EP3701191B1 - Verfahren zur reinigung eines rohgasstroms und reinigungsvorrichtung - Google Patents

Verfahren zur reinigung eines rohgasstroms und reinigungsvorrichtung Download PDF

Info

Publication number
EP3701191B1
EP3701191B1 EP19805884.4A EP19805884A EP3701191B1 EP 3701191 B1 EP3701191 B1 EP 3701191B1 EP 19805884 A EP19805884 A EP 19805884A EP 3701191 B1 EP3701191 B1 EP 3701191B1
Authority
EP
European Patent Office
Prior art keywords
gas stream
raw gas
flow
stream
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19805884.4A
Other languages
English (en)
French (fr)
Other versions
EP3701191A1 (de
Inventor
Matthias Hänel
Christian Eichhorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Publication of EP3701191A1 publication Critical patent/EP3701191A1/de
Application granted granted Critical
Publication of EP3701191B1 publication Critical patent/EP3701191B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/40Gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/18Incinerating apparatus

Definitions

  • the present invention relates to the field of raw gas cleaning.
  • the present invention relates to the purification of raw gas containing water vapor and carrying organic impurities, in particular exhaust steam, for eliminating odors and/or converting exhaust gases.
  • the present invention relates to a cleaning device for carrying out a raw gas/vapor vapor cleaning method.
  • the raw gas cleaning can be carried out in particular to eliminate odors using thermal systems, for example regenerative thermal oxidation systems.
  • thermal systems for example regenerative thermal oxidation systems.
  • This high energy expenditure is mostly due to the fact that a separation process is often carried out first in order to separate water with, for example, organic dust, in particular fat, oil and/or protein particles, from the raw gas.
  • oxidizable substances with a considerable calorific value are lost from the raw gas stream fed to the thermal plant for raw gas cleaning, which reduces the efficiency of the thermal conversion.
  • the substances occurring during the separation process have to be post-treated in a complex manner and/or disposed of specifically as hazardous waste.
  • the present invention is based on the object of providing a method for cleaning a steam-containing raw gas stream, in particular exhaust steam with organic impurities, which can be carried out simply and cost-effectively.
  • this object is achieved by a method according to claim 1 .
  • the organic impurities contained in the raw gas stream preferably react with the water vapor contained in the raw gas stream without the supply of oxygen.
  • the contaminants are or include in particular liquid contaminants and/or solid contaminants and/or gaseous contaminants.
  • oxidizer preferably air, fresh air, ambient air, oxygen-containing exhaust air, process exhaust air, etc.
  • a calorific value contained in the raw gas stream can preferably be used in the oxidation and thus enable fuel-saving or otherwise energy-saving thermal raw gas cleaning.
  • such a method is preferably comparatively simple and inexpensive because a preceding deposition step can be dispensed with.
  • the clean gas flow is fed to a heat exchanger, in particular a condenser, and that by means of the heat exchanger, in particular by means of the condenser, in the clean gas flow contained water vapor is condensed.
  • a volume and/or volumetric flow of the clean gas flow in the clean gas discharge can be reduced, as a result of which an energy-efficient flow through the cleaning device can ultimately be obtained.
  • the chemical reaction in the reforming area is preferably an allothermal and/or hydrothermal gasification.
  • a water-gas shift reaction preferably in the first flow space, can be advantageous for the energy requirements of steam reforming.
  • the chemical reaction in the oxidation area is a reaction with supporting energy and/or an autothermal oxidation.
  • the water vapor of the steam-containing raw gas stream is preferably used as a gasification medium, particularly in the reforming area.
  • a reaction with supporting energy is preferably a combustion.
  • the process can preferably be carried out with any thermal regenerative exhaust air cleaning system (TRA).
  • TRA thermal regenerative exhaust air cleaning system
  • the solution according to the invention can be implemented not only with the exemplary embodiments of a cleaning device shown in the attached figures, but rather also with numerous variants thereof.
  • linearly arranged regenerator chambers can be provided as flow spaces.
  • rotating systems can be provided, in particular rotary valve devices according to EP 0 548 630 A1 .
  • the process can also preferably be carried out on oxidizers such as the product “ Vocsidizer® ” from MEGTEC SYSTEMS, INC. according to the WO 01/88436 A1 be performed.
  • the method can preferably also be carried out on one of those systems be provided, which are disclosed in one or more of the following publications: WO 01/59367 A1 , AU2001-232509A1 , WO 1995/024590 A1 , EP 1 906 088 B1 .
  • the method is carried out by means of a cleaning device which comprises a plurality of flow chambers, with a first of the flow chambers at least temporarily forming the reforming area and with a second of the flow chambers at least temporarily forming a heat storage area to which the clean gas flow is fed.
  • the cleaning device comprises at least a third flow chamber, which at least temporarily forms a preheating area, to which the oxidant flow is fed for preheating it, before the oxidant flow is fed to the oxidation area.
  • the raw gas stream and/or the clean gas stream and/or the oxidizer stream is fed cyclically/alternately to different flow spaces so that the flow spaces alternately form the reforming area and/or the heat storage area and/or the preheating area.
  • the flow spaces are preferably flowed through in different directions, depending on whether the respective flow space forms a reforming area or a heat storage area.
  • a main flow direction in a flow space when it forms a reforming area is opposite to a main flow direction in the same flow space when it forms the heat storage area.
  • the flow spaces are preferably alternately heated and cooled, in particular heated by means of the clean gas stream and/or cooled by means of the raw gas stream and/or the oxidizer stream.
  • the flow paths are switched cyclically/alternately and/or preferably based on the energetic balance of the heat storage areas, as is the case, for example, from the patent specification EP 1 906 088 B1 (also known as the XtraBalance ® process).
  • the flow spaces are preferably provided with a heat storage material, for example at least partially filled with a heat storage material.
  • the thermal storage material is or preferably comprises a composite of various ceramic materials (e.g. material known by the trademark XtraComb® ).
  • “Composition” is preferably also to be understood as meaning a layering of storage elements, storage bodies or storage blocks, the storage elements, storage bodies or storage blocks being inhomogeneous, for example in planes or in layers, in particular in the vertical composition or stacking.
  • the heat storage material can in particular comprise or be formed from densely fired and/or smooth and/or highly porous and/or coated with a catalyst material and/or ceramic storage material. Furthermore, the heat storage material can preferably be a composition of densely fired storage material and/or smooth Storage material and/or highly porous storage material and/or storage material coated with a catalyst material and/or ceramic storage material.
  • the raw gas stream has an oxidizer content, in particular an oxygen content, of less than 5% by volume, in particular less than 3% by volume, preferably less than 1% by volume.
  • the raw gas flow is, in particular, exhaust steam.
  • the raw gas stream is preferably saturated with steam.
  • the raw gas stream is preferably fed to the reforming area without the addition of further media.
  • no gas stream containing oxidizer is fed to the raw gas stream before the raw gas stream is fed to the reforming area.
  • the raw gas stream is preferably heated to at least approximately 600°C, in particular to at least approximately 750°C, for example to at least approximately 800°C, particularly preferably to at least 850°C.
  • the preferably porous surfaces of the ceramic flow bodies are particularly effective as an acceleration factor for allothermal and/or hydrothermal gasification.
  • the heat storage units preferably have catalytic materials, for example a catalytic coating and/or catalytically active components.
  • the catalytic effect preferably always relates to the reforming of the raw gas stream.
  • a heating device is or includes a burner, for example a gas and/or oil burner.
  • the heating device can also comprise an electrical heating device, for example an infrared heater, a resistance heater and/or the like. The heat can be transferred to the raw gas stream and/or the oxidizer stream directly by supplying a fuel gas stream or indirectly via a heat exchanger.
  • the raw gas stream and/or the oxidizer stream can be heated to at least approximately 90 °C, for example at least approximately 95 °C, preferably at least approximately 100 °C, in particular to prevent water from condensing in the area of the cleaning device, in particular the thermal exhaust air cleaning system.
  • the clean gas flow is first fed to a heat storage area and then to a downstream heat exchanger, with the clean gas flow being cooled by the heat exchanger in particular to such an extent that condensate forms and heat that is initially still contained in the clean gas flow is thereby transferred to the heat exchanger and/or otherwise made usable.
  • Advantageous for the energy requirement for conveying the raw gas and clean gas flow is preferably the reduction of the clean gas volume flow by condensing out the water vapor contained.
  • the oxidizer flow is fed past the reforming area and/or independently of a flow path of the raw gas flow to the oxidation area.
  • the oxidizer stream is preferably fed to the oxidation region through a flow space that is separate from the flow space that forms the reforming region.
  • the mass flow and/or the volume flow of the oxidizer flow is controlled and/or regulated as a function of a mass flow and/or volume flow of the raw gas flow and/or as a function of an oxygen content in the outflowing clean gas flow.
  • the control and/or regulation takes place in such a way that a predetermined oxidant content and/or a predetermined temperature are achieved in the oxidation area and/or in a clean gas discharge.
  • the impurities contained in the raw gas stream are broken down and converted in the reforming area, in particular by steam reforming.
  • a reformed raw gas stream that can be obtained in this way comprises gaseous oxidizable and/or organic substances, for example hydrogen, methane and/or carbon monoxide.
  • steam reforming takes place on a porous and/or ceramic surface of heat storage units in at least one flow space.
  • Any oxidizer still contained in the raw gas stream in particular oxygen, can be used to supply part of the energy required for the steam reforming, in particular by partial oxidation of hydrocarbons, which produces carbon monoxide, for example.
  • further energy for the steam reforming in particular the steam reforming in the first flow space, can preferably be supplied by means of a subsequent water-gas shift reaction.
  • a major part of the activation energy required for steam reforming is preferably supplied by heat storage material and/or a heat exchanger in the reforming area.
  • the energy is made available by means of the heat storage units in the flow spaces, which have been previously heated for this purpose, in particular by heat transfer from the clean gas flow. Provision of energy from steam reforming and/or the water-gas shift reaction is also advantageous.
  • two, three or more than three flow chambers can be provided in the method.
  • At least one flow chamber is preferably always flushed by means of the oxidizer flow.
  • At least one flow space preferably heat storage material contained therein, is preferably always heated by means of the clean gas flow.
  • the heat of the heat storage material contained or provided in at least one flow space is preferably used by means of the raw gas flow.
  • organic components of the raw gas stream preferably react with the oxidizer from the oxidizer stream.
  • the proportion of water vapor and the reduced oxygen content compared to the ambient air ensure that thermal nitrogen oxide formation is minimized.
  • Heat storage material with a reaction-accelerating effect is preferably provided in the heat storage area, to which the clean gas stream is preferably fed. This surface-enlarging heat storage material preferably enables post-oxidation in particular in the upper heat storage area of the flow chambers in order to convert and/or render harmless residual impurities still contained in the clean gas flow, in particular substances that have not been completely oxidized.
  • Heat removed from the clean gas flow by means of a heat exchanger can be used in particular to preheat process exhaust air and/or ambient air, in particular before it is fed in as an oxidant flow. Any condensate that occurs here is preferably returned to a production process.
  • the invention is based on the further object of providing a cleaning device for cleaning a raw gas stream, which is of simple construction and can be operated cost-effectively.
  • this object is achieved by a cleaning device according to claim 14 .
  • the cleaning device according to the invention is particularly suitable for carrying out the method according to the invention.
  • the cleaning device preferably has one or more of the features and/or advantages described in connection with the method according to the invention.
  • the method according to the invention can have one or more of the features and/or advantages described in connection with the cleaning device according to the invention.
  • the cleaning device preferably comprises a heat exchanger which is arranged in particular in the clean gas discharge and which is in particular a condenser.
  • Water vapor contained in the clean gas flow can preferably be condensed by means of the heat exchanger, in particular by means of the condenser.
  • a volume and/or volumetric flow of the clean gas flow in the clean gas discharge can be reduced, as a result of which an energy-efficient flow through the cleaning device can ultimately be obtained.
  • a negative pressure below the ambient pressure can preferably be generated in the heat exchanger, in particular in the condenser, as a result of which the energy requirement for conveying the raw gas and clean gas flow for the raw gas cleaning can be reduced.
  • the cleaning device comprises a plurality of flow chambers, which are in particular provided with heat storage material, and a control device, wherein the cleaning device can be switched to different operating modes by means of the control device.
  • the raw gas flow can be fed to at least a first of the flow spaces by means of the raw gas feed and the clean gas flow can be removed from at least a second of the flow spaces by means of a clean gas discharge.
  • This mode preferably runs cyclically recurring, in particular with all, but at least with at least two, flow spaces.
  • the cleaning device can be set into further operating modes, for example a second or third or fourth cleaning mode, in which further flow spaces are provided for the passage of the raw gas flow and/or the clean gas flow.
  • At least one third flow space is preferably flushed in at least one cleaning mode.
  • This at least one third flow chamber, to which the oxidant flow, in particular a fresh air flow, process exhaust air flow and/or process gas flow, can be fed preferably contains a preheating device, in particular for heating the oxidant flow before this oxidant flow is fed to the heat storage area upstream of the oxidation area.
  • the purification device comprises or forms a regenerative thermal oxidizer (RTO).
  • RTO regenerative thermal oxidizer
  • the cleaning device comprises a plurality of flow spaces through which the raw gas flow, the clean gas flow and/or the oxidizer flow can flow, the flow spaces each comprising a heat storage unit.
  • One or more or all of the heat storage units preferably have a layered structure made of different, temperature-resistant solid materials, in particular different heat storage materials.
  • one or more or all of the heat storage units can have one or more flow layers for influencing the inflow, throughflow or outflow of gas.
  • a layered structure made of different heat storage materials and/or flow materials is provided.
  • At least one second layer is preferably formed from alumina porcelain or similar storage material, wherein this alumina porcelain or similar material can have a higher bulk density compared to the material of the first layer. As a result, preferably a larger amount of energy can be stored in this second layer.
  • a third layer preferably comprises a mullite material, preferably porous mullite material.
  • This mullite material preferably has a reaction-accelerating effect, which can result in particular from an increase in surface area and traces of metals in the material.
  • a bed of turbulence-generating materials for example saddle bodies and/or balls, is provided as the fourth layer, whereby an optimized inflow of the reformed raw gas flow to the oxidation area and thus an optimized oxidation in the oxidation area can be achieved. Furthermore, this bed preferably makes it possible to equalize the inflow of the clean gas flow space and leads to a uniform release of energy to the heat storage material located therein.
  • additional layers can also be provided or individual layers mentioned can be omitted.
  • the cleaning device shown denoted as a whole by 100, is used in particular for cleaning raw gas.
  • the cleaning device 100 is particularly suitable for cleaning exhaust steam, which is also known as fumes or vapours.
  • the cleaning device 100 includes in particular a regenerative thermal oxidation device 102 for the thermal conversion of odorous substances and other contaminants in the exhaust steam.
  • the cleaning device 100 preferably comprises a reforming area 104, a heat storage area 106 and a preheating area 108.
  • the raw gas to be cleaned can be fed to the reforming area 104 by means of a raw gas feed 110 of the cleaning device 100 .
  • Oxidant and/or scavenging gas can preferably be supplied to the preheating area 108 via an oxidizer supply 112 and/or a scavenging gas supply 114 .
  • a clean gas discharge 116 of the cleaning device 100 is preferably provided, via which clean gas generated from the raw gas can be discharged.
  • the clean gas outlet 116 is thus in particular an exhaust gas outlet 118 of the cleaning device 100.
  • the clean gas discharge 116 in particular adjoins the heat storage area 106 or includes it.
  • a plurality of heat exchangers 120 of the cleaning device 100 are preferably used to heat or cool gas flows in order ultimately to optimize the energy efficiency of the cleaning device 100 .
  • a heat storage device 122 of the cleaning device 100 is preferably provided, by means of which the heat generated in the cleaning device 100 can be temporarily stored and used again for optimized operation of the cleaning device 100 .
  • the heat storage device 122 comprises, in particular, a plurality of heat storage units 124.
  • the cleaning device 100 includes an oxidation area 126 which adjoins the reforming area 104 and the preheating area 108 and which in particular opens into the heat storage area 106 .
  • the reforming area 104, the preheating area 108 and the heat storage area 106 are not stationary, but are formed by different flow chambers 128 of the cleaning device 100, depending on the locations of the supply of raw gas and oxidizer and depending on the removal of clean gas.
  • Each flow space 128 includes a heat storage unit 124 of the heat storage device 122, so that the flow space 128 is dependent heat can be supplied from the respective gas supply or gas discharge or heat can be removed therefrom.
  • One or more optional heating devices of the cleaning device 100 can contribute to optimizing the operation of the cleaning device 100 in addition to the heat storage device 122 and/or in addition to the heat exchangers 120 .
  • the flow chambers 128 are flowed through in different directions depending on the respective operating mode (cleaning mode) of the cleaning device 100 .
  • the heat storage units 124 in the flow spaces 128 are preferably provided with a layered structure.
  • a first layer 130a is provided for this purpose, which is formed, for example, from a densely fired ceramic material.
  • a second layer 130b adjoining the first layer 130a is preferably made of alumina porcelain or a similar ceramic material and has a higher density than the material of the first layer 130a. As a result, an area with a high heat storage capacity can be created.
  • a third layer 130c adjoining the second layer 130b comprises, for example, a mullite material which has a reaction-accelerating effect and contributes to the optimization of reaction-kinetic processes within the flow space 128 .
  • a fourth layer 130d adjoining the third layer 130c preferably serves to optimize the inflow to the oxidation region 126 adjoining the heat storage unit 124.
  • the fourth layer 130d has, for example, a bed of a turbulence-generating material, for example saddle bodies.
  • the heat storage unit 124 serves as a reforming region 104 of the cleaning device 100.
  • the cleaning device 100 preferably comprises an oxidizer sensor 140, in particular for the detection of oxygen, which controls or regulates the volume flow of the oxidizer supplied via the oxidizer feed 112 by means of a control unit 141.
  • a common switchover unit or two individual switchover units 115 are preferably used for brief flushing of the oxidizer.
  • the illustrated embodiment of the cleaning device 100 preferably works as follows: A raw gas in the form of exhaust steam, for example, is routed via the raw gas feed line 110 to a first flow space 128a, which forms the reforming region 104.
  • a heat storage unit 124 is arranged in this first flow space 128a, for example in accordance with FIG 4 Schematically illustrated embodiment.
  • This heat storage unit 124 was charged with heat before the raw gas was fed in, so that the raw gas now fed in is heated by means of the heat storage unit 124 .
  • a reformed raw gas for example water gas
  • hydrocarbons and water results in particular from hydrocarbons and water.
  • long-chain hydrocarbons and low-volatile hydrocarbons are largely converted into methane, carbon monoxide, hydrogen and other easily combustible substances.
  • the raw gas has a very low oxygen content of less than 5 vol .
  • the entire raw gas stream that was passed through the reforming area 104 is fed to the oxidation area 126 as a reformed raw gas stream.
  • the reformed raw gas flow encounters an oxidant-containing gas flow, in particular an oxidant flow.
  • the oxidizer flow is in particular air or an air mixture or an oxidizer-containing, in particular oxygen-containing, process gas.
  • the oxidizer stream is fed via the oxidizer feed 112 to a third flow space 128c. Care is taken here that the temperature of the oxidizer stream is at least approximately 100° C. or more, for example at least 100° C., preferably at least approximately 110° C. In this way, an undesired condensation of water can preferably be avoided.
  • the oxidizer stream can be heated by means of an optional heating device and/or one or more heat exchangers 120 . This is preferably a preheating.
  • the oxidizer stream is only heated to a desired temperature in the flow space 128c in order to be able to feed it to the oxidation region 126 .
  • the target temperature of the oxidizer stream is preferably at least 750°C, for example at least approximately 800°C, in particular approximately 850°C.
  • This heating to the target temperature is achieved in the flow space 128 in particular in that the third flow space 128c also has a heat storage unit 124, for example in accordance with in 4 illustrated embodiment.
  • This heat storage unit 124 is preferably heated prior to the introduction of the oxidizer stream, for example using the clean gas stream.
  • the oxidizer stream preferably has an oxygen content of at least about 15% by volume, for example at least about 18% by volume, preferably about 21% by volume.
  • the merging of the heated, reformed raw gas stream with the heated oxidizer stream in the oxidation region 126 leads to oxidation of the combustible components of the reformed raw gas stream in the oxidation region 126, which in particular hydrocarbons, carbon monoxide and Hydrogen are oxidized from the reformed raw gas stream, in particular to carbon dioxide and water.
  • the clean gas flow gives off at least part of its heat to the heat storage unit 124 arranged in the second flow space 128b.
  • This heat storage unit 124 is preferably a heat storage unit 124 in accordance with FIG 4 illustrated embodiment.
  • the clean gas After flowing through the second flow space 128b forming the heat storage area 106 , the clean gas is discharged via the clean gas outlet 116 .
  • the amount of heat still remaining in the clean gas can preferably be at least partially removed from the clean gas flow and thus made usable elsewhere.
  • the cleaning operation of the cleaning device 100 described above can preferably be maintained until the amounts of heat stored in the heat storage units 124 of the first and third flow chambers 128a, 128c are no longer sufficient for heating the raw gas stream and/or the oxidizer stream or for a sufficient reaction in the reforming area 104 are sufficient.
  • the time of switching is preferably determined by measuring, calculating or otherwise determining the energy content in the flow spaces, in particular by carrying out an energy comparison of the flow spaces using a control module, for example the XtraBalance control module.
  • the cleaning device 100 is preferably put into a rinsing mode by means of a control device 115 (see FIG 2 ), in which ambient air is briefly supplied to the third flow space 128c, for example by means of a flushing gas supply 114 .
  • Raw gas and flushing gas are supplied to the first flow space 128a and/or clean gas is supplied to the second flow space 128b.
  • the flushing gas which is ambient air, for example, is used to clean the heat storage units 124 in order ultimately to avoid an undesired emission of odorous substances or harmful gases in the event of a subsequent flow reversal.
  • the raw gas is no longer fed to the first flow space 128a but, for example, to the second flow space 128b, which then consequently no longer forms the heat storage area 106 but now the reforming area 104 (see 3 ).
  • the heat accumulator unit 124 arranged in the second flow space 128b was finally heated up beforehand due to the supply of the clean gas flow and thus now forms a sufficient heat source for carrying out the reforming process for reforming the raw gas flow.
  • the first flow space 128a which previously formed the reforming area 104, now accordingly forms the scavenging area 108, so that the clean gas flow generated in the oxidation area 126 is now discharged via the third flow space 128c.
  • the heat storage unit 124 arranged in the third flow space 128c is thereby heated and thus prepared for later use as a reforming area 104 or also as a preheating area 108 .
  • the in the 1 , 2 and 3 illustrated operating modes of the cleaning device 100 numerous other operating modes can be implemented.
  • the in the 1 , 2 and 3 the third flow space 128c forming the preheating area 108 is used at regular intervals to discharge/remove the clean gas (see 3 ) and thereby prepared for reuse as a preheating area 108 or as a reforming area 104.
  • the oxidant feed 112 is controlled in particular as a function of an oxygen content in the clean gas stream.
  • the oxidizer quantity in particular the oxidizer volume flow and/or the oxidizer mass flow, is preferably controlled and/or regulated in such a way that reliable oxidation of the substances contained in the reformed raw gas flow in the oxidation region 126 results.
  • the corresponding regulation can, for example, be temperature-dependent, oxygen-dependent or also dependent on a composition of the clean gas flow.
  • numerous other controlled variables and/or controlled variables are conceivable.
  • the cleaning device 100 can be operated in a particularly simple and cost-efficient manner. In addition, additional devices such as separators and scrubbers can be avoided.
  • the clean gas stream is fed to a condenser, in particular to a heat exchanger 120 which is arranged in the clean gas outlet 116 and is designed as a condenser.
  • the volume of the clean gas flow can preferably be reduced as a result, in particular by the water vapor contained in the clean gas flow being condensed out.
  • a negative pressure below the ambient pressure can thus preferably be generated in the condenser, as a result of which the energy requirement for conveying the raw gas and clean gas flow for the raw gas cleaning can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

  • Die vorliegende Erfindung betrifft das Gebiet der Rohgasreinigung. Insbesondere betrifft die vorliegende Erfindung die Reinigung von wasserdampfhaltigem, organische Verunreinigungen mitführendem Rohgas, insbesondere Brüdendampf, zur Geruchsbeseitigung und/oder Umwandlung von Abgasen. Ferner betrifft die vorliegende Erfindung eine Reinigungsvorrichtung zur Durchführung eines Rohgas-/Brüdendampf-Reinigungsverfahrens.
  • Die Rohgasreinigung kann insbesondere zur Geruchsbeseitigung unter Verwendung von thermischen Anlagen, beispielsweise regenerativen thermischen Oxidationsanlagen, durchgeführt werden. Hierbei ist jedoch zumeist ein hoher energetischer Aufwand erforderlich, um die für eine thermische Rohgasreinigung erforderlichen Systemtemperaturen aufrechtzuerhalten. Dieser hohe energetische Aufwand liegt zumeist darin begründet, dass oftmals zunächst ein Abscheidevorgang durchgeführt wird, um Wasser mit beispielsweise organischem Staub, insbesondere Fett, Öl und/oder Eiweißpartikel, aus dem Rohgas abzuscheiden. Hierdurch gehen dem der thermischen Anlage zur Rohgasreinigung zugeführten Rohgasstrom oxidierbare Stoffe mit erheblichem Heizwert verloren, was die Effizienz der thermischen Umwandlung reduziert. Zudem müssen die bei dem Abscheidevorgang anfallenden Stoffe aufwändig nachbehandelt und/oder speziell als Sonderabfall entsorgt werden. Verzichtet man hingegen auf einen Abscheidevorgang zur Vorbehandlung des Rohgases, kann es im Verlauf der thermischen Umwandlung zu Anhaftungen, Verblockungen oder sonstigen Ablagerungen an einem Wärmeübertragermaterial (Wärmetauschermaterial, Wärmespeichermaterial) kommen, welche die Betriebsdauer der Anlage stark reduzieren und/oder den Wartungsaufwand deutlich erhöhen können.
  • Die Veröffentlichung von Mark Peckham et al., "Exhaust gas fuel reforming", Joint project with Johnson Matthey, Ford Motor Company, University of Birmingham, 23. Februar 2015, XP055669323, offenbart einen Verbrennungsmotor mit Brennstoffreformer.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Reinigung eines wasserdampfhaltigen Rohgasstroms, insbesondere Brüdendampf mit organischen Verunreinigungen, bereitzustellen, welches einfach und kosteneffizient durchführbar ist.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß Anspruch 1 gelöst.
  • Vorzugsweise reagieren die im Rohgasstrom enthaltenen organischen Verunreinigungen ohne Sauerstoffzufuhr mit dem im Rohgasstrom enthaltenen Wasserdampf.
  • Die Verunreinigungen sind oder umfassen insbesondere flüssige Verunreinigungen und/oder feste Verunreinigungen und/oder gasförmige Verunreinigungen.
  • Dadurch, dass bei dem erfindungsgemäßen Verfahren der Rohgasstrom zunächst reformiert wird und erst anschließend durch Zuführung von Oxidator, vorzugsweise Luft, Frischluft, Umgebungsluft, sauerstoffhaltiger Abluft, Prozessabluft, etc., thermisch umgewandelt wird, kann ein im Rohgasstrom enthaltener Heizwert vorzugsweise bei der Oxidation genutzt werden und somit eine brennstoffsparende oder sonst wie energiesparende thermische Rohgasreinigung ermöglichen. Zudem ist ein solches Verfahren vorzugsweise vergleichsweise einfach und kostengünstig, weil auf einen vorhergehenden Abscheideschritt verzichtet werden kann.
  • Es kann vorgesehen sein, dass der Reingasstrom einem Wärmeübertrager, insbesondere einem Kondensator, zugeführt wird und dass mittels des Wärmeübertragers, insbesondere mittels des Kondensators, im Reingasstrom enthaltener Wasserdampf kondensiert wird. Hierdurch kann insbesondere ein Volumen und/oder Volumenstrom des Reingasstroms in der Reingasabführung reduziert werden, wodurch letztlich eine energieeffiziente Durchströmung der Reinigungsvorrichtung erhältlich sein kann.
  • Die chemische Reaktion im Reformierbereich ist vorzugsweise eine allotherme und/oder hydrothermale Vergasung. Vorteilhaft für den Energiebedarf der Dampfreformierung kann eine Wassergas-Shift-Reaktion vorzugsweise im ersten Strömungsraum sein.
  • Alternativ oder ergänzend hierzu kann vorgesehen sein, dass die chemische Reaktion in dem Oxidationsbereich eine Reaktion mit Stützenergie und/oder eine autotherme Oxidation ist. Der Wasserdampf des wasserdampfhaltigen Rohgasstroms dient vorzugsweise als Vergasungsmedium, insbesondere im Reformierbereich. Eine Reaktion mit Stützenergie ist vorzugsweise eine Verbrennung.
  • Das Verfahren kann vorzugsweise mit jeder Thermisch-Regenerativen-Abluftreinigungsanlage (TRA) durchgeführt werden. Insbesondere kann die erfindungsgemäße Lösung nicht nur mit den in den beigefügten Figuren beispielhaft dargestellten Ausführungsformen einer Reinigungsvorrichtung, sondern vielmehr auch mit zahlreichen Varianten hiervon durchgeführt werden.
  • Beispielsweise können linear angeordnete Regeneratorkammern als Strömungsräume vorgesehen sein. Ferner können rotierende Anlagen vorgesehen sein, insbesondere Drehschiebervorrichtungen gemäß der EP 0 548 630 A1 . Auch kann das Verfahren vorzugsweise auf Oxidizern wie beispielsweise dem Produkt "Vocsidizer®" der Firma MEGTEC SYSTEMS, INC. gemäß der WO 01/88436 A1 durchgeführt werden. Ferner kann vorzugsweise auch eine Durchführung des Verfahrens auf einer derjenigen Anlagen vorgesehen sein, welche in einer oder mehreren der nachfolgenden Druckschriften offenbart sind:
    WO 01/59367 A1 , AU 2001-232509 A1 , WO 1995/024590 A1 , EP 1 906 088 B1 .
  • Erfindungsgemäß wird das Verfahren mittels einer Reinigungsvorrichtung durchgeführt wird, welche mehrere Strömungsräume umfasst, wobei ein erster der Strömungsräume zumindest zeitweise den Reformierbereich bildet und wobei ein zweiter der Strömungsräume zumindest zeitweise einen Wärmespeicherbereich bildet, welchem der Reingasstrom zugeführt wird.
  • Ferner kann vorgesehen sein, dass die Reinigungsvorrichtung mindestens einen dritten Strömungsraum umfasst, der zumindest zeitweise einen Vorheizbereich bildet, welchem der Oxidatorstrom zum Vorheizen desselben zugeführt wird, bevor der Oxidatorstrom dem Oxidationsbereich zugeführt wird.
  • Erfindungsgemäß wird der Rohgasstrom und/oder der Reingasstrom und/oder der Oxidatorstrom zyklisch/alternierend jeweils unterschiedlichen Strömungsräumen zugeführt wird, so dass die Strömungsräume jeweils alternierend den Reformierbereich und/oder den Wärmespeicherbereich und/oder den Vorheizbereich bilden.
  • Vorzugsweise werden die Strömungsräume in unterschiedlichen Richtungen durchströmt, je nachdem, ob der jeweilige Strömungsraum einen Reformierbereich oder einen Wärmespeicherbereich bildet.
  • Insbesondere ist eine Hauptströmungsrichtung in einem Strömungsraum, wenn dieser einen Reformierbereich bildet, einer Hauptströmungsrichtung in demselben Strömungsraum, wenn dieser den Wärmespeicherbereich bildet, entgegengesetzt.
  • Die Strömungsräume werden vorzugsweise alternierend erhitzt und abgekühlt, insbesondere mittels des Reingasstroms erhitzt und/oder mittels des Rohgasstroms und/oder des Oxidatorstroms abgekühlt.
  • Die Umschaltung der Strömungswege erfolgt zyklisch/alternierend und/oder erfolgt bevorzugt basierend auf dem energetischen Gleichgewicht der Wärmespeicherbereiche, wie es beispielsweise aus der Patentschrift EP 1 906 088 B1 bekannt ist (auch als XtraBalance®-Verfahren bekannt).
  • Die Strömungsräume sind vorzugsweise mit einem Wärmespeichermaterial versehen, beispielsweise zumindest abschnittsweise mit einem Wärmespeichermaterial gefüllt.
  • Das Wärmespeichermaterial ist oder umfasst vorzugsweise eine Zusammensetzung von verschiedenen keramischen Materialien (beispielsweise Material, welches unter der Marke XtraComb® bekannt ist). Unter "Zusammensetzung" ist vorzugsweise auch eine Schichtung von Speicherelementen, Speicherkörpern oder Speicherblöcken zu verstehen, wobei die Speicherelemente, Speicherkörper oder Speicherblöcke beispielsweise ebenenweise oder lagenweise, insbesondere in der vertikalen Zusammensetzung oder Stapelung, inhomogen sind.
  • Das Wärmespeichermaterial kann insbesondere dichtgebranntes und/oder glattes und/oder hochporöses und/oder mit einem Katalysatormaterial beschichtetes und/oder keramisches Speichermaterial umfassen oder hieraus gebildet sein. Ferner kann das Wärmespeichermaterial vorzugsweise eine Zusammensetzung aus dichtgebranntem Speichermaterial und/oder glattem Speichermaterial und/oder hochporösem Speichermaterial und/oder mit einem Katalysatormaterial beschichtetem Speichermaterial und/oder keramischem Speichermaterial sein.
  • Günstig kann es sein, wenn der Rohgasstrom einen Oxidatorgehalt, insbesondere Sauerstoffgehalt, von weniger als 5 Vol.-%, insbesondere weniger als 3 Vol.-%, vorzugsweise weniger als 1 Vol.-%, aufweist.
  • Der Rohgasstrom ist insbesondere Brüdendampf.
  • Vorzugsweise ist der Rohgasstrom mit Wasserdampf gesättigt.
  • Der Rohgasstrom wird vorzugsweise ohne Zugabe weiterer Medien zu dem Reformierbereich zugeführt. Insbesondere wird dem Rohgasstrom vorzugsweise kein oxidatorhaltiger Gasstrom zugeführt, bevor der Rohgasstrom zu dem Reformierbereich zugeführt wird.
  • Im Reformierbereich wird der Rohgasstrom vorzugsweise auf mindestens ungefähr 600°C, insbesondere auf mindestens ungefähr 750°C, beispielsweise auf mindestens ungefähr 800 °C, besonders bevorzugt auf mindestens 850°C, erhitzt.
  • Es kann vorgesehen sein, dass der Rohgasstrom im Reformierbereich und/oder der Reingasstrom in einem Wärmespeicherbereich und/oder der Oxidatorstrom in einem Vorheizbereich durch jeweils eine Wärmespeichereinheit einer Wärmespeichervorrichtung geführt werden, wobei eine oder mehrere oder sämtliche Wärmespeichereinheiten insbesondere durch keramische Strömungskörper, beispielsweise formkeramische Strömungskörper, gebildet sind oder solche umfassen.
  • Die vorzugsweise porösen Oberflächen der keramischen Strömungskörper sind insbesondere als Beschleunigungsfaktor der allothermen und/oder hydrothermalen Vergasung wirksam.
  • Vorzugsweise weisen die Wärmespeichereinheiten katalytische Materialien, beispielsweise eine katalytische Beschichtung und/oder katalytisch wirksame Bestandteile, auf.
  • Die katalytische Wirkung bezieht sich dabei vorzugsweise stets auf die Reformierung des Rohgasstroms.
  • Es kann vorgesehen sein, dass der Rohgasstrom vor der Zuführung zum Reformierbereich und/oder der Oxidatorstrom vor und/oder nach der Zuführung zu einem Vorheizbereich mittels eines Wärmeübertragers und/oder einer Heizvorrichtung erhitzt werden.
  • Günstig kann es sein, wenn eine Heizvorrichtung ein Brenner, beispielsweise ein Gas- und/oder Ölbrenner, ist oder einen solchen umfasst. Alternativ oder ergänzend kann die Heizvorrichtung auch eine elektrische Heizeinrichtung, beispielsweise einen Infrarot-Heizer, einen Widerstandsheizer und/oder Ähnliches, umfassen. Die Wärmeübertragung auf den Rohgasstrom und/oder den Oxidatorstrom kann hierbei direkt durch Zuführung eines Heizgasstroms oder aber indirekt über einen Wärmeübertrager erfolgen.
  • Insbesondere kann vorgesehen sein, dass der Rohgasstrom und/oder der Oxidatorstrom auf mindestens ungefähr 90 °C, beispielsweise mindestens ungefähr 95 °C, vorzugsweise mindestens ungefähr 100 °C, erhitzt werden, insbesondere um eine Kondensation von Wasser im Bereich der Reinigungsvorrichtung, insbesondere der thermischen Abluftreinigungsanlage, zu vermeiden.
  • Vorteilhaft kann es sein, wenn der Reingasstrom zunächst einem Wärmespeicherbereich und anschließend einem nachgeschalteten Wärmeübertrager zugeführt wird, wobei der Reingasstrom mittels des Wärmeübertragers insbesondere so weit abgekühlt wird, dass sich Kondensat bildet und hierdurch zunächst noch im Reingasstrom enthaltene Wärme auf den Wärmeübertrager übertragen und/oder anderweitig nutzbar gemacht wird. Vorteilhaft für den Energiebedarf zur Förderung des Rohgas- und Reingasstromes ist vorzugsweise die Verringerung des Reingas-Volumenstromes durch das Auskondensieren des enthaltenen Wasserdampfes. Insbesondere kann vorzugsweise vorgesehen sein, dass im Kondensator ein Unterdruck unterhalb des Umgebungsdruckes entsteht, wodurch sich der Energiebedarf zur Förderung des Rohgas-und Reingasstromes für die Rohgasreinigung reduziert.
  • Vorteilhaft kann es sein, wenn der Oxidatorstrom an dem Reformierbereich vorbei und/oder unabhängig von einem Strömungsweg des Rohgasstroms zu dem Oxidationsbereich zugeführt wird.
  • Insbesondere wird der Oxidatorstrom vorzugsweise durch einen von dem Strömungsraum, welcher den Reformierbereich bildet, separaten Strömungsraum hindurch zu dem Oxidationsbereich zugeführt.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass der Massenstrom und/oder der Volumenstrom des Oxidatorstroms abhängig von einem Massenstrom und/oder Volumenstrom des Rohgasstroms und/oder abhängig von einem Sauerstoffgehalt im abströmenden Reingasstrom gesteuert und/oder geregelt wird. Insbesondere erfolgt die Steuerung und/oder Regelung derart, dass in dem Oxidationsbereich und/oder in einer Reingasabführung ein vorgegebener Oxidatorgehalt und/oder eine vorgegebene Temperatur erzielt werden.
  • Die im Rohgasstrom enthaltenen Verunreinigungen, insbesondere organische Verbindungen, werden im Reformierbereich aufgespalten und umgesetzt, insbesondere durch Dampfreformierung. Ein hierdurch erhältlicher reformierter Rohgasstrom umfasst gasförmige oxidierbare und/oder organische Substanzen, beispielsweise Wasserstoff, Methan und/oder Kohlenstoffmonoxid.
  • Insbesondere findet die Dampfreformierung an einer porösen und/oder keramischen Oberfläche von Wärmespeichereinheiten in mindestens einem Strömungsraum statt.
  • Gegebenenfalls noch im Rohgasstrom enthaltener Oxidator, insbesondere Sauerstoff, kann genutzt werden, um einen Teil der für die Dampfreformierung erforderlichen Energie zu liefern, insbesondere durch partielle Oxidation von Kohlenwasserstoffen, wodurch beispielsweise Kohlenstoffmonoxid entsteht. Beispielsweise mittels einer sich daran anschließenden Wassergas-Shift-Reaktion kann vorzugsweise weitere Energie für die Dampfreformierung, insbesondere die Dampfreformierung im ersten Strömungsraum, geliefert werden.
  • Ein Hauptteil der für die Dampfreformierung erforderlichen Aktivierungsenergie wird vorzugsweise von Wärmespeichermaterial und/oder einem Wärmeübertrager im Reformierbereich geliefert. Insbesondere wird die Energie mittels der Wärmespeichereinheiten in den Strömungsräumen bereitgestellt, welche hierfür zuvor erhitzt wurden, insbesondere durch Wärmeübertragung aus dem Reingasstrom. Vorteilhaft ist weiterhin eine Energiebereitstellung aus der Dampfreformierung und/oder der Wassergas-Shift-Reaktion.
  • Bei dem Verfahren können insbesondere zwei, drei oder mehr als drei Strömungsräume vorgesehen sein.
  • Mittels des Oxidatorstroms wird vorzugsweise stets mindestens ein Strömungsraum gespült.
  • Mittels des Reingasstroms wird vorzugsweise stets mindestens ein Strömungsraum, vorzugsweise darin enthaltenes Wärmespeichermaterial, erhitzt.
  • Mittels des Rohgasstroms wird vorzugsweise die in mindestens einem Strömungsraum enthaltene oder bereitgestellte Wärme des Wärmespeichermaterials genutzt.
  • Im Oxidationsbereich reagieren vorzugsweise organische Bestandteile des Rohgasstroms mit dem Oxidator aus dem Oxidatorstrom. Hierbei sorgen der Wasserdampfanteil und der im Vergleich zur Umgebungsluft reduzierte Sauerstoffgehalt für eine Minimierung der thermischen Stickoxidbildung. Im Wärmespeicherbereich, welchem der Reingasstrom vorzugsweise zugeführt wird, ist vorzugsweise reaktionsbeschleunigend wirksames Wärmespeichermaterial vorgesehen. Dieses Oberflächen vergrößernde Wärmespeichermaterial ermöglicht vorzugsweise eine Nachoxidation im insbesondere oberen Wärmespeicherbereich der Strömungsräume, um noch im Reingasstrom enthaltene Restverunreinigungen, insbesondere nicht komplett oxidierte Stoffe, umzuwandeln und/oder unschädlich zu machen.
  • Mittels eines Wärmeübertragers aus dem Reingasstrom abgeführte Wärme kann insbesondere zur Vorwärmung von Prozessabluft und/oder Umgebungsluft, insbesondere vor der Zuführung als Oxidatorstrom, genutzt werden. Hierbei anfallendes Kondensat wird vorzugsweise erneut einem Produktionsprozess zugeführt.
  • Der Erfindung liegt die weitere Aufgabe zugrunde, eine Reinigungsvorrichtung zur Reinigung eines Rohgasstroms bereitzustellen, welche einfach aufgebaut und kosteneffizient betreibbar ist.
  • Diese Aufgabe wird erfindungsgemäß durch eine Reinigungsvorrichtung gemäß Anspruch 14 gelöst.
  • Die erfindungsgemäße Reinigungsvorrichtung eignet sich insbesondere zur Durchführung des erfindungsgemäßen Verfahrens.
  • Die Reinigungsvorrichtung weist vorzugsweise einzelne oder mehrere der im Zusammenhang mit dem erfindungsgemäßen Verfahren beschriebenen Merkmale und/oder Vorteile auf.
  • Ferner kann das erfindungsgemäße Verfahren einzelne oder mehrere der im Zusammenhang mit der erfindungsgemäßen Reinigungsvorrichtung beschriebenen Merkmale und/oder Vorteile aufweisen.
  • Die Reinigungsvorrichtung umfasst vorzugsweise einen insbesondere in der Reingasabführung angeordneten Wärmeübertrager, welcher insbesondere ein Kondensator ist. Mittels des Wärmeübertragers, insbesondere mittels des Kondensators, ist vorzugsweise im Reingasstrom enthaltener Wasserdampf kondensierbar. Insbesondere kann hierdurch ein Volumen und/oder Volumenstrom des Reingasstroms in der Reingasabführung reduziert werden, wodurch letztlich eine energieeffiziente Durchströmung der Reinigungsvorrichtung erhältlich sein kann. Vorzugsweise kann im Wärmeübertrager, insbesondere im Kondensator, ein Unterdruck unterhalb des Umgebungsdruckes erzeugt werden, wodurch sich der Energiebedarf zur Förderung des Rohgas-und Reingasstromes für die Rohgasreinigung reduzieren kann.
  • Erfindungsgemäß weist die Reinigungsvorrichtung mehrere insbesondere mit Wärmespeichermaterial versehene Strömungsräume und eine Steuervorrichtung umfasst, wobei die Reinigungsvorrichtung mittels der Steuervorrichtung in unterschiedliche Betriebsmodi versetzbar ist.
  • In einem ersten Reinigungsmodus ist mittels der Rohgaszuführung mindestens einem ersten der Strömungsräume der Rohgasstrom zuführbar und mittels einer Reingasabführung der Reingasstrom aus mindestens einem zweiten der Strömungsräume abführbar. Dieser Modus läuft vorzugsweise zyklisch wiederkehrend, insbesondere mit allen, wenigstens jedoch mit mindestens zwei, Strömungsräumen ab.
  • Ferner kann vorgesehen sein, dass die Reinigungsvorrichtung mittels der Steuervorrichtung in weitere Betriebsmodi, beispielsweise einem zweiten oder dritten oder vierten Reinigungsmodus versetzbar ist, in welchem weitere Strömungsräume zur Durchleitung des Rohgasstroms und/oder des Reingasstroms vorgesehen sind.
  • Mindestens ein dritter Strömungsraum wird vorzugsweise in mindestens einem Reinigungsmodus gespült. Dieser mindestens eine dritte Strömungsraum, welchem der Oxidatorstrom, insbesondere ein Frischluftstrom, Prozessabluftstrom und/oder Prozessgasstrom, zuführbar ist, enthält vorzugsweise eine Vorheizeinrichtung insbesondere zum Erhitzen des Oxidatorstroms, bevor dieser Oxidatorstrom dem Wärmespeicherbereich stromaufwärts des Oxidationsbereichs zugeführt wird.
  • Die Reinigungsvorrichtung umfasst insbesondere eine regenerative thermische Oxidationsvorrichtung (RTO) oder bildet eine solche.
  • Vorteilhaft kann es sein, wenn die Reinigungsvorrichtung mehrere Strömungsräume umfasst, welche mit dem Rohgasstrom, dem Reingasstrom und/oder dem Oxidatorstrom durchströmbar sind, wobei die Strömungsräume jeweils eine Wärmespeichereinheit umfassen.
  • Eine oder mehrere oder sämtliche Wärmespeichereinheiten weisen vorzugsweise einen Lagenaufbau aus unterschiedlichen, temperaturbeständigen Feststoffmaterialen, insbesondere unterschiedlichen Wärmespeichermaterialien, auf.
  • Alternativ oder ergänzend hierzu können eine oder mehrere oder sämtliche Wärmespeichereinheiten eine oder mehrere Strömungslagen zur Beeinflussung einer Einströmung, Durchströmung oder Ausströmung von Gas aufweisen.
  • Beispielsweise ist ein Lagenaufbau aus verschiedenen Wärmespeichermaterialien und/oder Strömungsmaterialien vorgesehen.
  • Es kann vorgesehen sein, dass eine erste Lage aus einem dichtgebrannten keramischen Material gebildet ist. Hierdurch kann insbesondere ein Eindringen von Feuchtigkeit in das Material, was zu einer Geruchsverschleppung, Salzbildung und Verblockung des Speichermaterials führen kann, vermieden werden.
  • Mindestens eine zweite Lage ist vorzugsweise aus Tonerdeporzellan oder ähnlichem Speichermaterial gebildet, wobei dieses Tonerdeporzellan oder ähnliche Material ein im Vergleich zum Material der ersten Lage höhere Raumdichte aufweisen kann. Hierdurch kann in dieser zweiten Lage vorzugsweise eine größere Energiemenge gespeichert werden.
  • Beispielsweise eine dritte Lage umfasst vorzugsweise ein Mullitmaterial, vorzugsweise poröses Mullitmaterial. Dieses Mullitmaterial weist vorzugsweise eine reaktionsbeschleunigende Wirkung auf, welche sich insbesondere aus einer Oberflächenvergrößerung und Spuren von Metallen im Material ergeben kann.
  • Als vierte Lage ist beispielsweise eine Schüttung von turbulenzerzeugenden Materialen, beispielsweise Sattelkörpern und/oder Kugeln, vorgesehen, wodurch eine optimierte Zuströmung des reformierten Rohgasstroms zu dem Oxidationsbereich und somit eine optimierte Oxidation im Oxidationsbereich erzielt werden kann. Weiterhin ermöglicht diese Schüttung vorzugsweise eine Vergleichmäßigung der Anströmung des Reingasströmungsraumes und führt zu einer gleichmäßigen Energieabgabe an das darin befindliche Wärmespeichermaterial.
  • Bei alternativen Ausführungsformen des Lagenaufbaus können auch zusätzliche Lagen vorgesehen oder einzelne der genannten Lagen weggelassen werden.
  • Weitere bevorzugte Merkmale und/oder Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung und der zeichnerischen Darstellung von Ausführungsbeispielen.
  • In den Zeichnungen zeigen:
  • Fig. 1
    eine schematische Darstellung einer ersten Ausführungsform einer Reinigungsvorrichtung zur Reinigung von wasserdampfhaltigem Rohgas, welches organische Verunreinigungen aufweist, mit einer Regelung des Sauerstoffgehaltes im Reingasstrom;
    Fig. 2
    eine der Fig. 1 entsprechende schematische Darstellung der Reinigungsvorrichtung in einem Reinigungs- und Spülmodus;
    Fig. 3
    eine der Fig. 1 entsprechende schematische Darstellung der Reinigungsvorrichtung im Reinigungsmodus; und
    Fig. 4
    einen schematischen Schnitt durch den Aufbau einer Wärmespeichereinheit einer Wärmespeichervorrichtung der Reinigungsvorrichtung.
  • Gleiche oder funktional äquivalente Elemente sind in sämtlichen Figuren mit denselben Bezugszeichen versehen.
  • Eine in den Fig. 1 bis 4 dargestellte, als Ganzes mit 100 bezeichnete Reinigungsvorrichtung kommt insbesondere zur Reinigung von Rohgas zum Einsatz.
  • Besonders eignet sich die Reinigungsvorrichtung 100 zur Reinigung von Brüdendampf, welcher auch als Brodem oder Wrasen bekannt ist.
  • Die Reinigungsvorrichtung 100 umfasst insbesondere eine regenerative thermische Oxidationsvorrichtung 102 zur thermischen Umwandlung von Geruchsstoffen und sonstigen Verunreinigungen im Brüdendampf.
  • Vorzugsweise umfasst die Reinigungsvorrichtung 100 einen Reformierbereich 104, einen Wärmespeicherbereich 106 und einen Vorheizbereich 108.
  • Dem Reformierbereich 104 ist mittels einer Rohgaszuführung 110 der Reinigungsvorrichtung 100 das zu reinigende Rohgas zuführbar.
  • Über eine Oxidatorzuführung 112 und/oder eine Spülgaszuführung 114 ist vorzugsweise dem Vorheizbereich 108 Oxidator und/oder Spülgas zuführbar.
  • Ferner ist vorzugsweise eine Reingasabführung 116 der Reinigungsvorrichtung 100 vorgesehen, über welche aus dem Rohgas erzeugtes Reingas abführbar ist.
  • Die Reingasabführung 116 ist somit insbesondere eine Abgasabführung 118 der Reinigungsvorrichtung 100.
  • Die Reingasabführung 116 schließt sich insbesondere an den Wärmespeicherbereich 106 an oder umfasst diesen.
  • Mehrere Wärmeübertrager 120 der Reinigungsvorrichtung 100 dienen vorzugsweise der Erwärmung oder Abkühlung von Gasströmen, um letztlich die Energieeffizienz der Reinigungsvorrichtung 100 zu optimieren.
  • Zudem ist vorzugsweise eine Wärmespeichervorrichtung 122 der Reinigungsvorrichtung 100 vorgesehen, mittels welcher die in der Reinigungsvorrichtung 100 erzeugte Wärme zwischenspeicherbar und für einen optimierten Betrieb der Reinigungsvorrichtung 100 erneut nutzbar ist.
  • Die Wärmespeichervorrichtung 122 umfasst hierzu insbesondere mehrere Wärmespeichereinheiten 124.
  • Die Reinigungsvorrichtung 100 umfasst einen Oxidationsbereich 126, welcher sich an den Reformierbereich 104 und den Vorheizbereich 108 anschließt und welcher insbesondere in den Wärmespeicherbereich 106 mündet.
  • Bei der in den Fig. 1 bis 4 dargestellten Ausführungsform der Reinigungsvorrichtung 100 sind der Reformierbereich 104, der Vorheizbereich 108 und der Wärmespeicherbereich 106 nicht ortsfest, sondern werden abhängig von den Orten der Zuführung von Rohgas und Oxidator sowie abhängig von der Abführung von Reingas zeitlich variierend durch unterschiedliche Strömungsräume 128 der Reinigungsvorrichtung 100 gebildet.
  • Jeder Strömungsraum 128 umfasst hierbei eine Wärmespeichereinheit 124 der Wärmespeichervorrichtung 122, so dass den Strömungsräumen 128 abhängig von der jeweiligen Gaszuführung beziehungsweise Gasabführung Wärme zuführbar oder daraus Wärme entnehmbar ist.
  • Eine oder mehrere optionale Heizvorrichtungen der Reinigungsvorrichtung 100 können zusätzlich zur Wärmespeichervorrichtung 122 und/oder zusätzlich zu den Wärmeübertragern 120 zur Optimierung des Betriebs der Reinigungsvorrichtung 100 beitragen.
  • Wie insbesondere aus einem Vergleich der Fig. 2 und 3 hervorgeht, werden die Strömungsräume 128 abhängig von dem jeweiligen Betriebsmodus (Reinigungsmodus) der Reinigungsvorrichtung 100 in unterschiedlichen Richtungen durchströmt.
  • Für eine optimierte Nutzung und/oder Wärmeübertragung sind die Wärmespeichereinheiten 124 in den Strömungsräumen 128 vorzugsweise mit einem Lagenaufbau versehen.
  • Wie Fig. 4 zu entnehmen ist, kann hierbei insbesondere eine Optimierung für die Zuführung und Hindurchführung von Rohgas vorgesehen sein. Hierfür ist insbesondere eine erste Lage 130a vorgesehen, welche beispielsweise aus einem dichtgebrannten keramischen Material gebildet ist.
  • Eine sich an die erste Lage 130a anschließende zweite Lage 130b ist vorzugsweise aus Tonerdeporzellan oder einem ähnlichen Keramikmaterial gebildet und weist eine im Vergleich zum Material der ersten Lage 130a erhöhte Dichte auf. Hierdurch kann ein Bereich mit hoher Wärmespeicherkapazität geschaffen werden.
  • Eine sich an die zweite Lage 130b anschließende dritte Lage 130c umfasst beispielsweise ein Mullitmaterial, welches reaktionsbeschleunigend wirksam ist und zur Optimierung von reaktionskinetischen Vorgängen innerhalb des Strömungsraums 128 beiträgt.
  • Eine sich an die dritte Lage 130c anschließende vierte Lage 130d dient schließlich vorzugsweise der Optimierung der Zuströmung zu dem sich an die Wärmespeichereinheit 124 anschließenden Oxidationsbereich 126. Die vierte Lage 130d weist hierfür beispielsweise eine Schüttung aus einem turbulenzerzeugenden Material, beispielsweise Sattelkörpern, auf.
  • Bei der in Fig. 4 dargestellten Durchströmung der Wärmespeichereinheit 124 mit Rohgas dient die Wärmespeichereinheit 124 als Reformierbereich 104 der Reinigungsvorrichtung 100.
  • Wenn dieselbe Wärmespeichereinheit 124 oder eine baulich identische weitere Wärmespeichereinheit 124 als Wärmespeicherbereich 106 genutzt wird, ergibt sich eine Umkehrung der Strömungsrichtung.
  • Die Reinigungsvorrichtung 100 umfasst vorzugsweise einen Oxidatorsensor 140, insbesondere zur Detektion von Sauerstoff, welcher den Volumenstrom des über die Oxidatorzuführung 112 zugeführten Oxidators mittels einer Steuereinheit 141 steuert oder regelt.
  • Zum kurzzeitigen Spülen des Oxidators werden vorzugsweise eine gemeinsame oder zwei einzelne Umschalteinheiten 115 genutzt.
  • Die in den Fig. 1 bis 4 dargestellte Ausführungsform der Reinigungsvorrichtung 100 funktioniert vorzugsweise wie folgt:
    Ein beispielsweise als Brüdendampf ausgebildetes Rohgas wird über die Rohgaszuführung 110 zu einem ersten Strömungsraum 128a geführt, welcher den Reformierbereich 104 bildet.
  • In diesem ersten Strömungsraum 128a ist eine Wärmespeichereinheit 124 angeordnet, beispielsweise entsprechend der in Fig. 4 schematisch dargestellten Ausführungsform.
  • Diese Wärmespeichereinheit 124 wurde vor der Zuführung des Rohgases mit Wärme beladen, so dass das nun zugeführte Rohgas mittels der Wärmespeichereinheit 124 erhitzt wird. Insbesondere wird eine Temperatur von mindestens ungefähr 750 °C, beispielsweise mindestens 800 °C, erzielt.
  • Bei diesen hohen Temperaturen werden die Bestandteile des Rohgases aufgespalten, so dass sich insbesondere aus Kohlenwasserstoffen und Wasser ein reformiertes Rohgas, beispielsweise Wassergas, ergibt. Insbesondere werden dabei langkettige Kohlenwasserstoffe und schwerflüchtige Kohlenwasserstoffe weitestgehend in Methan, Kohlenstoffmonoxid, Wasserstoff und sonstige leicht brennbare Stoffe umgewandelt.
  • Das Rohgas weist einen sehr geringen Sauerstoffanteil von unter 5 Vol.-%, insbesondere höchsten ungefähr 1 Vol.-%, auf, so dass die leicht brennbaren Bestandteile im Reformierbereich 104 nicht oxidieren, sondern von dem Reformierbereich 104 in den Oxidationsbereich 126 weitergeleitet werden können.
  • Insbesondere wird dabei der gesamte Rohgasstrom, welcher durch den Reformierbereich 104 hindurchgeführt wurde, als reformierter Rohgasstrom zu dem Oxidationsbereich 126 zugeführt.
  • Im Oxidationsbereich 126 trifft der reformierte Rohgasstrom auf einen oxidatorhaltigen Gasstrom, insbesondere einen Oxidatorstrom.
  • Der Oxidatorstrom ist insbesondere Luft oder ein Luftgemisch oder ein oxidatorhaltigen, insbesondere sauerstoffhaltiges, Prozessgas.
  • Der Oxidatorstrom wird über die Oxidatorzuführung 112 zu einem dritten Strömungsraum 128c zugeführt. Dabei wird darauf geachtet, dass die Temperatur des Oxidatorstroms zumindest näherungsweise 100 °C oder mehr beträgt, beispielsweise mindestens 100 °C, vorzugsweise mindestens ungefähr 110 °C. Hierdurch kann eine unerwünschte Kondensation von Wasser vorzugsweise vermieden werden.
  • Mittels einer optionalen Heizvorrichtung und/oder-eines oder mehrerer Wärmeübertrager 120 kann der Oxidatorstrom erhitzt werden. Hierbei handelt es vorzugsweise um eine Vorwärmung.
  • Erst in dem Strömungsraum 128c wird der Oxidatorstrom auf eine gewünschte Temperatur erhitzt, um diesen dem Oxidationsbereich 126 zuführen zu können. Die Zieltemperatur des Oxidatorstroms beträgt dabei vorzugsweise mindestens 750 °C, beispielsweise mindestens ungefähr 800 °C, insbesondere ungefähr 850 °C.
  • Diese Erwärmung auf die Zieltemperatur wird im Strömungsraum 128 insbesondere dadurch erzielt, dass auch der dritte Strömungsraum 128c eine Wärmespeichereinheit 124, beispielsweise gemäß der in Fig. 4 dargestellten Ausführungsform, aufweist. Diese Wärmespeichereinheit 124 wird vorzugsweise vor der Zuführung des Oxidatorstroms erhitzt, beispielsweise unter Verwendung des Reingasstroms.
  • Der Oxidatorstrom weist vorzugsweise einen Sauerstoffgehalt von mindestens ungefähr 15 Vol.-% beispielsweise mindestens ungefähr 18 Vol.-%, vorzugsweise ungefähr 21 Vol.-%, auf.
  • Die Zusammenführung des erhitzten, reformierten Rohgasstroms mit dem erhitzten Oxidatorstrom im Oxidationsbereich 126 führt zu einer Oxidation der brennbaren Bestandteile des reformierten Rohgasstroms im Oxidationsbereich 126, wodurch insbesondere Kohlenwasserstoffe, Kohlenstoffmonoxid und Wasserstoff aus dem reformierten Rohgasstrom oxidiert werden, insbesondere zu Kohlenstoffdioxid und Wasser.
  • Hierdurch ist letztendlich ein Reingasstrom erhältlich, welcher durch einen den Wärmespeicherbereich 106 bildenden zweiten Strömungsraum 128b aus dem Oxidationsbereich 126 abgeführt wird.
  • In dem Wärmespeicherbereich 106 gibt der Reingasstrom zumindest einen Teil seiner Wärme an die im zweiten Strömungsraum 128b angeordnete Wärmespeichereinheit 124 ab. Diese Wärmespeichereinheit 124 ist vorzugsweise eine Wärmespeichereinheit 124 entsprechend der in Fig. 4 dargestellten Ausführungsform.
  • Nach dem Durchströmen des den Wärmespeicherbereich 106 bildenden zweiten Strömungsraums 128b wird das Reingas über die Reingasabführung 116 abgeführt. Mittels eines optionalen Wärmeübertragers 120 kann die noch im Reingas verbliebene Wärmemenge vorzugsweise zumindest teilweise aus dem Reingasstrom abgeführt und somit anderweitig nutzbar gemacht werden.
  • Der vorstehend beschriebene Reinigungsbetrieb der Reinigungsvorrichtung 100 (beispielsweise gemäß Fig. 1, welcher insbesondere einen Normalbetrieb darstellt) kann vorzugsweise so lange aufrechterhalten werden, bis die in den Wärmespeichereinheiten 124 des ersten und dritten Strömungsraums 128a, 128c gespeicherten Wärmemengen nicht mehr für eine ausreichende Erhitzung des Rohgasstroms und/oder des Oxidatorstroms oder nicht mehr für eine ausreichende Reaktion im Reformierbereich 104 ausreichen. Der Zeitpunkt der Umschaltung wird vorzugsweise durch Messung, Berechnung oder sonstige Ermittlung des Energieinhalts in den Strömungsräumen bestimmt, insbesondere durch Durchführung eines Energievergleichs der Strömungsräume unter Verwendung eines Steuermoduls, beispielsweise des Steuermoduls XtraBalance.
  • Wenn keine ausreichende Erhitzung mehr möglich ist, wird die Reinigungsvorrichtung 100 vorzugsweise mittels einer Steuervorrichtung 115 in einen Spülbetrieb versetzt (siehe Fig. 2), in welchem beispielsweise mittels einer Spülgaszuführung 114 dem dritten Strömungsraum 128c kurzzeitig Umgebungsluft zugeführt wird. Dem ersten Strömungsraum 128a wird Rohgas und Spülgas und/oder dem zweiten Strömungsraum 128b Reingas zugeführt. Insbesondere wird mittels des Spülgases, welches beispielsweise Umgebungsluft ist, eine Reinigung der Wärmespeichereinheiten 124 erzielt, um letztlich bei einer im Anschluss anstehenden Strömungsumkehrung einen unerwünschten Ausstoß von Geruchsstoffen oder schädlichen Gasen zu vermeiden.
  • Nach dem Spülvorgang wird das Rohgas nicht mehr dem ersten Strömungsraum 128a, sondern beispielsweise dem zweiten Strömungsraum 128b zugeführt, welcher dann folglich nicht mehr den Wärmespeicherbereich 106, sondern nunmehr den Reformierbereich 104 bildet (siehe Fig. 3).
  • Die in dem zweiten Strömungsraum 128b angeordnete Wärmespeichereinheit 124 wurde schließlich zuvor aufgrund der Zuführung des Reingasstroms stark erhitzt und bildet somit nun eine ausreichende Wärmequelle zur Durchführung des Reformiervorgangs zum Reformieren des Rohgasstroms.
  • Der erste Strömungsraum 128a, welcher zuvor den Reformierbereich 104 gebildet hat, bildet entsprechend nun den Spülbereich 108, so dass der im Oxidationsbereich 126 erzeugte Reingasstrom nunmehr über den dritten Strömungsraum 128c abgeführt wird.
  • Die im dritten Strömungsraum 128c angeordnete Wärmespeicher-einheit 124 wird dadurch erhitzt und somit für eine spätere Nutzung als Reformierbereich 104 oder auch als Vorheizbereich 108 vorbereitet.
  • Neben den in den Fig. 2 und 3 dargestellten Betriebsmodi der Reinigungsvorrichtung 100 können zahlreiche weitere Betriebsmodi realisiert werden. Insbesondere wird auch der in den Fig. 1, 2 und 3 den Vorheizbereich 108 bildende dritte Strömungsraum 128c in regelmäßigen Abständen zur Ausleitung/ Abführung des Reingases genutzt (siehe Fig. 3) und dadurch zur erneuten Verwendung als Vorheizbereich 108 oder auch als Reformierbereich 104 vorbereitet.
  • Die Steuerung der Oxidatorzuführung 112 erfolgt insbesondere abhängig von einem Sauerstoffgehalt im Reingasstrom. Insbesondere wird die Oxidatormenge, insbesondere der Oxidatorvolumenstrom und/oder der Oxidatormassenstrom, vorzugsweise so gesteuert und/oder geregelt, dass sich eine zuverlässige Oxidation der im reformierten Rohgasstrom enthaltenen Stoffe im Oxidationsbereich 126 ergibt. Die entsprechende Regelung kann beispielsweise temperaturabhängig, sauerstoffabhängig oder auch abhängig von einer Zusammensetzung des Reingasstroms erfolgen. Darüber hinaus sind selbstverständlich zahlreiche weitere Steuergrößen und/oder Regelgrößen denkbar.
  • Dadurch, dass bei der beschriebenen Reinigungsvorrichtung 100 aus einem Rohgasstrom ein reformierter Rohgasstrom erzeugt wird, bevor dieser mit Oxidator chemisch umgesetzt wird, kann die Reinigungsvorrichtung 100 besonders einfach und kosteneffizient betrieben werden. Zudem können Zusatzvorrichtungen, wie beispielsweise Abscheider und Wäscher vermieden werden.
  • Bei einer Weiterbildung kann zudem vorgesehen sein, dass der Reingasstrom einem Kondensator zugeführt wird, insbesondere einem in der Reingasabführung 116 angeordneten Wärmeübertrager 120, welcher als Kondensator ausgebildet ist. Das Volumen des Reingasstromes kann hierdurch vorzugsweise reduziert werden, insbesondere indem der Wasserdampf, welcher in dem Reingasstrom enthalten ist, auskondensiert wird. Im Kondensator kann somit vorzugsweise ein Unterdruck unterhalb des Umgebungsdruckes erzeugt werden, wodurch sich der Energiebedarf zur Förderung des Rohgas-und Reingasstromes für die Rohgasreinigung reduzieren kann.

Claims (17)

  1. Verfahren zur Reinigung eines wasserdampfhaltigen, organisch verunreinigten Rohgasstroms, wobei das Verfahren Folgendes umfasst:
    - Zuführen des Rohgasstroms zu einem Reformierbereich (104), in welchem die im Rohgasstrom enthaltenen Verunreinigungen mit dem im Rohgasstrom enthaltenen Wasserdampf chemisch reagieren, wodurch ein reformierter Rohgasstrom erhalten wird, welcher gasförmige oxidierbare und/oder organische Substanzen umfasst;
    - Zuführen des reformierten Rohgasstroms sowie eines Oxidatorstroms zu einem Oxidationsbereich (126), in welchem die gasförmigen oxidierbaren und/oder organischen Substanzen des reformierten Rohgasstroms mit Oxidator des Oxidatorstroms chemisch reagieren, wodurch ein Reingasstrom erhalten wird,
    wobei die Reinigungsvorrichtung (100) mehrere Strömungsräume (128), eine Rohgaszuführung (110) und eine Steuervorrichtung umfasst, wobei die Reinigungsvorrichtung (100) mittels der Steuervorrichtung in unterschiedliche Betriebsmodi versetzt wird,
    wobei in einem ersten Reinigungsmodus:
    mittels der Rohgaszuführung (110) mindestens einem ersten der Strömungsräume (128a) der Rohgasstrom zugeführt und mittels einer Reingasabführung (116) der Reingasstrom aus mindestens einem zweiten der Strömungsräume (128b) abgeführt wird; und
    wobei in einem zweiten Reinigungsmodus:
    mittels der Rohgaszuführung (110) dem mindestens einen zweiten Strömungsraum (128b) der Rohgasstrom zugeführt und mittels der Reingasabführung (116) der Reingasstrom aus dem mindestens einen ersten Strömungsraum (128a) abgeführt wird.
  2. Verfahren nach Anspruch 1, wobei die chemische Reaktion in dem Reformierbereich (104) eine allotherme und/oder hydrothermale Vergasung ist und/oder die chemische Reaktion in dem Oxidationsbereich (126) eine Reaktion mit Stützenergie und/oder eine autotherme Oxidation ist.
  3. Verfahren nach einem der Ansprüche 1 oder 2, wobei der erste der Strömungsräume (128a) zumindest zeitweise den Reformierbereich (104) bildet und der zweite der Strömungsräume (128b) zumindest zeitweise einen Wärmespeicherbereich (106) bildet, welchem der Reingasstrom zugeführt wird.
  4. Verfahren nach Anspruch 3, wobei die Reinigungsvorrichtung (100) mindestens einen dritten Strömungsraum (128c) umfasst, der zumindest zeitweise einen Vorheizbereich (108) bildet, welchem der Oxidatorstrom zum Vorheizen desselben zuführbar ist, bevor der Oxidatorstrom dem Oxidationsbereich (126) zugeführt wird.
  5. Verfahren nach einem der Ansprüche 3 oder 4, wobei der Rohgasstrom und/oder der Reingasstrom und/oder der Oxidatorstrom alternierend jeweils unterschiedlichen Strömungsräumen (128) zugeführt wird, so dass die Strömungsräume (128) jeweils alternierend den Reformierbereich (104) und/oder den Wärmespeicherbereich (106) und/oder den Vorheizbereich (108) bilden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei der Rohgasstrom einen Oxidatorgehalt, insbesondere Sauerstoffgehalt, von weniger als 5 Vol.-%, insbesondere weniger als 3 Vol.-%, vorzugsweise weniger als 1 Vol.-%, aufweist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der Rohgasstrom im Reformierbereich (104) auf mindestens ungefähr 800 °C, insbesondere mindestens ungefähr 900 °C, erhitzt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei der Rohgasstrom im Reformierbereich (104) und/oder der Reingasstrom in einem Wärmespeicherbereich (106) und/oder der Oxidatorstrom in einem Vorheizbereich (108) durch jeweils eine Wärmespeichereinheit (124) einer Wärmespeichervorrichtung (122) geführt werden, wobei eine oder mehrere oder sämtliche Wärmespeichereinheiten (124) insbesondere durch keramische Strömungskörper gebildet sind oder solche umfassen.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei der Rohgasstrom vor der Zuführung zum Reformierbereich (104) und/oder der Oxidatorstrom vor und/oder nach der Zuführung zu einem Vorheizbereich (108) mittels eines Wärmeübertragers (120) und/oder einer Heizvorrichtung erhitzt werden.
  10. Verfahren nach einem der Ansprüche 1 bis 9, wobei der Reingasstrom zunächst einem Wärmespeicherbereich (106) und anschließend einem nachgeschalteten Wärmeübertrager (120) zugeführt wird, wobei der Reingasstrom mittels des Wärmeübertragers (120) insbesondere so weit abgekühlt wird, dass sich Kondensat bildet und hierdurch zunächst noch im Reingasstrom enthaltene Wärme auf den Wärmeübertrager (120) übertragen und/oder anderweitig nutzbar gemacht wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10, wobei der Oxidatorstrom an dem Reformierbereich (104) vorbei und/oder unabhängig von einem Strömungsweg des Rohgasstroms zu dem Oxidationsbereich (126) zugeführt wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, wobei der Massenstrom und/oder der Volumenstrom des Oxidatorstroms
    - abhängig von einem Massenstrom und/oder Volumenstrom des Rohgasstroms und/oder
    - abhängig von einem Verunreinigungsgrad des Rohgasstroms und/oder
    - abhängig von einem Brennwert des Rohgasstroms und/oder
    - abhängig von einem Sauerstoffgehalt im Reingasstrom
    gesteuert und/oder geregelt wird, insbesondere derart, dass in dem Oxidationsbereich (126) und/oder in einer Reingasabführung (116) ein vorgegebener Sauerstoff-/Oxidatorgehalt und/oder eine vorgegebene Temperatur erzielt werden.
  13. Verfahren nach einem der Ansprüche 1 bis 12, wobei der Reingasstrom einem Wärmeübertrager (120), insbesondere einem Kondensator, zugeführt wird und mittels des Wärmeübertragers (120), insbesondere mittels des Kondensators, im Reingasstrom enthaltener Wasserdampf kondensiert wird.
  14. Reinigungsvorrichtung (100) zur Reinigung eines wasserdampfhaltigen Rohgasstroms,
    wobei die Reinigungsvorrichtung (100) Folgendes umfasst:
    - eine Rohgaszuführung (110) zum Zuführen des Rohgasstroms zu einem Reformierbereich (104) der Reinigungsvorrichtung (100), in welchem die im Rohgasstrom enthaltenen Verunreinigungen mit dem im Rohgasstrom enthaltenen Wasserdampf chemisch reagieren, wodurch ein reformierter Rohgasstrom erhältlich ist, welcher gasförmige oxidierbare und/oder organische Substanzen umfasst; und
    - eine Oxidatorzuführung (112) zum Zuführen eines Oxidatorstroms zu einem Oxidationsbereich (126) der Reinigungsvorrichtung (100), in welchem die gasförmigen oxidierbaren und/oder organischen Substanzen des reformierten Rohgasstroms mit Oxidator des Oxidatorstroms chemisch reagieren, wodurch ein Reingasstrom erhältlich ist,
    wobei die Reinigungsvorrichtung (100) mehrere Strömungsräume (128) und eine Steuervorrichtung umfasst, wobei die Reinigungsvorrichtung (100) mittels der Steuervorrichtung in unterschiedliche Betriebsmodi versetzbar ist,
    wobei in einem ersten Reinigungsmodus: mittels der Rohgaszuführung (110) mindestens einem ersten der Strömungsräume (128a) der Rohgasstrom zuführbar und mittels einer Reingasabführung (116) der Reingasstrom aus mindestens einem zweiten der Strömungsräume (128b) abführbar ist; und
    wobei in einem zweiten Reinigungsmodus: mittels der Rohgaszuführung (110) dem mindestens einen zweiten Strömungsraum (128b) der Rohgasstrom zuführbar und mittels der Reingasabführung (116) der Reingasstrom aus dem mindestens einen ersten Strömungsraum (128a) abführbar ist.
  15. Reinigungsvorrichtung (100) nach Anspruch 14, wobei die mehreren Strömungsräume (128) der Reinigungsvorrichtung (100) mit Wärmespeichermaterial versehen sind.
  16. Reinigungsvorrichtung (100) nach einem der Ansprüche 14 oder 15, wobei die Reinigungsvorrichtung (100) mehrere Strömungsräume (128) umfasst, welche mit dem Rohgasstrom, dem Reingasstrom und/oder dem Oxidatorstrom durchströmbar sind, wobei die Strömungsräume (128) jeweils eine Wärmespeichereinheit (124) umfassen, wobei eine oder mehrere oder sämtliche der Wärmespeichereinheiten (124) einen Lagenaufbau aus unterschiedlichen Materialen, insbesondere unterschiedlichen Wärmespeichermaterialien, aufweisen.
  17. Reinigungsvorrichtung (100) nach einem der Ansprüche 14 bis 16, wobei die Reinigungsvorrichtung (100) einen in der Reingasabführung (116) angeordneten Wärmeübertrager (120) umfasst, welcher als ein Kondensator ausgebildet ist und mittels welchem im Reingasstrom enthaltener Wasserdampf kondensierbar ist, so dass insbesondere ein Volumen und/oder Volumenstrom des Reingasstroms in der Reingasabführung reduzierbar ist.
EP19805884.4A 2018-11-08 2019-10-30 Verfahren zur reinigung eines rohgasstroms und reinigungsvorrichtung Active EP3701191B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018219105.0A DE102018219105A1 (de) 2018-11-08 2018-11-08 Verfahren zur Reinigung eines Rohgasstroms und Reinigungsvorrichtung
PCT/DE2019/100937 WO2020094183A1 (de) 2018-11-08 2019-10-30 Verfahren zur reinigung eines rohgasstroms und reinigungsvorrichtung

Publications (2)

Publication Number Publication Date
EP3701191A1 EP3701191A1 (de) 2020-09-02
EP3701191B1 true EP3701191B1 (de) 2022-04-27

Family

ID=68617966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19805884.4A Active EP3701191B1 (de) 2018-11-08 2019-10-30 Verfahren zur reinigung eines rohgasstroms und reinigungsvorrichtung

Country Status (9)

Country Link
US (1) US20220003412A1 (de)
EP (1) EP3701191B1 (de)
CN (1) CN113167469A (de)
BR (1) BR112021006652A2 (de)
CL (2) CL2021001115A1 (de)
DE (2) DE102018219105A1 (de)
ES (1) ES2914423T3 (de)
PT (1) PT3701191T (de)
WO (1) WO2020094183A1 (de)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4142136C2 (de) 1991-12-20 1994-07-21 Eisenmann Kg Maschbau Vorrichtung zum Reiniguen schadstoffhaltiger Abluft aus Industrieanlagen durch regenerative Nachverbrennung
US5364259A (en) * 1993-03-10 1994-11-15 Monsanto Enviro-Chem Systems, Inc. Process and apparatus for gas phase reaction in a regenerative incinerator
US5427746A (en) 1994-03-08 1995-06-27 W. R. Grace & Co.-Conn. Flow modification devices for reducing emissions from thermal voc oxidizers
JP3063622B2 (ja) * 1996-05-28 2000-07-12 株式会社日立製作所 ごみ発電システム及びごみ処理システム
SE515710C2 (sv) * 2000-02-11 2001-10-01 Bjoern Heed Luftskåp vid en regenerativ förbränningsanordning
US6264464B1 (en) 2000-05-12 2001-07-24 Megtec Systems, Inc. Angled bed for regenerative heat exchanger
DE10149807B4 (de) * 2001-10-09 2007-12-27 Herhof Verwaltungsgesellschaft Mbh Verfahren und Vorrichtung zum Reinigen von Abgasen, die heizwerthaltige Substanzen, insbesondere Schadstoffpartikel und/oder Geruchspartikel, enthalten
DE102007032952B4 (de) 2006-09-12 2010-07-08 Kba-Metalprint Gmbh Verfahren zum Betreiben einer thermisch-regenerativen Abluftreinigungsanlage
JP5453114B2 (ja) * 2007-03-06 2014-03-26 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング 僅かなエネルギー必要量および改善されたエネルギー収量を有するシステムの概念
DE102011002612A1 (de) * 2011-01-13 2012-07-19 Siemens Aktiengesellschaft Verfahren zur Behandlung eines kohlendioxidhaltigen Abgases
US10184659B2 (en) * 2015-04-15 2019-01-22 Praxair Technology, Inc. Low-NOx combustion method

Also Published As

Publication number Publication date
EP3701191A1 (de) 2020-09-02
ES2914423T3 (es) 2022-06-10
PT3701191T (pt) 2022-05-19
DE112019005585A5 (de) 2021-09-02
US20220003412A1 (en) 2022-01-06
DE102018219105A1 (de) 2020-05-14
CL2021001115A1 (es) 2021-11-19
BR112021006652A2 (pt) 2021-07-13
CN113167469A (zh) 2021-07-23
CL2022000728A1 (es) 2022-11-11
WO2020094183A1 (de) 2020-05-14

Similar Documents

Publication Publication Date Title
AT507773B1 (de) Verfahren und vorrichtung zur entstickung von rauchgasen
EP1607133A1 (de) Abgasreinigungsanlage mit Reduktionsmittelversorgung
DE69917653T2 (de) Evaporatives und regeneratives abwasser-verbrennungssystem
EP1696177A1 (de) Integriertes Mehrbrennstoff- Vergasungsverfahren
EP0436822B1 (de) Verfahren zur Reinigung der Abgase von Anlagen zur Herstellung von Zementklinker
DE102007004221A1 (de) Vorrichtung und Verfahren zur thermischen Umsetzung von Pellets oder Holzschnitzeln
EP2738466A2 (de) Verfahren und Vorrichtung zur thermischen Nachverbrennung von Kohlenwasserstoffe enthaltenden Gasen
WO2014106533A1 (de) Beseitigung von ammoniak und niederen alkanen und/oder wasserstoff in abgasströmen in industrieanlagen
DE102017101507B4 (de) Verfahren und Vorrichtung zur Abgasreinigung
DE2303586B2 (de) Gasturbinenanlage mit vollstaendiger kontinuierlicher verbrennung des ihr zugefuehrten brennstoffs
EP3701191B1 (de) Verfahren zur reinigung eines rohgasstroms und reinigungsvorrichtung
DE102014212972A1 (de) Verfahren und Anlage zur Wasserstoffherstellung
DE102016105719A1 (de) Wabenkoerper und deren Verwendung in Nachverbrennungsanlagen, Nachbereitungsanlagen und Verfahren zum Aufkonzentrieren von Inhaltsstoffen in Gasen
EP2044368B1 (de) Thermische abgasreinigungsvorrichtung und verfahren zur thermischen abgasreinigung
DE102014106991A1 (de) Vorrichtung zur katalytischen Entstickung und regenerativen thermischen Nachverbrennung
EP2175197B1 (de) Verfahren zur Reinigung von Abgasen durch generative Nachverbrennung
WO1999055803A1 (de) Waste to energy verfahren zur erzeugung von strom, wasser- und/oder wasserstoff und/oder methanol aus biomasse und/oder organischen abfällen
WO2016030200A1 (de) Behandlungsvorrichtung und verfahren zum behandeln eines abgasstroms
DE10149807A1 (de) Verfahren und Vorrichtung zum Reinigen von Abgasen, die heizwerthaltige Substanzen, insbesondere Schadstoffpartikel und/oder Geruchspartikel, enthalten
DE102012100687A1 (de) Verfahren zum Erhitzen eines Reinigungs-Strömungskörpers und Reinigungsvorrichtung
DE102011101474B4 (de) Verfahren zum Behandeln von Abgasen von mit Biogas betriebenen Verbrennungskraftmaschinen und Verwendung eines Katalysators dazu
DE102011001374A1 (de) Verfahren und Vorrichtung zur Reinigung eines schadstoffhaltigen Fluids
DE4422730A1 (de) Verfahren und Anlage zur Entfernung von Schadstoffen aus vorgereinigten Abgasen von Verbrennungs- insbesondere Müllverbrennungsanlagen
DE4119630A1 (de) Verfahren zur umwandlung von im rauchgas einer verbrennungsanlage enthaltenen schadstoffen
DE102022118858A1 (de) Thermisches Cracking von Methan oder Erdgas

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20211122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004231

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1487186

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3701191

Country of ref document: PT

Date of ref document: 20220519

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220512

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2914423

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220610

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004231

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

26N No opposition filed

Effective date: 20230130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231227

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231019

Year of fee payment: 5

Ref country code: PT

Payment date: 20231019

Year of fee payment: 5

Ref country code: IT

Payment date: 20231023

Year of fee payment: 5

Ref country code: FR

Payment date: 20231026

Year of fee payment: 5

Ref country code: DE

Payment date: 20231020

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427