EP3698036A1 - Berechnung von abgasemssionen eines kraftfahrzeugs - Google Patents

Berechnung von abgasemssionen eines kraftfahrzeugs

Info

Publication number
EP3698036A1
EP3698036A1 EP18793567.1A EP18793567A EP3698036A1 EP 3698036 A1 EP3698036 A1 EP 3698036A1 EP 18793567 A EP18793567 A EP 18793567A EP 3698036 A1 EP3698036 A1 EP 3698036A1
Authority
EP
European Patent Office
Prior art keywords
variables
machine learning
learning system
emissions
motor vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18793567.1A
Other languages
English (en)
French (fr)
Inventor
Heiner Markert
Martin Schiegg
Stefan ANGERMAIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3698036A1 publication Critical patent/EP3698036A1/de
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/085Safety, indicating, or supervising devices with sensors measuring combustion processes, e.g. knocking, pressure, ionization, combustion flame
    • F02B77/086Sensor arrangements in the exhaust, e.g. for temperature, misfire, air/fuel ratio, oxygen sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1405Neural network control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1452Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a COx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1452Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a COx content or concentration
    • F02D41/1453Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a COx content or concentration the characteristics being a CO content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • F02D41/1465Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/05Testing internal-combustion engines by combined monitoring of two or more different engine parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/029Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks and expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0402Methods of control or diagnosing using adaptive learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1437Simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only

Definitions

  • the invention relates to a method and an apparatus for determining emissions, a computer program, and a machine-readable storage medium.
  • independent claim 1 has the advantage that particularly fast and easy emissions of a driven by an internal combustion engine motor vehicle in a practical driving operation can be determined.
  • Advantageous developments are the subject of the independent claims.
  • the legislation provides for the approval of new motor vehicles powered by an internal combustion engine depending on to make the emissions that result in practical driving.
  • new motor vehicles powered by an internal combustion engine depending on to make the emissions that result in practical driving.
  • the English term real driving emissions is also common.
  • motor vehicles include, for example, those that are driven exclusively by an internal combustion engine, but also those with a hybridized powertrain.
  • an inspector with the motor vehicle denies a driving cycle or several driving cycles and the resulting emissions are measured. The approval of the motor vehicle is then dependent on these measured emissions.
  • the driving cycle can be freely selected within wide limits by the examiner. A typical duration of a drive cycle may be 90-120 min, for example.
  • the invention therefore relates to a method for determining emissions of a motor vehicle driven by an internal combustion engine in a practical driving operation, wherein a machine learning system is trained thereon by means of measured time profiles (x) of operating variables of the internal combustion engine and / or of the motor vehicle Gradients ( ⁇ ') to generate operating variables of the internal combustion engine and / or the motor vehicle, and then to determine the emissions depending on these generated time courses ( ⁇ ').
  • the operational quantities may preferably comprise one, some or all of the sizes characterizing the following size:
  • time profiles of the operating variables it is also possible, depending on parameters which characterize the internal combustion engine and / or the motor vehicle in the cycle to be completed, to train time profiles ( ⁇ ') of operating variables.
  • a characterization of the driven route for example GPS records, ambient temperature, ambient pressure, etc.
  • the injections may in particular be multiple injections, for example a main injection, pre-injection and post-injection.
  • those of the motor vehicle and / or the internal combustion engine preferably include quantities which characterize each fuel quantity and injection time of each of the partial injections.
  • the machine learning system comprises a first part - an encoder - which first transforms the measured time courses (x) into first variables (z, qe (z
  • machine learning system comprises a second part - a decoder - which generates second quantities ( ⁇ ', ⁇ ( ⁇ '
  • the machine learning system is trained to extract the essential features, the realistic temporal courses - ie especially those courses which are contained in the training data of the measured time courses.
  • the nature of realistic trajectories is therefore coded in parameters that characterize the coder or the decoder.
  • the coder transforms the measured time courses (x) not only into latent variables (z), but also into additional variables depending on the characterizing parameters.
  • the first variables which characterize the latent variables (z) are the latent variables (z) themselves and wherein the second part is one of third parameters ( ⁇ ) parameterized Gaussian process model, and the third parameters ( ⁇ ) and the latent variables (z) are adapted during training of the machine learning system such that a marginal probability (p (x
  • the use of the Gaussian process model has the advantage that a probabilistic statement about whether a respective second variable (z) corresponds to a course having the same characteristics as the measured courses (x) or not is possible. This makes it possible to judge for any test cycles based on the corresponding associated courses of operating variables of the motor vehicle and / or the internal combustion engine, whether these are relevant or not in view of the measured courses that have entered the training phase.
  • the first part may comprise a function parametrized by the fourth parameter (v), such as a neural network, for example, and adaptation of the latent variables (z) during training by adaptation of the fourth parameter (v).
  • v a function parametrized by the fourth parameter (v)
  • An auto-encoder means that the first quantities that characterize the latent variables (z) are the latent variables themselves, and the second quantities that characterize the generated timings are the generated timings themselves.
  • the first part and the second part may be given, for example, by neural networks.
  • This method has the advantage that the training of the machine learning system is particularly simple.
  • parameters which parameterize the auto-decoder can be adapted in such a way that a cost function which includes a reconstruction error, for example a standard
  • the first part and the second part of the machine learning system form a two-part auto-encoder.
  • Variation Autoencoder are known in German under the English-language term ⁇ l anational autencoder.
  • first quantities which respectively characterize the latent variables (z) are a first probability distribution (q e (z
  • the training of the machine learning system then means that the first parameters ( ⁇ ) and the second parameters ( ⁇ ) are varied in such a way that a cost function is minimized.
  • the cost function advantageously comprises a reconstruction error of a generated reconstruction of the measured time courses and a Kullback-Leibler divergence KL [q (z)
  • a parameterizable distribution function for example a normal distribution
  • the first part and / or the second part can then each comprise, for example, a neural network which, depending on the input variables supplied to it, determines parameters which parameterize this parameterizable distribution function.
  • the advantage of using the multi-part autocoder is that the first probability distribution (q e (z
  • the first variables which characterize the latent variables (z) are the latent variables (z) themselves and the first part from measured temporal progressions (x) by means of a method of sparse dictionary learning
  • the sparse variables (z) determine which coefficients of the respective measured temporal courses (x) in the representation represent a linear combination of the dictionary learned by means of this method. In this way, the space of the latent variables (z) can be reduced particularly effectively.
  • latent variables (z) are specified and the machine learning system generates time profiles ( ⁇ ') of operating variables of the motor vehicle and / or the internal combustion engine as a function of these predetermined latent variables (z), and then the emissions are determined depending on these generated time courses.
  • the machine learning system is initially trained by means of measured time courses to be able to generate realistic temporal courses.
  • temporal courses are then generated, to which then, e.g. be determined with a suitable mathematical model such as a machine learning method or a physico-chemical model, emissions. It may also be provided to measure the emissions on a real system in order to train, for example, said machine learning method.
  • the at least some, preferably all, of the latent variables (z) will be determined by means of a method of statistical experimental design. This is particularly good if, depending on the emissions determined, the mathematical model used to determine the emissions should be adapted to actual measured emission values. This makes it possible to ensure that the widest possible areas of the latent variable space are explored as efficiently as possible.
  • the determined emissions are particularly representative of the emissions occurring in the real operation of the motor vehicle.
  • the emissions occurring in real operation of the motor vehicle can be estimated particularly accurately.
  • time gradients ( ⁇ ') are to be generated, which should be based on at least one predefinable property.
  • temporal profiles ( ⁇ ') can thus be generated, which are generated in a limited manner to the above-mentioned characterizing parameters, that is, for example, vehicle types or geographical locations, by specifying these characterizing parameters as additional variables.
  • the additional parameters which are to code the predefinable properties of the training course ( ⁇ ') generated during training are set to the true value during training (since this characteristic of the time course is known at training times) ,
  • the machine learning system comprises a first part - a discriminator - which either measured time courses of operating variables of the motor vehicle and / or the internal combustion engine or from a second part of the machine learning system - a generator - generated time profiles of the motor vehicle and / or the internal combustion engine, are fed
  • the first part is trained to be able to decide as well as possible whether a measured or a generated time course of operating variables of the motor vehicle and / or the internal combustion engine is supplied, wherein the second part is trained thereon, depending on randomly selected input variables temporal courses of operating variables of the motor vehicle and / or the internal combustion engine as possible to generate such that the first part can decide as bad as possible, whether a measured or a generated time course of operating variables of the motor vehicle and / or the internal combustion engine is supplied.
  • This method has the advantage that the thus generated courses of operating variables of the motor vehicle and / or the internal combustion engine are particularly realistic.
  • the meaning of the word "random” may include that the variables thus selected are determined by means of a true random number generator or by means of a pseudo-random number generator.
  • the training of the first part and the second part can advantageously be carried out alternately to ensure that the training is as effective as possible.
  • the training can expediently be continued until the discriminator is no longer able to differentiate with predeterminable accuracy, whether the temporal courses supplied to him are measured or generated by the generator over time.
  • the machine learning system generates temporal profiles ( ⁇ ') of the operating variables of the motor vehicle and / or the internal combustion engine as a function of these predefined input variables, and then the emissions as a function of these generated temporal Gradients are determined. That is, the machine learning system is initially trained by means of measured time courses to be able to generate realistic temporal courses.
  • the randomly selected input variables (z) actual time histories are then generated, for which emissions are then determined, for example using a suitable mathematical model such as, for example, a machine learning method or a physicochemical model. It may also be provided to measure the emissions on a real system in order to train, for example, said machine learning method.
  • the additional variables it is possible to generate profiles that correspond to the given properties.
  • the randomly selected input variables are determined by means of a method of statistical experimental design.
  • the invention relates to a computer program which is adapted to carry out one of the aforementioned methods, if it is on a Computer is running, a machine-readable storage medium on which this computer program is stored (this storage medium may of course be spatially distributed, eg distributed in parallel execution across multiple computers), and a device, in particular a monitoring unit, which is set up, one of these methods execute (for example, by playing the aforementioned computer program).
  • Figure 1 shows a structure of a motor vehicle
  • Figure 2 shows a device for determining the emissions
  • FIG. 3 shows by way of example a construction of a device for training the machine learning system
  • FIG. 4 shows by way of example a use of the machine learning system for determining emissions
  • FIG. 5 shows an exemplary construction of the machine learning system
  • FIG. 6 shows an alternative exemplary construction of the machine learning system.
  • Figure 1 shows an example of a structure of a motor vehicle (10).
  • the motor vehicle is driven by an internal combustion engine (20).
  • Combustion products produced during operation of the internal combustion engine (20) are conducted through an exhaust tract (30), which in particular comprises an exhaust gas purification system (40), for example a catalytic converter.
  • exhaust tract (30) which in particular comprises an exhaust gas purification system (40), for example a catalytic converter.
  • emissions (50) escape into the environment, in particular nitrogen oxides, soot particles and carbon dioxide.
  • Figure 2 shows an example of a structure of a device (200), with the emissions (50) of the motor vehicle (10) can be determined in practical driving.
  • the device (200) is a computer which comprises a machine-readable storage medium (210) on which a computer program (220) is stored. This computer program is set up to carry out one of the methods according to the invention, ie the computer program (220) contains instructions which cause the computer (200) to carry out the method according to the invention when the computer program (220) is executed
  • FIG. 3 shows by way of example a structure of a device for training the machine learning system (M).
  • the machine learning system (M) are supplied as input variables of measured time profiles (x) of operating variables of the motor vehicle (10) and / or of the internal combustion engine (20). These measured time profiles do not have to originate from the same motor vehicle, and can for example be stored in a database.
  • the machine learning system (M) generates therefrom an output quantity, namely either time histories ( ⁇ ') of the operating quantities or a result of discrimination (d).
  • the measured time courses (x) and the generated time courses ( ⁇ ') or alternatively the discrimination result (d) are fed to a learning unit (L), which uses, for example, by means of a gradient descent method the parameters (v, y, ⁇ , ⁇ , ⁇ , Y ) so that a cost function is optimized.
  • FIG. 4 shows by way of example a use of the machine learning system (M) for determining emissions (e).
  • the machine learning system (M) generates time profiles ( ⁇ ') of operating variables of the motor vehicle (10) and / or the internal combustion engine (20).
  • FIG. 5 shows in more detail an exemplary construction of the machine learning system (M).
  • FIG. 5a shows the structure how it can be used during training.
  • the machine learning system (M) comprises an encoder (K) and a decoder (D).
  • the coder (K) determines from the measured temporal progressions (x) and parameters (v, ⁇ ) fed to it quantities (z, q e (z
  • the decoder (D) can also be supplied with further variables (not shown).
  • the decoder (D) from these quantities (z, qe (z
  • FIG. 5b shows the structure as it can be used when generating generated time profiles ( ⁇ ').
  • a block (S) generates latent variables (z) according to a predefinable distribution. For example, a probability density is determined by means of a density estimator as a function of the latent variables z determined as shown in FIG. 5a, from which the block (S) now randomly draws a random sample.
  • These generated latent variables (z) are fed to the decoder (D), which generates the generated time profiles ( ⁇ ') as a function of parameters ( ⁇ , ⁇ ).
  • coders (K) and decoders (D) can, for example, form an auto-decoder, or implement a partial auto-encoder, or a sparse dictionary learning.
  • the decoder (D) includes a Gaussian process.
  • the encoder (K) determines the latent variables (z) as a function of parameters (v), and in addition to the parameters ( ⁇ ) characterizing the Gaussian process, this also applies during training Parameters (v) are varied such that a marginal probability (p (x
  • the encoder (K) is omitted and latent variables (z) are specified directly, such that the learning unit (L) adjusts these latent variables (z) in addition to the parameters ( ⁇ ) in such a way that a cost function which causes a reconstruction error between the measured time course (x) and the associated course generated from the selected latent variables (z) ( ⁇ ') is minimized.
  • FIG. 6 shows in more detail an alternative exemplary structure of the machine learning system (M).
  • FIG. 6a shows the structure how it can be used during training.
  • the machine learning system (M) comprises a first block (U) and a second block (H).
  • the first block (U) is parametrized by parameters (Y), the second block (H) by parameters ( ⁇ ).
  • a random number generator
  • R determines random numbers (or, as is often the case, pseudo-random numbers) r and delivers them to the second block (H).
  • the second block (H) further variables (not shown) are supplied, the characterizing parameters encode the second block (H) generated from the random numbers (r) and possibly the other variables depending on the parameters ( ⁇ ) each one generated time course ( ⁇ ').
  • the first block (U) is either a generated time course ( ⁇ ') or a measured time course (x) supplied. It is also possible for the first block (U) to be supplied with these two courses (x, x ') if the first block (U) has an internal selection mechanism (not shown), each of which has one of these two courses (x, x). x ').
  • the first block (U) is trained by adapting its behavior determining parameter (Y) to be able to differentiate as well as possible whether the variable supplied to it is a measured time course (x) or a generated time course ( ⁇ '). ).
  • the information as to whether this classification of the first block (U) is true or false is encoded in the discrimination result (d).
  • the first block (U) and the second block (H) are now trained alternately, the parameters (Y) of the first block (U) are trained so that the classification of the first block (U) is often correct and the parameters ( ⁇ ) of the second block (H) that the classification of the first block (U) is as often as possible wrong.
  • FIG. 6b shows the corresponding structure as it can be used to generate generated time profiles ( ⁇ ').
  • the random number generator (R) generates random numbers or pseudo-random numbers (r), and the second block (H) generates the generated temporal courses ( ⁇ ') depending on the further variables and, if necessary, on the parameters adapted in training ( ⁇ ). )

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Automation & Control Theory (AREA)
  • Probability & Statistics with Applications (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Verfahren zum Ermitteln von Emissionen (50) eines mittels einer Brennkraftmaschine (20) angetriebenen Kraftfahrzeugs (10) in einem praktischen Fahrbetrieb (Englisch: real driving emissions), wobei ein maschinelles Lernsystem mittels gemessener zeitlicher Verläufe von Betriebsgrößen des Kraftfahrzeugs (10) und/oder der Brennkraftmaschine (20) darauf trainiert wird, zeitliche Verläufe der Betriebsgrößen zu generieren, und dann die Emissionen abhängig von diesen generierten zeitlichen Verläufen zu ermitteln.

Description

Beschreibung Titel
BERECHNUNG VON ABGASEMSSIONEN EINES KRAFTFAHRZEUGS
Technisches Gebiet
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Ermitteln von Emissionen, ein Computerprogramm, und ein maschinenlesbares Speichermedium.
Stand der Technik
Aus der DE 10 2009 028 374 AI ist ein Verfahren für eine Diagnose einer Brenn kraftmaschine bekannt, welches dadurch beschränkt ist, dass nur bestimmte Lastzustände der Brennkraftmaschine auf einem Prüfstand angefahren werden können. Weiterhin ist aus dieser Schrift bekannt, dass ein Anfahren bestimmter Betriebspunkte nur durch Testfahrten zu erreichen ist, was zu langen Diagnosezeiten führt.
Vorteil der Erfindung
Das Verfahren mit den Merkmalen des unabhängigen Anspruchs 1 hat demgegenüber den Vorteil, dass besonders schnell und einfach Emissionen eines mittels einer Brennkraftmaschine angetriebenen Kraftfahrzeugs in einem praktischen Fahrbetrieb ermittelt werden können. Vorteilhafte Weiterbildungen sind Gegenstand der unabhängigen Ansprüche.
Offenbarung der Erfindung
In einigen Ländern sieht die Gesetzgebung vor, die Zulassung neuer Kraftfahrzeuge, die mittels einer Brennkraftmaschine angetrieben werden, abhängig von den Emissionen zu machen, die sich im praktischen Fahrbetrieb ergeben. Hierfür ist auch die englische Bezeichnung real driving emissions gebräuchlich. Solche Kraftfahrzeuge umfassen beispielsweise solche, die ausschließlich von einem Verbrennungsmotor angetrieben werden, aber auch solche mit einem hybridisierten Antriebsstrang.
Hierzu ist vorgesehen, dass ein Prüfer mit dem Kraftfahrzeug einen Fahrzyklus oder mehrere Fahrzyklen bestreitet und die dabei entstehenden Emissionen gemessen werden. Die Zulassung des Kraftfahrzeugs ist dann abhängig von diesen gemessenen Emissionen. Der Fahrzyklus kann hierbei innerhalb weiter Grenzen vom Prüfer frei gewählt werden. Eine typische Dauer eines Fahrzyklus kann hierbei beispielsweise 90-120min betragen.
Für Hersteller von Kraftfahrzeugen stellt sich damit in der Entwicklung von Kraftfahrzeugen die Herausforderung, bereits frühzeitig im Entwicklungsprozess eines neuen Kraftfahrzeugs absehen zu müssen, ob die Emissionen dieses Kraftfahrzeugs in jedem zulässigen Fahrzyklus innerhalb der gesetzlich vorgeschriebenen Grenzen bleibt, oder nicht.
Es ist daher wesentlich, eine Vorrichtung zu schaffen, die bereits im Entwicklungsstadium eines Kraftfahrzeugs die voraussichtlichen Emissionen des Kraftfahrzeugs sicher vorhersagen kann, um im Falle eines voraussichtlichen Überschreitens von Grenzwerten Änderungen am Kraftfahrzeug durchführen zu können. Eine derartige Abschätzung allein auf Basis von Messungen auf einem Prüfstand bzw. in einem fahrenden Kraftfahrzeug ist wegen der großen Vielfalt denkbarer Fahrzyklen überaus aufwändig.
In einem ersten Aspekt betrifft die Erfindung daher ein Verfahren zum Ermitteln von Emissionen eines mittels einer Brennkraftmaschine angetriebenen Kraftfahrzeugs in einem praktischen Fahrbetrieb, wobei ein maschinelles Lernsystem mittels gemessener zeitlicher Verläufe (x) von Betriebsgrößen der Brennkraftmaschine und/oder des Kraftfahrzeugs darauf trainiert wird, zeitliche Verläufe (χ') von Betriebsgrößen der Brennkraftmaschine und/oder des Kraftfahrzeugs zu generieren, und dann die Emissionen abhängig von diesen generierten zeitlichen Verläufen (χ') zu ermitteln.
D.h. es ist möglich, nur tatsächliche zeitliche Verläufe der Betriebsgrößen zu messen, die jeweils eigene Charakteristika aufweisen und dann realistische zeitliche Verläufe von dem maschinellen Lernsystem generieren zu lassen, die eine Vielzahl dieser Charakteristika aufweisen.
Die Betriebsgrößen können vorzugsweise eine, einige oder alle der Größen umfassen, die folgenden Größe charakterisieren:
eine Fahrpedalstellung des Kraftfahrzeugs
eine Bremspedalstellung des Kraftfahrzeugs
eine Stellung einer Kupplung eines Getriebes des Kraftfahrzeugs
ein Gang des Getriebes
eine Geschwindigkeit des Kraftfahrzeugs
einen Fahrwiderstand des Kraftfahrzeugs
eine Zugkraft der Brennkraftmaschine
eine Zugkraft eines elektromotorischen Antriebs des Kraftfahrzeugs eine Drehzahl der Brennkraftmaschine
eine pro Zeiteinheit angesaugte Luftmasse der Brennkraftmaschine ein Druck in einem Saugrohr der Brennkraftmaschine
eine Menge der Hochdruck- AG R
eine Menge der Niederdruck- AG R
einen Zeitpunkt des Schließens des Einlassventils
einen Zeitpunkt des Öffnen des Auslassventils
einen maximalen Ventilhub des Einlassventils
einen maximalen Ventilhub des Auslassventils
eine Position des Systems zur Veränderung der Verdichtung der Brennkraftmaschine
eine Kraftstoffmenge von Einspritzungen der Brennkraftmaschine
ein Einspritzzeitpunkt der Einspritzungen ein Druck in einem Kraftstoff- Hochdruckspeicher, wie er auch im Deutschen beispielsweise unter dem englischen Begriff Common Rail bekannt ist, der Brennkraftmaschine
eine Kühlmitteltemperatur der Brennkraftmaschine
eine Temperatur im Ansaugsystem der Brennkraftmaschine.
Zusätzlich zu den zeitlichen Verläufen der Betriebsgrößen ist es auch möglich, abhängig von Parametern, die die Brennkraftmaschine und/oder das Kraftfahrzeug im zu absolvierenden Zyklus charakterisieren darauf trainiert wird, zeitliche Verläufe (χ') von Betriebsgrößen zu generieren.
Diese charakterisierenden Parameter können eine, einige oder alle der folgenden Größen umfassen:
eine Masse des Kraftfahrzeugs
eine Getriebeübersetzung des Kraftfahrzeugs
eine maximale Antriebsleistung eines Antriebssystems des Kraftfahrzeugs ein maximales Drehmoment des Antriebssystems
eine Art des Getriebes
eine Kraftstoffart
eine Spezifikation der Hybridisierung
eine Typenbezeichnung des Motors
eine Typenbezeichnung des Fahrzeugs
eine Charakterisierung des gefahrenen Streckenverlaufs, beispielsweise GPS Aufzeichnungen, Umgebungstemperatur, Umgebungsdruck, etc.
Die Einspritzungen können insbesondere Mehrfacheinspritzungen sein, beispielsweise eine Haupt-, Vor- und Nacheinspritzung. Bei derartigen Mehrfacheinspritzungen umfassen die des Kraftfahrzeugs und/oder der Brennkraftmaschine vorzugsweise Größen, die je Kraftstoffmenge und Einspritzzeitpunkt jeder der Teileinspritzungen charakterisieren.
Die Verwendung eines maschinellen Lernsystems ist deswegen wichtig, weil die Zahl möglicher zeitlicher Verläufe sehr groß ist. Bei einem zeitlichen Verlauf von lh Dauer und einer Abtastrate von beispielsweise 100ms ergibt sich bei 15 Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine ein 15 x 36.000 = 540.000-dimensionaler Raum, in dem mögliche zeitliche Verläufe liegen.
Es versteht sich für den Fachmann, dass nur eine relativ gesehen geringe Anzahl von Punkten in diesem sehr hochdimensionalen Raum tatsächlichen möglichen zeitlichen Verläufen der Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine entsprechen, also realistisch sind. Das Problem, diese realistischen zeitlichen Verläufe auszuwählen, wird mit dem Verfahren mit den Merkmalen des unabhängigen Anspruch 1 gelöst.
In einer Weiterbildung kann vorgesehen sein, dass das maschinelle Lernsystem einen ersten Teil - einen Kodierer - umfasst, der die gemessenen zeitlichen Verläufe (x) zunächst in erste Größen (z, qe(z|x)) transformiert, die jeweils latente Variablen (z) charakterisieren, wobei ein Raum latenter Variablen eine - gegenüber dem Raum der gemessenen zeitlichen Verläufe - reduzierte Dimensionalität aufweist,
und wobei das maschinelle Lernsystem einen zweiten Teil - einen Dekodierer - umfasst, der abhängig von latenten Variablen (z) zweite Größen (χ', ρφ(χ'|ζ)) generiert, die jeweils die generierten zeitlichen Verläufe (χ') der Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine charakterisieren.
Durch die Abbildung der tatsächlich gemessenen Trajektorien auf einen niederdi- mensionalen Raum wird das maschinelle Lernsystem darauf trainiert, die wesentlichen Merkmale, die realistische zeitliche Verläufe - also insbesondere diejenigen Verläufe, die in den Trainingsdaten der gemessenen zeitlichen Verläufe enthalten sind - zu extrahieren. Das Wesen realistischer Trajektorien ist damit also in Parametern, die den Kodierer bzw. den Dekodierer charakterisieren, kodiert.
Es ist auch möglich, dass der Kodierer die gemessenen zeitlichen Verläufe (x) nicht nur in latente Variablen (z) transformiert, sondern abhängig von den charakterisierenden Parametern auch in zusätzliche Variablen.
In einer besonders vorteilhaften Weiterbildung kann hierbei vorgesehen sein, dass die ersten Größen, die die latenten Variablen (z) charakterisieren die latenten Variablen (z) selbst sind und wobei der zweite Teil ein von dritten Parametern (γ) parametriertes Gaußprozess-Modell umfasst, und die dritten Parameter (γ) sowie die latenten Variablen (z) beim Training des maschinellen Lernsystems derart angepasst werden, dass eine marginale Wahrscheinlichkeit (p(x|z)) der Rekonstruktion der gemessenen zeitlichen Verläufe (x) unter diesen latenten Vari- ablen (z) maximiert wird.
Die Verwendung des Gaußprozess-Modells hat den Vorteil, dass eine probabilis- tische Aussage darüber möglich ist, ob eine jeweilige zweite Größe (z) einem Verlauf entspricht, der die gleichen Charakteristika aufweist wie die gemessenen Verläufe (x), oder nicht. Dadurch ist es möglich, für beliebige Testzyklen anhand der entsprechenden zugehörigen Verläufe von Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine zu beurteilen, ob diese angesichts der gemessenen Verläufe, die in die Trainingsphase eingegangen sind, relevant sind oder nicht.
In einer Weiterbildung dieses Aspekts kann vorgesehen sein, dass der erste Teil eine von vierten Parameter (v) parametrisierte Funktion wie beispielsweise ein neuronales Netz umfasst, und die Anpassung der latenten Variablen (z) beim Training durch Anpassen der vierten Parameter (v) geschieht.
Dies ist eine besonders effiziente Art, die gemessenen Verläufe (x) der Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine auf latente Variablen (z) abzubilden. In einer alternativen besonders vorteilhaften Weiterbildung kann vorgesehen sein, dass erster Teil und zweiter Teil des maschinellen Lernsystems einen Autoencoder bilden.
Ein Autoencoder bedeutet, dass die ersten Größen, die die latenten Variablen (z) charakterisieren, die latenten Variablen selbst sind, dass die zweiten Größen, die die generierten zeitlichen Verläufe charakterisieren die generierten zeitlichen Verläufe selbst sind. Der erste Teil und der zweite Teil können beispielsweise durch neuronale Netzwerke gegeben sind. Dieses Verfahren hat den Vorteil, dass das Training des maschinellen Lernsystems besonders einfach ist. Insbesondere können hierzu Parameter, die den Au- toencoder parametrieren, derart angepasst werden, dass eine Kostenfunktion, die einen Rekonstruktionsfehler umfasst, der beispielsweise eine Norm |x-x'|2 ei- ner Differenz zwischen den gemessenen zeitlichen Verläufen und den aus diesen mittels des Autoencoders generierten zeitlichen Verläufen (χ') charakterisiert, minimiert wird.
In einer weiteren alternativen besonders vorteilhaften Weiterbildung kann vorge- sehen sein, dass erster Teil und zweiter Teil des maschinellen Lernsystems einen variationeilen Autoencoder bilden. Variationelle Autoencoder sind im Deutschen unter dem englischsprachigen Begriff \l anational Autoencoder bekannt.
Dies bedeutet, dass die ersten Größen, die jeweils die latenten Variablen (z) charakterisieren jeweils eine abhängig von ersten Parametern (Θ) parametrierte erste Wahrscheinlichkeitsverteilung (qe(z|x)) sind und die zweiten Größen, die die generierten zeitlichen Verläufe charakterisieren jeweils eine von zweiten Parametern (φ) parametrierte zweite Wahrscheinlichkeitsverteilung (ρφ(χ'|ζ)) sind. Das Training des maschinellen Lernsystems bedeutet dann, dass die ersten Parameter (Θ) und die zweiten Parameter (φ) derart variiert werden, dass eine Kostenfunktion minimiert wird. Die Kostenfunktion umfasst dabei vorteilhafterweise einen Rekonstruktionsfehler einer generierten Rekonstruktion der gemessenen zeitlichen Verläufe und eine Kullback-Leibler-Divergenz KL[q(z) | |J\f] zwischen den ersten Wahrscheinlichkeitsverteilungen (qe(z|x)) und einer vorzugsweise auf Mittelwert 0 und Varianz 1 normierten Normalverteilung K .
Als erste Wahrscheinlichkeitsverteilung (qe(z|x)) und/oder als zweite Wahrscheinlichkeitsverteilung (ρψ(χ'|ζ)) kann jeweils eine parametrierbare Verteilungsfunktion, beispielsweise eine Normalverteilung, herangezogen werden. Der erste Teil und/oder der zweite Teil können dann jeweils beispielsweise ein neuronales Netz umfassen, das abhängig von dem ihm zugeführten Eingangsgrößen Parameter ermittelt, die diese parametrierbare Verteilungsfunktion parametrieren. Die Verwendung des variationeilen Autoencoders hat den Vorteil, dass die erste Wahrscheinlichkeitsverteilung (qe(z|x)) eine probabilistische Aussage darüber erlaubt, ob eine jeweilige zweite Größe (x) die gleichen Charakteristika aufweist wie die gemessenen Verläufe, oder nicht.
In einer noch weiteren alternativen besonders vorteilhaften Weiterbildung kann vorgesehen sein, dass die ersten Größen, die die latenten Variablen (z) charakterisieren die latenten Variablen (z) selbst sind und der erste Teil aus gemessenen zeitlichen Verläufe (x) mittels eines Verfahrens des spärlichen Wörterbuchlernens (Englisch: sparse dictionary learning) die latenten Variablen (z) ermittelt, welche Koeffizienten der jeweiligen gemessenen zeitlichen Verläufe (x) bei der Darstellung als Linearkombination des mittels dieses Verfahrens gelernten Wörterbuchs darstellen. Auf diese Weise lässt sich der Raum der latenten Variablen (z) besonders effektiv reduzieren.
In einer vorteilhaften Weiterbildung der vorgenannten Aspekte kann vorgesehen sein, dass latente Variablen (z) vorgegeben werden und das maschinelle Lernsystem abhängig von diesen vorgegebenen latenten Variablen (z) zeitliche Verläufe (χ') von Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine generiert, und dann die Emissionen abhängig von diesen generierten zeitlichen Verläufen ermittelt werden.
D.h. das maschinelle Lernsystem wird zunächst mittels gemessener zeitlicher Verläufe darauf trainiert, realistische zeitliche Verläufe generieren zu können. Durch Vorgabe der latenten Variablen werden dann zeitliche Verläufe generiert, zu denen dann, z.B. mit einem geeigneten mathematischen Modell wie beispielsweise einem maschinellen Lernverfahren oder einem physikalisch-chemischen Modell, Emissionen ermittelt werden. Es kann auch vorgesehen sein, die Emissionen an einem realen System zu messen, um damit beispielsweise das genannte maschinelle Lernverfahren zu trainieren.
In einer Weiterbildung dieses Aspekts kann vorgesehen sein, dass die mindestens einige, vorzugsweise alle, der latenten Variablen (z) mittels eines Verfahrens der statistischen Versuchsplanung ermittelt werden wird. Dies ist besonders gut, wenn abhängig von den ermittelten Emissionen das mathematische Modell, mit dem die Emissionen ermittelt werden, an tatsächliche gemessene Emissionswerte angepasst werden soll. Hierdurch lässt sich sicherstellen, dass möglichst effizient möglichst weite Bereiche des Raums der latenten Variablen exploriert werden.
In einer alternativen Weiterbildung dieses Aspekts kann vorgesehen sein, dass eine Wahrscheinlichkeitsdichteverteilung der latenten Variablen (z), die sich abhängig von den gemessenen zeitlichen Verläufen ergeben ermittelt wird und die vorgegebenen latenten Variablen (z) als eine Stichprobe aus dieser geschätzten Wahrscheinlichkeitsdichteverteilung gezogen werden.
Auf diese Weise kann erreicht werden, dass die ermittelten Emissionen besonders repräsentativ für die im realen Betrieb des Kraftfahrzeugs auftretenden Emissionen sind. Damit lassen sich die im realen Betrieb des Kraftfahrzeugs auftretenden Emissionen besonders genau abschätzen.
Es ist nun zusätzlich auch möglich, dass die zusätzlichen Variablen vorgegeben werden. Das ist besonders Vorteilhaft, wenn zeitliche Verläufe (χ') generiert werden sollen, die auf mindestens eine vorgebbare Eigenschaft bedingt sein sollen. Beispielsweise können somit zeitliche Verläufe (χ') generiert werden, welche eingeschränkt auf die oben genannten charakterisierenden Parameter, also beispielsweise Fahrzeugtypen oder geographische Standorte, generiert werden, indem diese charakterisierenden Parameter als zusätzliche Variablen vorgegeben werden.
Um eine solches maschinelles Lernsystem zu trainieren, werden die zusätzlichen Parameter, die die vorgebbaren Eigenschaften des im Training generierten zeitlichen Verlaufs (χ') kodieren soll, im Training auf den wahren Wert gesetzt (denn diese Eigenschaft des zeitlichen Verlaufs ist zu Trainingszeiten ja bekannt).
In einem anderen Aspekt der Erfindung kann vorgesehen sein, dass das maschinelle Lernsystem einen ersten Teil - einen Diskriminator - umfasst, dem entweder gemessene zeitliche Verläufe von Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine oder von einem zweiten Teil des maschinellen Lernsystems - einem Generator - generierte zeitliche Verläufe von des Kraftfahrzeugs und/oder der Brennkraftmaschine, zugeführt werden,
wobei der erste Teil darauf trainiert wird, möglichst gut entscheiden zu können, ob ihm ein gemessener oder ein generierter zeitlicher Verlauf von Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine zugeführt wird, wobei der zweite Teil darauf trainiert wird, abhängig von zufällig gewählten Eingangsgrößen zeitliche Verläufe von Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine möglichst derart zu generieren, dass der erste Teil möglichst schlecht entscheiden kann, ob ihm ein gemessener oder ein generierter zeitlicher Verlauf von Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine zugeführt wird.
Dieses Verfahren hat den Vorteil, dass die derart generierten Verläufe von Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine besonders realistisch sind.
Die Bedeutung des Wortes„zufällig" kann dabei umfassen, dass die so gewählten Größen mittels eines echten Zufallszahlengenerators oder mittels eines Pseudo-Zufallszahlengenerators ermittelt werden.
Das Training des ersten Teils und des zweiten Teils kann vorteilhafterweise wechselseitig durchgeführt werden, um sicherzustellen, dass das Training möglichst effektiv ist. Hierbei kann das Training zweckmäßigerweise so lange fortgesetzt werden, bis der Diskriminator nicht mehr in der Lage ist, mit vorgebbarer Treffsicherheit zu unterscheiden, ob die ihm zugeführten zeitlichen Verläufe gemessene oder vom Generator generierte zeitliche Verläufe sind.
In einer Weiterbildung dieses Aspekts kann vorgesehen sein, dass zufällig gewählte Eingangsgrößen vorgegeben werden und das maschinelle Lernsystem abhängig von diesen vorgegebenen Eingangsgrößen zeitliche Verläufe (χ') der Betriebsgrößen des Kraftfahrzeugs und/oder der Brennkraftmaschine generiert, und dann die Emissionen abhängig von diesen generierten zeitlichen Verläufen ermittelt werden. D.h. das maschinelle Lernsystem wird zunächst mittels gemessener zeitlicher Verläufe darauf trainiert, realistische zeitliche Verläufe generieren zu können. Durch Vorgabe der zufällig gewählten Eingangsgrößen (z) werden dann tatsächlich zeitliche Verläufe generiert, zu denen dann, z.B. mit einem geeigneten mathematischen Modell wie beispielsweise einem maschinellen Lernverfahren oder einem physikalisch-chemischen Modell, Emissionen ermittelt werden. Es kann auch vorgesehen sein, die Emissionen an einem realen System zu messen, um damit beispielsweise das genannte maschinelle Lernverfahren zu trainieren. Durch Vorgabe der zusätzlichen Variablen können Verläufe generiert werden, welche der vorgegebenen Eigenschaften entsprechen.
Insbesondere kann hierbei vorgesehen sein, dass die die zufällig gewählten Eingangsgrößen mittels eines Verfahrens der statistischen Versuchsplanung ermittelt werden.
Dies ist besonders gut, wenn abhängig von den ermittelten Emissionen ein mathematisches Modell, mit dem die Emissionen ermittelt werden, an tatsächliche gemessene Emissionswerte angepasst werden soll. Hierdurch lässt sich sicherstellen, dass möglichst schnell möglichst weite Bereiche des Raums der latenten Variablen exploriert werden.
Schließlich ist es auch möglich, die Ermittlung der Emissionen mittels eines trainierten Modells durchzuführen, während das Kraftfahrzeug betrieben wird. Es ist dann möglich, dass das Kraftfahrzeug abhängig von den ermittelten Emissionen angesteuert wird. Die Ermittlung der Emissionen mittels des maschinellen Lernsystems fungiert dann also als ein virtueller Sensor, was Kosten spart, besonders ausfallsicher ist und vor allem prädiktiv eingesetzt werden kann. Es ist dann beispielsweise möglich, abhängig von den ermittelten Emissionen eine Leistung der Brennkraftmaschine zu drosseln oder ein Kraftstoff-/Luft- Verhältnis zu verändern, beispielsweise wenn das Kraftfahrzeug in eine Zone einfährt, in der besondere, insbesondere verschärfte, Grenzwerte für die Emissionen vorliegen. Denkbar ist so etwas beispielsweise in Innenstädten.
In weiteren Aspekten betrifft die Erfindung ein Computerprogramm, welches eingerichtet ist, eines der vorgenannten Verfahren auszuführen, wenn es auf einem Computer ausgeführt wird, ein maschinenlesbares Speichermedium, auf dem dieses Computerprogramm gespeichert ist (wobei dieses Speichermedium selbstverständlich räumlich verteilt ausgebildet sein kann, z.B. bei paralleler Ausführung über mehrere Computer verteilt), und eine Vorrichtung, insbesondere eine Überwachungseinheit, die eingerichtet ist, eines dieser Verfahren auszuführen (beispielsweise durch Abspielen des vorgenannten Computerprogramms).
Nachfolgend werden Ausführungsformen der Erfindung unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert. In den Zeichnungen zeigen:
Figur 1 einen Aufbau eines Kraftfahrzeugs;
Figur 2 eine Vorrichtung zum Ermitteln der Emissionen;
Figur 3 beispielhaft einen Aufbau einer Vorrichtung zum Trainieren des maschinellen Lernsystems;
Figur 4 beispielhaft einen Einsatz des maschinellen Lernsystems zum Ermitteln von Emissionen;
Figur 5 einen beispielhaften Aufbau des maschinellen Lernsystems;
Figur 6 einen alternativen beispielhaften Aufbau des maschinellen Lernsystems.
Beschreibung der Ausführungsbeispiele
Figur 1 zeigt beispielhaft einen Aufbau eines Kraftfahrzeugs (10). Das Kraftfahrzeug wird von einer Brennkraftmaschine (20) angetrieben. Im Betrieb der Brennkraftmaschine (20) entstehende Verbrennungsprodukte werden durch einen Abgastrakt (30) geleitet, der insbesondere eine Abgasreinigungsanlage (40), beispielsweise einen Katalysator, umfasst. Am Ende des Abgastrakts (30) entweichen Emissionen (50) in die Umwelt, insbesondere Stickoxide, Rußpartikel und Kohlendioxid. Figur 2 zeigt beispielhaft einen Aufbau einer Vorrichtung (200), mit der die Emissionen (50) des Kraftfahrzeugs (10) im praktischen Fahrbetrieb ermittelt werden können. Die Vorrichtung (200) ist im Ausführungsbeispiel ein Computer, der ein maschinenlesbares Speichermedium (210) umfasst, auf dem ein Computerprogramm (220) gespeichert ist. Dieses Computerprogramm ist eingerichtet, eines der erfindungsgemäßen Verfahren auszuführen, d.h. das Computerprogramm (220) enthält Anweisungen, die den Computer (200) veranlassen, das erfindungsgemäße Verfahren auszuführen, wenn das Computerprogramm (220) auf dem Computer (200) ausgeführt wird.
Figur 3 zeigt beispielhaft einen Aufbau einer Vorrichtung zum Trainieren des maschinellen Lernsystems (M). Dem maschinellen Lernsystem (M) werden als Eingangsgrößen gemessener zeitlicher Verläufe (x) von Betriebsgrößen des Kraftfahrzeugs (10) und/oder der Brennkraftmaschine (20) zugeführt. Diese gemessenen zeitlichen Verläufe müssen nicht aus demselben Kraftfahrzeug stammen, und können beispielsweise in einer Datenbank hinterlegt sein. Abhängig von Parametern (v, y, θ, φ„ Γ, Y), die auf dem maschinenlesbaren Speichermedium (210) gespeichert sind, generiert das maschinelle Lernsystem (M) hieraus eine Ausgabegröße, nämlich entweder zeitliche Verläufe (χ') der Betriebsgrößen oder ein Diskriminationsergebnis (d). Die gemessenen zeitlichen Verläufen (x) und die generierten zeitlichen Verläufe (χ') oder alternativ das Diskriminationsergebnis (d) werden einer Lerneinheit (L) zugeführt, die beispielsweise mittels eines Gradientenabstiegsverfahrens die Parameter (v, y, θ, φ, Γ, Y) derart anpasst, dass eine Kostenfunktion optimiert wird.
Figur 4 zeigt beispielhaft einen Einsatz des maschinellen Lernsystems (M) zum Ermitteln von Emissionen (e). Abhängig von den Parametern (v, y, θ, φ) generiert das maschinelle Lernsystem (M) zeitliche Verläufe (χ') von Betriebsgrößen des Kraftfahrzeugs (10) und/oder der Brennkraftmaschine (20). Diese werden einem
Block (E) zugeführt, der hieraus mittels eines mathematischen Modells oder echter Messungen am Kraftfahrzeug (10) die zugehörigen Emissionen (e) ermittelt. Figur 5 zeigt detaillierter einen beispielhaften Aufbau des maschinellen Lernsystems (M). Figur 5a zeigt den Aufbau, wie er beim Trainieren zum Einsatz kommen kann. Das maschinelle Lernsystem (M) weist einen Kodierer (K) und einen Dekodierer (D) auf. Der Kodierer (K) ermittelt aus den ihm zugeführten gemessenen zeitlichen Verläufen (x) und Parametern (v, Θ) Größen (z, qe(z|x)), die die latenten Variablen (z) charakterisieren, und die wiederum einem Dekodierer (D) zugeführt werden. Neben den latenten Variablen (z) können dem Dekodierer (D) auch weitere Variablen (nicht dargestellt) zugeführt werden. Der Dekodierer (D) aus diesen Größen (z, qe(z|x)) und abhängig von Parametern (γ, φ) sowie ggf. den weiteren Größen die generierten zeitlichen Verläufe (χ').
Figur 5b zeigt den Aufbau, wie er beim Generieren von generierten zeitlichen Verläufen (χ') zum Einsatz kommen kann. Ein Block (S) generiert latente Variablen (z) gemäß einer vorgebbaren Verteilung. Beispielsweise wird mittels eines Dichteschätzers abhängig von den wie in Figur 5a gezeigt ermittelten latenten Variablen z eine Wahrscheinlichkeitsdichte ermittelt, aus der der Block (S) nun zufällig eine Stichprobe zieht. Diese generierten latenten Variablen (z) werden dem Dekodierer (D) zugeführt, der hierbei abhängig von Parametern (γ, φ) die generierten zeitlichen Verläufe (χ') generiert.
Kodierer (K) und Dekodierer (D) können hierbei beispielsweise einen Autoenco- der bilden, oder einen variationeilen Autoencoder, oder ein spärliches Wörterbuchlernen implementieren.
Es ist hierbei auch möglich, dass der Dekodierer (D) einen Gauß-Prozess um- fasst. Dann ist entweder möglich, dass der Kodierer (K) ein neuronales Netzwerk umfasst, das abhängig von Parametern (v) die latenten Variablen (z) ermittelt, wobei beim Trainieren neben den Parametern (γ), die den Gauß-Prozess charakterisieren, auch diese Parameter (v) derart variiert werden, dass eine marginale Wahrscheinlichkeit (p(x|z)) der Rekonstruktion der gemessenen zeitlichen Verläufe (x) unter diesen latenten Variablen (z) maximiert wird. Oder es ist möglich, dass der Kodierer (K) entfällt und latente Variablen (z) direkt vorgegeben werden, sodass die Lerneinheit (L) neben den Parametern (γ) auch diese latenten Variablen (z) derart anpasst, dass eine Kostenfunktion, die einen Rekonstruktionsfehler zwischen dem gemessenen zeitlichen Verlauf (x) und dem zugehörigen aus den gewählten latenten Variablen (z) generierten Verlauf (χ') aufweist, minimiert wird.
Figur 6 zeigt detaillierter einen alternativen beispielhaften Aufbau des maschinellen Lernsystems (M). Figur 6a zeigt den Aufbau, wie er beim Trainieren zum Einsatz kommen kann. Das maschinelle Lernsystem (M) umfasst einen ersten Block (U) und einen zweiten Block (H). Der erste Block (U) wird von Parametern (Y) pa- rametriert, der zweite Block (H) von Parametern (Γ). Ein Zufallszahlengenerator
(R) ermittelt Zufallszahlen (bzw. wie häufig üblich Pseudo-Zufallszahlen) r und führt diese dem zweiten Block (H) zu. Ebenso können dem zweiten Block (H) weitere Variablen (nicht dargestellt) zugeführt werden, die charakterisierende Parameter kodieren Der zweite Block (H) generiert aus den Zufallszahlen (r) und ggf. den weiteren Variablen abhängig von den Parametern (Γ) jeweils einen generierten zeitlichen Verlauf (χ').
Derart generierte zeitliche Verläufe (χ') und gemessene zeitliche Verläufe (x) werden abwechselnd dem ersten Block (U) zugeführt, d.h. dem ersten Block (U) wird entweder ein generierter zeitlicher Verlauf (χ') oder ein gemessener zeitlicher Verlauf (x) zugeführt. Es ist auch möglich, dass dem ersten Block (U) diese beiden Verläufe (x, x') zugeführt werden, wenn der erste Block (U) über einen internen Selektionsmechanismus (nicht dargestellt) verfügt, der jeweils einen dieser beiden Verläufe (x, x') auswählt.
Der erste Block (U) wird wie in Figur 3 illustriert durch Anpassung der sein Verhalten bestimmenden Parameter (Y) trainiert, möglichst gut unterscheiden zu können, ob die ihm zugeführte Größe ein gemessener zeitlicher Verlauf (x) oder ein generierter zeitlicher Verlauf (χ') ist. Die Information, ob diese Einstufung des ersten Blocks (U) richtig oder falsch ist, wird im Diskriminationsergebnis (d) kodiert. Erster Block (U) und zweiter Block (H) werden nun wechselseitig trainiert, wobei die Parameter (Y) des ersten Blocks (U) darauf trainiert werden, dass die Einstufung des ersten Blocks (U) möglichst oft richtig ist und die Parameter (Γ) des zweiten Blocks (H) darauf, dass die Einstufung des ersten Blocks (U) möglichst oft falsch ist.
Figur 6b zeigt den entsprechenden Aufbau, wie er zum Generieren von generierten zeitlichen Verläufen (χ') zum Einsatz kommen kann. Der Zufallszahlengenerator (R) generiert Zufallszahlen bzw. Pseudo-Zufallszahlen (r), und der zweite Block (H) erzeugt abhängig hiervon und ggf. abhängig von den weiteren Größen mittels der im Training angepassten Parameter (Γ) die generierten zeitlichen Verläufe (χ')

Claims

Ansprüche
1. Verfahren zum Ermitteln von Emissionen (E) eines mittels einer Brennkraftmaschine (20) angetriebenen Kraftfahrzeugs (10) in einem praktischen Fahrbetrieb (Englisch: real driving emissions), wobei ein maschinelles Lern- System (M) mittels gemessener zeitlicher Verläufe (x) von Betriebsgrößen der Brennkraftmaschine (20) und/oder des Kraftfahrzeugs (10) darauf trainiert wird, zeitliche Verläufe (χ') von zu generieren, und dann die Emissionen (e) abhängig von diesen generierten zeitlichen Verläufen (χ') zu ermitteln.
2. Verfahren nach Anspruch 1, wobei das maschinelle Lernsystem (M) einen ersten Teil (K) umfasst, der die gemessenen zeitlichen Verläufe (x) zunächst in erste Größen (z, qe(z|x)) transformiert, die jeweils latente Variablen (z) charakterisieren, wobei ein Raum latenter Variablen eine reduzierte Dimensi- onalität aufweist,
und wobei das maschinelle Lernsystem (M) einen zweiten Teil (D) umfasst, der abhängig von latenten Variablen (z) zweite Größen (χ', ρφ(χ'|ζ)) generiert, die jeweils die generierten zeitlichen Verläufe (χ') der Betriebsgrößen charakterisieren.
3. Verfahren nach Anspruch 2, wobei die ersten Größen (z, qe(z|x)), die die latenten Variablen (z) charakterisieren die latenten Variablen (z) selbst sind und wobei der zweite Teil ein von dritten Parametern (γ) parametriertes Gau ßprozess- Modell umfasst, und die dritten Parameter (γ) sowie die laten- ten Variablen (z) beim Training des maschinellen Lernsystems (M) derart an- gepasst werden, dass eine marginale Wahrscheinlichkeit (p(x|z)) der Rekonstruktion der gemessenen zeitlichen Verläufe (x) unter diesen latenten Variablen (z) maximiert wird.
4. Verfahren nach Anspruch 3, wobei der erste Teil (K) ein von vierten Parametern (v) parametriertes neuronales Netz umfasst, und die Anpassung der latenten Variablen (z) beim Training durch Anpassen der vierten Parameter (v) geschieht.
5. Verfahren nach Anspruch 2, wobei erster Teil (K) und zweiter Teil (D) des maschinellen Lernsystems (M) einen Autoencoder bilden.
6. Verfahren nach Anspruch 2, wobei erster Teil (K) und zweiter Teil (D) des maschinellen Lernsystems (M) einen variationeilen Autoencoder (Englisch: variational Autoencoder) bilden.
7. Verfahren nach Anspruch 2, wobei die ersten Größen, die die latenten Variablen (z) charakterisieren die latenten Variablen (z) selbst sind und der erste Teil (K) aus gemessenen zeitlichen Verläufen (x) mittels eines Verfahrens des spärlichen Wörterbuchlernens (Englisch: sparse dictionary learning) die latenten Variablen (z) ermittelt, welche Koeffizienten der jeweiligen gemessenen zeitlichen Verläufe (x) bei der Darstellung als Linearkombination des mittels dieses Verfahrens gelernten Wörterbuchs darstellen.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei latente Variablen (z) vorgegeben werden und das maschinelle Lernsystem (M) abhängig von diesen vorgegebenen latenten Variablen (z) zeitliche Verläufe (χ') der Betriebsgrößen generiert, und dann die Emissionen (e) abhängig von diesen generierten zeitlichen Verläufen (χ') ermittelt werden.
9. Verfahren nach Anspruch 8, wobei die latenten Variablen (z) mittels eines Verfahrens der statistischen Versuchsplanung ermittelt werden.
10. Verfahren nach Anspruch 8, wobei eine Wahrscheinlichkeitsdichteverteilung der latenten Variablen (z), die abhängig von den gemessenen zeitlichen Verläufen (x) ergeben ermittelt wird, und die vorgegebenen latenten Variablen (z) als eine Stichprobe aus dieser geschätzten Wahrscheinlichkeitsdichteverteilung gezogen werden.
11. Verfahren nach Anspruch 1, wobei das maschinelle Lernsystem (M) einen ersten Teil (U) umfasst, dem entweder gemessene zeitliche Verläufe (x) der Betriebsgrößen oder von einem zweiten Teil (H) des maschinellen Lernsystems (M) generierte zeitliche Verläufe (χ') der Betriebsgrößen, zugeführt werden,
wobei der erste Teil (U) darauf trainiert wird, möglichst gut entscheiden zu können, ob ihm ein gemessener zeitlicher Verlauf (x) oder ein generierter zeitlicher Verlauf (χ') der Betriebsgrößen zugeführt wird,
wobei der zweite Teil (H) darauf trainiert wird, abhängig von zufällig gewählten Eingangsgrößen (r) zeitliche Verläufe (χ') der Betriebsgrößen möglichst derart zu generieren, dass der erste Teil (U) möglichst schlecht entscheiden kann, ob ihm ein gemessener zeitlicher Verlauf (x) oder ein generierter zeitlicher Verlauf (χ') der Betriebsgrößen zugeführt wird.
12. Verfahren nach Anspruch 11, wobei zufällig gewählte Eingangsgrößen (r) vorgegeben werden und das maschinelle Lernsystem abhängig von diesen vorgegebenen Eingangsgrößen zeitliche Verläufe (χ') der generiert, und dann die Emissionen abhängig von diesen generierten zeitlichen Verläufen ermittelt werden
13. Verfahren nach Anspruch 12, wobei mindestens einige der zufällig gewählten Eingangsgrößen mittels eines Verfahrens der statistischen Versuchsplanung ermittelt werden.
14. Verfahren nach einem der vorherigen Ansprüche, wobei das Kraftfahrzeug abhängig von den ermittelten Emissionen angesteuert wird.
15. Computerprogramm (220), welches eingerichtet ist, das Verfahren nach einem der vorhergehenden Schritte auszuführen.
16. Maschinenlesbares Speichermedium (210), auf dem das Computerprogramm nach Anspruch 15 gespeichert ist.
17. Computer (200), der eingerichtet ist, das Verfahren nach einem der Ansprüche 1 bis 14 durchzuführen.
EP18793567.1A 2017-10-16 2018-10-09 Berechnung von abgasemssionen eines kraftfahrzeugs Pending EP3698036A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017218476.0A DE102017218476A1 (de) 2017-10-16 2017-10-16 Verfahren und Vorrichtung zum Ermitteln von Emissionen
PCT/EP2018/077474 WO2019076685A1 (de) 2017-10-16 2018-10-09 Berechnung von abgasemssionen eines kraftfahrzeugs

Publications (1)

Publication Number Publication Date
EP3698036A1 true EP3698036A1 (de) 2020-08-26

Family

ID=64023977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18793567.1A Pending EP3698036A1 (de) 2017-10-16 2018-10-09 Berechnung von abgasemssionen eines kraftfahrzeugs

Country Status (7)

Country Link
US (1) US11078857B2 (de)
EP (1) EP3698036A1 (de)
JP (1) JP7119101B2 (de)
KR (1) KR102538418B1 (de)
CN (1) CN111201374B (de)
DE (1) DE102017218476A1 (de)
WO (1) WO2019076685A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201718756D0 (en) * 2017-11-13 2017-12-27 Cambridge Bio-Augmentation Systems Ltd Neural interface
DE102019205521A1 (de) * 2019-04-16 2020-10-22 Robert Bosch Gmbh Verfahren zur Reduzierung von Abgasemissionen eines Antriebssystems eines Fahrzeugs mit Verbrennungsmotor
DE102019205520A1 (de) * 2019-04-16 2020-10-22 Robert Bosch Gmbh Verfahren zum Ermitteln von Fahrverläufen
DE102019205519A1 (de) * 2019-04-16 2020-10-22 Robert Bosch Gmbh Verfahren zum Ermitteln von Fahrverläufen
AT523093A1 (de) * 2019-11-12 2021-05-15 Avl List Gmbh Verfahren und System zum Analysieren und/oder Optimieren einer Konfiguration einer Fahrzeuggattung
DE102019220574A1 (de) * 2019-12-27 2021-07-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Testen einer Maschine
DE102020100968B4 (de) 2020-01-16 2021-12-09 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren und Vorrichtung zur Auswertung von im praktischen Fahrbetrieb eines Fahrzeuges ermittelten Messwerten
DE102021103944A1 (de) 2021-02-19 2022-08-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs sowie Kraftfahrzeug mit einer Verbrennungskraftmaschine
CN112967508B (zh) * 2021-02-26 2022-03-18 安徽达尔智能控制系统股份有限公司 一种用于干线协调的智能决策方法及系统
DE102021205386A1 (de) * 2021-05-27 2022-12-01 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines hydraulischen Zylinders einer Arbeitsmaschine
CN113420813B (zh) * 2021-06-23 2023-11-28 北京市机械工业局技术开发研究所 一种车辆尾气检测设备颗粒物过滤棉状态的诊断方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6550451B1 (en) * 2002-06-04 2003-04-22 Delphi Technologies, Inc. Method of estimating residual exhaust gas concentration in a variable cam phase engine
ES2290222T3 (es) * 2002-08-16 2008-02-16 Powitec Intelligent Technologies Gmbh Metodo para la regulacion de un proceso termodinamico.
FR2862342B1 (fr) * 2003-11-19 2006-02-17 Renault Sas Procede et systeme d'estimation de quantites de particules emises dans les gaz d'echappement d'un moteur diesel d'un vehicule automobile
US7685871B2 (en) * 2008-03-18 2010-03-30 Delphi Technologies, Inc. System and method for estimating engine internal residual fraction using single-cylinder simulation and measured cylinder pressure
US8942912B2 (en) 2008-10-06 2015-01-27 GM Global Technology Operations LLC Engine-out NOx virtual sensor using cylinder pressure sensor
US8301356B2 (en) * 2008-10-06 2012-10-30 GM Global Technology Operations LLC Engine out NOx virtual sensor using cylinder pressure sensor
DE102008057494A1 (de) 2008-11-15 2009-07-02 Daimler Ag Verfahren zum Betrieb eines Verbrennungsmotors
DE102009028374A1 (de) 2009-08-10 2011-02-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Adaption und/oder Diagnose eines in einem Hybridfahrzeug angeordneten Verbrennungsmotors
US8453431B2 (en) * 2010-03-02 2013-06-04 GM Global Technology Operations LLC Engine-out NOx virtual sensor for an internal combustion engine
DE102010028266A1 (de) * 2010-04-27 2011-10-27 Robert Bosch Gmbh Steuergerät und Verfahren zur Berechnung einer Ausgangsgröße für eine Steuerung
US10273886B2 (en) * 2012-01-18 2019-04-30 Toyota Motor Engineering & Manufacturing North America, Inc. Process for reducing abnormal combustion within an internal combustion engine
AT510912B1 (de) * 2012-03-06 2016-03-15 Avl List Gmbh Verfahren zur Emissionsoptimierung von Verbrennungskraftmaschinen
US9708991B2 (en) * 2013-02-20 2017-07-18 Robert Bosch Gmbh Real-time residual mass estimation with adaptive scaling
DE102016200782A1 (de) 2016-01-21 2017-07-27 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen einer Gasführungssystemgröße in einem Motorsystem mit einem Verbrennungsmotor
DE102017107271A1 (de) 2016-04-14 2017-07-06 FEV Europe GmbH Verfahren zur Ermittlung eines Leitfahrzyklus für Fahrversuche zur Ermittlung von Abgasemissionen von Kraftfahrzeugen

Also Published As

Publication number Publication date
WO2019076685A1 (de) 2019-04-25
CN111201374A (zh) 2020-05-26
KR102538418B1 (ko) 2023-06-02
KR20200066348A (ko) 2020-06-09
JP7119101B2 (ja) 2022-08-16
CN111201374B (zh) 2023-05-12
US11078857B2 (en) 2021-08-03
JP2020537087A (ja) 2020-12-17
US20200240346A1 (en) 2020-07-30
DE102017218476A1 (de) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2019076685A1 (de) Berechnung von abgasemssionen eines kraftfahrzeugs
EP1715165B1 (de) Verfahren und Vorrichtung zur Fehlerdiagnose für Verbrennungsmotoren
DE102018126501B3 (de) Verfahren zur Wartungsvorhersage von Komponenten einer Brennkraftmaschine mittels Körperschallsensor
DE102011088296A1 (de) Verfahren und Vorrichtung zur Dynamiküberwachung von Gas-Sensoren
DE102007009689B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasrückführung
DE102012207655B4 (de) Verfahren zur Diagnose eines Ventils einer Fluidzuleitung
DE102008001121A1 (de) Verfahren zur Diagnose einer im Abgassystem einer Brennkraftmaschine angeordneten Abgassonde und Vorrichtung zur Durchführung des Verfahrens
WO2009062787A1 (de) Ermittlung der kraftstoffqualität bei einer selbstzündenden brennkraftmaschine
DE102018213114A1 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors mit einem Common-Rail-Einspritzsystem
WO2017021183A1 (de) Verfahren zur erkennung fehlerhafter komponenten eines kraftstoffeinspritzsystems
EP1703110A1 (de) Verfahren zur Optimierung der Kalibrierung eines Verbrennungsmotors
EP2088486B1 (de) Verfahren zur Vermessung eines nichtlinearen dynamischen realen Systems mittels Versuchsplanung
DE102008057494A1 (de) Verfahren zum Betrieb eines Verbrennungsmotors
DE102018123832B4 (de) Kraftstoffeinspritzsystem für ein fahrzeugantriebssystem
DE102012021985A1 (de) Verfahren zur Überwachung einer Verbrennungskraftmaschine
DE102010030868A1 (de) Verfahren zur Diagnose und/oder zur Anpassung von mindestens einem System einer Vorrichtung
DE102006045785A1 (de) Verfahren zur Selbstdiagnose von Versuchsanordnungen sowie Versuchsanordnung, insbesondere Prüfstand
DE102006003156A1 (de) Verfahren und Vorrichtung zur Vorhersage des Verlaufs einer zeitlich veränderlichen Größe
DE102021203228B3 (de) Verfahren und Vorrichtung zur Manipulationskennung an einer technischen Einrichtung in einem Kraftfahrzeug mithilfe Methoden künstlicher Intelligenz
DE102015212371B4 (de) Verfahren zur Überwachung des Arbeitsbetriebs eines Piezoinjektors
DE102011076509A1 (de) Verfahren zur Diagnose und/oder zur Anpassung von mindestens einem System oder einer Systemkomponente einer Brennkraftmaschine
WO2022053613A1 (de) Verfahren und vorrichtung zum betreiben eines kraftstoffeinspritzventils mithilfe maschineller lernverfahren
EP3014093B1 (de) Verfahren zur ermittlung der absoluten einspritzmenge bei einem verbrennungsmotor sowie anordnung hierfür
DE102012200032A1 (de) Verfahren und Vorrichtung zur Dynamik-Diagnose von Sensoren
DE102007002801A1 (de) Verfahren zum Bestimmen einer Ausfallwahrscheinlichkeit mindestens eines Bauteils einer Antriebsvorrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230102