
WO2013114432A1 (ja) * 2012-01-31 2013-08-08 三菱電機株式会社 ポンプ及び冷凍サイクル装置並びにポンプの製造方法
JP5743947B2 (ja) * 2012-04-12 2015-07-01 三菱電機株式会社 電動機、その電動機を備えた圧縮機および送風機、それら圧縮機あるいは送風機を備えた冷凍空調装置
EP2701291B1 (de) * 2012-08-21 2015-08-12 Pierburg Pump Technology GmbH Elektrische Kfz-Fluidikpumpe
JP6248433B2 (ja) 2013-07-02 2017-12-20 日本電産株式会社 モータ
JP6311274B2 (ja) 2013-11-04 2018-04-18 株式会社ジェイテクト 回転電機用ロータの製造方法
JP6441617B2 (ja) 2014-09-01 2018-12-19 株式会社ミツバ ブラシレスモータ
GB2556245B (en) 2015-08-21 2021-07-28 Mitsubishi Electric Corp Rotary electric machine and air conditioning apparatus

Also Published As

Publication number Publication date
CN111226384B (zh) 2022-07-05
US20200251965A1 (en) 2020-08-06
WO2019081011A9 (de) 2020-03-26
CN111226384A (zh) 2020-06-02
JP2021501550A (ja) 2021-01-14
WO2019081011A1 (de) 2019-05-02
JP7083895B2 (ja) 2022-06-13
US11462971B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
EP1607720B1 (de) Lenkwinkelsensor
EP3701624A1 (de) Elektrische kfz-fluidpumpe
DE102013222534A1 (de) Elektromaschine
DE102011084763A1 (de) Gehäuseteil für eine elektrische Maschine
DE2900541B2 (de) Steuersignalgeber für die Kommutierungseinrichtung eines elektronisch kommutierten Gleichstrommotors
DE102012100829A1 (de) Einrichtung zur Erfassung der Winkellage einer Welle eines Elektromotors und Scheibenwischermotor mit einer Einrichtung zur Erfassung der Winkellage
EP2701291B1 (de) Elektrische Kfz-Fluidikpumpe
WO2012059248A1 (de) Elektromotorische kfz-flüssigkeits-förderpumpe
WO2018121912A1 (de) Bürstenlose elektrische maschine
EP0920113B1 (de) Gleichstrommotor
DE102011110971A1 (de) Motorsteuerung
DE2423665B2 (de) Kommutatorloser gleichstrommotor mit axialem luftspalt
DE102015201160B4 (de) Bürstenloser Gleichstrommotor
DE102007021917A1 (de) Elektrische Maschine mit verbesserter Wärmeabfuhr
EP1866606A1 (de) Lagesensorsystem
EP2704299A1 (de) Elektromotorische Kfz-Flüssigkeits-Förderpumpe
EP3089351A2 (de) Servoantrieb, verfahren zur bestimmung der position eines rotors eines permanentmagnetservomotors sowie rotor zur verwendung beim servoantrieb und beim verfahren
DE102011086371A1 (de) Steuermodul für einen Antriebsmotor
DE102022123183A1 (de) Getriebeaktor, Drehsteller, Fahrzeug und induktives Positionsbestimmungsverfahren mit dem Getriebeaktor
DE10136482B4 (de) Elektronisch kommutierter Gleichstrommotor
EP2940478A1 (de) Drehzahlerkennung eines elektrischen Motors mittels induktiver Messtechnik
EP3198707B1 (de) Elektrodynamischer wandler
WO2015082129A1 (de) Vorrichtung umfassend einen elektromotor und eine motorsteuerung
WO2022247982A1 (de) Elektrische axialflussmaschine, kollaborativer roboter mit einer elektrischen axialflussmaschine
DE102006053091A1 (de) Elektromotor mit einer Drehzahlerfassung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MALVASI, ALESSANDRO

Inventor name: JOSCHKO, WITOLD

Inventor name: BUERGER, FRANK

Inventor name: GLOGASA, MARTIN

Inventor name: SCHULZ, CHRISTIAN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H02K0029080000

Ipc: H02K0011215000

RIC1 Information provided on ipc code assigned before grant

Ipc: H02K 11/33 20160101ALI20230731BHEP

Ipc: H02K 1/276 20220101ALI20230731BHEP

Ipc: H02K 29/08 20060101ALI20230731BHEP

Ipc: H02K 11/215 20160101AFI20230731BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20231027