EP3679091A1 - Flammhemmende polyesterzusammensetzungen und deren verwendung - Google Patents

Flammhemmende polyesterzusammensetzungen und deren verwendung

Info

Publication number
EP3679091A1
EP3679091A1 EP18762080.2A EP18762080A EP3679091A1 EP 3679091 A1 EP3679091 A1 EP 3679091A1 EP 18762080 A EP18762080 A EP 18762080A EP 3679091 A1 EP3679091 A1 EP 3679091A1
Authority
EP
European Patent Office
Prior art keywords
component
polyester compositions
compositions according
flame retardant
retardant polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18762080.2A
Other languages
English (en)
French (fr)
Inventor
Harald Bauer
Sebastian HÖROLD
Martin Sicken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Clariant Plastics and Coatings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Plastics and Coatings Ltd filed Critical Clariant Plastics and Coatings Ltd
Publication of EP3679091A1 publication Critical patent/EP3679091A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/5205Salts of P-acids with N-bases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the present invention relates to flame-retardant polyester compositions and molded articles made therefrom.
  • Flammable plastics generally have to be equipped with flame retardants in order to achieve the high flame retardance requirements demanded by plastics processors and in part by the legislation. Preference - also for ecological reasons - are non-halogenated
  • dialkylphosphinates containing a small amount of selected telomers are suitable as flame retardants for polymers, the polymer only undergoing very little degradation upon incorporation of the flame retardant into the polymer matrix.
  • Flame retardants must often be added in high dosages in order to ensure a sufficient flame retardancy of the plastic according to international standards. Due to their chemical reactivity, which for the
  • Flame retardant especially at higher dosages, the processing stability of plastics. It can lead to increased polymer degradation, crosslinking reactions, outgassing or discoloration.
  • thermoplastic polyester polycarbonate
  • phosphinic acid salt phosphinic acid salt
  • thermoplastic polyester thermoplastic polyester, phosphinic acid salt, phosphazene and
  • reaction products of the melamine with phosphoric acid and / or condensed phosphoric acids or other nitrogen-containing flame retardants and optionally reinforcing agents and / or further additives are optionally reinforcing agents and / or further additives.
  • Polyester compositions that achieve all the required properties at the same time, in particular good electrical values and effective
  • polyester compositions based on phosphinate-containing flame retardant systems which have all the aforementioned properties at the same time and which in particular have good electrical values (CTI, GWFI) and effective flame retardancy, characterized by shortest possible afterburning times (UL94).
  • the invention provides flame-retardant polyester compositions containing
  • thermoplastic polyester as component A
  • Phosphinic acid salt of the formula (I) as component C Phosphinic acid salt of the formula (I) as component C.
  • Ri and R2 are ethyl
  • M is Al, Fe, TiOp or Zn
  • n 2 to 3, preferably 2 or 3
  • R 3 is ethyl
  • Met is Al, Fe, TiOq or Zn
  • n 2 to 3, preferably 2 or 3
  • Compositions contains the following reflexes:
  • the X-ray spectra are taken with an X-ray powder diffractometer
  • the sample is irradiated with Cu-K-alpha radiation and the step time is 1 second.
  • Preferred polyester compositions according to the invention are those whose X-ray powder diffractogram contains the following reflections: in the angular range 2 ⁇ of 9.099 ° to 9.442 °, of 18.619 ° to 18.984 ° and of 26.268 ° to 26.679 °.
  • the proportion of component A is usually 25 to 95% by weight, preferably 25 to 75% by weight.
  • the proportion of component A is usually 25 to 95% by weight, preferably 25 to 75% by weight.
  • Component B usually 1 to 45 wt .-%, preferably 20 to 40 wt .-%.
  • the proportion of Component C is usually 1 to 35% by weight, preferably 5 to 20% by weight.
  • the proportion of component D is usually 0.01 to 3% by weight, preferably 0.05 to
  • the proportion of component E is usually 0.001 to 1% by weight, preferably 0.01 to
  • the percentages for the proportions of components A to E are based on the total amount of the polyester composition.
  • the proportion of component E is 0.001 to 1% by weight
  • the proportion of component A is from 25 to 75% by weight
  • the proportion of component B is from 20 to 40% by weight
  • the proportion of component E is from 0.01 to 0.6% by weight
  • Preferred salts of component C are those in which M m + Zn 2+ , Fe 3+ or in particular Al 3+ .
  • Preferably used salts of component D are zinc, iron or
  • Preferably used salts of component E are those in which Met n + Zn 2+ , Fe 3+ or in particular Al 3+ .
  • the above-described flame retardant polyester compositions contain inorganic phosphonate as further component F. The use of the inventively used as component F.
  • the inorganic phosphonate (component F) preferably corresponds to the general formulas (IV) or (V)
  • Kat is a p-valent cation, in particular a cation of an alkali metal, alkaline earth metal, an ammonium cation and / or a cation of Fe, Zn or in particular of Al including the cations Al ( OH) or Al (OH) 2, and p is 1, 2, 3 or 4.
  • the inorganic phosphonate (component F) is preferably also aluminum phosphites of the formulas (VI), (VII) and / or (VIII)
  • Aluminum phosphite tetrahydrate [Al 2 (HPO 3) 3 * 4aq] to give aluminum phosphonate, Al 7 (HPO 3 ) 9 (OH) 6 (1,6-hexanediamine) i, 5 * 12H 2 O, by ⁇ 2 ( ⁇ 3 ) 3 * ⁇ 2 ⁇ 3 * ⁇ 2 ⁇ with x 2,27 - 1 and / or AUHePieOis.
  • Preferred inorganic phosphonates are water-insoluble or sparingly soluble salts.
  • Particularly preferred inorganic phosphonates are aluminum, calcium and zinc salts.
  • component F is a
  • Reaction product of phosphorous acid and an aluminum compound Reaction product of phosphorous acid and an aluminum compound.
  • Particularly preferred components F are aluminum phosphites with the
  • the preparation of the preferably used aluminum phosphites is carried out by reacting an aluminum source with a phosphorus source and optionally a template in a solvent at 20-200 ° C for a period of up to 4 days.
  • the aluminum source and the phosphorus source are mixed for 1 to 4 hours, heated under hydrothermal conditions or at reflux, filtered off, washed and z. B. at 1 10 ° C dried.
  • Preferred aluminum sources are aluminum isopropoxide, aluminum nitrate, aluminum chloride, aluminum hydroxide (eg pseudoboehmite).
  • Preferred sources of phosphorus are phosphorous acid, (acidic)
  • Preferred Alkaliphosphite are disodium phosphite, dinat umphosphithydrat, trisodium phosphite, Kaliumhydrogenphosphit Preferred Dinatriumphosphithydrat is Brüggolen ® H10 Fa. Brüggemann.
  • Preferred templates are 1, 6-hexanediamine, guanidine carbonate or ammonia.
  • Preferred alkaline earth metal phosphite is calcium phosphite.
  • the preferred ratio of aluminum to phosphorus to solvent is 1: 1: 3.7 to 1: 2.2: 100 mol.
  • the ratio of aluminum to template is 1: 0 to 1: 17 mol.
  • the preferred pH of the reaction solution is 3 to 9.
  • Preferred solvent is water.
  • the same salt of phosphinic acid as the phosphorous acid is used in the application, so z.
  • phosphinic acid aluminum diethylphosphinate together with aluminum phosphite or Zinkdiethylphosphinat together with zinc phosphite.
  • the above-described flame retardant polyester compositions contain as component F
  • Me is Fe, TiOr, Zn or in particular Al,
  • o is 2 to 3, preferably 2 or 3
  • Preferred compounds of the formula (III) are those in which Me is O 2 Zn 2+ , Fe 3+ or in particular Al 3+ .
  • Component F is preferably in an amount of 0.005 to 10 wt .-%, in particular in an amount of 0.02 to 5 wt .-%, based on the
  • the polyester composition according to the invention contains, as component H, a melamine polyphosphate having an average degree of condensation of from 2 to 200, preferably greater than or equal to 20.
  • Polyphosphate derivatives of melamine with a degree of condensation greater than or equal to 20 as a flame retardant is known.
  • DE 10 2005 016 195 A1 discloses a stabilized flame retardant containing 99 to 1% by weight.
  • Phosphinic acid and / or a phosphinic acid salt can be combined.
  • Preferred polyester compositions according to the invention contain as component H a melamine polyphosphate whose average
  • Condensation degree 20 to 200 in particular from 40 to 150, is.
  • the average is
  • polyester compositions according to the invention comprise, as component H, a melamine polyphosphate having a decomposition temperature of greater than or equal to 320 ° C, in particular greater than or equal to 360 ° C and most preferably greater than or equal to 400 ° C.
  • Melanin polyphosphates which are known from WO 2006/027340 A1 (corresponding to EP 1 789 475 B1) and WO 2000/002869 A1 (corresponding to EP 1 095 030 B1) are preferably used as components.
  • Melanninpolyphosphate are preferably used, the average degree of condensation between 20 and 200, in particular between 40 and 150, and the melamine content of 1, 1 to 2.0 mol, in particular 1, 2 to 1, 8 mol per mole of phosphorus atom.
  • Melanninpolyphosphate are also preferably used whose mean condensation ridge (number average) is> 20 whose decomposition temperature is greater than 320 ° C., whose molar ratio of 1,3,5-triazine compound to phosphorus is less than 1, 1, in particular 0.8 to 1, Is 0 and the pH of a 10% slurry in water at 25 ° C is 5 or higher, preferably 5.1 to 6.9.
  • the proportion of component H is usually 0 and 25 wt .-%, preferably 1 to 25 wt .-%, in particular 2 to 10 wt .-%, based on the total amount of
  • melamine polyphosphate as component H, the following are additionally present in the polyester compositions according to the invention
  • Reflexes (as X-ray powder diffraction gram) measured: In the angular range 2 ⁇ from 14.765 ° to 15.076 °.
  • the polyester composition according to the invention contains, as component I, melamine cyanurate.
  • the melamine cyanurate used according to the invention as component I is known as a synergist in conjunction with diethyl phosphates in flame retardants for polymeric molding compositions, for example from WO 97/39053 A1).
  • the proportion of component I is usually 0 and 25 wt .-%, preferably 1 to 25 wt .-%, in particular 4 to 10 wt .-%, based on the total amount of
  • Polyester composition When using melamine cyanurate as component I are in the
  • Polyester compositions having a Comparative Tracking Index measured according to the International Electrotechnical Commission Standard IEC-601 12/3, of greater than or equal to 500 volts. Also preferred flame-retardant according to the invention
  • Polyester compositions achieve a rating of V0 to UL-94, especially measured on moldings of 3.2 mm to 0.4 mm thickness.
  • Polyester compositions have a Glow Wire Flammability Index according to IEC-60695-2-12 of at least 960 ° C, in particular measured
  • Polyester compositions have a glow-wire resistance, expressed by glow-wire-ignition temperature (GWIT) according to IEC-60695-2-13 of at least 775 ° C, in particular measured on molded parts of 0.75 - 3 mm thickness.
  • GWIT glow-wire-ignition temperature
  • the flame retardant combinations used according to the invention stabilize the polyester (component A) very well against thermal degradation. This is reflected in the change in the specific viscosity of the polyester
  • Polyester compositions The thermal stress occurring there results in partial degradation of the polyester chains, which results in a reduction in the average molecular weight and, associated therewith, a reduction in the viscosity of a polyester solution.
  • Capillary viscometers are 130 cm 3 / g. After compounding and shaping a polybutylene terephthalate composition according to the invention, typical values for the specific viscosity of the processed polybutylene terephthalate (determined as indicated above) range between 65 and 150 cm 3 / g, preferably between 100 and 129 cm 3 / g.
  • polyester compositions according to the invention comprise as component A one or more thermoplastic polyesters.
  • polyesters of component A are usually around
  • (cyclo) aliphatic or aromatic-aliphatic polyesters derived from (cyclo) aliphatic and / or aromatic dicarboxylic acids or their polyester-forming derivatives, such as their dialkyl esters or anhydrides, and from (cyclo) aliphatic and / or araliphatic diols or from (cyclo) aliphatic and / or aromatic hydroxycarboxylic acids or their polyester-forming derivatives, such as their alkyl esters or anhydrides derived.
  • (Cyclo) aliphatic includes cycloaliphatic and aliphatic compounds.
  • thermoplastic polyesters of component A are preferably selected from the group of polyalkylene esters of aromatic and / or aliphatic dicarboxylic acids or their dialkyl esters.
  • the thermoplastic polyesters used as component A can be prepared by known methods (Kunststoff-Handbuch, Vol. VIII, pages 695-710, Karl Hanser Verlag, Kunststoff 1973).
  • Preferably used components A are aromatic-aliphatic
  • thermoplastic polyesters and preferably thermoplastic polyesters derived by reacting aromatic dicarboxylic acids or their polyester-forming derivatives with aliphatic C 2 -C 10 -diols, in particular with C 2 -C 4 -diols.
  • Polyalkylene enterephthalates and particularly preferably polyethylene terephthalates or polybutylene terephthalates.
  • Polyalkylene terephthalates preferably contain at least 80 mol%, in particular 90 mol%, based on the dicarboxylic acid, units derived from terephthalic acid.
  • polyalkylene terephthalates may contain up to 20 mol% of radicals of other aromatic dicarboxylic acids having 8 to 14 carbon atoms or radicals of aliphatic dicarboxylic acids having 4 to 12 carbon atoms, such as radicals of phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid,
  • Polyalkylene terephthalates can be prepared by incorporation of relatively small amounts of trihydric or trihydric alcohols or tribasic or tetrabasic carboxylic acids, as described, for example, in US Pat. As described in DE-A-19 00 270 are branched. Examples of preferred branching agents are trimesic acid, trimellitic acid, trimethylolethane and -propane and pentaerythritol. Particularly preferred components A are polyalkylene terephthalates which are prepared solely from terephthalic acid and its reactive derivatives (eg.,
  • Dialkyl esters and ethylene glycol and / or propanediol-1, 3 and / or butanediol-1, 4 are prepared (polyethylene and Polytrimethylen- and
  • Polybutylene terephthalate and mixtures of these polyalkylene terephthalates.
  • Preferred polybutylene terephthalates contain at least 80 mol%
  • the preferred polybutylene terephthalates may further contain, in addition to 1,4-butanediol radicals, up to 20 mol% of other aliphatic diols having 2 to 12 carbon atoms or cycloaliphatic diols having 6 to 21 carbon atoms, e.g. B. residues of
  • Polyalkylene terephthalates are also copolyesters which are prepared from at least two of the abovementioned acid components and / or from at least two of the abovementioned alcohol components and / or butanediol-1,4.
  • thermoplastic component used as component A according to the invention is thermoplastic component used as component A according to the invention.
  • Polyesters may also be used in admixture with other polyesters and / or other polymers.
  • component B fillers and / or preferably reinforcing materials are used, preferably glass fibers. It can also be mixtures of two or several different fillers and / or reinforcing materials used.
  • Preferred fillers are mineral particulate fillers based on talc, mica, silicate, quartz, titanium dioxide, wollastonite, kaolin, amorphous silicas, nanoscale minerals, particularly preferably montmorillonites or nano-boehmites, magnesium carbonate, chalk, feldspar, glass beads and / or barium sulfate. Particular preference is given to mineral particulate fillers based on talc, wollastonite and / or kaolin.
  • needle-shaped mineral fillers are also particularly preferably used. Under needle-shaped mineral fillers is understood according to the invention a mineral filler with pronounced needle-like character. Preferred are needle-shaped wollastonites.
  • the mineral has a length to diameter ratio of 2: 1 to 35: 1, more preferably from 3: 1 to 19: 1, particularly preferably from 4: 1 to 12: 1.
  • the average particle size of the acicular mineral fillers used according to the invention as component B is preferably less than 20 ⁇ m, more preferably less than 15 ⁇ m, particularly preferably less than 10 ⁇ m, determined using a CILAS granulometer.
  • the components B preferably used according to the invention are reinforcing materials. This may, for example, to
  • Reinforcement based on carbon fibers and / or glass fibers act.
  • the filler and / or reinforcing material may in a preferred
  • Be surface-modified embodiment preferably with a
  • Adhesive or a primer system particularly preferably on
  • Silane In particular when glass fibers are used, in addition to silanes, polymer dispersions, film formers, branching agents and / or
  • Fiber processing aids are used.
  • the glass fibers preferably used according to the invention as component B may be short glass fibers and / or long glass fibers. As short or long glass fibers, cut fibers can be used. Short glass fibers can also be used in the form of ground glass fibers.
  • glass fibers can also be used in the form of continuous fibers, for example in the form of rovings, monofilaments,
  • Filament yarns or twines or glass fibers can be used in the form of textile fabrics, for example as glass fabrics, as
  • Glass braid or as a glass mat Glass braid or as a glass mat.
  • Polyester matrix range from 0.05 to 10 mm, preferably from 0.1 to 5 mm. After incorporation into the polyester matrix, the length of the glass fibers has decreased. Typical fiber lengths for short glass fibers after the
  • Incorporation into the polyester matrix ranges from 0.01 to 2 mm, preferably from 0.02 to 1 mm.
  • the diameters of the individual fibers can vary within wide ranges. Typical diameters of the individual fibers range from 5 to 20 ⁇ m.
  • the glass fibers can have any cross-sectional shapes, for example round, elliptical, n-cornered or irregular cross-sections. Glass fibers with mono- or multilobal cross-sections can be used.
  • Glass fibers can be used as continuous fibers or as cut or ground glass fibers.
  • the glass fibers themselves can be selected, for example, from the group of E-glass fibers, A-glass fibers, C-glass fibers, D-glass fibers, M-glass fibers, S-glass fibers,
  • the glass fibers are preferably provided with a size, which preferably contains polyurethane as a film former and aminosilane as adhesion promoter.
  • E glass fibers have the following chemical composition: S1O2 50-56%; AI2O3 12-16%; CaO 16-25%; MgO ⁇ 6%; B2O3 6-13%; F ⁇ 0.7%; Na 2 O 0.3-2%; K2O 0.2-0.5%; Fe 2 Os 0.3%.
  • R glass fibers have the following chemical composition: S1O2 50-65%; AI2O3 20-30%; CaO 6-16%; MgO 5-20%; Na 2 O 0.3-0.5%; K2O 0.05-0.2%; Fe 2 Os 0.2-0.4%, T1O2 0.1-0.3%.
  • ECR glass fibers have the following chemical composition: S1O2 57.5-58.5%; AI2O3 17.5-19.0%; CaO 11, 5-13.0%; MgO 9.5-1 1, 5.
  • Component C may contain small amounts of salts of component D and salts of component E, for example up to 10 wt .-% of
  • Component D preferably 0.01 to 6 wt .-%, and in particular 0.2 to 2.5 wt .-% thereof, and up to 10 wt .-% of component E, preferably 0.01 to 6 wt .-% , And in particular 0.2 to 2.5 wt .-% thereof based on the amount of components C, D and E.
  • the salts of ethylphosphonic acid used according to the invention as component E are suitable as additives to diethyl phosphates in
  • Flame retardants for polymeric molding compositions also known, for example from DE 102007041594 A1.
  • components C, D, E and optionally F, H and / or I are in particulate form, wherein the average
  • Particle size (dso) is 1 to 100 ⁇ .
  • the polyester compositions according to the invention may contain as component G further additives.
  • Preferred components I for the purposes of the present invention are antioxidants, UV stabilizers,
  • Gamma ray stabilizers for antioxidants, antistatic agents, emulsifiers, nucleating agents, plasticizers, processing aids, impact modifiers, dyes, pigments and / or other flame retardants that differ from components C, D, E, F, H and I.
  • phosphates such as melamine poly (metal phosphates).
  • metal phosphates such as melamine poly (metal phosphates).
  • Preferred metals for this purpose are the elements of FIG. 2.
  • Main group the 3rd main group, the 2nd subgroup, the 4th subgroup and the subgroup Villa of the Periodic Table and cerium and / or lanthanum.
  • Melamine poly (metal phosphates) are preferably melamine poly (zinc phosphates), melamine poly (magnesium phosphates) and / or melamine poly (calcium phosphates).
  • melamine poly metal phosphates
  • Hydrogen phosphato or pyrophosphato metallates with complex anions containing a have four- or réellebindiges metal atom as a coordination center with bidentate hydrogen phosphate or pyrophosphate ligands.
  • melamine-intercalated aluminum, zinc or magnesium salts of condensed phosphates are also preferred.
  • Bis-melamine-zinc diphosphate and / or bis-melamine alumotriphosphate Bis-melamine-zinc diphosphate and / or bis-melamine alumotriphosphate.
  • Aluminum phosphates Preference is given to aluminum phosphates, aluminum monophosphates; Aluminum orthophosphates (AIPO4), aluminum hydrogen phosphate (Al2 (HPO4) 3) and / or aluminum dihydrogen phosphate
  • calcium phosphate zinc phosphate, titanium phosphate and / or iron phosphate
  • Calcium dihydrogen pyrophosphate magnesium pyrophosphate zinc pyrophosphate and / or aluminum pyrophosphate.
  • the foregoing and other related and phosphates add about the types APP include Type II, AMPP, MPP, MPyP, PiPyP. PPaz, Safire ® 400, Safire ® 600, EDAP and others.
  • DE-A-102007036465 and EP-A-31331 12 are expressly among the usable components I.
  • the other additives are known per se as additives to polyester compositions and can be used alone or in admixture or in the form of masterbatches.
  • the abovementioned components A, B, C, D, E and optionally F, G, H and / or I can be processed in a wide variety of combinations with the flameproofed polyester composition according to the invention. It is thus possible to mix the components into the polyester melt at the beginning or at the end of the polycondensation or in a subsequent compounding process. Furthermore, there are processing processes in which individual components are added later. This is especially practiced when using pigment or additive masterbatches. In addition, there is the possibility, in particular powdered components on by the
  • Polyester compositions may be combined by mixing prior to incorporation into the polyester matrix.
  • conventional mixing units can be used, in which the components in a suitable mixer, for. B. 0.01 to 10 hours at 0 to 300 ° C mixed.
  • Polyester compositions can also be prepared granules, which can then be introduced into the polyester matrix.
  • two or more components of the invention are also be prepared granules, which can then be introduced into the polyester matrix.
  • Polyester composition with granulation and / or binder in a suitable mixer or a granulating are processed into granules.
  • the initially formed crude product can be dried in a suitable dryer or tempered for further grain buildup.
  • polyester composition of the present invention or two or more components thereof may be prepared by roll compaction in one embodiment.
  • polyester composition according to the invention or two or more components thereof may in one embodiment be prepared by mixing, extruding, chopping (or breaking) the ingredients.
  • polyester composition of the present invention or two or more components thereof may be prepared by spray granulation in one embodiment.
  • the flame-retardant polymer molding composition according to the invention is preferably in granular form, for. B. as an extrudate or as a compound before.
  • the granules preferably have a cylindrical shape with a circular, elliptical or irregular base, spherical shape, pillow shape, cube shape, cuboid shape, prism shape.
  • Typical length to diameter ratio of the granules are 1 to 50 to 50 to 1, preferably 1 to 5 to 5 to 1.
  • the granules preferably have a diameter of 0.5 to 15 mm, more preferably of 2 to 3 mm and preferably a length of 0.5 to 15 mm, particularly preferably 2 to 5 mm.
  • the invention also relates to moldings produced from the flame-retardant polyester composition described above comprising the components A, B, C, D and E and optionally the components F and / or G.
  • the molded parts according to the invention may be any desired formations. Examples of these are fibers, films or moldings, obtainable from the novel flame-retardant polyester molding compositions by any desired molding process, in particular by injection molding or extrusion.
  • the preparation of the flame-retardant polyester moldings according to the invention can be carried out by any molding process. Examples include injection molding, pressing, foam injection, gas injection molding, blow molding,
  • the molded parts are preferably injection-molded parts or extruded parts.
  • the flame-retardant polyester compositions according to the invention are suitable for the production of fibers, films and moldings, in particular for applications in the electrical and electronics sector.
  • the invention preferably relates to the use of the flame-retardant polyester compositions according to the invention in or for connectors, current-carrying parts in power distributors (Fl protection), circuit boards, potting compounds, power connectors, circuit breakers, lamp housings, LED housings,
  • the invention likewise preferably relates to the use of the flame-retardant polyester compositions according to the invention for the preparation of
  • the wall thickness of the shaped bodies according to the invention can typically be up to 10 mm. Particularly suitable are moldings with less than 1.5 mm wall thickness, more preferably less than 1 mm wall thickness and particularly preferably less than 0.5 mm wall thickness. The following examples illustrate the invention without limiting it.
  • polyesters (component A):
  • PBT Polybutylene terephthalate
  • BASF Ultradur ® 4500
  • PET Polyethylene terephthalate
  • Leistritz ZSE 27 HP-44D Leistritz ZSE 27 HP-44D at temperatures of 240 to 280 ° C incorporated.
  • the glass fibers were added via a side feeder.
  • the homogenized polymer strand was stripped off, cooled in a water bath and then granulated.
  • Injection molding machine type Arburg 320 C / KT processed to test specimens at melt temperatures of 260 to 280 ° C and tested for flame retardance and classified by the UL 94 test (Underwriter Laboratories).
  • UL 94 test Underwriter Laboratories
  • the Comparative Tracking Index of the molded parts was determined according to the International Electrotechnical Commission Standard IEC-601 12/3.
  • the Glow Wire Flammability Index (GWFI Index) was standardized
  • Polyamide compositions are measured using an X-ray powder diffractometer (XTert-MPD, Phillips). The sample was irradiated with Cu-K-alpha radiation and the step time was 1 second.
  • XTert-MPD X-ray powder diffractometer
  • polyester compositions according to the invention of Examples 1 to 5 are molding compositions which reach the fire classification UL 94 V-0 at 0.4 mm,
  • Example 5 The addition of another component F in Example 5 leads to a further improvement of the flame retardancy expressed by a reduced afterburning time.
  • Comparative Example C2 The omission of component D in Comparative Example C2 resulted in a reduced CTI value in addition to an extension of the fire protection time compared to Example 2.
  • Comparative Example C3 was by increasing the concentration of
  • polyester compositions according to the invention of Examples 6 to 10 are molding compositions which reach the fire classification UL 94 V-0 at 0.4 mm and at the same time have CTI 600 volts and GWFI 960 ° C.
  • the addition of another component F in Example 10 leads to a further improvement of the flame retardancy expressed by a reduced afterburning time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft flammhemmende Polyesterzusammensetzungen enthaltend - thermoplastischen Polyester als Komponente A, - Füllstoffe und/oder Verstärkungsstoffe als Komponente B, - Phosphinsäuresalz der Formel (I) als Komponente C worin R1 und R2 Ethyl bedeuten, M Al, Fe, TiOp oder Zn ist, m 2 bis 3 bedeutet, und p = (4 – m) / 2 ist - Verbindung ausgewählt aus der Gruppe der Al-, Fe-, TiOp- oder Zn-Salze der Ethylbutylphosphinsäure, der Dibutylphosphinsäure, der Ethylhexylphosphinsäure, der Butylhexylphosphinsäure und/oder der Dihexylphosphinsäure als Komponente D, und - Phosphonsäuresalz der Formel (II) als Komponente E worin R3 Ethyl bedeutet ist, Met Al, Fe, TiOq oder Zn ist, n 2 bis 3 bedeutet, und q = (4 – n) / 2 ist, wobei das Röntgenpulverdiffraktrogramm der Zusammensetzungen folgende Reflexe enthält: im Winkelbereich 2θ von 9,099° bis 9,442°, von 18,619° bis 18,984° un von 26,268° bis 26,679° und/oder im Winkelbereich 2θ von 5,112° bis 5,312°, von 6,097° bis 6,297°, von 10,082° bis 10,282°, von 10,350° bis 10,550° und von 12,308° bis 12,508° und/oder im Winkelbereich 2θ von 9,117° bis 9,317° und von 18,537° bis 18,737° 5 und/oder im Winkelbereich 2θ von 8,300° bis 8,500°. Die Polyesterzusammensetzungen lassen sich zur Herstellung von Fasern, Folien und Formkörpern, insbesondere für Anwendungen im Elektro- und Elektronikbereich einsetzen.

Description

Flamnnhennnnende Polyesterzusammensetzungen und deren Verwendung Beschreibung Die vorliegende Erfindung betrifft flammhemmende Polyesterzusammensetzungen sowie daraus hergestellte Formteile.
Brennbare Kunststoffe müssen in der Regel mit Flammschutzmitteln ausgerüstet werden, um die von den Kunststoffverarbeitern und teilweise vom Gesetzgeber geforderten hohen Flammschutzanforderungen erreichen zu können. Bevorzugt - auch aus ökologischen Gründen - werden nicht-halogenierte
Flammschutzmittelsysteme eingesetzt, die nur geringe oder keine Rauchgase bilden. Unter diesen Flammschutzmitteln haben sich die Salze von Phosphinsäuren (Phosphinate) als besonders für thermoplastische Polymere wirksam erwiesen (DE 2 252 258 A und DE 2 447 727 A).
Darüber hinaus sind synergistische Kombinationen von Phosphinaten mit bestimmten stickstoffhaltigen Verbindungen bekannt, die in einer ganzen Reihe von Polymeren als Flammschutzmittel effektiver wirken, als die Phosphinate allein (WO-2002/28953 A1 sowie DE 197 34 437 A1 und DE 197 37 727 A1 ).
Aus der US 7,420,007 B2 ist bekannt, dass Dialkylphosphinate enthaltend eine geringe Menge an ausgewählten Telomeren als Flammschutzmittel für Polymere geeignet sind, wobei das Polymere bei der Einarbeitung des Flammschutzmittels in die Polymermatrix nur einem recht geringen Abbau unterliegt.
Flammschutzmittel müssen häufig in hohen Dosierungen zugesetzt werden, um eine ausreichende Flammwidrigkeit des Kunststoffs nach internationalen Normen sicherzustellen. Aufgrund ihrer chemischen Reaktivität, die für die
Flammschutzwirkung bei hohen Temperaturen erforderlich ist, können
Flammschutzmittel, vor allem bei höheren Dosierungen, die Verarbeitungsstabilität von Kunststoffen beeinträchtigen. Es kann zu verstärktem Polymerabbau, zu Vernetzungsreaktionen, zu Ausgasungen oder Verfärbungen kommen.
Aus der DE 10 2007 041 594 A1 sind flammwidrige Polyestercompounds bekannt, die thermoplastischen Polyester, Polycarbonat, Phosphinsäuresalz und
gegebenenfalls Umsetzungsprodukte des Melamins mit Phosporsäure und/oder kondensierten Phosphorsäuren bzw. andere stickstoffhaltige Flammschutzmittel und gegebenenfalls Verstärkungsstoffe und/oder weitere Additive enthalten. Diese zeichnen sich durch eine sichere UL 94 V-0 Einstufung, erhöhte
Glühdrahtfestigkeit, verbesserte Mechanik und verringerten Polymerabbau aus.
Weitere flammwidrige Polyestercompounds mit diesem Eigenschaftsprofil werden in der DE 10 2010 049 968 A1 offenbart. Diese Compounds enthalten
thermoplastischen Polyester, Phosphinsäuresalz, Phosphazen und
gegebenenfalls Umsetzungsprodukte des Melamins mit Phosporsäure und/oder kondensierten Phosphorsäuren bzw. andere stickstoffhaltige Flammschutzmittel und gegebenenfalls Verstärkungsstoffe und/oder weitere Additive.
Bislang fehlt es jedoch an flammgeschützten phosphinathaltigen
Polyesterzusammensetzungen die alle geforderten Eigenschaften gleichzeitig erreichen, wie insbesondere gute elektrische Werte sowie einen effektiven
Flammschutz.
Es war daher Aufgabe der vorliegenden Erfindung, flammgeschützte
Polyesterzusammensetzungen auf Basis phosphinathaltiger Flammschutzsysteme zur Verfügung zu stellen, die alle vorgenannten Eigenschaften gleichzeitig aufweisen und die insbesondere gute elektrische Werte (CTI, GWFI), sowie einen effektiven Flammschutz, gekennzeichnet durch möglichst kurze Nachbrennzeiten (UL94) aufweisen.
Gegenstand der Erfindung sind flammhemmende Polyesterzusammensetzungen enthaltend
thermoplastischen Polyester als Komponente A, Füllstoffe und/oder Verstärkungsstoffe, vorzugsweise Glasfasern, als Komponente B,
Phosphinsäuresalz der Formel (I) als Komponente C
worin Ri und R2 Ethyl bedeuten,
M AI, Fe, TiOp oder Zn ist,
m 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
p = (4 - m) / 2 ist
Verbindung ausgewählt aus der Gruppe der AI-, Fe-, TiOp- oder Zn-Salze der Ethylbutylphosphinsäure, der Dibutylphosphinsäure, der
Ethylhexylphosphinsäure, der Butylhexylphosphinsäure und/oder der Dihexylphosphinsäure als Komponente D, und
Phosphonsäuresalz der Formel (II) als Komponente E
worin R3 Ethyl bedeutet ist,
Met AI, Fe, TiOq oder Zn ist,
n 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
q = (4 - n) / 2 ist, wobei das Röntgenpulverdiffraktrogramm der
Zusammensetzungen folgende Reflexe enthält:
im Winkelbereich 2Θ von 9,099° bis 9,442°, von 18,619° bis 18,984° und von 26,268° bis 26,679° und/oder
im Winkelbereich 2Θ von 5,1 12° bis 5,312°, von 6,097° bis 6,297°, von 10,082° bis 10,282°, von 10,350° bis 10,550° und von 12,308° bis 12,508° und/oder
im Winkelbereich 2Θ von 9,1 17° bis 9,317° und von 18,537° bis 18,737° und/oder im Winkelbereich 2Θ von 8,300° bis 8,500°.
Die Röntgenspektren werden mit einem Röntgenpulverdiffraktometer,
beispielsweise mit einem Gerät X'Pert-MPD der Fa. Phillips vermessen. Dabei wird die Probe mit Cu-K-alpha-Strahlung bestrahlt und die Schrittzeit beträgt 1 Sekunde.
Bevorzugte erfindungsgemäße Polyesterzusammensetzungen sind solche, deren Röntgenpulverdiffraktrogramm folgende Reflexe enthält: im Winkelbereich 2Θ von 9,099° bis 9,442°, von 18,619° bis 18,984° und von 26,268° bis 26,679°.
In der erfindungsgemäßen Polyesterzusammensetzung beträgt der Anteil an Komponente A üblicherweise 25 bis 95 Gew.-%, vorzugsweise 25 bis 75 Gew.-%. In der erfindungsgemäßen Polyesterzusammensetzung beträgt der Anteil an
Komponente B üblicherweise 1 bis 45 Gew.-%, vorzugsweise 20 bis 40 Gew.-%.
In der erfindungsgemäßen Polyesterzusammensetzung beträgt der Anteil an Komponente C üblicherweise 1 bis 35 Gew.-%, vorzugsweise 5 bis 20 Gew.-%.
In der erfindungsgemäßen Polyesterzusammensetzung beträgt der Anteil an Komponente D üblicherweise 0,01 bis 3 Gew.-%, vorzugsweise 0,05 bis
1 ,5 Gew.-%. In der erfindungsgemäßen Polyesterzusammensetzung beträgt der Anteil an Komponente E üblicherweise 0,001 bis 1 Gew.-%, vorzugsweise 0,01 bis
0,6 Gew.-%.
Dabei beziehen sich die Prozentangaben für die Anteile der Komponenten A bis E auf die Gesamtmenge der Polyesterzusammensetzung.
Bevorzugt werden flammhemmende Polyesterzusammensetzungen, bei denen der Anteil von Komponente A 25 bis 95 Gew.-%, der Anteil von Komponente B 1 bis 45 Gew.-%,
der Anteil von Komponente C 1 bis 35 Gew.-%,
der Anteil von Komponente D 0,01 bis 3 Gew.-%, und
der Anteil von Komponente E 0,001 bis 1 Gew.-%,
beträgt, wobei die Prozentangaben sich auf die Gesamtmenge der
Polyesterzusammensetzung beziehen.
Besonders bevorzugt werden flammhemmende Polyesterzusammensetzungen bei denen
- der Anteil von Komponente A 25 bis 75 Gew.-%,
der Anteil von Komponente B 20 bis 40 Gew.-%,
der Anteil von Komponente C 5 bis 20 Gew.-%,
der Anteil von Komponente D 0,05 bis 1 ,5 Gew.-%, und
der Anteil von Komponente E 0,01 bis 0,6 Gew.-%,
beträgt.
Bevorzugt eingesetzte Salze der Komponente C sind solche, worin Mm+ Zn2+, Fe3+ oder insbesondere Al3+ bedeuten. Bevorzugt eingesetzte Salze der Komponente D sind Zink-, Eisen- oder
insbesondere Aluminiumsalze.
Bevorzugt eingesetzte Salze der Komponente E sind solche, worin Metn+ Zn2+, Fe3+ oder insbesondere Al3+ bedeuten.
Ganz besonders bevorzugt werden flammhemmende
Polyesterzusammensetzungen, in denen M und Met AI bedeuten, m und n 3 sind und in denen die Verbindungen der Komponente D als Aluminiumsalze vorliegen. In einer bevorzugten Ausführungsform enthalten die oben beschriebenen flammhemmenden Polyesterzusammensetzungen anorganisches Phosphonat als weitere Komponente F. Die Verwendung der erfindungsgemäß als Komponente F eingesetzten
anorganischen Phosphonate oder auch Salze der phosphorigen Säure
(Phosphite) sind als Flammschutzmittel ist bekannt. So offenbart
WO 2012/045414 A1 Flammschutzmittelkombinationen, die neben
Phosphinsäuresalzen auch Salze der phosphorigen Säure (= Phosphite) enthalten.
Bevorzugt entspricht das anorganische Phosphonat (Komponente F) den allgemeinen Formeln (IV) oder (V)
[(HO)PO2]2-p/2 KatP+ (IV)
[(HO)2PO]-p KatP+ (V) worin Kat ein p-wertiges Kation, insbesondere ein Kation eines Alkalimetalls, Erdalkalimetalls, ein Ammoniumkation und/oder ein Kation von Fe, Zn oder insbesondere von AI einschließlich der Kationen AI(OH) oder AI(OH)2 ist, und p 1 , 2, 3 oder 4 bedeutet. Bevorzugt handelt es sich bei dem anorganischen Phosphonat (Komponente F) um Aluminiumphosphit [AI(H2PO3)3] , sekundäres Aluminiumphosphit [Al2(HPO3)3] , basisches Aluminiumphosphit [AI(OH)(H2PO3)2*2aq], Aluminiumphosphittetra- hydrat [AI2(HPO3)3*4aq], Aluminiumphosphonat, AI7(HPO3)9(OH)6(1 ,6- Hexandiamin)i,5 *12H2O, ΑΙ2(ΗΡθ3)3*χΑΐ2θ3*ηΗ2Ο mit x = 2,27 - 1 und/oder
Bei dem anorganischen Phosphonat (Komponente F) handelt es sich bevorzugt auch um Aluminiumphosphite der Formeln (VI), (VII) und/oder (VIII)
Al2(HPO3)3 X (H2O)q (VI), wobei q 0 bis 4 bedeutet,
Al2,ooMz(HPO3)y(OH)v x (H2O> lw (VII) wobei M Alkalimetallkationen, z 0,01 bis 1 ,5 und y 2,63 bis 3,5 und v 0 bis 2 und w 0 bis 4 bedeutet;
AI2,oo(HPO3)u(H2PO3)t x (H2O)s (VI I I), wobei u 2 bis 2,99 und 1 2 bis 0,01 und s 0 bis 4 bedeutet,
und/oder
um Aluminiumphosphit [AI(H2PO3)3] , um sekundäres Aluminiumphosphit
[AI2(HPO3)3] , um basisches Aluminiumphosphit [AI(OH)(H2PO3)2*2aq], um
Aluminiumphosphittetrahydrat [Al2(HPO3)3*4aq], um Aluminiumphosphonat, um AI7(HPO3)9(OH)6(1 ,6-Hexandiamin)i ,5*12H2O, um ΑΙ2(ΗΡθ3)3*χΑΐ2θ3*ηΗ2Ο mit x = 2,27 - 1 und/oder AUHePieOis.
Bevorzugte anorganische Phosphonate (Komponente F) sind in Wasser unlösliche bzw. schwerlösliche Salze.
Besonders bevorzugte anorganische Phosphonate sind Aluminium-, Calcium- und Zinksalze.
Besonders bevorzugt handelt es sich bei Komponente F um ein
Umsetzungsprodukt aus phosphoriger Säure und einer Aluminiumverbindung.
Besonders bevorzugte Komponenten F sind Aluminiumphosphite mit den
CAS-Nummern 15099-32-8, 1 19103-85-4, 220689-59-8, 56287-23-1 ,
156024-71 -4, 71449-76-8 und 15099-32-8.
Die Herstellung der bevorzugt eingesetzten Aluminiumphosphite erfolgt durch Umsetzung einer Aluminiumquelle mit einer Phosphorquelle und wahlweise einem Templat in einem Lösungsmittel bei 20 - 200 °C während einer Zeitspanne bis zu 4 Tagen. Aluminiumquelle und Phosphorquelle werden dazu 1 - 4 h vermischt, unter hydrothermalen Bedingungen oder am Rückfluss erhitzt, abfiltriert, gewaschen und z. B. bei 1 10 °C getrocknet. Bevorzugte Aluminiumquellen sind Aluminiumisopropoxid, Aluminiumnitrat, Aluminiumchlorid, Aluminiumhydroxid (z. B. Pseudoböhmit).
Bevorzugte Phosphorquellen sind Phosphorige Säure, (saures)
Ammoniumphosphit, Alkaliphosphite oder Erdalkaliphosphite.
Bevorzugte Alkaliphosphite sind Dinatriumphosphit, Dinat umphosphithydrat, Trinatriumphosphit, Kaliumhydrogenphosphit Bevorzugtes Dinatriumphosphithydrat ist Brüggolen® H10 der Fa. Brüggemann.
Bevorzugte Template sind 1 ,6-Hexandiamin, Guanidincarbonat oder Ammoniak.
Bevorzugtes Erdalkaliphosphit ist Calciumphosphit.
Das bevorzugte Verhältnis von Aluminium zu Phosphor zu Lösungsmittel ist dabei 1 : 1 : 3,7 bis 1 : 2,2 : 100 mol. Das Verhältnis von Aluminium zu Templat ist 1 : 0 bis 1 : 17 mol. Der bevorzugte pH-Wert der Reaktionslösung ist 3 bis 9.
Bevorzugtes Lösungsmittel ist Wasser.
Besonders bevorzugt wird in der Anwendung das gleiche Salz der Phosphinsäure wie der phosphorigen Säure verwendet, also z. B. Aluminiumdiethylphosphinat zusammen mit Aluminiumphosphit oder Zinkdiethylphosphinat zusammen mit Zinkphosphit.
In einer bevorzugten Ausführungsform enthalten die oben beschriebenen flammhemmenden Polyesterzusammensetzungen als Komponente F
eine Verbindung der Formel (III)
worin Me Fe, TiOr, Zn oder insbesondere AI ist,
o 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
r = (4 - o) / 2 ist. Bevorzugt eingesetzte Verbindungen der Formel (III) sind solche, worin Me0+ Zn2+, Fe3+ oder insbesondere Al3+ bedeuten.
Komponente F liegt vorzugsweise in einer Menge von 0,005 bis 10 Gew.-%, insbesondere in einer Menge von 0,02 bis 5 Gew.-%, bezogen auf die
Gesamtmenge der Polyesterzusammensetzung, vor.
In einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Polyesterzusammensetzung als Komponente H ein Melaminpolyphosphat mit einem mittleren Kondensationsgrad von 2 bis 200, bevorzugt größer gleich 20.
Die Verwendung der erfindungsgemäß als Komponente H eingesetzten
Polyphosphatderivate von Melamin mit einem Kondensationsgrad von größer gleich 20 als Flammschutzmittel ist bekannt. So offenbart die DE 10 2005 016 195 A1 ein stabilisiertes Flammschutzmittel enthaltend 99 bis 1 Gew.-%
Melaminpolyphosphat und 1 bis 99 Gew.-% Additiv mit Reservealkalität. In diesem Dokument wird auch offenbart, dass dieses Flammschutzmittel mit einer
Phosphinsäure und/oder einem Phosphinsäuresalz kombiniert werden kann.
Bevorzugte erfindungsgemäße Polyesterzusammensetzungen enthalten als Komponente H ein Melaminpolyphosphat, dessen durchschnittlicher
Kondensationsgrad 20 bis 200, insbesondere von 40 bis 150, beträgt.
In einem anderen bevorzugten Bereich beträgt der durchschnittliche
Kondensationsgrad 2 bis 100.
Weitere bevorzugte erfindungsgemäße Polyesterzusammensetzungen enthalten als Komponente H ein Melaminpolyphosphat, das eine Zersetzungstemperatur von größer gleich 320 °C, insbesondere von größer gleich 360 °C und ganz besonders bevorzugt von größer gleich 400 °C aufweist.
Bevorzugt werden als Konnponente H Melanninpolyphosphate eingesetzt, die aus WO 2006/027340 A1 (entsprechend EP 1 789 475 B1 ) und WO 2000/002869 A1 (entsprechend EP 1 095 030 B1 ) bekannt sind.
Bevorzugt werden Melanninpolyphosphate eingesetzt, deren durchschnittlicher Kondensationsgrad zwischen 20 und 200, insbesondere zwischen 40 und 150 liegt, und deren Melamingehalt 1 ,1 bis 2,0 mol, insbesondere 1 ,2 bis 1 ,8 mol pro Mol Phosphoratom beträgt.
Ebenfalls bevorzugt werden Melanninpolyphosphate eingesetzt, deren mittlerer Kondensationsgrat (Zahlenmittel) >20 ist, deren Zersetzungstemperatur größer als 320 °C ist, deren Molverhältnis von 1 ,3,5-Triazinverbindung zu Phosphor kleiner als 1 ,1 , insbesondere 0,8 bis 1 ,0 beträgt und deren pH-Wert einer 10 %-igen Aufschlämmung in Wasser bei 25 °C 5 oder höher ist, vorzugsweise 5,1 bis 6,9.
In der erfindungsgemäßen Polyesterzusammensetzung beträgt der Anteil an Komponente H üblicherweise 0 und 25 Gew.-%, vorzugsweise 1 bis 25 Gew.-%, insbesondere 2 bis 10 Gew.-%, bezogen auf die Gesamtmenge der
Polyesterzusammensetzung.
Bei Einsatz von Melaminpolyphosphat als Komponente H werden in den erfindungsgemäßen Polyesterzusammensetzungen zusätzlich die folgende
Reflexe (als Röntgenpulverdiffraktrogramm) gemessen: Im Winkelbereich 2Θ von 14,765° bis 15,076°.
In einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Polyesterzusammensetzung als Komponente I Melamincyanuarat. Das erfindungsgemäß als Komponente I eingesetzte Melamincyanurat ist als Synergist in Verbindung mit Diethylphospinaten in Flammschutzmitteln für polymere Formmassen bekannt, beispielsweise aus WO 97/39053 A1 ). In der erfindungsgemäßen Polyesterzusammensetzung beträgt der Anteil an Komponente I üblicherweise 0 und 25 Gew.-%, vorzugsweise 1 bis 25 Gew.-%, insbesondere 4 bis 10 Gew.-%, bezogen auf die Gesamtmenge der
Polyesterzusammensetzung. Bei Einsatz von Melamincyanurat als Komponente I werden in den
erfindungsgemäßen Polyesterzusammensetzungen zusätzlich die folgende Reflexe (als Röntgenpulverdiffraktrogramm) gemessen: Im Winkelbereich 2Θ von 10,802° bis 1 1 ,004° und von 1 1 ,775 bis 1 1 ,990°. Bevorzugt sind erfindungsgemäße flammhemmende
Polyesterzusammensetzungen, die einen Comparative Tracking Index, gemessen nach dem International Electrotechnical Commission Standard IEC-601 12/3, von größer gleich 500 Volt aufweisen. Ebenfalls bevorzugte erfindungsgemäße flammhemmende
Polyesterzusammensetzungen erreichen eine Bewertung von V0 nach UL-94, insbesondere gemessen an Formteilen von 3,2 mm bis 0,4 mm Dicke.
Weitere bevorzugte erfindungsgemäße flammhemmende
Polyesterzusammensetzungen weisen einen Glow Wire Flammability Index nach IEC-60695-2-12 von mindestens 960 °C auf, insbesondere gemessen an
Formteilen von 0,75 - 3 mm Dicke.
Weitere bevorzugte erfindungsgemäße flammhemmende
Polyesterzusammensetzungen weisen eine Glühdrahtbeständigkeit, ausgedrückt durch die Glühtdrahtentzündungstemperature (Glow-Wire-Ignition-Temperature; GWIT) nach IEC-60695-2-13 von mindestens 775°C auf, insbesondere gemessen an Formteilen von 0,75 - 3 mm Dicke. Die erfindungsgemäß eingesetzten Flammschutzmittelkombinationen stabilisieren den Polyester (Komponente A) sehr gut gegen thermischen Abbau. Dieses zeigt sich an der Veränderung der spezifischen Viskosität des Polyesters bei
Compoundierung und Formgebung der erfindungsgemäßen
Polyesterzusammensetzungen. Die dort erfolgende thermische Belastung hat einen teilweisen Abbau der Polyesterketten zur Folge, was in einer Verringerung des mittleren Molekulargewichts und damit verbunden in einer Verringerung der Viskosität einer Polyesterlösung ausdrückt. Typische Werte für die spezifische Viskosität von Polybutylenterephthalat, gemessen als 0,5 %-ige-Lösung in
Phenol/Dichlorbenzol (1 :1 ) bei 25 °C gemäss ISO 1628 mit einem
Kapillarviskosimeter betragen 130 cm3/g. Nach dem Compoundieren und der Formgebung einer erfindungsgemäßen Polybutylenterephthalatzusammensetzung bewegen sich typische Werte für die spezifische Viskosität des verarbeiteten Polybutylenterephthalats (ermittelt wie oben angegeben) im Bereich zwischen 65 und 150 cm3/g, vorzugsweise zwischen 100 und 129 cm3/g.
Die erfindungsgemäßen Polyesterzusammensetzungen enthalten als Komponente A ein oder mehrere thermoplastische Polyester.
Bei den Polyestern der Komponente A handelt es sich in der Regel um
(cyclo)aliphatische oder um aromatisch-aliphatische Polyester, die sich von (cyclo)aliphatischen und/oder aromatischen Dicarbonsäuren oder deren polyesterbildenden Derivaten, wie deren Dialkylestern oder Anhydriden, und von (cyclo)aliphatischen und/oder araliphatischen Diolen oder von (cyclo)aliphatischen und/oder aromatischen Hydroxycarbonsäuren oder deren polyesterbildenden Derivaten, wie deren Alkylestern oder Anhydriden, ableiten. Der Begriff
„(cyclo)aliphatisch" umfasst cycloaliphatische und aliphatische Verbindungen.
Die thermoplastischen Polyester der Komponente A werden vorzugsweise ausgewählt aus der Gruppe der Polyalkylenester von aromatischen und/oder aliphatischen Dicarbonsäuren oder deren Dialkylestern. Die als Komponente A eingesetzten thermoplastischen Polyester lassen sich nach bekannten Methoden herstellen (Kunststoff-Handbuch, Bd. VIII, Seiten 695 - 710, Karl-Hanser-Verlag, München 1973). Bevorzugt eingesetzte Komponenten A sind aromatisch-aliphatische
thermoplastische Polyester und davon bevorzugt thermoplastische Polyester abgeleitet durch Umsetzung von aromatischen Dicarbonsäuren oder deren polyesterbildenden Derivaten mit aliphatischen C2-Cio-Diolen, insbesondere mit C2-C4-Diolen.
Erfindungsgemäß bevorzugt eingesetzte Komponenten A sind
Polyalkylenterepthalate, und davon besonders bevorzugt Polyethylenterephthalate oder Polybutylenterephthalate. Polyalkylenterephthalate enthalten vorzugsweise mindestens 80 mol-%, insbesondere 90 mol-%, bezogen auf die Dicarbonsäure, von Terephthalsäure abgeleitete Einheiten.
Die erfindungsgemäß als Komponente A bevorzugt eingesetzten
Polyalkylenterephthalate können neben Terephthalsäureresten bis zu 20 mol-% Reste anderer aromatischer Dicarbonsäuren mit 8 bis 14 C-Atomen oder Reste aliphatischer Dicarbonsäuren mit 4 bis 12 C-Atomen enthalten, wie Reste von Phthalsäure, Isophthalsäure, Naphthalin-2,6-dicarbonsäure,
4,4'-Diphenyldicarbonsäure, Bernstein-, Adipin-, Sebacin- oder Azelainsäure, Cyclohexandiessigsäure oder Cyclohexandicarbonsäure.
Die erfindungsgemäß als Komponente A bevorzugt eingesetzten
Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4-wertiger Alkohole oder 3- oder 4-basischer Carbonsäuren, wie sie z. B. in der DE-A-19 00 270 beschrieben sind, verzweigt werden. Beispiele für bevorzugte Verzweigungsmittel sind Trimesinsäure, Trimellitsäure, Trimethylolethan und -propan und Pentaerythrit. Besonders bevorzugte Komponenten A sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z. B. deren
Dialkylestern) und Ethylenglykol und/oder Propandiol-1 ,3 und/oder Butandiol-1 ,4 hergestellt werden (Polyethylen- und Polytrimethylen- und
Polybutylenterephthalat) und Mischungen dieser Polyalkylenterephthalate.
Bevorzugte Polybutylenterephthalate enthalten mindestens 80 mol-%,
vorzugsweise 90 mol-%, bezogen auf die Dicarbonsäure, Terephthalsäurereste und mindestens 80 mol-%, vorzugsweise mindestens 90 mol-%, bezogen auf die Diolkomponente Butandiol-1 , 4-reste.
Die bevorzugten Polybutylenterephthalate können des Weiteren neben Butandiol- 1 ,4-resten bis zu 20 mol-% anderer aliphatischer Diole mit 2 bis 12 C-Atomen oder cycloaliphatischer Diole mit 6 bis 21 C-Atomen enthalten, z. B. Reste von
Ethylenglykol; Propandiol-1 ,3; 2-Ethylpropandiol-1 ,3; Neopentylglykol; Pentandiol- 1 ,5; Hexandiol-1 ,6; Cyclohexandimethanol-1 ,4; 3-Methylpentandiol-2,4; 2-Methyl- pentandiol-2,4; 2,2,4-Trimethylpentandiol-1 ,3; 2-Ethylhexandiol-1 ,3; 2,2-Diethyl- propandiol-1 ,3; Hexandiol-2,5;1 ,4-Di-([beta]-hydroxyethoxy)-benzol; 2,2-Bis-(4- hydroxycyclohexyl)-propan; 2,4-Dihydroxy-1 ,1 ,3,3-tetramethyl-cyclobutan; 2,2-Bis- (3-[beta]-hydroxyethoxyphenyl)-propan und 2,2-Bis-(4-hydroxypropoxyphenyl)- propan.
Erfindungsgemäß bevorzugt als Komponente A eingesetzte
Polyalkylenterephthalate sind auch Copolyester, die aus mindestens zwei der oben genannten Säurekomponenten und/oder aus mindestens zwei der oben genannten Alkoholkomponenten und/oder Butandiol-1 ,4 hergestellt werden.
Die als Komponente A erfindungsgemäß eingesetzten thermoplastischen
Polyester können auch im Gemisch mit anderen Polyestern und/oder weiteren Polymeren eingesetzt werden.
Als Komponente B werden Füllstoffe und/oder vorzugsweise Verstärkungsstoffe eingesetzt, bevorzugt Glasfasern. Es können auch Mischungen aus zwei oder mehreren unterschiedlichen Füllstoffen und/oder Verstärkungsstoffen, eingesetzt werden.
Bevorzugte Füllstoffe sind mineralische teilchenförmige Füllstoffe auf der Basis von Talk, Glimmer, Silikat, Quarz, Titandioxid, Wollastonit, Kaolin, amorphe Kieselsäuren, nanoskaligen Mineralien, besonders bevorzugt Montmorilloniten oder Nano-Böhmiten, Magnesiumcarbonat, Kreide, Feldspat,Glaskugeln und/oder Bariumsulfat. Besonders bevorzugt werden mineralische teilchenförmige Füllstoffe auf der Basis von Talk, Wollastonit und/oder Kaolin.
Besonders bevorzugt werden ferner auch nadeiförmige mineralische Füllstoffe eingesetzt. Unter nadeiförmigen mineralischen Füllstoffen wird erfindungsgemäß ein mineralischer Füllstoff mit stark ausgeprägtem nadeiförmigen Charakter verstanden. Bevorzugt sind nadeiförmige Wollastonite. Bevorzugt weist das Mineral ein Länge zu Durchmesser - Verhältnis von 2:1 bis 35:1 , besonders bevorzugt von 3:1 bis 19:1 , insbesondere bevorzugt von 4:1 bis 12:1 auf. Die mittlere Teilchengröße der erfindungsgemäß als Komponente B eingesetzten nadeiförmigen mineralischen Füllstoffe liegt bevorzugt bei kleiner 20 μιτι, besonders bevorzugt bei kleiner 15 μιτι, insbesondere bevorzugt bei kleiner 10 μιτι, bestimmt mit einem CILAS Granulometer.
Bei den erfindungsgemäß vorzugsweise eingesetzten Komponenten B handelt es sich um Verstärkungsstoffe. Dabei kann es sich beispielsweise um
Verstärkungsstoffe auf der Basis von Kohlenstofffasern und/oder von Glasfasern handeln.
Der Füllstoff und/oder Verstärkungsstoff kann in einer bevorzugten
Ausführungsform oberflächenmodifiziert sein, vorzugsweise mit einem
Haftvermittler bzw. einem Haftvermittlersystem, besonders bevorzugt auf
Silanbasis. Insbesondere bei Verwendung von Glasfasern können zusätzlich zu Silanen auch Polymerdispersionen, Filmbildner, Verzweiger und/oder
Glasfaserverarbeitungshilfsmittel verwendet werden. Bei den erfindungsgemäß als Komponente B bevorzugt eingesetzten Glasfasern kann es sich um Kurzglasfasern und/oder um Langglasfasern handeln. Als Kurzoder Langglasfasern können Schnittfasern eingesetzt werden. Kurzglasfasern können auch in Form von gemahlenen Glasfasern zum Einsatz kommen.
Daneben können Glasfasern außerdem in der Form von Endlosfasern eingesetzt werden, beispielsweise in der Form von Rovings, Monofilamenten,
Filamentgarnen oder Zwirnen, oder Glasfasern können in der Form von textilen Flächengebilden eingesetzt werden, beispielsweise als Glasgewebe, als
Glasgeflecht oder als Glasmatte.
Typische Faserlängen für Kurzglasfasern vor dem Einarbeiten in die
Polyestermatrix bewegen sich im Bereich von 0,05 bis 10 mm, vorzugsweise von 0,1 bis 5 mm. Nach dem Einarbeiten in die Polyestermatrix hat sich die Länge der Glasfasern verringert. Typische Faserlängen für Kurzglasfasern nach dem
Einarbeiten in die Polyestermatrix bewegen sich im Bereich von 0,01 bis 2 mm, vorzugsweise von 0,02 bis 1 mm.
Die Durchmesser der einzelnen Fasern kann in weiten Bereichen schwanken. Typische Durchmesser der einzelnen Fasern bewegen sich im Bereich von 5 bis 20 μηη .
Die Glasfasern können beliebige Querschnittsformen aufweisen, beispielsweise runde, elliptische, n-eckige oder irreguläre Querschnitte. Es können Glasfasern mit mono- oder multilobalen Querschnitten verwendet werden.
Glasfasern können als Endlosfasern oder als geschnittene oder gemahlene Glasfasern eingesetzt werden.
Die Glasfasern selbst, unabhängig von deren Querschnittfläche und deren Länge, können dabei beispielsweise ausgewählt sein aus der Gruppe der E-Glasfasern, A-Glasfasern, C-Glasfasern, D-Glasfasern, M-Glasfasern, S-Glasfasern,
R-Glasfasern und/oder ECR-Glasfasern, wobei die E-Glasfasern, R-Glasfasern, S-Glasfasern und ECR-Glasfasern besonders bevorzugt sind. Die Glasfasern sind vorzugsweise mit einer Schlichte versehen, welche vorzugsweise Polyurethan als Filmbildner und Aminosilan als Haftvermittler enthält.
Besonders bevorzugt eingesetzte E-Glasfasern weisen folgende chemische Zusammensetzung auf: S1O2 50-56 %; AI2O3 12-16 %; CaO 16-25 %; MgO < 6 %; B2O3 6-13 %; F < 0,7 %; Na2O 0,3-2 %; K2O 0,2-0,5 %; Fe2Os 0,3 %.
Besonders bevorzugt eingesetzte R-Glasfasern weisen folgende chemische Zusammensetzung auf: S1O2 50-65 %; AI2O3 20-30 %; CaO 6-16 %; MgO 5-20 %; Na2O 0,3-0,5 %; K2O 0,05-0,2 %; Fe2Os 0,2-0,4 %, T1O2 0,1 -0,3 %.
Besonders bevorzugt eingesetzte ECR-Glasfasern weisen folgende chemische Zusammensetzung auf: S1O2 57,5-58,5 %; AI2O3 17,5-19,0 %; CaO 1 1 ,5-13,0 %; MgO 9,5-1 1 ,5.
Die erfindungsgemäß als Komponente C eingesetzten Salze von
Diethylphosphinsäure sind bekannte Flammschutzmittel für polymere
Formmassen. Auch Salze von Diethylphosphinsäure mit Anteilen der erfindungsgemäß als Komponenten D und E eingesetzten Phosphinsäure- und Phosphonsäuresalze sind bekannte Flammschutzmittel. Die Herstellung dieser Stoffkombinationen wird z. B. in US 7,420,007 B2 beschrieben. Die erfindungsgemäß eingesetzten Salze von Diethylphosphinsäure der
Komponente C können geringe Mengen an Salzen der Komponente D und an Salzen der Komponente E enthalten, beispielsweise bis zu 10 Gew.-% an
Komponente D, vorzugsweise 0,01 bis 6 Gew. %, und insbesondere 0,2 bis 2,5 Gew.-% davon, und bis zu 10 Gew.-% an Komponente E, vorzugsweise 0,01 bis 6 Gew.-%, und insbesondere 0,2 bis 2,5 Gew.-% davon bezogen auf die Menge an Komponenten C, D und E. Die erfindungsgemäß als Komponente E eingesetzten Salze der Ethylphosphonsäure sind als Zusätze zu Diethylphospinaten in
Flammschutzmitteln für polymere Formmassen ebenfalls bekannt, beispielsweise aus DE 102007041594 A1 .
In einer weiteren bevorzugten Ausführungsform liegen Komponenten C, D, E und gegebenenfalls F, H und/oder I in Teilchenform vor, wobei die mittlere
Teilchengröße (dso) 1 bis 100 μιτι beträgt. Die erfindungsgemäßen Polyesterzusammensetzungen können als Komponente G noch weitere Additive enthalten. Bevorzugte Komponenten I im Sinne der vorliegenden Erfindung sind Antioxidantien, UV-Stabilisatoren,
Gammastrahlenstabilisatoren, Hydrolysestabilisatoren, Co-Stabilisatoren für Antioxidantien, Antistatika, Emulgatoren, Nukleierungsmittel, Weichmacher, Verarbeitungshilfsmittel, Schlagzähmodifikatoren, Farbstoffe, Pigmente und/oder weitere Flammschutzmittel, die sich von Komponenten C, D, E, F, H und I unterscheiden.
Hierzu gehören insbesondere Phosphate, wie etwa Melamin- Poly(Metallphosphate). Bevorzugte Metalle hierfür sind die Elemente der 2.
Hauptgruppe, der 3. Hauptgruppe, der 2. Nebengruppe, der 4. Nebengruppe und der Nebengruppe Villa des Periodensystems sowie Cer und/oder Lanthan.
Melamin-Poly(Metallphosphate) sind bevorzugt Melamin-Poly(Zinkphosphate), Melamin-Poly(Magnsiumphosphate) und/oder Melamin-Poly(Calciumphosphate).
Bevorzugt sind (Melamin)2Mg(HPO4)2, (Melamin)2Ca(HPO4)2,
(Melamin)2Zn(HPO4)2, (Melamin)3AI(HPO4)3, (Melamin)2Mg(P2O7),
(Melamin)2Ca(P2O7), (Melamin)2Zn(P2O7), (Melamin)3AI(P2O7)3/2.
Bevorzugt sind Melamin-Poly(Metallphosphate), die bekannt sind als
Hydrogenphosphato- oder Pyrophosphato-Metallate mit Komplex-Anionen, die ein vier- oder sechsbindiges Metallatom als Koordinationszentrum mit zweizähnigen Hydrogenphosphat- oder Pyrophosphat-Liganden aufweisen.
Bevorzugt sind auch Melamin-interkalierte Aluminium-, Zink- oder Magnesium- Salze von kondensierten Phosphaten, ganz besonders bevorzugt sind
Bis-Melamin-zinko-diphosphat und/oder Bis-Melamin-alumotriphosphat.
Bevorzugt sind weiterhin Salze der Elemente der 2. Hauptgruppe, der
3. Hauptgruppe, der 2. Nebengruppe, der 4. Nebengruppe und der Nebengruppe Villa des Periodensystems sowie von Cer und/oder Lanthan mit Anionen der Oxosäuren der fünften Hauptgruppe (Phosphate, Pyrophosphate und
Polyphosphate).
Bevorzugt sind Aluminiumphosphate, Aluminum monophosphate; Aluminum- orthophosphate (AIPO4), Aluminumhydrogenphosphat (Al2(HPO4)3) und/oder Aluminiumdihydrogenphosphat
Bevorzugt sind auch Calciumphosphat, Zinkphosphat, Titanphosphat und/oder Eisenphosphat
Bevorzugt sind Calciumhydrogenphosphat, Calciumhydrogenphosphatdihydrat, Magnesiumhydrogenphosphat, Titaniumhydrogenphosphat (TIHC) und/oder Zinkhydrogenphosphat Bevorzugt sind Aluminiumdihydrogenphosphat, Magnesiumdihydrogenphosphat, Calciumdihydrogenphosphat, Zinkdihydrogenphosphat, Zinkdihydrogenphosphat dihydrat und/oder Aluminumdihydrogenphosphat.
Besonders bevorzugt sind Calciumpyrophosphat,
Calciumdihydrogenpyrophosphat, Magnesiumpyrophosphat Zinkpyrophosphat und/oder Aluminiumpyrophosphat. Die vorgenannten sowie andere und ähnliche Phosphate werden beispielsweise durch die Firma J.M. Huber Corporation, USA, unter Safire® Products angeboten, hierzu gehören etwa die Typen APP Type II, AMPP, MPP, MPyP, PiPyP. PPaz, Safire® 400, Safire® 600, EDAP und andere.
Weitere Phosphate sind beispielsweise in der JP-A-2004204194, der
DE-A-102007036465 und der EP-A-31331 12 genannt und gehören ausdrücklich zu den einsetzbaren Komponenten I. Die weiteren Additive sind als Zusätze zu Polyesterzusammensetzungen an sich bekannt und können alleine oder in Mischung oder in Form von Masterbatches eingesetzt werden.
Die vorgenannten Komponenten A, B, C, D, E und gegebenenfalls F, G, H und/oder I können in den verschiedensten Kombinationen zur erfindungsgemäßen flammgeschützten Polyesterzusammensetzung verarbeitet werden. So ist es möglich, bereits zu Beginn oder am Ende der Polykondensation oder in einem folgenden Compoundierprozess die Komponenten in die Polyesterschmelze einzumischen. Weiterhin gibt es Verarbeitungsprozesse bei denen einzelne Komponenten erst später zugefügt werden. Dies wird insbesondere beim Einsatz von Pigment- oder Additivmasterbatches praktiziert. Außerdem besteht die Möglichkeit, insbesondere pulverförmige Komponenten auf das durch den
Trocknungsprozess eventuell warme Polymergranulat aufzutrommeln. Auch können zwei oder mehrere der Komponenten der erfindungsgemäßen
Polyesterzusammensetzungen vor dem Einbringen in die Polyestermatrix durch Vermischen kombiniert werden. Dabei können herkömmliche Mischaggregate eingesetzt werden, in denen die Komponenten in einem geeigneten Mischer, z. B. 0,01 bis 10 Stunden bei 0 bis 300 °C gemischt werden.
Aus zwei oder mehreren der Komponenten der erfindungsgemäßen
Polyesterzusammensetzungen können auch Granulate hergestellt werden, die anschließend in die Polyestermatrix eingebracht werden können. Dazu können zwei oder mehr Komponenten der erfindungsgemäßen
Polyesterzusammensetzung mit Granulierhilfsmittel und/oder Bindemittel in einem geeigneten Mischer oder einem Granulierteller zu Granulaten verarbeitet werden.
Das zunächst entstehende Rohprodukt kann in einem geeigneten Trockner getrocknet beziehungsweise zum weiteren Kornaufbau getempert werden.
Die erfindungsgemäße Polyesterzusammensetzung oder zwei oder mehrere Komponenten davon kann in einer Ausführungsform durch Rollkompaktierung hergestellt werden.
Die erfindungsgemäße Polyesterzusammensetzung oder zwei oder mehrere Komponenten davon kann in einer Ausführungsform dadurch hergestellt werden, dass die Inhaltsstoffe gemischt, stranggepresst, abgeschlagen (bzw.
gegebenenfalls gebrochen und klassiert) und getrocknet (und gegebenenfalls gecoated) werden.
Die erfindungsgemäße Polyesterzusammensetzung oder zwei oder mehrere Komponenten davon kann in einer Ausführungsform durch Sprühgranulierung hergestellt werden.
Die erfindungsgemäße flammgeschützte Polymerformmasse liegt bevorzugt in Granulatform, z. B. als Extrudat oder als Compound, vor. Das Granulat hat bevorzugt Zylinderform mit kreisförmiger, elliptischer oder unregelmäßiger Grundfläche, Kugelform, Kissenform, Würfelform, Quaderform, Prismenform.
Typische Längen-zu-Durchmesser-Verhältnis des Granulates betragen 1 zu 50 bis 50 zu 1 , bevorzugt 1 zu 5 bis 5 zu 1 .
Das Granulat hat bevorzugt einen Durchmesser von 0,5 bis 15 mm, besonders bevorzugt von 2 bis 3 mm und bevorzugt eine Länge von 0,5 bis 15mm, besonders bevorzugt von 2 bis 5 mm. Gegenstand der Erfindung sind auch Formteile hergestellt aus der oben beschriebenen flammhennnnenden Polyesterzusammensetzung enthaltend die Komponenten A, B, C, D und E und gegebenenfalls die Komponenten F und/oder G.
Bei den erfindungsgemäßen Formteilen kann es sich um beliebige Ausformungen handeln. Beispiele dafür sind Fasern, Folien oder Formkörper, erhältlich aus den erfindungsgemäßen flammgeschützten Polyesterformmassen durch beliebige Formverfahren, insbesondere durch Spritzguss oder Extrusion.
Die Herstellung der erfindungsgemäßen flammgeschützten Polyester-Formkörper kann durch beliebige Formverfahren erfolgen. Beispiele dafür sind Spritzgießen, Pressen, Schaumspritzgießen, Gasinnendruck-Spritzgießen, Blasformen,
Foliengießen, Kalandern, Laminieren oder Beschichten bei höheren Temperaturen mit der flammgeschützten Polyester-Formmasse.
Bei den Formteilen handelt es sich vorzugsweise sich um Spritzgussteile oder um Extrusionsteile.
Die erfindungsgemäßen flammgeschützten Polyesterzusammensetzungen eignen sich zur Herstellung von Fasern, Folien und Formkörpern, insbesondere für Anwendungen im Elektro- und Elektronikbereich. Die Erfindung betrifft bevorzugt die Verwendung der erfindungsgemäßen flammgeschützten Polyesterzusammensetzungen in oder für Steckverbinder, stromberührten Teilen in Stromverteilern (Fl-Schutz), Platinen, Vergussmassen, Stromsteckern, Schutzschaltern, Lampengehäusen, LED Gehäusen,
Kondensatorgehäusen, Spulenkörpern und Ventilatoren, Schutzkontakten, Steckern, in/auf Platinen, Gehäusen für Stecker, Kabeln, flexiblen Leiterplatten, Ladekabeln für Handys, Motorabdeckungen oder Textilbeschichtungen. Die Erfindung betrifft ebenfalls bevorzugt die Verwendung der erfindungsgemäßen flammgeschützten Polyesterzusammensetzungen zur Herstellung von
Formkörpern in Form von Bauteilen für den Elektro/Elektronikbereich,
insbesondere für Teile von Leiterplatten, Gehäusen, Folien, Leitungen, Schaltern, Verteilern, Relais, Widerständen, Kondensatoren, Spulen, Lampen, Dioden, LED, Transistoren, Konnektoren, Reglern, Speichern und Sensoren, in Form von großflächigen Bauteilen, insbesondere von Gehäuseteilen für Schaltschränke und in Form aufwendig gestalteter Bauteile mit anspruchsvoller Geometrie. Die Wandstärke der erfindungsgemäßen Formkörper kann typischerweise bis zu 10 mm betragen. Besonders geeignet sind Formkörper mit weniger als 1 ,5 mm Wandstärke, mehr bevorzugt von weniger als 1 mm Wandstärke und besonders bevorzugt von weniger als 0,5 mm Wandstärke. Die nachfolgenden Beispiele erläutern die Erfindung ohne diese zu begrenzen.
1 . Eingesetzte Komponenten
Handelsübliche Polyester (Komponente A):
Polybutylenterephthalat (PBT): Ultradur® 4500 (BASF)
Polyethylenterephthalat (PET): Polyclear® 1 100 (Invista)
Glasfasern (Komponente B):
Glasfasern Vectrotex® EC 10 P 952 (Fa. Vectrotex, FR),
Flammschutzmittel FM 1 (Komponenten C, D und E):
Aluminiumsalz der Diethylphosphinsäure enthaltend 0,9 mol % an Aluminium- Ethylbutylphospinat und 0,5 mol % an Aluminium-Ethylphosphonat hergestellt nach Beispiel 3 der US 7,420,007 B2
Flammschutzmittel FM 2 (Komponenten C, D und E):
Aluminiumsalz der Diethylphosphinsäure enthaltend 2,7 mol % an Aluminium- Ethylbutylphospinat und 0,8 mol % an Aluminium-Ethylphosphonat hergestellt nach Beispiel 4 der US 7,420,007 B2
Flammschutzmittel FM 3 (Komponenten C, D und E):
Aluminiumsalz der Diethylphosphinsaure enthaltend 0,5 mol % an Aluminium- Ethylbutylphospinat und 0,05 mol % an Aluminium-Ethylphosphonat hergestellt nach dem Verfahren gemäß US 7,420,007 B2
Flammschutzmittel FM 4 (Komponenten C, D und E):
Aluminiumsalz der Diethylphosphinsaure enthaltend 10 mol % an Aluminium-
Ethylbutylphospinat und 5 mol % an Aluminium-Ethylphosphonat hergestellt nach dem Verfahren gemäß US 7,420,007 B2
Flammschutzmittel FM 5 (Komponente C):
Aluminiumsalz der Diethylphosphinsäure hergestellt in Analogie zu Beispiel 1 der DE 196 07 635 A1
Flammschutzmittel FM 6 (Komponenten C und E):
Aluminiumsalz der Diethylphosphinsäure enthaltend 8,8 mol % an Aluminium- Ethylphosphonat hergestellt nach Beispiel 2 der DE 10 2010 018 864 A1
Flammschutzmittel FM 7 (Komponente F):
Aluminiumsalz der Phosphonsäure hergestellt nach Beispiel 1 der
DE 10201 1 120218 A1
Flammschutzmittel FM 8 (Komponente H):
Melaminpolyphosphat hergestellt nach dem Beispiel der WO 2000/002869 A1
Flammschutzmittel FM 9 (Komponente I):
Melamincyanuarat, Melapur® MC (BASF) 2. Herstellung, Verarbeitung und Prüfung von flammhennnnenden Polyester- Formmassen
Die Additive wurden in dem in den Tabellen angegebenen Verhältnissen mit dem Polymergranulat vermischt und auf einem Doppelschnecken-Extruder (Typ
Leistritz ZSE 27 HP-44D) bei Temperaturen von 240 bis 280 °C eingearbeitet. Die Glasfasern wurden über einen Seiteneinzug zugegeben. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert.
Nach ausreichender Trocknung wurden die Formmassen auf einer
Spritzgießmaschine (Typ Arburg 320 C/KT) bei Massetemperaturen von 260 bis 280 °C zu Prüfkörpern verarbeitet und anhand des UL 94-Tests (Underwriter Laboratories) auf Flammwidrigkeit geprüft und klassifiziert. Neben der
Klassifikation wurde auch die Nachbrennzeit angegeben.
Der Comparative Tracking Index der Formteile wurde gemäß dem International Electrotechnical Commission Standard IEC-601 12/3 ermittelt. Der Glow Wire Flammability Index (GWFI-Index) wurde nach der Norm
IEC-60695-2-12 ermittelt.
Die Röntgenspektren (Röntgenpulverdiffraktogramme,„XRD-Werte") der
Polyamidzusammensetzungen werden mit einem Röntgenpulverdiffraktometer (XTert-MPD, Fa. Phillips) vermessen. Die Probe wurde mit Cu-K-alpha-Strahlung bestrahlt und die Schrittzeit betrug 1 Sekunde.
Sämtliche Versuche der jeweiligen Serie wurden, falls keine anderen Angaben gemacht wurden, aufgrund der Vergleichbarkeit unter identischen Bedingungen (wie Temperaturprogramme, Schneckengeometrien und Spritzgießparameter) durchgeführt. Beispiele 1 -5 und Vergleichsbeispiele V1 -V3 mit PBT
Die Ergebnisse der Versuche mit PBT-Formmassen sind in den in der
nachfolgenden Tabelle aufgeführten Beispielen aufgelistet. Alle Mengen sind als Gew.-% angegeben und beziehen sich auf die PBT-Formmasse einschließlich der Flammschutzmittel und Verstärkungsstoffe.
Tabelle 1 : PBT GF 30 Versuchsergebnisse (1 -5 erfindungsgennäß; V1 -V3 Vergleiche)
Die erfindungsgemäßen Polyesterzusammensetzungen der Beispiele 1 bis 5 sind Formmassen, welche die Brandklasse UL 94 V-0 bei 0,4 mm erreichen,
gleichzeitig CTI 600 Volt sowie GWFI 960 °C aufweisen. Der Zusatz einer weiteren Komponente F in Beispiel 5 führt zu einer nochmaligen Verbesserung des Flammschutzes ausgedrückt durch eine verringerte Nachbrennzeit.
Das Weglassen von Komponenten D und E in Vergleichsbeispiel V1 hatte neben einer verlängerten Nachbrennzeit einen im Vergleich zu den Beispielen 1 -5 verringerten CTI-Wert zur Folge.
Das Weglassen von Komponente D in Vergleichsbeispiel V2 hatte neben einer im Vergleich zu Beispiel 2 Verlängerung der Brandschutzdauer einen verringerten CTI-Wert zur Folge. In Vergleichsbeispiel V3 wurde durch Erhöhung der Konzentration an
Komponenten C und D im Vergleich zu Beispiel V2 zwar eine Verringerung der Nachbrennzeit erreicht. Allerdings zeigte diese Polyesterzusammensetzung immer noch eine im Vergleich zu Beispiel 2 längere Nachbrennzeit sowie einen
verringerten CTI-Wert.
Beispiele 6-10 und Vergleichsbeispiele V4-V6 mit PET
Die Ergebnisse der Versuche mit PET-Formmassen sind in den in der
nachfolgenden Tabelle aufgeführten Beispielen aufgelistet. Alle Mengen sind als Gew.-% angegeben und beziehen sich auf die Polyester-Formmasse
einschließlich der Flammschutzmittel und Verstärkungsstoffe. Tabelle 2: PET GF 30 Versuchsergebnisse (6-10 erfindungsgemäß; V4-V6 Vergleiche)
Die erfindungsgemäßen Polyesterzusannnnensetzungen der Beispiele 6 bis 10 sind Formmassen, welche die Brandklasse UL 94 V-0 bei 0,4 mm erreichen und gleichzeitig CTI 600 Volt und GWFI 960 °C aufweisen. Der Zusatz einer weiteren Komponente F in Beispiel 10 führt zu einer nochmaligen Verbesserung des Flammschutzes ausgedrückt durch eine verringerte Nachbrennzeit.
Das Weglassen von Komponenten D und E in Vergleichsbeispiel V4 hatte neben einer verlängerten Nachbrennzeit einen im Vergleich zu den Beispielen 6-10 verringerten CTI-Wert zur Folge. Das Weglassen von Komponente D in Vergleichsbeispiel V5 hatte neben einer im Vergleich zu Beispiel 7 verlängerten Nachbrennzeit einen verringerten CIT-Wert zur Folge. In Vergleichsbeispiel V6 wurde durch Erhöhung der Konzentration an Komponenten C und E im Vergleich zu Beispiel V5 zwar eine Verlängerung der Nachbrennzeit erreicht. Allerdings zeigte diese Polyesterzusammensetzung immer noch eine im Vergleich zu Beispiel 7 verlängerte Nachbrennzeit sowie einen verringerten CTI-Wert.

Claims

Patentansprüche
1 . Flammhemmende Polyesterzusammensetzungen enthaltend
thermoplastischen Polyester als Komponente A,
- Füllstoffe und/oder Verstärkungsstoffe als Komponente B,
Phosphinsäuresalz der Formel (I) als Komponente C o
[ ; IJ-° ] M - « ,
m
worin Ri und R2 Ethyl bedeuten,
M AI, Fe, TiOp oder Zn ist,
m 2 bis 3 bedeutet, und
p = (4 - m) / 2 ist
Verbindung ausgewählt aus der Gruppe der AI-, Fe-, TiOp- oder Zn-Salze der Ethylbutylphosphinsäure, der Dibutylphosphinsäure, der
Ethylhexylphosphinsäure, der Butylhexylphosphinsäure und/oder der Dihexylphosphinsäure als Komponente D, und
Phosphonsäuresalz der Formel (II) als Komponente E
worin R3 Ethyl bedeutet ist,
Met AI, Fe, TiOq oder Zn ist,
n 2 bis 3 bedeutet, und
q = (4 - n) / 2 ist, wobei
das Röntgenpulverdiffraktrogramm der Zusammensetzungen folgende Reflexe enthält:
im Winkelbereich 2Θ von 9,099° bis 9,442°, von 18,619° bis 18,984° und von 26,268° bis 26,679° und/oder im Winkelbereich 2Θ von 5,1 12° bis 5,312°, von 6,097° bis 6,297°, von 10,082° bis 10,282°, von 10,350° bis 10,550° und von 12,308° bis 12,508° und/oder
im Winkelbereich 2Θ von 9,1 17° bis 9,317° und von 18,537° bis 18,737° und/oder
im Winkelbereich 2Θ von 8,300° bis 8,500°.
2. Flammhemmende Polyamidzusammensetzungen nach Anspruch 1 , dadurch gekennzeichnet, dass deren Röntgenpulverdiffraktrogramm folgende Reflexe enthält: im Winkelbereich 2Θ von 9,099° bis 9,442°, von 18,619° bis 18,984° und von 26,268° bis 26,679°.
3. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass M und Met AI bedeuten, m und n 3 sind und dass Komponente D ein Aluminiumsalz ist.
4. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
der Anteil von Komponente A 25 bis 95 Gew.-%,
- der Anteil von Komponente B 1 bis 45 Gew.-%,
der Anteil von Komponente C 1 bis 35 Gew.-%,
der Anteil von Komponente D 0,01 bis 3 Gew.-%, und
der Anteil von Komponente E 0,001 bis 1 Gew.-%,
beträgt, wobei die Prozentangaben sich auf die Gesamtmenge der
Polyesterzusammensetzung beziehen.
5. Flammhemmende Polyesterzusammensetzungen nach Anspruch 4, dadurch gekennzeichnet, dass
der Anteil von Komponente A 25 bis 75 Gew.-%,
- der Anteil von Komponente B 20 bis 40 Gew.-%,
der Anteil von Komponente C 5 bis 20 Gew.-%,
der Anteil von Komponente D 0,05 bis 1 ,5 Gew.-%, und
der Anteil von Komponente E 0,01 bis 0,6 Gew.-%, beträgt.
6. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass diese anorganisches Phosphonat als weitere Komponente F enthalten.
7. Flammhemmende Polyesterzusammensetzungen nach Anspruch 6, dadurch gekennzeichnet, dass das anorganische Phosphonat eine Verbindung der Formel (III) ist
worin Me Fe, TiOr, Zn oder insbesondere AI ist,
o 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
r = (4 - o) / 2 ist, und worin die Verbindung der Formel (III) in einer Menge von 0,005 bis 10 Gew.-%, auf die Gesamtmenge der Polyesterzusammensetzung, vorliegt.
8. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass diese als Komponente H ein Melaminpolyphosphat mit einem mittleren Kondensationsgrad von 2 bis 200, insbesondere größer gleich 20 enthalten, vorzugsweise ein Melaminpolyphosphat, dessen durchschnittlicher Kondensationsgrad 20 bis 200 beträgt.
9. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass diese als Komponente I
Melamincyanurat enthalten.
10. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass sie einen Comparative Tracking Index aufweist gemessen nach der International Electrotechnical Commission Standard IEC-601 12/3 von größer gleich 500 Volt aufweisen.
1 1 . Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sie eine Bewertung von V0 nach UL-94 von 3.2 mm bis 0,4 mm Dicke erreichen.
12. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass sie einen Glow Wire Flammability Index nach IEC-60695-2-12 von mindestens 960°C bei 0,75 - 3 mm Dicke aufweisen.
13. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass sie eine Glow Wire IgnitionTemperature nach IEC-60695-2-13 von mindestens 775 °C bei
0,75 - 3 mm Dicke aufweisen.
14. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass es sich bei Komponente A um ein oder mehrere Polyalkylenterephthalate handelt.
15. Flammhemmende Polyesterzusammensetzungen nach Anspruch 14, dadurch gekennzeichnet, dass es sich bei Komponente A um ein
Polyethylenterephthalat handelt.
16. Flammhemmende Polyesterzusammensetzungen nach Anspruch 14, dadurch gekennzeichnet, dass es sich bei Komponente A um ein
Polybutylenterephthalat handelt.
17. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass als Komponente B
Glasfasern eingesetzt werden.
18. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass Komponenten C, D , E und gegebenenfalls F, H und/oder I in Teilchenform vorliegen, wobei die mittlere Teilchengröße dso dieser Komponenten 1 bis 100 μιτι beträgt.
19. Flammhemmende Polyesterzusammensetzungen nach mindestens einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass diese weitere Additive als Komponente G enthält, wobei die weiteren Additive ausgewählt sind aus der Gruppe bestehend aus Antioxidantien, UV-Stabilisatoren,
Gammastrahlenstabilisatoren, Hydrolysestabilisatoren, Co-Stabilisatoren für Antioxidantien, Antistatika, Emulgatoren, Nukleierungsmitteln, Weichmachern, Verarbeitungshilfsmitteln, Schlagzähmodifikatoren, Farbstoffen, Pigmenten und/oder weiteren Flammschutzmitteln, die sich von Komponenten C, D, E, F, H und I unterscheiden .
20. Verwendung der Polyesterzusammensetzungen nach einem der Ansprüche 1 bis 19 zur Herstellung von Fasern, Folien und Formkörpern, insbesondere für Anwendungen im Elektro- und Elektronikbereich.
EP18762080.2A 2017-09-07 2018-08-29 Flammhemmende polyesterzusammensetzungen und deren verwendung Withdrawn EP3679091A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017215776.3A DE102017215776A1 (de) 2017-09-07 2017-09-07 Flammhemmende Polyesterzusammensetzungen und deren Verwendung
PCT/EP2018/073230 WO2019048309A1 (de) 2017-09-07 2018-08-29 Flammhemmende polyesterzusammensetzungen und deren verwendung

Publications (1)

Publication Number Publication Date
EP3679091A1 true EP3679091A1 (de) 2020-07-15

Family

ID=63407230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18762080.2A Withdrawn EP3679091A1 (de) 2017-09-07 2018-08-29 Flammhemmende polyesterzusammensetzungen und deren verwendung

Country Status (5)

Country Link
EP (1) EP3679091A1 (de)
CN (1) CN109467891B (de)
DE (1) DE102017215776A1 (de)
TW (1) TW201920408A (de)
WO (1) WO2019048309A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018220696A1 (de) 2018-11-30 2020-06-04 Clariant Plastics & Coatings Ltd Flammschutzmittelmischungen, flammhemmende Polymerzusammensetzungen, damit ausgerüstete Kabel und deren Verwendung
DE102019201824A1 (de) * 2019-02-12 2020-08-13 Clariant Plastics & Coatings Ltd Flammschutzmittelmischungen, flammhemmende Polymerzusammensetzungen, damit ausgerüstete Kabel und deren Verwendung
WO2023217401A1 (de) 2022-05-12 2023-11-16 Envalior Deutschland Gmbh Kriechstromfeste polyesterzusammensetzungen
CN115042497B (zh) * 2022-08-16 2022-11-01 杭州和顺科技股份有限公司 一种双向拉伸阻燃聚酯薄膜及其制备方法
CN116265514B (zh) * 2023-03-16 2023-11-24 江苏利思德新材料股份有限公司 一种颗粒型无卤阻燃剂及其制备方法与应用

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1580834A (de) 1968-01-04 1969-09-12
DE2252258A1 (de) 1972-10-25 1974-05-09 Hoechst Ag Schwerentflammbare thermoplastische polyester
DE2447727A1 (de) 1974-10-07 1976-04-08 Hoechst Ag Schwerentflammbare polyamidformmassen
DE19607635A1 (de) 1996-02-29 1997-09-04 Hoechst Ag Schwerentflammbare Polyamidformmassen
DE19614424A1 (de) 1996-04-12 1997-10-16 Hoechst Ag Synergistische Flammschutzmittel-Kombination für Polymere
DE19734437A1 (de) 1997-08-08 1999-02-11 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Polymere
DE19737727A1 (de) 1997-08-29 1999-07-08 Clariant Gmbh Synergistische Flammschutzmittel-Kombination für Kunststoffe
NL1009588C2 (nl) 1998-07-08 2000-01-11 Dsm Nv Polyfosfaatzout van een 1,3,5-triazineverbinding met hoge condensatiegraad, een werkwijze voor de bereiding ervan en de toepassing als vlamdover in polymeersamenstellingen.
NL1016340C2 (nl) 2000-10-05 2002-04-08 Dsm Nv Halogeenvrije vlamvertragende samenstelling en vlamdovende polyamidesamenstelling.
JP4951187B2 (ja) 2002-12-26 2012-06-13 ポリプラスチックス株式会社 難燃性樹脂組成物
DE10359814A1 (de) * 2003-12-19 2005-07-28 Clariant Gmbh Dialkylphosphinsäure-Salze
DE102004042833B4 (de) 2004-09-04 2022-01-05 Chemische Fabrik Budenheim Kg Polyphosphatderivat einer 1,3,5-Triazonverbindung, Verfahren zu dessen Herstellung und dessen Verwendung
DE102005016195A1 (de) 2005-04-08 2006-10-12 Clariant Produkte (Deutschland) Gmbh Stabilisiertes Flammschutzmittel
DE102007036465A1 (de) 2007-08-01 2009-02-05 Catena Additives Gmbh & Co. Kg Phosphorhaltige Triazin-Verbindungen als Flammschutzmittel
DE102007041594A1 (de) 2007-09-01 2009-03-05 Clariant International Limited Flammwidrige Polyestercompounds
US8674951B2 (en) 2009-06-16 2014-03-18 Intel Corporation Contoured thumb touch sensor apparatus
DE102010048025A1 (de) 2010-10-09 2012-04-12 Clariant International Ltd. Flammschutzmittel- Stabilisator-Kombination für thermoplastische Polymere
DE102010049968A1 (de) 2010-10-28 2012-05-03 Clariant International Ltd. Flammwidrige Polyestercompounds
DE102011120218A1 (de) 2011-12-05 2013-06-06 Clariant International Ltd. Alkali-Aliminium-Mischphosphite, Verfahren zur ihrer Herstellung sowie deren Verwendung
DE102014001222A1 (de) * 2014-01-29 2015-07-30 Clariant lnternational Ltd Halogenfreie feste Flammschutzmittelmischung und ihre Verwendung
PL3133112T3 (pl) 2015-03-09 2022-05-02 Lanxess Deutschland Gmbh Termoplastyczne masy formierskie
CN107828207B (zh) * 2016-09-15 2020-12-25 科莱恩塑料和涂料有限公司 用于热塑性聚合物的阻燃剂-稳定剂组合
DE102017212099A1 (de) * 2017-07-14 2019-01-17 Clariant Plastics & Coatings Ltd Additivmischungen für Kunststoffe, lasermarkierbare Polymerzusammensetzungen enthaltend diese und deren Verwendung
DE102017212100A1 (de) * 2017-07-14 2019-01-17 Clariant Plastics & Coatings Ltd Additivmischungen für Kunststoffe, lasermarkierbare Polymerzusammensetzungen enthaltend diese und deren Verwendung

Also Published As

Publication number Publication date
TW201920408A (zh) 2019-06-01
DE102017215776A1 (de) 2019-03-07
CN109467891A (zh) 2019-03-15
WO2019048309A1 (de) 2019-03-14
CN109467891B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2019048309A1 (de) Flammhemmende polyesterzusammensetzungen und deren verwendung
EP1945708B1 (de) Halogenfreie flammgeschützte thermoplastische polyester
EP2632979B1 (de) Flammwidrige polyestercompounds
WO2019048307A1 (de) Flammhemmende polyesterzusammensetzungen und deren verwendung
EP3679095A1 (de) Synergistische flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung
WO2019011792A1 (de) Additivmischungen für kunststoffe, lasermarkierbare polymerzusammensetzungen enthaltend diese und deren verwendung
EP3665219A1 (de) Flammhemmende polyamidzusammensetzungen und deren verwendung
DE102017212096A1 (de) Flammhemmende schwarze Polyamidzusammensetzungen und deren Verwendung
EP3655475A1 (de) Flammhemmende graue polyamidzusammensetzungen und deren verwendung
EP3665220A1 (de) Flammhemmende polyamidzusammensetzungen mit hoher glühdrahtentzündungstemperatur und deren verwendung
EP3665218A1 (de) Flammhemmende polyamidzusammensetzungen und deren verwendung
EP3652242B1 (de) Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung
WO2019048312A1 (de) Flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung
EP3679093A1 (de) Flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung
WO2019048308A1 (de) Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung
EP3652241A1 (de) Additivmischungen für kunststoffe, lasermarkierbare polymerzusammensetzungen enthaltend diese und deren verwendung
DE102017214051B4 (de) Flammhemmende Polyamidzusammensetzungen mit hoher Wärmeformbeständigkeit und deren Verwendung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT INTERNATIONAL LTD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20220603