EP3701191B1 - Procédé pour purifier un gaz brut et dispositif de purification - Google Patents

Procédé pour purifier un gaz brut et dispositif de purification Download PDF

Info

Publication number
EP3701191B1
EP3701191B1 EP19805884.4A EP19805884A EP3701191B1 EP 3701191 B1 EP3701191 B1 EP 3701191B1 EP 19805884 A EP19805884 A EP 19805884A EP 3701191 B1 EP3701191 B1 EP 3701191B1
Authority
EP
European Patent Office
Prior art keywords
gas stream
raw gas
flow
stream
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19805884.4A
Other languages
German (de)
English (en)
Other versions
EP3701191A1 (fr
Inventor
Matthias Hänel
Christian Eichhorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Publication of EP3701191A1 publication Critical patent/EP3701191A1/fr
Application granted granted Critical
Publication of EP3701191B1 publication Critical patent/EP3701191B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/40Gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/18Incinerating apparatus

Definitions

  • the present invention relates to the field of raw gas cleaning.
  • the present invention relates to the purification of raw gas containing water vapor and carrying organic impurities, in particular exhaust steam, for eliminating odors and/or converting exhaust gases.
  • the present invention relates to a cleaning device for carrying out a raw gas/vapor vapor cleaning method.
  • the raw gas cleaning can be carried out in particular to eliminate odors using thermal systems, for example regenerative thermal oxidation systems.
  • thermal systems for example regenerative thermal oxidation systems.
  • This high energy expenditure is mostly due to the fact that a separation process is often carried out first in order to separate water with, for example, organic dust, in particular fat, oil and/or protein particles, from the raw gas.
  • oxidizable substances with a considerable calorific value are lost from the raw gas stream fed to the thermal plant for raw gas cleaning, which reduces the efficiency of the thermal conversion.
  • the substances occurring during the separation process have to be post-treated in a complex manner and/or disposed of specifically as hazardous waste.
  • the present invention is based on the object of providing a method for cleaning a steam-containing raw gas stream, in particular exhaust steam with organic impurities, which can be carried out simply and cost-effectively.
  • this object is achieved by a method according to claim 1 .
  • the organic impurities contained in the raw gas stream preferably react with the water vapor contained in the raw gas stream without the supply of oxygen.
  • the contaminants are or include in particular liquid contaminants and/or solid contaminants and/or gaseous contaminants.
  • oxidizer preferably air, fresh air, ambient air, oxygen-containing exhaust air, process exhaust air, etc.
  • a calorific value contained in the raw gas stream can preferably be used in the oxidation and thus enable fuel-saving or otherwise energy-saving thermal raw gas cleaning.
  • such a method is preferably comparatively simple and inexpensive because a preceding deposition step can be dispensed with.
  • the clean gas flow is fed to a heat exchanger, in particular a condenser, and that by means of the heat exchanger, in particular by means of the condenser, in the clean gas flow contained water vapor is condensed.
  • a volume and/or volumetric flow of the clean gas flow in the clean gas discharge can be reduced, as a result of which an energy-efficient flow through the cleaning device can ultimately be obtained.
  • the chemical reaction in the reforming area is preferably an allothermal and/or hydrothermal gasification.
  • a water-gas shift reaction preferably in the first flow space, can be advantageous for the energy requirements of steam reforming.
  • the chemical reaction in the oxidation area is a reaction with supporting energy and/or an autothermal oxidation.
  • the water vapor of the steam-containing raw gas stream is preferably used as a gasification medium, particularly in the reforming area.
  • a reaction with supporting energy is preferably a combustion.
  • the process can preferably be carried out with any thermal regenerative exhaust air cleaning system (TRA).
  • TRA thermal regenerative exhaust air cleaning system
  • the solution according to the invention can be implemented not only with the exemplary embodiments of a cleaning device shown in the attached figures, but rather also with numerous variants thereof.
  • linearly arranged regenerator chambers can be provided as flow spaces.
  • rotating systems can be provided, in particular rotary valve devices according to EP 0 548 630 A1 .
  • the process can also preferably be carried out on oxidizers such as the product “ Vocsidizer® ” from MEGTEC SYSTEMS, INC. according to the WO 01/88436 A1 be performed.
  • the method can preferably also be carried out on one of those systems be provided, which are disclosed in one or more of the following publications: WO 01/59367 A1 , AU2001-232509A1 , WO 1995/024590 A1 , EP 1 906 088 B1 .
  • the method is carried out by means of a cleaning device which comprises a plurality of flow chambers, with a first of the flow chambers at least temporarily forming the reforming area and with a second of the flow chambers at least temporarily forming a heat storage area to which the clean gas flow is fed.
  • the cleaning device comprises at least a third flow chamber, which at least temporarily forms a preheating area, to which the oxidant flow is fed for preheating it, before the oxidant flow is fed to the oxidation area.
  • the raw gas stream and/or the clean gas stream and/or the oxidizer stream is fed cyclically/alternately to different flow spaces so that the flow spaces alternately form the reforming area and/or the heat storage area and/or the preheating area.
  • the flow spaces are preferably flowed through in different directions, depending on whether the respective flow space forms a reforming area or a heat storage area.
  • a main flow direction in a flow space when it forms a reforming area is opposite to a main flow direction in the same flow space when it forms the heat storage area.
  • the flow spaces are preferably alternately heated and cooled, in particular heated by means of the clean gas stream and/or cooled by means of the raw gas stream and/or the oxidizer stream.
  • the flow paths are switched cyclically/alternately and/or preferably based on the energetic balance of the heat storage areas, as is the case, for example, from the patent specification EP 1 906 088 B1 (also known as the XtraBalance ® process).
  • the flow spaces are preferably provided with a heat storage material, for example at least partially filled with a heat storage material.
  • the thermal storage material is or preferably comprises a composite of various ceramic materials (e.g. material known by the trademark XtraComb® ).
  • “Composition” is preferably also to be understood as meaning a layering of storage elements, storage bodies or storage blocks, the storage elements, storage bodies or storage blocks being inhomogeneous, for example in planes or in layers, in particular in the vertical composition or stacking.
  • the heat storage material can in particular comprise or be formed from densely fired and/or smooth and/or highly porous and/or coated with a catalyst material and/or ceramic storage material. Furthermore, the heat storage material can preferably be a composition of densely fired storage material and/or smooth Storage material and/or highly porous storage material and/or storage material coated with a catalyst material and/or ceramic storage material.
  • the raw gas stream has an oxidizer content, in particular an oxygen content, of less than 5% by volume, in particular less than 3% by volume, preferably less than 1% by volume.
  • the raw gas flow is, in particular, exhaust steam.
  • the raw gas stream is preferably saturated with steam.
  • the raw gas stream is preferably fed to the reforming area without the addition of further media.
  • no gas stream containing oxidizer is fed to the raw gas stream before the raw gas stream is fed to the reforming area.
  • the raw gas stream is preferably heated to at least approximately 600°C, in particular to at least approximately 750°C, for example to at least approximately 800°C, particularly preferably to at least 850°C.
  • the preferably porous surfaces of the ceramic flow bodies are particularly effective as an acceleration factor for allothermal and/or hydrothermal gasification.
  • the heat storage units preferably have catalytic materials, for example a catalytic coating and/or catalytically active components.
  • the catalytic effect preferably always relates to the reforming of the raw gas stream.
  • a heating device is or includes a burner, for example a gas and/or oil burner.
  • the heating device can also comprise an electrical heating device, for example an infrared heater, a resistance heater and/or the like. The heat can be transferred to the raw gas stream and/or the oxidizer stream directly by supplying a fuel gas stream or indirectly via a heat exchanger.
  • the raw gas stream and/or the oxidizer stream can be heated to at least approximately 90 °C, for example at least approximately 95 °C, preferably at least approximately 100 °C, in particular to prevent water from condensing in the area of the cleaning device, in particular the thermal exhaust air cleaning system.
  • the clean gas flow is first fed to a heat storage area and then to a downstream heat exchanger, with the clean gas flow being cooled by the heat exchanger in particular to such an extent that condensate forms and heat that is initially still contained in the clean gas flow is thereby transferred to the heat exchanger and/or otherwise made usable.
  • Advantageous for the energy requirement for conveying the raw gas and clean gas flow is preferably the reduction of the clean gas volume flow by condensing out the water vapor contained.
  • the oxidizer flow is fed past the reforming area and/or independently of a flow path of the raw gas flow to the oxidation area.
  • the oxidizer stream is preferably fed to the oxidation region through a flow space that is separate from the flow space that forms the reforming region.
  • the mass flow and/or the volume flow of the oxidizer flow is controlled and/or regulated as a function of a mass flow and/or volume flow of the raw gas flow and/or as a function of an oxygen content in the outflowing clean gas flow.
  • the control and/or regulation takes place in such a way that a predetermined oxidant content and/or a predetermined temperature are achieved in the oxidation area and/or in a clean gas discharge.
  • the impurities contained in the raw gas stream are broken down and converted in the reforming area, in particular by steam reforming.
  • a reformed raw gas stream that can be obtained in this way comprises gaseous oxidizable and/or organic substances, for example hydrogen, methane and/or carbon monoxide.
  • steam reforming takes place on a porous and/or ceramic surface of heat storage units in at least one flow space.
  • Any oxidizer still contained in the raw gas stream in particular oxygen, can be used to supply part of the energy required for the steam reforming, in particular by partial oxidation of hydrocarbons, which produces carbon monoxide, for example.
  • further energy for the steam reforming in particular the steam reforming in the first flow space, can preferably be supplied by means of a subsequent water-gas shift reaction.
  • a major part of the activation energy required for steam reforming is preferably supplied by heat storage material and/or a heat exchanger in the reforming area.
  • the energy is made available by means of the heat storage units in the flow spaces, which have been previously heated for this purpose, in particular by heat transfer from the clean gas flow. Provision of energy from steam reforming and/or the water-gas shift reaction is also advantageous.
  • two, three or more than three flow chambers can be provided in the method.
  • At least one flow chamber is preferably always flushed by means of the oxidizer flow.
  • At least one flow space preferably heat storage material contained therein, is preferably always heated by means of the clean gas flow.
  • the heat of the heat storage material contained or provided in at least one flow space is preferably used by means of the raw gas flow.
  • organic components of the raw gas stream preferably react with the oxidizer from the oxidizer stream.
  • the proportion of water vapor and the reduced oxygen content compared to the ambient air ensure that thermal nitrogen oxide formation is minimized.
  • Heat storage material with a reaction-accelerating effect is preferably provided in the heat storage area, to which the clean gas stream is preferably fed. This surface-enlarging heat storage material preferably enables post-oxidation in particular in the upper heat storage area of the flow chambers in order to convert and/or render harmless residual impurities still contained in the clean gas flow, in particular substances that have not been completely oxidized.
  • Heat removed from the clean gas flow by means of a heat exchanger can be used in particular to preheat process exhaust air and/or ambient air, in particular before it is fed in as an oxidant flow. Any condensate that occurs here is preferably returned to a production process.
  • the invention is based on the further object of providing a cleaning device for cleaning a raw gas stream, which is of simple construction and can be operated cost-effectively.
  • this object is achieved by a cleaning device according to claim 14 .
  • the cleaning device according to the invention is particularly suitable for carrying out the method according to the invention.
  • the cleaning device preferably has one or more of the features and/or advantages described in connection with the method according to the invention.
  • the method according to the invention can have one or more of the features and/or advantages described in connection with the cleaning device according to the invention.
  • the cleaning device preferably comprises a heat exchanger which is arranged in particular in the clean gas discharge and which is in particular a condenser.
  • Water vapor contained in the clean gas flow can preferably be condensed by means of the heat exchanger, in particular by means of the condenser.
  • a volume and/or volumetric flow of the clean gas flow in the clean gas discharge can be reduced, as a result of which an energy-efficient flow through the cleaning device can ultimately be obtained.
  • a negative pressure below the ambient pressure can preferably be generated in the heat exchanger, in particular in the condenser, as a result of which the energy requirement for conveying the raw gas and clean gas flow for the raw gas cleaning can be reduced.
  • the cleaning device comprises a plurality of flow chambers, which are in particular provided with heat storage material, and a control device, wherein the cleaning device can be switched to different operating modes by means of the control device.
  • the raw gas flow can be fed to at least a first of the flow spaces by means of the raw gas feed and the clean gas flow can be removed from at least a second of the flow spaces by means of a clean gas discharge.
  • This mode preferably runs cyclically recurring, in particular with all, but at least with at least two, flow spaces.
  • the cleaning device can be set into further operating modes, for example a second or third or fourth cleaning mode, in which further flow spaces are provided for the passage of the raw gas flow and/or the clean gas flow.
  • At least one third flow space is preferably flushed in at least one cleaning mode.
  • This at least one third flow chamber, to which the oxidant flow, in particular a fresh air flow, process exhaust air flow and/or process gas flow, can be fed preferably contains a preheating device, in particular for heating the oxidant flow before this oxidant flow is fed to the heat storage area upstream of the oxidation area.
  • the purification device comprises or forms a regenerative thermal oxidizer (RTO).
  • RTO regenerative thermal oxidizer
  • the cleaning device comprises a plurality of flow spaces through which the raw gas flow, the clean gas flow and/or the oxidizer flow can flow, the flow spaces each comprising a heat storage unit.
  • One or more or all of the heat storage units preferably have a layered structure made of different, temperature-resistant solid materials, in particular different heat storage materials.
  • one or more or all of the heat storage units can have one or more flow layers for influencing the inflow, throughflow or outflow of gas.
  • a layered structure made of different heat storage materials and/or flow materials is provided.
  • At least one second layer is preferably formed from alumina porcelain or similar storage material, wherein this alumina porcelain or similar material can have a higher bulk density compared to the material of the first layer. As a result, preferably a larger amount of energy can be stored in this second layer.
  • a third layer preferably comprises a mullite material, preferably porous mullite material.
  • This mullite material preferably has a reaction-accelerating effect, which can result in particular from an increase in surface area and traces of metals in the material.
  • a bed of turbulence-generating materials for example saddle bodies and/or balls, is provided as the fourth layer, whereby an optimized inflow of the reformed raw gas flow to the oxidation area and thus an optimized oxidation in the oxidation area can be achieved. Furthermore, this bed preferably makes it possible to equalize the inflow of the clean gas flow space and leads to a uniform release of energy to the heat storage material located therein.
  • additional layers can also be provided or individual layers mentioned can be omitted.
  • the cleaning device shown denoted as a whole by 100, is used in particular for cleaning raw gas.
  • the cleaning device 100 is particularly suitable for cleaning exhaust steam, which is also known as fumes or vapours.
  • the cleaning device 100 includes in particular a regenerative thermal oxidation device 102 for the thermal conversion of odorous substances and other contaminants in the exhaust steam.
  • the cleaning device 100 preferably comprises a reforming area 104, a heat storage area 106 and a preheating area 108.
  • the raw gas to be cleaned can be fed to the reforming area 104 by means of a raw gas feed 110 of the cleaning device 100 .
  • Oxidant and/or scavenging gas can preferably be supplied to the preheating area 108 via an oxidizer supply 112 and/or a scavenging gas supply 114 .
  • a clean gas discharge 116 of the cleaning device 100 is preferably provided, via which clean gas generated from the raw gas can be discharged.
  • the clean gas outlet 116 is thus in particular an exhaust gas outlet 118 of the cleaning device 100.
  • the clean gas discharge 116 in particular adjoins the heat storage area 106 or includes it.
  • a plurality of heat exchangers 120 of the cleaning device 100 are preferably used to heat or cool gas flows in order ultimately to optimize the energy efficiency of the cleaning device 100 .
  • a heat storage device 122 of the cleaning device 100 is preferably provided, by means of which the heat generated in the cleaning device 100 can be temporarily stored and used again for optimized operation of the cleaning device 100 .
  • the heat storage device 122 comprises, in particular, a plurality of heat storage units 124.
  • the cleaning device 100 includes an oxidation area 126 which adjoins the reforming area 104 and the preheating area 108 and which in particular opens into the heat storage area 106 .
  • the reforming area 104, the preheating area 108 and the heat storage area 106 are not stationary, but are formed by different flow chambers 128 of the cleaning device 100, depending on the locations of the supply of raw gas and oxidizer and depending on the removal of clean gas.
  • Each flow space 128 includes a heat storage unit 124 of the heat storage device 122, so that the flow space 128 is dependent heat can be supplied from the respective gas supply or gas discharge or heat can be removed therefrom.
  • One or more optional heating devices of the cleaning device 100 can contribute to optimizing the operation of the cleaning device 100 in addition to the heat storage device 122 and/or in addition to the heat exchangers 120 .
  • the flow chambers 128 are flowed through in different directions depending on the respective operating mode (cleaning mode) of the cleaning device 100 .
  • the heat storage units 124 in the flow spaces 128 are preferably provided with a layered structure.
  • a first layer 130a is provided for this purpose, which is formed, for example, from a densely fired ceramic material.
  • a second layer 130b adjoining the first layer 130a is preferably made of alumina porcelain or a similar ceramic material and has a higher density than the material of the first layer 130a. As a result, an area with a high heat storage capacity can be created.
  • a third layer 130c adjoining the second layer 130b comprises, for example, a mullite material which has a reaction-accelerating effect and contributes to the optimization of reaction-kinetic processes within the flow space 128 .
  • a fourth layer 130d adjoining the third layer 130c preferably serves to optimize the inflow to the oxidation region 126 adjoining the heat storage unit 124.
  • the fourth layer 130d has, for example, a bed of a turbulence-generating material, for example saddle bodies.
  • the heat storage unit 124 serves as a reforming region 104 of the cleaning device 100.
  • the cleaning device 100 preferably comprises an oxidizer sensor 140, in particular for the detection of oxygen, which controls or regulates the volume flow of the oxidizer supplied via the oxidizer feed 112 by means of a control unit 141.
  • a common switchover unit or two individual switchover units 115 are preferably used for brief flushing of the oxidizer.
  • the illustrated embodiment of the cleaning device 100 preferably works as follows: A raw gas in the form of exhaust steam, for example, is routed via the raw gas feed line 110 to a first flow space 128a, which forms the reforming region 104.
  • a heat storage unit 124 is arranged in this first flow space 128a, for example in accordance with FIG 4 Schematically illustrated embodiment.
  • This heat storage unit 124 was charged with heat before the raw gas was fed in, so that the raw gas now fed in is heated by means of the heat storage unit 124 .
  • a reformed raw gas for example water gas
  • hydrocarbons and water results in particular from hydrocarbons and water.
  • long-chain hydrocarbons and low-volatile hydrocarbons are largely converted into methane, carbon monoxide, hydrogen and other easily combustible substances.
  • the raw gas has a very low oxygen content of less than 5 vol .
  • the entire raw gas stream that was passed through the reforming area 104 is fed to the oxidation area 126 as a reformed raw gas stream.
  • the reformed raw gas flow encounters an oxidant-containing gas flow, in particular an oxidant flow.
  • the oxidizer flow is in particular air or an air mixture or an oxidizer-containing, in particular oxygen-containing, process gas.
  • the oxidizer stream is fed via the oxidizer feed 112 to a third flow space 128c. Care is taken here that the temperature of the oxidizer stream is at least approximately 100° C. or more, for example at least 100° C., preferably at least approximately 110° C. In this way, an undesired condensation of water can preferably be avoided.
  • the oxidizer stream can be heated by means of an optional heating device and/or one or more heat exchangers 120 . This is preferably a preheating.
  • the oxidizer stream is only heated to a desired temperature in the flow space 128c in order to be able to feed it to the oxidation region 126 .
  • the target temperature of the oxidizer stream is preferably at least 750°C, for example at least approximately 800°C, in particular approximately 850°C.
  • This heating to the target temperature is achieved in the flow space 128 in particular in that the third flow space 128c also has a heat storage unit 124, for example in accordance with in 4 illustrated embodiment.
  • This heat storage unit 124 is preferably heated prior to the introduction of the oxidizer stream, for example using the clean gas stream.
  • the oxidizer stream preferably has an oxygen content of at least about 15% by volume, for example at least about 18% by volume, preferably about 21% by volume.
  • the merging of the heated, reformed raw gas stream with the heated oxidizer stream in the oxidation region 126 leads to oxidation of the combustible components of the reformed raw gas stream in the oxidation region 126, which in particular hydrocarbons, carbon monoxide and Hydrogen are oxidized from the reformed raw gas stream, in particular to carbon dioxide and water.
  • the clean gas flow gives off at least part of its heat to the heat storage unit 124 arranged in the second flow space 128b.
  • This heat storage unit 124 is preferably a heat storage unit 124 in accordance with FIG 4 illustrated embodiment.
  • the clean gas After flowing through the second flow space 128b forming the heat storage area 106 , the clean gas is discharged via the clean gas outlet 116 .
  • the amount of heat still remaining in the clean gas can preferably be at least partially removed from the clean gas flow and thus made usable elsewhere.
  • the cleaning operation of the cleaning device 100 described above can preferably be maintained until the amounts of heat stored in the heat storage units 124 of the first and third flow chambers 128a, 128c are no longer sufficient for heating the raw gas stream and/or the oxidizer stream or for a sufficient reaction in the reforming area 104 are sufficient.
  • the time of switching is preferably determined by measuring, calculating or otherwise determining the energy content in the flow spaces, in particular by carrying out an energy comparison of the flow spaces using a control module, for example the XtraBalance control module.
  • the cleaning device 100 is preferably put into a rinsing mode by means of a control device 115 (see FIG 2 ), in which ambient air is briefly supplied to the third flow space 128c, for example by means of a flushing gas supply 114 .
  • Raw gas and flushing gas are supplied to the first flow space 128a and/or clean gas is supplied to the second flow space 128b.
  • the flushing gas which is ambient air, for example, is used to clean the heat storage units 124 in order ultimately to avoid an undesired emission of odorous substances or harmful gases in the event of a subsequent flow reversal.
  • the raw gas is no longer fed to the first flow space 128a but, for example, to the second flow space 128b, which then consequently no longer forms the heat storage area 106 but now the reforming area 104 (see 3 ).
  • the heat accumulator unit 124 arranged in the second flow space 128b was finally heated up beforehand due to the supply of the clean gas flow and thus now forms a sufficient heat source for carrying out the reforming process for reforming the raw gas flow.
  • the first flow space 128a which previously formed the reforming area 104, now accordingly forms the scavenging area 108, so that the clean gas flow generated in the oxidation area 126 is now discharged via the third flow space 128c.
  • the heat storage unit 124 arranged in the third flow space 128c is thereby heated and thus prepared for later use as a reforming area 104 or also as a preheating area 108 .
  • the in the 1 , 2 and 3 illustrated operating modes of the cleaning device 100 numerous other operating modes can be implemented.
  • the in the 1 , 2 and 3 the third flow space 128c forming the preheating area 108 is used at regular intervals to discharge/remove the clean gas (see 3 ) and thereby prepared for reuse as a preheating area 108 or as a reforming area 104.
  • the oxidant feed 112 is controlled in particular as a function of an oxygen content in the clean gas stream.
  • the oxidizer quantity in particular the oxidizer volume flow and/or the oxidizer mass flow, is preferably controlled and/or regulated in such a way that reliable oxidation of the substances contained in the reformed raw gas flow in the oxidation region 126 results.
  • the corresponding regulation can, for example, be temperature-dependent, oxygen-dependent or also dependent on a composition of the clean gas flow.
  • numerous other controlled variables and/or controlled variables are conceivable.
  • the cleaning device 100 can be operated in a particularly simple and cost-efficient manner. In addition, additional devices such as separators and scrubbers can be avoided.
  • the clean gas stream is fed to a condenser, in particular to a heat exchanger 120 which is arranged in the clean gas outlet 116 and is designed as a condenser.
  • the volume of the clean gas flow can preferably be reduced as a result, in particular by the water vapor contained in the clean gas flow being condensed out.
  • a negative pressure below the ambient pressure can thus preferably be generated in the condenser, as a result of which the energy requirement for conveying the raw gas and clean gas flow for the raw gas cleaning can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Claims (17)

  1. Procédé de purification d'un écoulement de gaz brut contaminé organiquement contenant de la vapeur d'eau, où le procédé comprend les étapes suivantes :
    - l'alimentation de l'écoulement de gaz brut dans une zone de reformage (104), dans laquelle les impuretés contenues dans l'écoulement de gaz brut réagissent chimiquement avec la vapeur d'eau contenue dans l'écoulement de gaz brut de telle sorte qu'un écoulement de gaz brut reformé est obtenu, lequel comprend des substances gazeuses oxydables et/ou organiques ;
    - l'alimentation de l'écoulement de gaz brut reformé ainsi que d'un écoulement d'oxydant dans une zone d'oxydation (126), dans laquelle les substances gazeuses oxydables et/ou organiques de l'écoulement de gaz brut reformé réagissent chimiquement avec l'oxydant de l'écoulement d'oxydant de telle sorte qu'un écoulement de gaz pur est obtenu, où le dispositif de purification (100) comprend plusieurs chambres d'écoulement (128), un élément d'alimentation en gaz brut (110) et un dispositif de commande, où le dispositif de purification (100) est réglé dans différents modes de fonctionnement au moyen du dispositif de commande,
    où, dans un premier mode de purification :
    l'écoulement de gaz brut est alimenté au moyen de l'élément d'alimentation en gaz brut (110) vers l'au moins une première des chambres d'écoulement (128a) et l'écoulement de gaz pur est déchargé de l'au moins une deuxième des chambres d'écoulement (128b) au moyen d'un élément de décharge de gaz pur (116) ; et où, dans un second mode de purification :
    l'écoulement de gaz brut est amené vers l'au moins une deuxième chambre d'écoulement (128b) au moyen de l'élément d'alimentation en gaz brut (110) et l'écoulement de gaz pur est déchargé de l'au moins une première chambre d'écoulement (128a) au moyen de l'élément de décharge de gaz pur (116).
  2. Procédé selon la revendication 1, où la réaction chimique dans la zone de reformage (104) est une gazéification allothermique et/ou hydrothermale et/ou la réaction chimique dans la zone d'oxydation (126) est une réaction avec une énergie de support et/ou une oxydation autothermique.
  3. Procédé selon l'une des revendications 1 ou 2, où la première des chambres d'écoulement (128a) forme au moins temporairement la zone de reformage (104) et la deuxième des chambres d'écoulement (128b) forme au moins temporairement une zone d'accumulation de chaleur (106), vers laquelle l'écoulement de gaz pur est alimenté.
  4. Procédé selon la revendication 3, où le dispositif de purification (100) comprend au moins une troisième chambre d'écoulement (128c), laquelle forme au moins temporairement une zone de préchauffage (108), à laquelle l'écoulement d'oxydant pour son préchauffage peut être alimenté avant que l'écoulement d'oxydant ne soit alimenté à la zone d'oxydation (126).
  5. Procédé selon l'une des revendications 3 ou 4, où l'écoulement de gaz brut et/ou l'écoulement de gaz pur et/ou l'écoulement d'oxydant sont respectivement alimentés en alternance dans différentes chambres d'écoulement (128) de telle sorte que les chambres d'écoulement (128) forment en alternance la zone de reformage (104) et/ou la zone d'accumulation de chaleur (106) et/ou la zone de préchauffage (108).
  6. Procédé selon l'une quelconque des revendications 1 à 5, où l'écoulement de gaz brut présente une teneur en oxydant, en particulier une teneur en oxygène, inférieure à 5 % en volume, en particulier inférieure à 3 % en volume, de préférence inférieure à 1 % en volume.
  7. Procédé selon l'une quelconque des revendications 1 à 6, où l'écoulement de gaz brut dans la zone de reformage (104) est chauffé à au moins environ 800 °C, en particulier à au moins environ 900 °C.
  8. Procédé selon l'une quelconque des revendications 1 à 7, où l'écoulement de gaz brut dans la zone de reformage (104) et/ou l'écoulement de gaz pur dans une zone d'accumulation de chaleur (106) et/ou l'écoulement d'oxydant dans une zone de préchauffage (108) sont respectivement guidés à travers une unité d'accumulation de chaleur (124) d'un dispositif d'accumulation de chaleur (122), où l'au moins une ou toutes les unités d'accumulation de chaleur (124) sont formées, en particulier par des corps d'écoulement en céramique ou comprennent de tels corps.
  9. Procédé selon l'une quelconque des revendications 1 à 8, où l'écoulement de gaz brut avant l'alimentation vers la zone de reformage (104) et/ou l'écoulement d'oxydant avant et/ou après l'alimentation vers une zone de préchauffage (108) sont chauffés au moyen d'un échangeur de chaleur (120) et/ou d'un dispositif de chauffage.
  10. Procédé selon l'une quelconque des revendications 1 à 9, où l'écoulement de gaz pur est tout d'abord alimenté à une zone d'accumulation de chaleur (106) et ensuite à un échangeur de chaleur (120), où l'écoulement de gaz pur est refroidi au moyen de l'échangeur de chaleur (120), en particulier de telle sorte qu'une condensation se forme, et la chaleur encore contenue dans l'écoulement de gaz pur est donc tout d'abord transférée à l'échangeur de chaleur (120) et/ou rendue utilisable d'une autre manière.
  11. Procédé selon l'une quelconque des revendications 1 à 10, où l'écoulement d'oxydant est alimenté vers la zone d'oxydation (126) au-delà de la zone de reformage (104) et/ou indépendamment d'un trajet d'écoulement de l'écoulement de gaz brut.
  12. Procédé selon l'une quelconque des revendications 1 à 11, où l'écoulement de masse et/ou le débit volumique de l'écoulement d'oxydant,
    - en fonction d'un écoulement de masse et/ou d'un débit volumique de l'écoulement de gaz brut et/ou
    - en fonction d'un degré de contamination de l'écoulement de gaz brut et/ou
    - en fonction d'un pouvoir calorifique de l'écoulement de gaz brut et/ou
    - en fonction d'une teneur en oxygène dans l'écoulement de gaz pur, est commandé et/ou régulé, en particulier de telle sorte qu'une teneur en oxygène/oxydant prédéterminée et/ou une température prédéterminée sont obtenues dans la zone d'oxydation (126) et/ou dans un élément de décharge de gaz pur (116).
  13. Procédé selon l'une quelconque des revendications 1 à 12, où l'écoulement de gaz pur est alimenté vers un échangeur de chaleur (120), en particulier vers un condenseur, et la vapeur d'eau contenue dans l'écoulement de gaz pur est condensée au moyen de l'échangeur de chaleur (120), en particulier du condenseur.
  14. Dispositif de purification (100) destiné à la purification d'un écoulement de gaz brut contenant de la vapeur d'eau,
    où le dispositif de purification (100) comprend les éléments suivants :
    - un élément d'alimentation en gaz brut (110) pour alimenter l'écoulement de gaz brut dans une zone de reformage (104) du dispositif de purification (100), dans laquelle des impuretés contenues dans l'écoulement de gaz brut réagissent chimiquement avec la vapeur d'eau contenue dans l'écoulement de gaz brut de telle sorte qu'un écoulement de gaz brut reformé, lequel comprend des substances gazeuses oxydables et/ou organiques, est obtenu ; et
    - un élément d'alimentation en oxydant (112) pour alimenter un écoulement d'oxydant dans une zone d'oxydation (126) du dispositif de purification (100), dans laquelle les substances gazeuses oxydables et/ou organiques de l'écoulement de gaz brut reformé réagissent chimiquement avec l'oxydant de l'écoulement d'oxydant de telle sorte qu'un écoulement de gaz pur est obtenu, où le dispositif de purification (100) comprend plusieurs chambres d'écoulement (128) et un dispositif de commande, où le dispositif de purification (100) peut être réglé dans différents modes de fonctionnement au moyen du dispositif de commande,
    où, dans un premier mode de purification :
    l'écoulement de gaz brut est alimenté au moyen de l'alimentation en gaz brut (110) vers l'au moins une première des chambres d'écoulement (128a) et l'écoulement de gaz pur est déchargé par l'au moins une deuxième des chambres d'écoulement (128b) au moyen de l'élément de décharge de gaz pur (116) ; et où, dans un second mode de purification :
    l'écoulement de gaz brut est alimenté vers l'au moins une deuxième chambre d'écoulement (128b) au moyen de l'élément d'alimentation en gaz brut (110) et l'écoulement de gaz pur est déchargé au moyen de l'au moins une première chambre d'écoulement (128a) au moyen de l'élément de décharge de gaz pur (116).
  15. Dispositif de purification (100) selon la revendication 14, où les plusieurs chambres d'écoulement (128) du dispositif de purification (100) sont pourvues d'un matériau accumulateur de chaleur.
  16. Dispositif de purification (100) selon l'une des revendications 14 ou 15, où le dispositif de purification (100) comprend plusieurs chambres d'écoulement (128), à travers lesquelles l'écoulement de gaz brut, l'écoulement de gaz pur et/ou l'écoulement d'oxydant peuvent s'écouler, où les chambres d'écoulement (128) comprennent respectivement une unité d'accumulation de chaleur (124), où l'au moins une ou toutes les unités d'accumulation de chaleur (124) présentent une structure en couches de matériaux différents, en particulier de matériaux accumulateurs de chaleur différents.
  17. Dispositif de purification (100) selon l'une quelconque des revendications 14 à 16, où le dispositif de purification (100) comprend un échangeur de chaleur (120) disposé dans l'élément de décharge de gaz pur (116), lequel est conçu sous la forme d'un condenseur et au moyen duquel la vapeur d'eau contenue dans l'écoulement de gaz pur peut être condensée de telle sorte que, en particulier un volume et/ou un débit volumique de l'écoulement de gaz pur dans l'élément de décharge de gaz peuvent être réduits.
EP19805884.4A 2018-11-08 2019-10-30 Procédé pour purifier un gaz brut et dispositif de purification Active EP3701191B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018219105.0A DE102018219105A1 (de) 2018-11-08 2018-11-08 Verfahren zur Reinigung eines Rohgasstroms und Reinigungsvorrichtung
PCT/DE2019/100937 WO2020094183A1 (fr) 2018-11-08 2019-10-30 Procédé pour purifier un gaz brut et dispositif de purification

Publications (2)

Publication Number Publication Date
EP3701191A1 EP3701191A1 (fr) 2020-09-02
EP3701191B1 true EP3701191B1 (fr) 2022-04-27

Family

ID=68617966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19805884.4A Active EP3701191B1 (fr) 2018-11-08 2019-10-30 Procédé pour purifier un gaz brut et dispositif de purification

Country Status (9)

Country Link
US (1) US20220003412A1 (fr)
EP (1) EP3701191B1 (fr)
CN (1) CN113167469A (fr)
BR (1) BR112021006652A2 (fr)
CL (2) CL2021001115A1 (fr)
DE (2) DE102018219105A1 (fr)
ES (1) ES2914423T3 (fr)
PT (1) PT3701191T (fr)
WO (1) WO2020094183A1 (fr)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4142136C2 (de) 1991-12-20 1994-07-21 Eisenmann Kg Maschbau Vorrichtung zum Reiniguen schadstoffhaltiger Abluft aus Industrieanlagen durch regenerative Nachverbrennung
US5364259A (en) * 1993-03-10 1994-11-15 Monsanto Enviro-Chem Systems, Inc. Process and apparatus for gas phase reaction in a regenerative incinerator
US5427746A (en) 1994-03-08 1995-06-27 W. R. Grace & Co.-Conn. Flow modification devices for reducing emissions from thermal voc oxidizers
JP3063622B2 (ja) * 1996-05-28 2000-07-12 株式会社日立製作所 ごみ発電システム及びごみ処理システム
SE515710C2 (sv) 2000-02-11 2001-10-01 Bjoern Heed Luftskåp vid en regenerativ förbränningsanordning
US6264464B1 (en) 2000-05-12 2001-07-24 Megtec Systems, Inc. Angled bed for regenerative heat exchanger
DE10149807B4 (de) * 2001-10-09 2007-12-27 Herhof Verwaltungsgesellschaft Mbh Verfahren und Vorrichtung zum Reinigen von Abgasen, die heizwerthaltige Substanzen, insbesondere Schadstoffpartikel und/oder Geruchspartikel, enthalten
DE102007032952B4 (de) 2006-09-12 2010-07-08 Kba-Metalprint Gmbh Verfahren zum Betreiben einer thermisch-regenerativen Abluftreinigungsanlage
EP2132488A1 (fr) * 2007-03-06 2009-12-16 CeramTec AG Procédé pour l'élimination écologique de mélanges air/solvant avec une installation à piles à combustible et une unité de récupération
DE102011002612A1 (de) * 2011-01-13 2012-07-19 Siemens Aktiengesellschaft Verfahren zur Behandlung eines kohlendioxidhaltigen Abgases
US10184659B2 (en) * 2015-04-15 2019-01-22 Praxair Technology, Inc. Low-NOx combustion method

Also Published As

Publication number Publication date
PT3701191T (pt) 2022-05-19
DE112019005585A5 (de) 2021-09-02
ES2914423T3 (es) 2022-06-10
CN113167469A (zh) 2021-07-23
BR112021006652A2 (pt) 2021-07-13
DE102018219105A1 (de) 2020-05-14
WO2020094183A1 (fr) 2020-05-14
CL2022000728A1 (es) 2022-11-11
US20220003412A1 (en) 2022-01-06
EP3701191A1 (fr) 2020-09-02
CL2021001115A1 (es) 2021-11-19

Similar Documents

Publication Publication Date Title
AT507773B1 (de) Verfahren und vorrichtung zur entstickung von rauchgasen
EP1607133A1 (fr) Installation d'épuration des gaz d'échappement dotée d'un dispositif d'alimentation en agent de réduction
DE69917653T2 (de) Evaporatives und regeneratives abwasser-verbrennungssystem
EP1696177A1 (fr) Procédé intégré de gazification polycombustible
EP0436822B1 (fr) Procédé pour la purification des gaz d'échappement des installations pour la production de clinker
DE2253070A1 (de) Katalysator
DE102007004221A1 (de) Vorrichtung und Verfahren zur thermischen Umsetzung von Pellets oder Holzschnitzeln
WO2014106533A1 (fr) Élimination de l'ammoniac et des alcanes inférieurs et/ou de l'hydrogène contenus dans les flux de gaz perdus d'installations industrielles
DE102017101507B4 (de) Verfahren und Vorrichtung zur Abgasreinigung
WO2016030207A1 (fr) Dispositif de purification, utilisation d'un dispositif de purification et procédé pour la purification d'un flux de gaz d'échappement
DE2303586B2 (de) Gasturbinenanlage mit vollstaendiger kontinuierlicher verbrennung des ihr zugefuehrten brennstoffs
EP3701191B1 (fr) Procédé pour purifier un gaz brut et dispositif de purification
DE102014212972A1 (de) Verfahren und Anlage zur Wasserstoffherstellung
DE102016105719A1 (de) Wabenkoerper und deren Verwendung in Nachverbrennungsanlagen, Nachbereitungsanlagen und Verfahren zum Aufkonzentrieren von Inhaltsstoffen in Gasen
DE102014106991A1 (de) Vorrichtung zur katalytischen Entstickung und regenerativen thermischen Nachverbrennung
WO2008011965A1 (fr) Dispositif thermique de purification des gaz d'échappement et procédé pour la purification thermique des gaz d'échappement
CN110755998A (zh) 使用czts、czts基合金和/或碳基吸附剂的排放物控制系统和使用方法
EP2175197B1 (fr) Procédé de traitement des gaz d'échappement par postcombustion regénérative
WO1999055803A1 (fr) Procede fonde sur la production d'energie a partir de dechets, utilise pour produire du courant, de l'eau et/ou de l'hydrogene et/ou du methanol a partir de biomasse et/ou de dechets organiques
EP3185993A1 (fr) Dispositif de traitement et procédé pour le traitement d'un flux de gaz d'échappement
DE10149807A1 (de) Verfahren und Vorrichtung zum Reinigen von Abgasen, die heizwerthaltige Substanzen, insbesondere Schadstoffpartikel und/oder Geruchspartikel, enthalten
DE102012100687A1 (de) Verfahren zum Erhitzen eines Reinigungs-Strömungskörpers und Reinigungsvorrichtung
DE102011101474B4 (de) Verfahren zum Behandeln von Abgasen von mit Biogas betriebenen Verbrennungskraftmaschinen und Verwendung eines Katalysators dazu
DE102011001374A1 (de) Verfahren und Vorrichtung zur Reinigung eines schadstoffhaltigen Fluids
DE4422730A1 (de) Verfahren und Anlage zur Entfernung von Schadstoffen aus vorgereinigten Abgasen von Verbrennungs- insbesondere Müllverbrennungsanlagen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20211122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004231

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1487186

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3701191

Country of ref document: PT

Date of ref document: 20220519

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220512

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2914423

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220610

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004231

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

26N No opposition filed

Effective date: 20230130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231227

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231019

Year of fee payment: 5

Ref country code: PT

Payment date: 20231019

Year of fee payment: 5

Ref country code: IT

Payment date: 20231023

Year of fee payment: 5

Ref country code: FR

Payment date: 20231026

Year of fee payment: 5

Ref country code: DE

Payment date: 20231020

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191030