WO2019048312A1 - Flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung - Google Patents
Flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung Download PDFInfo
- Publication number
- WO2019048312A1 WO2019048312A1 PCT/EP2018/073235 EP2018073235W WO2019048312A1 WO 2019048312 A1 WO2019048312 A1 WO 2019048312A1 EP 2018073235 W EP2018073235 W EP 2018073235W WO 2019048312 A1 WO2019048312 A1 WO 2019048312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- proportion
- weight
- acid
- polymer compositions
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/04—Ingredients characterised by their shape and organic or inorganic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34924—Triazines containing cyanurate groups; Tautomers thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/53—Phosphorus bound to oxygen bound to oxygen and to carbon only
- C08K5/5313—Phosphinic compounds, e.g. R2=P(:O)OR'
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/53—Phosphorus bound to oxygen bound to oxygen and to carbon only
- C08K5/5317—Phosphonic compounds, e.g. R—P(:O)(OR')2
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/02—Organic and inorganic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/12—Applications used for fibers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
Definitions
- the present invention relates to novel combinations of flame retardants and polymer compositions containing these and their use.
- Flammable plastics generally have to be equipped with flame retardants in order to achieve the high flame retardance requirements demanded by plastics processors and in part by the legislation. Preference - also for ecological reasons - are non-halogenated
- phosphinates the salts of phosphinic acids (phosphinates) have proven to be particularly effective for thermoplastic polymers (DE 2 252 258 A and DE 2 447 727 A).
- synergistic combinations of phosphinates with certain nitrogen-containing compounds are known which act more effectively in a whole series of polymers as flame retardants than the phosphinates alone (WO-2002/28953 A1 and DE 197 34 437 A1 and DE 197 37 727 A1).
- dialkylphosphinates containing a small amount of selected telomers are suitable as flame retardants for polymers, the polymer only undergoing very little degradation upon incorporation of the flame retardant into the polymer matrix. Flame retardants must often be added in high dosages in order to ensure a sufficient flame retardancy of the plastic according to international standards. Due to their chemical reactivity, which for the
- Flame retardancy at high temperatures is required Flame retardants, especially at higher dosages, affect the processing stability of plastics. It can lead to increased polymer degradation, crosslinking reactions, outgassing or discoloration.
- X-ray reflections of high-temperature modifications of aluminum salts of phosphinic acids are known from WO 98/03515 A1. These phosphinic acid salts are produced at high temperature.
- the invention provides flame retardant combinations containing - phosphinic acid salt of the formula (I) as component A.
- Ri and R2 are ethyl
- M is Al, Fe, TiOp or Zn
- n 2 to 3, preferably 2 or 3
- Phosphonic acid salt of the formula (II) as component C Phosphonic acid salt of the formula (II) as component C.
- R 3 is ethyl
- Met is Al, Fe, TiOq or Zn
- n 2 to 3, preferably 2 or 3
- Preferred flame retardant combinations according to the invention are those whose X-ray powder diffractogram contains the following reflections: in the angular range 2 ⁇ of 9.099 ° to 9.442 °, from 10.802 ° to 11004, from 1 1, 775 to 11, 990, from 18.619 ° to 18.984 ° and from 26.268 ° to 26.679 °.
- the proportion of component A is usually 5 to 85 wt .-%, preferably 10 to 60 wt .-%.
- the proportion of component B is usually 0.01 to 10 wt .-%, preferably 0.1 to 2.5 wt .-%.
- the proportion of component C is usually 0.01 to 10 wt .-%, preferably 0.1 to 2.5 wt .-%.
- the proportion of component D is usually 5 to 50 wt .-%, preferably 10 to 30 wt .-%.
- the percentages for the proportions of components A to D relate to the total amount of the flame retardant combinations. Preference is given to flame retardant combinations in which
- the proportion of component A is from 5 to 85% by weight
- the proportion of component B is from 0.01 to 10% by weight
- the proportion of component A is from 10 to 60% by weight
- the proportion of component B is from 0.1 to 2.5% by weight
- the proportion of component D is from 10 to 30% by weight
- Preferred salts of component A are those in which M m + Zn 2+ , Fe 3+ or in particular Al 3+ .
- Preferably used salts of component B are zinc, iron or
- Preferably used salts of component C are those in which Met n + Zn 2+ , Fe 3+ or in particular Al 3+ .
- Component B are present as aluminum salts.
- Diethylphosphoric acid are known flame retardants for polymeric molding compositions.
- Salts of diethylphosphinic acid with fractions of the phosphinic and phosphonic acid salts used according to the invention as components B and C are known flame retardants. The preparation of this combination of substances is z. B. in US 7,420,007 B2 described. The salts of diethylphosphinic acid used according to the invention
- Component A may contain small amounts of salts of component B and of salts of component C, for example up to 10% by weight
- Component B preferably 0.01 to 6 wt.%, And in particular 0.2 to 2.5 wt.% Thereof, and up to 10 wt.% Of component C, preferably 0.01 to 6 wt. and in particular from 0.2 to 2.5% by weight thereof, based on the amount of components A, B and C.
- Ethylphosphonic acid are as additives to diethylphosphinates in
- Flame retardants for polymeric molding compositions also known, for example from WO 2016/065971 A1.
- the melamine cyanurate used according to the invention as component D is known as a synergist in conjunction with diethyl phosphates in flame retardants for polymeric molding compositions, for example from WO 97/39053 A1).
- components A, B, C and D are in particulate form, the average particle size (dso) being 1 to 100 ⁇ m.
- Component E The use of the present invention used as component E.
- the inorganic phosphonate (component E) preferably corresponds to the general formula (IV) or (V) [(HO) PO 2 ] 2 -p / 2 cat P + (IV)
- Kat is a p-valent cation, in particular a cation of an alkali metal, alkaline earth metal, an ammonium cation and / or a cation of Fe, Zn or in particular of Al including the cations Al ( OH) or Al (OH) 2, and p is 1, 2, 3 or 4.
- the inorganic phosphonate (component E) is preferably aluminum phosphite [Al (H2PO3) 3], secondary aluminum phosphite [Al2 (HPO3) 3], basic aluminum phosphite [Al (OH) (H2PO3) 2 * 2aq],
- the inorganic phosphonate (component E) is preferably also aluminum phosphites of the formulas (VI), (VII) and / or (VIII)
- Aluminum phosphite tetrahydrate [Al 2 (HPO 3) 3 * 4aq] to form aluminum phosphonate Al7 (HPO3) 9 (OH) 6 (1,6-hexanediamine) i, 5 * 12H 2 O, by ⁇ 2 ( ⁇ 3) 3 * ⁇ 2 ⁇ 3 * ⁇ 2 ⁇ with x 2,27 - 1 and / or AUH6P16O18.
- Preferred inorganic phosphonates are water-insoluble or sparingly soluble salts.
- component E is a
- Reaction product of phosphorous acid and an aluminum compound Reaction product of phosphorous acid and an aluminum compound.
- Particularly preferred components E are aluminum phosphites with the
- the preparation of the preferably used aluminum phosphites is carried out by reacting an aluminum source with a phosphorus source and optionally a template in a solvent at 20-200 ° C for a period of up to 4 days.
- the aluminum source and the phosphorus source are mixed for 1 to 4 hours, heated under hydrothermal conditions or at reflux, filtered off, washed and z. B. at 1 10 ° C dried.
- Preferred aluminum sources are aluminum isopropoxide, aluminum nitrate, aluminum chloride, aluminum hydroxide (eg pseudoboehmite).
- Preferred sources of phosphorus are phosphorous acid, (acidic)
- alkali metal phosphites are disodium phosphite, disodium phosphite hydrate, trisodium phosphite, potassium hydrogen phosphite
- Preferred Dinatriumphosphithydrat is Brüggolen ® H10 of the company. Brüggemann.
- Preferred templates are 1, 6-hexanediamine, guanidine carbonate or ammonia.
- Preferred alkaline earth metal phosphite is calcium phosphite.
- the preferred ratio of aluminum to phosphorus to solvent is 1: 1: 3.7 to 1: 2.2: 100 mol.
- the ratio of aluminum to template is 1: 0 to 1: 17 mol.
- the preferred pH of the reaction solution is 3 to 9.
- Preferred solvent is water.
- the same salt of phosphinic acid as the phosphorous acid is used in the application, so z.
- phosphinic acid aluminum diethylphosphinate together with aluminum phosphite or Zinkdiethylphosphinat together with zinc phosphite.
- Me is Fe, TiOr, Zn or in particular Al,
- o is 2 to 3, preferably 2 or 3
- Preferred compounds of the formula III are those in which Me 'is Fe 3+ or in particular Al 3+ .
- Component E is preferably in an amount of 0.01 to 10 wt .-%, in particular in an amount of 0.1 to 2.5 wt .-%, based on the
- the invention also relates to the use of the invention
- thermoplastic and thermosetting polymers as well as with these
- component F Thermoplastic and / or thermosetting polymers which contain the flame retardant combinations according to the invention and optionally fillers and reinforcing agents and / or other additives as defined below are referred to below as polymer compositions.
- Flame retardant combinations can be effectively used, it is amorphous thermoplastic polymers or semi-crystalline
- thermoplastic polymers preferably those having a melting point of less than or equal to 290 ° C, more preferably of less than or equal to 280 ° C and most preferably of less than or equal to 250 ° C. Such polymers have already been described in detail in the literature and are known to the person skilled in the art. Melting points of thermoplastic polymers used according to the invention are determined by means of differential scanning caloimetry (DSC) at a heating rate of 10 K / second.
- DSC differential scanning caloimetry
- thermoplastic polymers used according to the invention include, for example
- HDPE-UHMW high density polyethylene
- MDPE medium density polyethylene
- Low density polyethylene LDPE
- linear low density polyethylene LLDPE
- VLDPE branched low density polyethylene
- PP / HDPE PP / LDP
- blends of various types of polyethylene such as LDPE / HDPE.
- Low density polyethylene LLDPE and blends thereof with low density polyethylene (LDPE), propylene-butene-1 copolymers, propylene-isobutylene copolymers, ethylene-butene-1 copolymers, etc.
- LDPE / ethylene-acrylic acid copolymers LLDPE / ethylene-vinyl acetate copolymers, LLDPE / ethylene-acrylic acid copolymers, and alternating or random polyalkylene / carbon monoxide copolymers and mixtures thereof with other polymers such.
- Polystyrene poly (p-methylstyrene), poly (alpha-methylstyrene). Copolymers of styrene or alpha-methylstyrene with dienes or
- Acrylic derivatives such as. Styrene-butadiene, styrene-acrylonitrile, styrene-alkyl methacrylate, styrene-butadiene-alkyl acrylate and methacrylate, styrene-maleic anhydride, styrene-acrylonitrile methacrylate; Blends of high impact strength of styrene copolymers and another polymer, such as. A polyacrylate, a diene polymer or an ethylene-propylene-diene terpolymer; as well as block copolymers of styrene such.
- Styrene-butadiene-styrene styrene-isoprene-styrene
- styrene-ethylene / butylene-styrene styrene-ethylene / propylene-styrene.
- Graft copolymers of styrene or alpha-methylstyrene such as. Styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acrylonitrile copolymers, styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; Styrene, acrylonitrile and methyl methacrylate on polybutadiene; Styrene and maleic anhydride on polybutadiene; Styrene, acrylonitrile and
- Polymers such as. B. known as so-called ABS, MBS, ASA or AES polymers.
- Halogen-containing polymers such as. As polychloroprene, chlorinated rubber, chlorinated and brominated copolymer of isobutylene-isoprene
- Halobutyl rubber chlorinated or chlorosulfonated polyethylene, copolymers of ethylene and chlorinated ethylene, Epichlorhydrinhomo- and copolymers, especially polymers of halogen-containing polyethylene
- Vinyl compounds such as. As polyvinyl chloride, polyvinylidene chloride,
- Vinyl chloride-vinylidene chloride vinyl chloride-vinyl acetate or vinylidene chloride-vinyl acetate.
- acrylonitrile-butadiene copolymers For example, acrylonitrile-butadiene copolymers, acrylonitrile-alkyl acrylate copolymers, acrylonitrile alkoxyalkyl acrylate copolymers, acrylonitrile-vinyl halide copolymers or acrylonitrile-alkyl methacrylate-butadiene terpolymers.
- Polyacetals, such as polyoxymethylene, as well as those polyoxymethylenes, the comonomers, such as. B. contain ethylene oxide; Polyacetals modified with thermoplastic polyurethanes, acrylates or MBS. Polyphenylene oxides and sulfides and mixtures thereof with styrene polymers or polyamides.
- Polyamides and copolyamides derived from diamines and dicarboxylic acids and / or aminocarboxylic acids or the corresponding lactams such as polyamide 4, polyamide 6, polyamide 6/6, 6/10, 6/9, 6/12, 4/6, 12 / 12, polyamide 1 1, polyamide 12; Block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers, or chemically bonded or grafted elastomers; or with polyethers, such as. B. with polyethylene glycol, polypropylene glycol or
- Polytetramethylene glycol Further modified with EPDM or ABS Polyamides or copolyamides; as well as during processing
- IM polyamide systems Polyureas, polyimides, polyamideimides, polyetherimides, polyesterimides, polyhydantoins and polybenzimidazoles. Polyesters which are derived from dicarboxylic acids and dialcohols and / or from hydroxycarboxylic acids or the corresponding lactones, such as polyethylene terephthalate, polybutylene terephthalate, poly-1,4-dimethylolcyclohexane terephthalate, and block polyether esters derived from hydroxyl-terminated polyethers; also with polycarbonates or MBS modified polyester. Polycarbonates and polyestercarbonates. Polysulfones, polyethersulfones and polyetherketones.
- Polybiends of the aforementioned polymers, such as. PP / EPDM, polyamide / EPDM or ABS, PVC / EVA, PVC / ABS, PVC / MBS, PC / ABS, PBTP / ABS, PC / ASA, PC / PBT, PVC / CPE, PVC / Acrylate,
- Thermoplastic elastomers such as block copolymers based on styrene (styrene-butadiene block copolymers, styrene-isoprene-styrene block copolymers, styrene-ethylene-butylene-styrene block copolymers), block copolymers based on thermoplastic polyester elastomers, Ether-based and / or ester-based block copolymers consisting of alternating blocks of diisocyanates and short-chain diols and of diisocyanates and long-chain diols, polyether block amides, co-polyamides and / or polyether amides.
- TPE Thermoplastic elastomers
- TPEs are elastomer blends, such as thermoplastic olefins containing polypropylene, polyethylene block copolymers; Polypropylene, ethylene-propylene rubber, ethylene-octene copolymers, styrene-ethylene-butadiene-styrene,
- Polyolefin-ethylene-propylene-dienes, polyolefin-ethylene-vinyl acetate copolymers and / or polyolefin-polyarylene ethers are examples of polyolefin-ethylene-propylene-dienes, polyolefin-ethylene-vinyl acetate copolymers and / or polyolefin-polyarylene ethers.
- thermoplastic vulcanizates eg. B. ethylene-propylene-diene rubber particles in a matrix of polypropylene.
- thermosetting polymers are preferably unsaturated polyester resins (UP resins) which are more saturated and more stable to copolyesters
- UP resins are cured by free-radical polymerization with initiators (eg peroxides) and accelerators.
- Preferred unsaturated dicarboxylic acids and derivatives for the preparation of the UP resins are maleic anhydride and fumaric acid.
- Preferred saturated dicarboxylic acids are phthalic acid, isophthalic acid,
- Terephthalic acid Terephthalic acid, tetrahydrophthalic acid, adipic acid.
- Preferred diols are 1, 2 propanediol, ethylene glycol, diethylene glycol and
- Neopentyl glycol neopentyl glycol, ethoxylated or propoxylated
- Preferred vinyl compound for crosslinking is styrene.
- Preferred hardener systems are peroxides and metal co-initiators, e.g. B.
- Preferred hydroperoxides are di-tert-butyl peroxide, tert-butyl peroctoate, tert-butyl perpivalate, tert-butyl per-2-ethylhexanoate, tert-butyl permalate, tert-butyl perisobutyrate, benzoyl peroxide, diacetyl peroxide, succinyl peroxide, p-chlorobenzoyl peroxide and dicyclohexyl peroxide dicarbonate , Preferred metal co-initiators are cobalt, manganese, iron, vanadium, nickel or lead compounds.
- Preferred aromatic amines are dimethylaniline, dimethyl-p-toluene, diethylaniline and phenyldiethanolamine.
- thermosetting polymers are epoxy resins which are aliphatic, cycloaliphatic, heterocyclic or aromatic
- Accelerators are networked.
- Suitable glycidyl compounds are bisphenol A diglycidyl esters, bisphenol F diglycidyl esters, polyglycidyl esters of phenol formaldehyde resins and cresol formaldehyde resins, polyglycidyl esters of pthalthalene, isophthalic and
- Suitable hardeners are aliphatic, cycloaliphatic, aromatic and
- heterocyclic amines or polyamines such as ethylenediamine, diethylenetriamine
- Triethylenetetramine propane-1,3-diamine, hexamethylenediamine, aminoethylpiperazine, isophoronediamine, polyamidoamine, diaminodiphenylmethane, diaminodiphenyl ether, diaminodiphenol sulfones, aniline-formaldehyde resins, 2,2,4-trimethylhexane-1,6 diamine, m-xylylenediamine, bis (4-aminocyclohexyl) ethane, 2,2-bis (4-aminocyclohexyl) propane, 3-aminomethyl-3,5,5-trimethylcyclohexylamine
- Methylhexahydrophthal Acidanhydrid and phenols such.
- Phenol aralkyl resin Phenol aralkyl resin, phenoltrimethylolmethane resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol kocondensate resin, naphthol cresol kocondensate resin, biphenol-modified phenol resin, and aminotriazine-modified phenol resin.
- the hardeners can be used alone or in combination
- Polymerization are tertiary amines, benzyldimethylamine, N-alkylpyridines, imidazole, 1-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-heptadecylimidazole, metal salts of organic acids, Lewis Acids and amine complex salts.
- thermoset polymers are preferably those which are derived from aldehydes on the one hand and phenols, urea or melamine on the other hand, such as phenol-formaldehyde, urea-formaldehyde and melamine-formaldehyde resins.
- thermosetting polymers are to
- Acrylic resins derived from substituted acrylic acid esters such as. As of epoxy acrylates, urethane acrylates or polyester acrylates.
- thermoset polymers are alkyd resins
- thermoset polymers are polyurethanes or polyureas obtained by reacting polyisocyanates or ureas with polyols or polyamines.
- Preferred polyols are alkene oxide adducts of ethylene glycol, 1, 2-propanediol, bisphenol A, trimethylolpropane, glycerol, pentaerythrol, sorbitol, sugar or degraded starch. It is also possible to use polyester polyols. These can be obtained by polycondensation of a polyalcohol such as ethylene glycol,
- Dextrose and / or sorbitol with a dibasic acid such as oxalic acid, malonic acid, succinic acid, tartaric acid, adipic acid, sebacic acid,
- Suitable polyisocyanates are aromatic, alicyclic or aliphatic
- Polyisocyanates having not less than two isocyanate groups and mixtures thereof Preference is given to aromatic polyisocyanates, such as tolyl diisocyanate,
- alicyclic polyisocyanates such as methylene diphenyl diisocyanate, tolylene diisocyanate; aliphatic polyisocyanates, and hexamethylene diisocyanate, isophorone diisocyanate, Demeryldiisocyanat, 1, 1-methylenebis (4-isocyanatocyclohexane-4,4'-diisocyanato dicyclohexylmethane isomer mixture, 1, 4-cyclohexyl diisocyanate, Desmodur ® - types (Bayer) and lysine diisocyanate and mixtures thereof.
- Suitable polyisocyanates are also modified products obtained by reaction of polyisocyanate with polyol, urea, carbodiimide and / or biuret.
- thermoplastic polymers more preferably to Polystyrene-HI, polyphenylene ethers, polyamides, polyesters, polycarbonates and blends or polymer blends of the ABS (acrylonitrile-butadiene-styrene) or PC / ABS (polycarbonate / acrylonitrile-butadiene-styrene) or PPE / HIPS type
- Polystyrene HI is a polystyrene with increased impact strength.
- thermoplastic polymers used are polyamides, polyesters and PPE / HIPS blends.
- the flame retardant combinations used according to the invention stabilize the polymers (component F) very well against thermal degradation. This is evidenced by the change in the specific viscosity of thermoplastic polymers during compounding and shaping of the polymer compositions according to the invention.
- the thermal stress which results therefrom results in a partial degradation of the polymer chains, which results in a reduction in the average molecular weight and, associated therewith, in a reduction in the viscosity of a polymer solution.
- the proportion of component F is usually from 25 to 95% by weight, preferably from 25 to 75% by weight.
- the proportion of component A is usually 1 to 35% by weight, preferably 5 to 20% by weight.
- Component B usually 0.01 to 3 wt .-%, preferably 0.05 to 1, 5% by weight.
- the proportion of component C is usually 0.001 to 1% by weight, preferably 0.01 to
- the proportion of component D is usually 1 to 25 wt .-%, preferably 4 to 10 wt .-%.
- the proportion of component E is usually 0 to 10 wt .-%, preferably 1 to 8 wt .-%.
- the percentages for the proportions of components A to F relate to the total amount of the polymer composition.
- Polymer compositions achieve a rating of V0 to UL-94, especially measured on moldings of 3.2 mm to 0.4 mm thickness.
- Polymer compositions detect a Glow Wire Flammability Index IEC-60695-2-12 of greater than or equal to 960 ° C, in particular measured on molded parts of 0.75 - 3 mm thickness.
- the particularly preferred polyamides of component F are generally homo- or copolyamides derived from (cyclo) aliphatic
- Aminocarboxylic acids or their polyamide-forming derivatives, such as their salts derived are examples of aminocarboxylic acids or their polyamide-forming derivatives, such as their salts derived.
- polyamides used according to the invention as component F can be prepared by various processes and synthesized from very different building blocks and, in a specific application, alone or in combination with processing aids, stabilizers or even polymers
- Alloy partners preferably elastomers, to materials equipped with specially selected property combinations.
- Monomerbausteine various chain regulators for setting a desired molecular weight or monomers with reactive groups for later intended post-treatments can be used.
- Polyamides to be used as component F are preferably partially crystalline aliphatic polyamides having a melting point of less than or equal to 290 ° C., preferably less than or equal to 280 ° C. These can be based on
- Suitable starting materials are aliphatic dicarboxylic acids, preferably adipic acid, 2,2,4- and 2,4,4-trimethyladipic acid, azelaic acid and / or sebacic acid, aliphatic diamines, preferably tetramethylenediamine, hexamethylenediamine, 1, 9-nonanediamine, 2,2,4- and 2,4,4-trimethylhexamethylenediamine, the isomers
- Caprolactame most preferably ⁇ -caprolactam is used.
- the aliphatic homo- or copolyamides used according to the invention are preferably polyamide 12, polyamide 4, polyamide 4.6, polyamide 6, polyamide 6.6, polyamide 6.9, polyamide 6.10, polyamide 6.12, polyamide 6.66, polyamide 7.7, polyamide 8.8, polyamide 9.9, Polyamide 10.9, polyamide 10.10,
- Polyamide group in the polymer chain 3 to 1 1 come methylene groups.
- Flame retardant polyamide compositions in which one or more polyamides are selected as component F from the group consisting of PA 6, PA 6.6, PA 4.6, PA 12, PA 6.10 are preferably used.
- Flame-retardant polyamide compositions in which polyamide 6.6 or polymer blends of polyamide 6.6 and polyamide 6 are used as component F are particularly preferred. Very particular preference is given to flame-retardant
- component F consists of at least 75% by weight of polyamide 6,6 and at most 25% by weight of polyamide 6.
- the particularly preferred polyesters of component F are generally (cyclo) aliphatic or aromatic-aliphatic polyesters derived from (cyclo) aliphatic and / or aromatic dicarboxylic acids or their polyester-forming derivatives, such as their dialkyl esters or anhydrides, and of (cyclo) aliphatic and / or araliphatic diols or of (cyclo) aliphatic and / or aromatic hydroxycarboxylic acids or their polyester-forming derivatives, such as their alkyl esters or anhydrides.
- (Cyclo) aliphatic includes cycloaliphatic and aliphatic compounds.
- thermoplastic polyesters of component F are preferably selected from the group of polyalkylene esters of aromatic and / or aliphatic dicarboxylic acids or their dialkyl esters.
- Preferably used components F are aromatic-aliphatic
- thermoplastic polyesters and preferably thermoplastic polyesters derived by reacting aromatic dicarboxylic acids or their polyester-forming derivatives with aliphatic C 2 -C 10 -diols, in particular with C 2 -C 4 -diols.
- preferably used components F are
- Polyalkylene enterephthalates and particularly preferably polyethylene terephthalates or polybutylene terephthalates.
- Polyalkylene terephthalates preferably contain at least 80 mol%, in particular 90 mol%, based on the dicarboxylic acid, units derived from terephthalic acid.
- Polyalkylene terephthalates can be up to 20 mol% in addition to terephthalic acid residues Radicals of other aromatic dicarboxylic acids having 8 to 14 C atoms or radicals of aliphatic dicarboxylic acids having 4 to 12 C atoms, such as radicals of phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, amber , Adipic, sebacic or azelaic acid, cyclohexanediacetic acid or cyclohexanedicarboxylic acid.
- Radicals of other aromatic dicarboxylic acids having 8 to 14 C atoms or radicals of aliphatic dicarboxylic acids having 4 to 12 C atoms such as radicals of phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyldicarboxylic acid
- Polyalkylene terephthalates can be prepared by incorporation of relatively small amounts of trihydric or trihydric alcohols or tribasic or tetrabasic carboxylic acids, as described, for example, in US Pat. As described in DE-A-19 00 270 are branched. Examples of preferred branching agents are trimesic acid, trimellitic acid, trimethylolethane and propane and pentaerythritol.
- Particularly preferred components F are polyalkylene terephthalates which are prepared solely from terephthalic acid and its reactive derivatives (eg
- Dialkyl esters and ethylene glycol and / or propanediol-1, 3 and / or butanediol-1, 4 are prepared (polyethylene and polytrimethylene and polybutylene terephthalate) and mixtures of these polyalkylene terephthalates.
- Preferred polybutylene terephthalates contain at least 80 mol%
- the preferred polybutylene terephthalates may further contain, in addition to 1,4-butanediol radicals, up to 20 mol% of other aliphatic diols having 2 to 12 carbon atoms or cycloaliphatic diols having 6 to 21 carbon atoms, e.g. B. residues of
- Polyalkylene terephthalates are also copolyesters which are prepared from at least two of the abovementioned acid components and / or from at least two of the abovementioned alcohol components and / or butanediol-1,4.
- thermoplastic component used as component F according to the invention is thermoplastic component used as component F according to the invention.
- Polyesters may also be used in admixture with other polyesters and / or other polymers.
- the polymer compositions according to the invention may contain as component G further additives.
- Preferred components G for the purposes of the present invention are antioxidants, UV stabilizers,
- Gamma ray stabilizers for antioxidants, antistatic agents, emulsifiers, nucleating agents, plasticizers, processing aids, impact modifiers, dyes, pigments,
- Fillers, reinforcing agents and / or other flame retardants that differ from components A, B, C, D and E.
- Polymer composition is usually up to 60 wt .-%, preferably between 10 and 50 wt .-%, based on the total amount of
- polymer compositions according to the invention which contain fillers and / or in particular reinforcing materials, preferably glass fibers. It can also be mixtures of two or more
- Preferred fillers are mineral particulate fillers based on talc, mica, silicate, quartz, titanium dioxide, wollastonite, kaolin, amorphous Silicas, nanoscale minerals, particularly preferably montmohlorites or nano-boehmites, magnesium carbonate, chalk, feldspar, glass beads and / or barium sulfate. Particular preference is given to mineral particulate fillers based on talc, wollastonite and / or kaolin.
- needle-shaped mineral fillers are also particularly preferably used. Under needle-shaped mineral fillers is understood according to the invention a mineral filler with pronounced needle-like character. Preferred are needle-shaped wollastonites.
- the mineral has a length to diameter ratio of 2: 1 to 35: 1, more preferably from 3: 1 to 19: 1, particularly preferably from 4: 1 to 12: 1.
- the average particle size of the acicular mineral fillers used according to the invention as component B is preferably less than 20 ⁇ m, more preferably less than 15 ⁇ m, particularly preferably less than 10 ⁇ m, determined using a CILAS granulometer.
- the reinforcing materials preferably used according to the invention may be carbon fibers and / or glass fibers.
- the filler and / or reinforcing material may in a preferred
- Be surface-modified embodiment preferably with a
- Adhesive or a primer system particularly preferably on
- Silane In particular when glass fibers are used, in addition to silanes, polymer dispersions, film formers, branching agents and / or
- Fiber processing aids are used.
- the glass fibers preferably used according to the invention may be short glass fibers and / or long glass fibers. As a short or
- Long glass fibers can be used cut fibers.
- Short glass fibers can also be used in the form of ground glass fibers.
- glass fibers may also be used in the form of continuous filaments, for example in the form of rovings, monofilaments, filament yarns or twines, or glass fibers may be in the form of textile fabrics be used, for example, as a glass fabric, as a glass braid or as a glass mat.
- Polyamide matrix range from 0.05 to 10 mm, preferably from 0.1 to 5 mm. After incorporation into the polyamide matrix, the length of the glass fibers has decreased. Typical fiber lengths for short glass fibers after the
- Incorporation into the polyamide matrix ranges from 0.01 to 2 mm, preferably from 0.02 to 1 mm.
- the diameters of the individual fibers can vary within wide ranges. Typical diameters of the individual fibers range from 5 to 20 ⁇ m.
- the glass fibers can have any cross-sectional shapes, for example round, elliptical, n-cornered or irregular cross-sections. Glass fibers with mono- or multilobal cross-sections can be used.
- Glass fibers can be used as continuous fibers or as cut or ground glass fibers.
- the glass fibers themselves can be selected, for example, from the group of E-glass fibers, A-glass fibers, C-glass fibers, D-glass fibers, M-glass fibers, S-glass fibers,
- the glass fibers are preferably provided with a size which preferably contains polyurethane as film former and aminosilane as adhesion promoter.
- Particularly preferably used E glass fibers have the following chemical
- R glass fibers have the following chemical composition: S1O2 50-65%; AI2O3 20-30%; CaO 6-16%; MgO 5-20%; Na 2 O 0.3-0.5%; K2O 0.05-0.2%; Fe 2 O 3 0.2-0.4%, T1O2 0.1-0.3%.
- ECR glass fibers have the following chemical composition: S1O2 57.5-58.5%; AI2O3 17.5-19.0%; CaO 11, 5-13.0%; MgO 9.5-1 1, 5.
- the proportion of fillers and / or reinforcing materials in the polymer composition according to the invention is usually 1 to 45 wt .-%, preferably 20 to 40 wt .-%.
- the further additives G are known per se as additives to polymer compositions and can be used alone or mixed or in the form of masterbatches.
- flame-retarded polymer composition are processed. It is thus possible to mix the components into the polymer melt already at the beginning or at the end of the polycondensation or in a subsequent compounding process. Furthermore, there are processing processes in which individual components are added later. This is especially practiced when using pigment or additive masterbatches. There is also the
- Drying process possibly warm up warm polymer granules.
- two or more of the components of the polymer compositions of the present invention may be combined by mixing prior to incorporation into the polymer matrix.
- conventional mixing units can be used, in which the components in a suitable mixer, for. B. 0.01 to 10 hours at 0 to 300 ° C mixed.
- From two or more of the components of the polymer compositions according to the invention it is also possible to prepare granules which can subsequently be introduced into the polymer matrix.
- Polymer composition with granulation and / or binder in a suitable mixer or a granulating are processed into granules.
- the initially formed crude product can be dried in a suitable dryer or tempered for further grain buildup.
- the polymer composition according to the invention or two or more components thereof may be prepared by roll compaction in one embodiment.
- the polymer composition according to the invention or two or more components thereof may in one embodiment be prepared by mixing, extruding, chopping (or breaking) the ingredients.
- the polymer composition according to the invention or two or more components thereof can be prepared in one embodiment by spray granulation.
- the flame-retardant polymer molding composition according to the invention is preferably in granular form, for. B. as an extrudate or as a compound before.
- the granules preferably have a cylindrical shape with a circular, elliptical or irregular base, spherical shape, pillow shape, cube shape, cuboid shape, prism shape.
- Typical length to diameter ratio of the granules are 1 to 50 to 50 to 1, preferably 1 to 5 to 5 to 1.
- the granules preferably have a diameter of 0.5 to 15 mm, more preferably of 2 to 3 mm and preferably a length of 0.5 to 15 mm, particularly preferably 2 to 5 mm.
- Flammschutzmittelkombination invention comprising the above-defined components A, B, C, D and optionally E and optionally with other flame retardants, synergists, stabilizers, additives and fillers or
- thermosetting resin with a flame retardant combination containing the above-defined components A, B, C, D and optionally E and optionally with other flame retardants, synergists, stabilizers, additives and Filling or
- Temperatures for example at temperatures of 80 to 150 ° C, wet presses (hot or hot pressing).
- the invention also relates to moldings produced from the above-described flame-retardant polymer composition comprising
- the molded parts according to the invention may be any desired formations. Examples of these are fibers, films or moldings obtainable from the novel flame-retardant polymer molding compositions by any desired molding processes, in particular by injection molding or extrusion.
- the preparation of the flame-retardant polymer moldings according to the invention can be carried out by any molding process. Examples include injection molding, pressing, foam injection, gas injection molding, blow molding,
- the molded parts are preferably injection-molded parts or extruded parts.
- the flame-retardant polymer compositions according to the invention are suitable for the production of fibers, films and moldings, in particular for applications in the electrical and electronics sector.
- the invention preferably relates to the use of the flame-retardant polymer compositions according to the invention in or for connectors, current-carrying parts in power distributors (Fl protection), circuit boards, potting compounds, power connectors, circuit breakers, lamp housings, LED housings,
- Capacitor housings bobbins and fans, protective contacts, plugs, in / on boards, housings for plugs, cables, flexible printed circuit boards, charging cables for mobile phones, engine covers or textile coatings.
- the invention likewise preferably relates to the use of the flame-retardant polymer compositions according to the invention for the production of moldings in the form of components for the electrical / electronics sector, in particular for parts of printed circuit boards, housings, foils, lines, switches, distributors, relays, resistors, capacitors, coils, lamps , Diodes, LED, transistors, connectors, regulators, memories and sensors, in the form of large area Components, in particular of housing parts for cabinets and in the form of elaborately designed components with sophisticated geometry.
- the wall thickness of the shaped bodies according to the invention can typically be up to 10 mm. Particularly suitable are moldings with less than 1.5 mm wall thickness, more preferably less than 1 mm wall thickness and particularly preferably less than 0.5 mm wall thickness.
- Flame retardant FM 5 (components A, B and C): Aluminum salt of diethylphosphinic acid containing 0.5 mol% of aluminum ethylbutylphospinate and 0.05 mol% of aluminum ethylphosphonate prepared by the process according to US Pat. No. 7,420,007 B2 flame retardant FM 6 (components A, B and C):
- Polyamide 6.6 PA 6.6-GV; melting range of 255-260 ° C): Ultramid ® A27 (BASF) Polyamide 6 (melting range of 217-222 ° C): Durethan ® B29 (Lanxess)
- Polyamide 6T / 6.6 (melting range 310-320 ° C): Vestamid ® HAT plus 1000 (Evonik)
- PBT Polybutylene terephthalate
- BASF Ultradur ® 4500
- the flame retardant components were mixed in the proportions shown in the tables and fed through the side feeder of a twin-screw extruder (Leistritz ZSE 27 / 44D type) at temperatures of 260 to 310 ° C PA 6.6 or at 250 to 275 ° C in PA 6 or at 310 to 330 ° C PA 6T / 6.6 incorporated.
- the glass fibers were over a second side feed
- Injection molding machine type Arburg 320 C Allrounder
- mass temperatures 250 to 320 ° C to test specimens processed and based on the UL 94 test
- the Comparative Tracking Index of the molded parts was determined according to the International Electrotechnical Commission Standard IEC-601 12/3.
- the Glow Wire Flammability Index (GWFI Index) has been determined in accordance with standard IEC-60695-2-12.
- Polymer compositions are measured with an X-ray powder diffractometer (XTert-MPD, Phillips). The sample was irradiated with Cu-K-alpha radiation and the step time was 1 second.
- XTert-MPD X-ray powder diffractometer
- Injection molding machine was carried out at melt temperatures of 260 to 280 ° C.
- the sample exhibited reflections in the range of 9.099 ° to 9.442 °, from 18.619 ° to 18.984 ° and from 26.268 ° to 26.679 °
- the polyamide compositions of Examples 1 to 5 according to the invention are molding compositions which reach the fire classification UL 94 V-0 at 0.4 mm and at the same time have CTI 500 volts and GWFI 960 ° C.
- the addition of component E in Example 5 leads to a further improvement of the flame retardancy expressed by a reduced afterburning time.
- the specimen showed reflections in the range of 9.099 to 9.442 °, from 10.802 to 11.004 °, from 1.775 to 11.990, from 18.619 to 18.984 ° and from 26.268 to 26.679 °
- the polyamide compositions according to the invention of Examples 6 to 10 are molding compositions which reach the fire class UL 94 V-0 at 0.4 mm, while having CTI 500 volts and GWFI 960 ° C.
- the addition of component E in Example 10 leads to a further improvement of the flame retardancy expressed by a reduced afterburning time.
- polyester compositions according to the invention of Examples 1 1 to 15 are molding compositions which reach the fire class UL 94 V-0 at 0.4 mm and at the same time have CTI 500 volts and GWFI 960 ° C.
- component E in Example 15 leads to a further improvement of the flame retardancy expressed by a reduced afterburning time.
- Example C12 In Comparative Example C12, by increasing the concentration of components A, B and C in comparison to Example V1 1, a shortening of the afterburning time did indeed occur. However, this polyester composition still exhibited an extended afterburn time compared to Example 12.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Die Erfindung betrifft Flammschutzmittelkombinationen enthaltend - Phosphinsäuresalz der Formel (I) als Komponente A worin R1 und R2 Ethyl bedeuten, M Al, Fe, TiOp oder Zn ist, m 2 bis 3 bedeutet, und p = (4 – m) / 2 ist - Verbindung ausgewählt aus der Gruppe der Al-, Fe-, TiOp- oder Zn-Salze der Ethylbutylphosphinsäure, der Dibutylphosphinsäure, der Ethylhexylphosphinsäure, der Butylhexylphosphinsäure und/oder der Dihexylphosphinsäure als Komponente B - Phosphonsäuresalz der Formel (II) als Komponente C worin R3 Ethyl bedeutet, Met Al, Fe, TiOq oder Zn ist, n 2 bis 3 bedeutet, und q = (4 – n) / 2 ist - Melamincyanurat als Komponente D, wobei das Röntgenpulverdiffraktrogramm der Flammschutzmittelkombinationen folgende Reflexe enthält: im Winkelbereich 2θ von 9,099° bis 9,442°, von 10,802° bis 11,004°, von 11,775 bis 11,990, von 18,619° bis 18,984° und von 26,268° bis 26,679° und/oder im Winkelbereich 2θ von 5,112° bis 5,312°, von 6,097° bis 6,297°, von 10,082° bis 10,282°, von 10,350° bis 10,550°, von 10,802° bis 11,004°, von 11,775° 5 bis 11,990° und von 12,308° bis 12,508° und/oder im Winkelbereich 2θ von 9,117° bis 9,317°, von 10,802° bis 11,004°, von 11,775° bis 11,990° und von 18,537° bis 18,737° und/oder im Winkelbereich 2θ von 8,300° bis 8,500°, von 10,802° bis 11,004° und von 11,775° bis 11,990°. Die Polymerzusammensetzungen lassen sich zur Herstellung von Fasern, Folien und Formkörpern, insbesondere für Anwendungen im Elektro- und Elektronikbereich einsetzen.
Description
Flammschutzmittelkonnbinationen für Polymerzusammensetzungen und deren Verwendung
Beschreibung
Die vorliegende Erfindung betrifft neue Kombinationen von Flammschutzmitteln und Polymerzusammensetzungen enthaltend diese sowie deren Verwendung.
Brennbare Kunststoffe müssen in der Regel mit Flammschutzmitteln ausgerüstet werden, um die von den Kunststoffverarbeitern und teilweise vom Gesetzgeber geforderten hohen Flammschutzanforderungen erreichen zu können. Bevorzugt - auch aus ökologischen Gründen - werden nicht-halogenierte
Flammschutzmittelsysteme eingesetzt, die nur geringe oder keine Rauchgase bilden
Unter diesen Flammschutzmitteln haben sich die Salze von Phosphinsäuren (Phosphinate) als besonders für thermoplastische Polymere wirksam erwiesen (DE 2 252 258 A und DE 2 447 727 A). Darüber hinaus sind synergistische Kombinationen von Phosphinaten mit bestimmten stickstoffhaltigen Verbindungen bekannt, die in einer ganzen Reihe von Polymeren als Flammschutzmittel effektiver wirken, als die Phosphinate allein (WO-2002/28953 A1 sowie DE 197 34 437 A1 und DE 197 37 727 A1 ). Aus der US 7,420,007 B2 ist bekannt, dass Dialkylphosphinate enthaltend eine geringe Menge an ausgewählten Telomeren als Flammschutzmittel für Polymere geeignet sind, wobei das Polymere bei der Einarbeitung des Flammschutzmittels in die Polymermatrix nur einem recht geringen Abbau unterliegt. Flammschutzmittel müssen häufig in hohen Dosierungen zugesetzt werden, um eine ausreichende Flammwidrigkeit des Kunststoffs nach internationalen Normen sicherzustellen. Aufgrund ihrer chemischen Reaktivität, die für die
Flammschutzwirkung bei hohen Temperaturen erforderlich ist, können
Flammschutzmittel, vor allem bei höheren Dosierungen, die Verarbeitungsstabilität von Kunststoffen beeinträchtigen. Es kann zu verstärktem Polymerabbau, zu Vernetzungsreaktionen, zu Ausgasungen oder Verfärbungen kommen. Aus der WO 98/03515 A1 sind Rontgenreflexe von Hochtemperaturmodifikationen von Aluminiumsalzen von Phosphinsäuren bekannt. Diese Phosphinsäuresalze werden bei hoher Temperatur hergestellt.
Aus der WO 2014/135256 A1 sind Polyamid-Formmassen bekannt, die eine deutlich verbesserte die thermische Stabilität, eine verringerte Migrationsneigung sowie gute elektrische und mechanische Eigenschaften aufweisen.
Bislang fehlt es jedoch an phosphinathaltigen Flammschutzmittelkombinationen, die Polymerzusammensetzungen alle geforderten Eigenschaften gleichzeitig verleihen, wie gute elektrische Werte und einen effektiven Flammschutz.
Es war daher Aufgabe der vorliegenden Erfindung, phosphinathaltige
Flammschutzmittelsysteme zur Verfügung zu stellen, die den damit ausgerüsteten Polymeren alle vorgenannten Eigenschaften gleichzeitig verleihen, insbesondere gute elektrische Werte und einen hohen Flammschutz, gekennzeichnet durch möglichst kurze Nachbrennzeiten.
Es war daher Aufgabe der vorliegenden Erfindung, phosphinathaltige
Flammschutzmittelsysteme mit dem oben beschriebenen Eigenschaftsprofil zur Verfügung zu stellen, d. h. diese weisen gute elektrische Werte (GWFI, CTI) und einen hohen Flammschutz, gekennzeichnet durch möglichst kurze
Nachbrennzeiten (UL-94), auf.
Gegenstand der Erfindung sind Flammschutzmittelkombinationen enthaltend - Phosphinsäuresalz der Formel (I) als Komponente A
m
worin Ri und R2 Ethyl bedeuten,
M AI, Fe, TiOp oder Zn ist,
m 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
p = (4 - m) / 2 ist
Verbindung ausgewählt aus der Gruppe der AI-, Fe-, TiOp- oder Zn-Salze der Ethylbutylphosphinsäure, der Dibutylphosphinsäure, der
Ethylhexylphosphinsäure, der Butylhexylphosphinsäure und/oder der Dihexylphosphinsäure als Komponente B
Phosphonsäuresalz der Formel (II) als Komponente C
worin R3 Ethyl bedeutet,
Met AI, Fe, TiOq oder Zn ist,
n 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
q = (4 - n) / 2 ist, und
Melamincyanurat als Komponente D, wobei
das Röntgenpulverdiffraktrogramm der Flammschutzmittelkombinationen folgende Reflexe enthält:
im Winkelbereich 2Θ von 9,099° bis 9,442°, von 10,802° bis 1 1 ,004°, von
1 1 ,775 bis 1 1 ,990, von 18,619° bis 18,984° und von 26,268° bis 26,679° und/oder
im Winkelbereich 2Θ von 5,1 12° bis 5,312°, von 6,097° bis 6,297°, von 10,082° bis 10,282°, von 10,350° bis 10,550°, von 10,802° bis 1 1 ,004°, von 1 1 ,775° bis 1 1 ,990° und von 12,308° bis 12,508°
und/oder
im Winkelbereich 2Θ von 9,1 17° bis 9,317°, von 10,802° bis 1 1 ,004° , von 1 1 ,775° bis 1 1 ,990° und von 18,537° bis 18,737°
und/oder
im Winkelbereich 2Θ von 8,300° bis 8,500°, von 10,802° bis 1 1 ,004° und von 1 1 ,775° bis 1 1 ,990°. Die Röntgenspektren werden mit einem Röntgenpulverdiffraktometer,
beispielsweise mit einem Gerät X'Pert-MPD der Fa. Phillips vermessen. Dabei wird die Probe mit Cu-K-alpha-Strahlung bestrahlt und die Schrittzeit beträgt 1 Sekunde. Bevorzugte erfindungsgemäße Flammschutzmittelkombinationen sind solche, deren Röntgenpulverdiffraktrogramm folgende Reflexe enthält: im Winkelbereich 2Θ von 9,099° bis 9,442°, von 10,802° bis 1 1 ,004°, von 1 1 ,775 bis 1 1 ,990, von 18,619° bis 18,984° und von 26,268° bis 26,679°. In den erfindungsgemäßen Flammschutzmitteln beträgt der Anteil an Komponente A üblicherweise 5 bis 85 Gew.-%, vorzugsweise 10 bis 60 Gew.-%.
In den erfindungsgemäßen Flammschutzmitteln beträgt der Anteil an Komponente B üblicherweise 0,01 bis 10 Gew.-%, vorzugsweise 0,1 bis 2,5 Gew.-%.
In den erfindungsgemäßen Flammschutzmitteln beträgt der Anteil an Komponente C üblicherweise 0,01 bis 10 Gew.-%, vorzugsweise 0,1 bis 2,5 Gew.-%.
In den erfindungsgemäßen Flammschutzmitteln beträgt der Anteil an Komponente D üblicherweise 5 bis 50 Gew.-%, vorzugsweise 10 bis 30 Gew.-%.
Dabei beziehen sich die Prozentangaben für die Anteile der Komponenten A bis D auf die Gesamtmenge der Flamschutzmittelkombinationen. Bevorzugt werden Flammschutzmittelkombinationen, bei denen
der Anteil von Komponente A 5 bis 85 Gew.-%,
der Anteil von Komponente B 0,01 bis 10 Gew.-%,
der Anteil von Komponente C 0,01 bis 10 Gew.-%, und
der Anteil von Komponente D 5 bis 50 Gew.-%,
beträgt, wobei die Prozentangaben sich auf die Gesamtmenge der Komponenten A bis D beziehen. Besonders bevorzugt werden Flammschutzmittelkombinationen bei denen
der Anteil von Komponente A 10 bis 60 Gew.-%,
der Anteil von Komponente B 0,1 bis 2,5 Gew.-%,
der Anteil von Komponente C 0,1 bis 2,5 Gew.-%, und
der Anteil von Komponente D 10 bis 30 Gew.-%,
beträgt.
Bevorzugt eingesetzte Salze der Komponente A sind solche, worin Mm+ Zn2+, Fe3+ oder insbesondere Al3+ bedeuten. Bevorzugt eingesetzte Salze der Komponente B sind Zink-, Eisen- oder
insbesondere Aluminiumsalze.
Bevorzugt eingesetzte Salze der Komponente C sind solche, worin Metn+ Zn2+, Fe3+ oder insbesondere Al3+ bedeuten.
Ganz besonders bevorzugt werden Flammschutzmittelkombinationen, in denen M und Met AI bedeuten, m und n 3 sind und in denen die Verbindungen der
Komponente B als Aluminiumsalze vorliegen. Die erfindungsgemäß als Komponente A eingesetzten Salze von
Diethylphospinsäure sind bekannte Flammschutzmittel für polymere Formmassen.
Auch Salze von Diethylphosphinsäure mit Anteilen der erfindungsgemäß als Komponenten B und C eingesetzten Phosphinsäure- und Phosphonsäuresalze sind bekannte Flammschutzmittel. Die Herstellung dieser Stoffkombinationen wird z. B. in US 7,420,007 B2 beschrieben.
Die erfindungsgemäß eingesetzten Salze von Diethylphosphinsäure der
Komponente A können geringe Mengen an Salzen der Komponente B und an Salzen der Komponente C enthalten, beispielsweise bis zu 10 Gew.-% an
Komponente B, vorzugsweise 0,01 bis 6 Gew. %, und insbesondere 0,2 bis 2,5 Gew.-% davon, und bis zu 10 Gew.-% an Komponente C, vorzugsweise 0,01 bis 6 Gew. %, und insbesondere 0,2 bis 2,5 Gew.-% davon bezogen auf die Menge an Komponenten A, B und C.
Die erfindungsgemäß als Komponente C eingesetzten Salze der
Ethylphosphonsäure sind als Zusätze zu Diethylphospinaten in
Flammschutzmitteln für polymere Formmassen ebenfalls bekannt, beispielsweise aus WO 2016/065971 A1 .
Das erfindungsgemäß als Komponente D eingesetzte Melamincyanurat ist als Synergist in Verbindung mit Diethylphospinaten in Flammschutzmitteln für polymere Formmassen bekannt, beispielsweise aus WO 97/39053 A1 ).
In einer weiteren bevorzugten Ausführungsform liegen Komponenten A, B, C und D in Teilchenform vor, wobei die mittlere Teilchengröße (dso) 1 bis 100 μιτι beträgt.
In einer bevorzugten Ausführungsform enthalten die oben beschriebenen
Flammschutzmittelkombinationen anorganisches Phosponat als weitere
Komponente E. Die Verwendung der erfindungsgemäß als Komponente E eingesetzten
anorganischen Phosphonate oder auch Salze der phosphorigen Säure
(Phosphite) sind als Flammschutzmittel ist bekannt. So offenbart WO
2012/045414 A1 Flammschutzmittelkombinationen, die neben
Phosphinsäuresalzen auch Salze der phosphorigen Säure (= Phosphite) enthalten.
Bevorzugt entspricht das anorganische Phosphonat (Komponente E) den allgemeinen Formeln (IV) oder (V)
[(HO)PO2]2-p/2 KatP+ (IV)
[(HO)2PO]-p KatP+ (V) worin Kat ein p-wertiges Kation, insbesondere ein Kation eines Alkalimetalls, Erdalkalimetalls, ein Ammoniumkation und/oder ein Kation von Fe, Zn oder insbesondere von AI einschließlich der Kationen AI(OH) oder AI(OH)2 ist, und p 1 , 2, 3 oder 4 bedeutet.
Bevorzugt handelt es sich bei dem anorganischen Phosphonat (Komponente E) um Aluminiumphosphit [AI(H2PO3)3] , sekundäres Aluminiumphosphit [Al2(HPO3)3] , basisches Aluminiumphosphit [AI(OH)(H2PO3)2*2aq],
Aluminiumphosphittetrahydrat [Al2(HPO3)3*4aq], Aluminiumphosphonat,
AI7(HPO3)9(OH)6(1 ,6-Hexandiamin)i,5 *12H2O, ΑΙ2(ΗΡθ3)3*χΑΐ2θ3*ηΗ2Ο mit x = 2,27 - 1 und/oder AI4HePi6Oi8.
Bei dem anorganischen Phosphonat (Komponente E) handelt es sich bevorzugt auch um Aluminiumphosphite der Formeln (VI), (VII) und/oder (VIII)
Al2(HPO3)3 X (H2O)q (VI), wobei q 0 bis 4 bedeutet,
Al2,ooMz(HPO3)y(OH)v x (H2O)w (VII), wobei M Alkalimetallkationen, z 0,01 bis 1 ,5 und y 2,63 bis 3,5 und v 0 bis 2 und w 0 bis 4 bedeutet;
AI2,oo(H PO3)u(H2PO3)t x (H2O)s (VIII), wobei u 2 bis 2,99 und 1 2 bis 0,01 und s 0 bis 4 bedeutet,
und/oder
um Aluminiumphosphit [AI(H2PO3)3] , um sekundäres Aluminiumphosphit
[AI2(HPO3)3] , um basisches Aluminiumphosphit [AI(OH)(H2PO3)2*2aq], um
Aluminiumphosphittetrahydrat [Al2(HPO3)3*4aq], um Aluminiumphosphonat, um
Al7(HPO3)9(OH)6(1 ,6-Hexandiamin)i,5*12H2O, um ΑΙ2(ΗΡθ3)3*χΑΐ2θ3*ηΗ2Ο mit x = 2,27 - 1 und/oder AUH6P16O18.
Bevorzugte anorganische Phosphonate (Komponente E) sind in Wasser unlösliche bzw. schwerlösliche Salze.
Besonders bevorzugte anorganische Phosphonate sind Aluminium-, Calcium- und Zinksalze. Besonders bevorzugt handelt es sich bei Komponente E um ein
Umsetzungsprodukt aus phosphoriger Säure und einer Aluminiumverbindung.
Besonders bevorzugte Komponenten E sind Aluminiumphosphite mit den
CAS-Nummern 15099-32-8, 1 19103-85-4, 220689-59-8, 56287-23-1 , 156024-71 - 4, 71449-76-8 und 15099-32-8.
Die Herstellung der bevorzugt eingesetzten Aluminiumphosphite erfolgt durch Umsetzung einer Aluminiumquelle mit einer Phosphorquelle und wahlweise einem Templat in einem Lösungsmittel bei 20 - 200 °C während einer Zeitspanne bis zu 4 Tagen. Aluminiumquelle und Phosphorquelle werden dazu 1 - 4 h vermischt, unter hydrothermalen Bedingungen oder am Rückfluss erhitzt, abfiltriert, gewaschen und z. B. bei 1 10 °C getrocknet.
Bevorzugte Aluminiumquellen sind Aluminiumisopropoxid, Aluminiumnitrat, Aluminiumchlorid, Aluminiumhydroxid (z. B. Pseudoböhmit).
Bevorzugte Phosphorquellen sind Phosphorige Säure, (saures)
Ammoniumphosphit, Alkaliphosphite oder Erdalkaliphosphite. Bevorzugte Alkaliphosphite sind Dinatriumphosphit, Dinatriumphosphithydrat, Trinatriumphosphit, Kaliumhydrogenphosphit
Bevorzugtes Dinatriumphosphithydrat ist Brüggolen® H10 der Fa. Brüggemann.
Bevorzugte Template sind 1 ,6-Hexandiamin, Guanidincarbonat oder Ammoniak.
Bevorzugtes Erdalkaliphosphit ist Calciumphosphit.
Das bevorzugte Verhältnis von Aluminium zu Phosphor zu Lösungsmittel ist dabei 1 : 1 : 3,7 bis 1 : 2,2 : 100 mol. Das Verhältnis von Aluminium zu Templat ist 1 : 0 bis 1 : 17 mol. Der bevorzugte pH-Wert der Reaktionslösung ist 3 bis 9.
Bevorzugtes Lösungsmittel ist Wasser.
Besonders bevorzugt wird in der Anwendung das gleiche Salz der Phosphinsäure wie der phosphorigen Säure verwendet, also z. B. Aluminiumdiethylphosphinat zusammen mit Aluminiumphosphit oder Zinkdiethylphosphinat zusammen mit Zinkphosphit.
In einer bevorzugten Ausführungsform enthalten die oben beschriebenen
Flammschutzmittelkombinationen als Komponente E eine Verbindung der Formel (III)
o 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
r = (4 - o) / 2 ist.
Bevorzugt eingesetzte Verbindungen der Formel III sind solche, worin Me' Fe3+ oder insbesondere Al3+ bedeuten.
Komponente E liegt vorzugsweise in einer Menge von 0,01 bis 10 Gew.-%, insbesondere in einer Menge von 0,1 bis 2,5 Gew.-%, bezogen auf die
Gesamtmenge der Komponenten A bis E, vor. Die Erfindung betrifft auch die Verwendung der erfindungsgemäßen
Flammschutzmittel-Kombination zur flammfesten Ausrüstung von
thermoplastischen und duroplastischen Polymeren sowie die mit diesen
Flammschutzmittel-Kombinationen flammfest ausgerüstete
Polymerzusammensetzungen
Thermoplastische und/oder duroplastische Polymere (nachstehend Komponente F), welche die erfindungsgemäßen Flammschutzmittel-Kombinationen und gegebenenfalls Füll- und Verstärkungsstoffe und/oder andere Zusätze, wie unten definiert, enthalten, werden im Folgenden als Polymerzusammensetzungen bezeichnet.
Bei den thermoplastischen Polymeren, in denen die erfindungsgemäßen
Flammschutzmittelkombinationen wirksam eingesetzt werden können, handelt es sich um amorphe thermoplastische Polymere oder um teilkristalline
thermoplastische Polymere, vorzugsweise um solche mit einem Schmelzpunkt von kleiner gleich 290 °C, besonders bevorzugt von kleiner gleich 280 °C und ganz besonders bevorzugt von kleiner gleich 250 °C. Derartige Polymere sind in der Literatur bereits ausführlich beschrieben und sind dem Fachmann bekannt. Schmelzpunkte von erfindungsgemäß eingesetzten thermoplastischen Polymeren werden mittels Diffential-Scanning-Kalo metrie (DSC) bei einer Aufheizrate von 10 K/Sekunde bestimmt.
Zu den erfindungsgemäß eingesetzten thermoplastischen Polymeren gehören beispielsweise
1 . Polymere von Mono- und Diolefinen, beispielsweise Polypropylen,
Polyisobutylen, Polybutylen, Polybuten-1 , Polyisopropren oder Polybutadien
sowie Polymerisate von Cycloolefinen wie etwa von Cyclopenten oder von Norbornen; ferner Polyethylen, welches gegebenenfalls vernetzt sein kann; z. B. Polyethylen hoher Dichte (HDPE), Polyethylen hoher Dichte und hoher Molmasse (HDPE-HMW), Polyethylen hoher Dichte und ultrahoher
Molmasse (HDPE-UHMW), Polyethylen mittlerer Dichte (MDPE),
Polyethylen niederer Dichte (LDPE), lineares Polyethylen niederer Dichte (LLDPE), verzweigtes Polyethylen niederer Dichte (VLDPE). Mischungen der vorgenannten Polymere, beispielsweise Mischungen von Polypropylen mit Polyisobutylen, Polypropylen mit Polyethylen (z. B.
PP/HDPE, PP/LDP) und Mischungen verschiedener Polyethylentypen wie etwa LDPE/HDPE. Copolymere von Mono- und Diolefinen untereinander oder mit anderen Vinylmonomeren, wie z. B. Ethylen-Propylen-Copolymere, lineares
Polyethylen niederer Dichte (LLDPE) und Mischungen desselben mit Polyethylen niederer Dichte (LDPE), Propylen-Buten-1 -Copolymere, Propylen-Isobutylen-Copolymere, Ethylen-Buten-1 -Copolymere etc. Ferner Ethylen-Alkylacrylat-Copolymere, Ethylen- Vinylacetat-Copolymere und deren Copolymere mit Kohlenstoffmonoxid, oder Ethylen-Acrylsäure- Copolymere und deren Salze (lonomere), sowie Terpolymere von Ethylen mit Propylen und einem Dien, wie Hexadien, Dicyclopentadien oder
Ethylidennorbornen; ferner Mischungen solcher Copolymere untereinander und mit den unter 1 . genannten Polymeren, z. B. Polypropylen/-Ethylen- Propylen- Copolymere, LDPE/Ethylen-Vinylacetat-Copolymere,
LDPE/Ethylen-Acrylsäure- Copolymere, LLDPE/Ethylen-Vinylacetat- Copolymere, LLDPE/Ethylen- Acrylsäure-Copolymere, und alternierend oder statistisch aufgebaute Polyalkylen/Kohlenstoffmonoxid-Copolymere und deren Mischungen mit anderen Polymeren wie z. B. Polyamiden.
Polystyrol, Poly(p-methylstyrol), Poly-(alpha-methylstyrol).
Copolymere von Styrol oder alpha-Methylstyrol mit Dienen oder
Acrylderivaten, wie z. B. Styrol-Butadien, Styrol-Acrylnitril, Styrol- Alkylmethacrylat, Styrol-Butadien- Alkylacrylat und -methacrylat, Styrol- Maleinsäureanhydrid, Styrol-Acrylnitril- Methycrylat; Mischungen von hoher Schlagzähigkeit aus Styrol-Copolymeren und einem anderen Polymer, wie z. B. einem Polyacrylat, einem Dienpolymeren oder einem Ethylen- Propylen-Dien-Terpolymeren; sowie Block-Copolymere des Styrols wie z. B. Styrol-Butadien-Styrol, Styrol-Isopren-Styrol, Styrol-Ethylen/Butylen- Styrol oder Styrol-Ethylen/Propylen-Styrol.
Propfcopolymere von Styrol oder alpha-Methylstyrol, wie z. B. Styrol auf Polybutadien, Styrol auf Polybutadien-Styrol- oder Polybutadien-Acrylnitril- Copolymere, Styrol und Acrylnitril (oder Methacrylnitril) auf Polybutadien; Styrol, Acrylnitril und Methylmethacrylat auf Polybutadien; Styrol und Maleinsäureanhydrid auf Polybutadien; Styrol, Acrylnitril und
Maleinsäureanhydrid oder Maleinsäureimid auf Polybutadien, Styrol und Maleinsäureimid auf Polybutadien; Styrol und Alkylacrylate bzw.
Alkylmethacrylate auf Polybutadien; Styrol und Acrylnitril auf Ethylen- Propylen-Dien-Terpolymeren; Styrol und Acrylnitril auf Polyalkylacrylaten oder Polyalkylmethacrylaten; Styrol und Acrylnitril auf Acrylat-Butadien- Copolymere, sowie deren Mischungen mit den unter 5. geannten
Polymeren, wie sie z. B. als sogenannte ABS-, MBS-, ASA- oder AES- Polymere bekannt sind.
Halogenhaltige Polymere, wie z. B. Polychloropren, Chlorkautschuk, chloriertes und bromiertes Copolymer aus Isobutylen-Isopren
(Halobutylkautschuk), chloriertes oder chlorsulfoniertes Polyethylen, Copolymere von Ethylen und chloriertem Ethylen, Epichlorhydrinhomo- und copolymere, insbesondere Polymere aus halogenhaltigen
Vinylverbindungen, wie z. B. Polyvinylchlorid, Polyvinylidenchlorid,
Polyvinylfluorid, Polyvinylidenfluorid; sowie deren Copolymere, wie
Vinylchlorid-Vinylidenchlorid, Vinylchlorid-Vinylacetat oder Vinylidenchlorid- Vinylacetat.
Polymere, die sich von alpha-, beta-ungesättigten Säuren und deren Derivaten ableiten, wie Polyacrylate und Polymethacrylate, mit Butylacrylat schlagzäh modifizierte Polymethylmethacrylate, Polyacrylamide und Polyacrylnitrile. Copolymere der unter 8. genannten Monomere untereinander oder mit anderen ungesättigten Monomeren, wie z. B. Acrylnitril-Butadien- Copolymere, Acrylnitril- Alkylacrylat-Copolymere, Acrylnitril- Alkoxyalkylacrylat-Copolymere, Acrylnitril- Vinylhalogenid-Copolymere oder Acrylnitril-Alkylmethacrylat-Butadien- Terpolymere. Polymere, die sich von ungesättigten Alkoholen und Aminen bzw. deren Acylderivaten oder Acetalen ableiten, wie Polyvinylalkohol,
Polyvinylacetat, -stearat, -benzoat, -maleat, Polyvinylbutyral,
Polyallylphthalat, Polyallylmelamin; sowie deren Copolymere mit den unter 1 . genannten Olefinen. Polyacetale, wie Polyoxymethylen, sowie solche Polyoxymethylene, die Comonomere, wie z. B. Ethylenoxid enthalten; Polyacetale, die mit thermoplastischen Polyurethanen, Acrylaten oder MBS modifiziert sind. Polyphenylenoxide und -sulfide und deren Mischungen mit Styrolpolymeren oder Polyamiden. Polyamide und Copolyamide, die sich von Diaminen und Dicarbonsäuren und/oder von Aminocarbonsäuren oder den entsprechenden Lactamen ableiten, wie Polyamid 4, Polyamid 6, Polyamid 6/6, 6/10, 6/9, 6/12, 4/6, 12/12, Polyamid 1 1 , Polyamid 12; Block-Copolymere der vorgenannten Polyamide mit Polyolefinen, Olefin-Copolymeren, lonomeren, oder chemisch gebundenen oder gepropften Elastomeren; oder mit Polyethern, wie z. B. mit Polyethylenglykol, Polypropylenglykol oder
Polytetramethylenglykol. Ferner mit EPDM oder ABS modifizierte
Polyamide oder Copolyamide; sowie während der Verarbeitung
kondensierte Polyamide ("IM-Polyamidsysteme"). Polyharnstoffe, Polyimide, Polyamidimide, Polyetherimide, Polyesterimide, Polyhydantoine und Polybenzimidazole. Polyester, die sich von Dicarbonsäuren und Dialkoholen und/oder von Hydroxycarbonsäuren oder den entsprechenden Lactonen ableiten, wie Polyethylenterephthalat, Polybutylenterephthalat, Poly-1 ,4- dimethylolcyclohexanterephthalat, sowie Block-Polyetherester, die sich von Polyethern mit Hydroxylendgruppen ableiten; ferner mit Polycarbonaten oder MBS modifizierte Polyester. Polycarbonate und Polyestercarbonate. Polysulfone, Polyethersulfone und Polyetherketone. Mischungen (Polybiends) der vorgenannten Polymere, wie z. B. PP/EPDM, Polyamid/EPDM oder ABS, PVC/EVA, PVC/ABS, PVC/MBS, PC/ABS, PBTP/ABS, PC/ASA, PC/PBT, PVC/CPE, PVC/Acrylate,
POM/thermoplastisches PUR, PC/thermoplastisches PUR, POM/Acrylat, POM/MBS, PPO/HIPS, PPO/PA 6.6 und Copolymere. Thermoplastische Elastomere (TPE), wie Block-Copolymere basierend auf Styrol (Styrol-Butadien-Blockcopolymeren, Styrol -Isopren- Styrol- Blockcopolymeren, Styrol-Ethylen-Butylen-Styrol-Block-Copolymeren), Block-Copolymere auf Basis von thermoplastischen Polyesterelastomeren, Etherbasierende und / oder esterbasierende Block-Copolymere bestehend aus alternierenden Blöcken aus Diisocyanaten und kurzkettigen Diolen und aus Diisocyanaten und langkettigen Diolen, Polyether-Block-Amide, Co-Polyamide und/oder Polyetheramide.
Bevorzugte TPE sind Elastomer-Blends, wie thermoplastische Olefine enthaltend Polypropylen-, Polyethylen-Block-Copolymere; Polypropylen-, Ethylen-Propylen- Kautschuk, Ethylen-Octen-Copolymere, Styrol-Ethylen-Butadien-Styrol,
Polyolefin-Ethylen-Propylen-Diene, Polyolefin-Ethylen-Vinylacetat-Copolymere und/oder Polyolefin-Polyarylenether.
Bevorzugte TPE sind thermoplastische Vulkanisate, z. B. Ethylen-Propylen-Dien- Kautschukpartikel in einer Matrix aus Polypropylen. Die duroplastischen Polymere, in denen die erfindungsgemäßen
Flammschutzmittelkombinationen wirksam eingesetzt werden können, sind in der Literatur ebenfalls bereits ausführlich beschrieben und sind dem Fachmann bekannt. Bevorzugt handelt es sich bei den duroplastischen Polymeren um ungesättigte Polyesterharze (UP-Harze), die sich von Copolyestern gesättigter und
ungesättigter Dicarbonsäuren oder deren Anhydriden mit mehrwertigen Alkoholen, sowie Vinylverbindungen als Vernetzungsmittel ableiten. UP-Harze werden gehärtet durch radikalische Polymerisation mit Initiatoren (z. B. Peroxiden) und Beschleunigern.
Bevorzugte ungesättigte Dicarbonsäuren und -derivate zur Herstellung der UP- Harze sind Maleinsäureanhydrid und Fumarsäure. Bevorzugte gesättigte Dicarbonsäuren sind Phthalsäure, Isophthalsäure,
Terephthalsäure, Tetrahydrophthalsäure, Adipinsäure.
Bevorzugte Diole sind 1 ,2 Propandiol, Ethylenglycol, Diethylenglycol und
Neopentylglycol, Neopentylglycol, ethoxyliertes oder propoxyliertes
Bisphenol A.
Bevorzugte Vinylverbindung zur Vernetzung ist Styrol.
Bevorzugte Härtersysteme sind Peroxide und Metallcoinitiatoren, z. B.
Hydroperoxide und Cobaltoctanoat und/oder Benzoylperoxid und aromatische Amine und/oder UV-Licht und Photosensibilisatoren, z. B. Benzoinether. Bevorzugte Hydroperoxide sind Di-tert.-butylperoxid, tert.-Butylperoctoat, tert.-Butylperpivalat, tert.-Butylper-2-ethylhexanoat, tert.-Butylpermaleinat, tert.-Butylperisobutyrat, Benzoylperoxid, Diacetylperoxid, Succinylperoxid, p-Chlorbenzoylperoxid und Dicyclohexylperoxiddicarbonat. Bevorzugte Metallcoinitiatoren sind Kobalt-, Mangan-, Eisen-, Vanadium-, Nickeloder Bleiverbindungen.
Bevorzugte aromatische Amine sind Dimethylanilin, Dimethyl-p-toluol, Diethylanilin und Phenyldiethanolamine.
Weitere bevorzugte duroplastische Polymere sind Epoxidharze, die sich von aliphatischen, cycloaliphatischen, heterocyclischen oder aromatischen
Glycidylverbindungen ableiten, z. B. von Bisphenol-A-diglycidylethern und
Bisphenol-F-di-glycidylethern, die mittels üblichen Härtern und/oder
Beschleunigern vernetzt werden.
Geeignete Glycidylverbindungen sind Bisphenol-A-diglycidylester, Bisphenol-F- diglycidylester, Polyglycidylester von Phenol-Formaldehydharzen und Kresol- Formaldehydharzen, Polyglycidylester von Pththal-, Isophthal- und
Terephthalsäure sowie von Trimellithsäure, N-Glycidylverbindungen von
aromatischen Aminen und heterocyclischen Stickstoffbasen sowie Di- und
Polyglycidylverbindungen von mehrwertigen aliphatischen Alkoholen.
Geeignete Härter sind aliphatische, cycloaliphatische, aromatische und
heterocyclische Amine oder Polyamine wie Ethylendiamin, Diethylentriamin
Triethylentetramin, Propan-1 ,3-diamin, Hexamethylendiamin, Aminoethylpiperazin, Isophorondiamin, Polyamidoamin, Diaminodiphenylmethan, Diaminodiphenylether, Diaminodiphenolsulfone, Anilin-Formaldehyd-Harze, 2,2,4-Trimethylhexan-1 ,6-
diamin, m-Xylylendiamin, Bis(4-aminocyclohexyl)nnethan, 2,2-Bis(4- aminocyclohexyl)propan, 3-Aminomethyl-3,55-trimethylcyclohexylamin
(Isophorondiamin), Polyamidoannine, Cyanguanidin und Dicyandiamid, ebenso mehrbasige Säuren oder deren Anhydride wie z. B. Phthalsäureanhydrid,
Maleinsäureanhydrid, Tetrahydrophthalsäureanhydrid, Methyltetrahydrophthal- säureanhydrid, Hexahydrophthalsäureanhydrid und
Methylhexahydrophthalsäureanhydrid sowie Phenole wie z. B. Phenol-Novolak- Harz, Cresol-Novolak-Harz, Dicyclopentadien-Phenol-Addukt-Harz, Phenolaralkyl- Harz, Cresolaralkyl-Harz, Naphtholaralkyl Harz, Biphenol-modifiziertes
Phenolaralkyl-Harz, Phenoltrimethylolmethan-Harz, Tetraphenylolethan-Harz, Naphthol-Novolak-Harz, Naphthol-Phenol-Kocondensat-Harz, Naphthol-Cresol- Kocondensat-Harz, Biphenol-modifiziertes Phenol-Harz und Aminotriazin- modifiziertes Phenol-Harz. Die Härter können allein oder in Kombination
miteinander eingesetzt werden.
Geeignete Katalysatoren bzw. Beschleuniger für die Vernetzung bei der
Polymerisation sind tertiäre Amine, Benzyldimethylamin, N-Alkylpyridine, Imidazol, 1 -Methylimidazol, 2-Methylimidazol, 2-Ethyl-4-methylimidazol, 2-Ethyl-4- methylimidazol, 2-Phenylimidazol, 2-Heptadecylimidazol, Metallsalze organischer Säuren, Lewis Säuren und Amin-Komplex-Salze.
Bevorzugt handelt es sich bei den duroplastischen Polymeren um solche, die sich von Aldehyden einerseits und Phenolen, Harnstoff oder Melamin andererseits ableiten, wie Phenol-Formaldehyd-, Harnstoff-Formaldehyd- und Melamin- Formaldehydharze.
Ebenfalls bevorzugt handelt es sich bei den duroplastischen Polymeren um
Acrylharze, die sich von substituierten Acrylsäureestern ableiten, wie z. B. von Epoxyacrylaten, Urethanacrylaten oder Polyesteracrylaten.
Weitere bevorzugt eingesetzte duroplastische Polymere sind Alkydharze,
Polyesterharze und Acrylatharze, die mit Melaminharzen, Harnstoffharzen, Isocyanaten, Isocyanuraten, Polyisocyanaten oder Epoxidharzen vernetzt sind.
Weitere bevorzugt eingesetzte duroplastische Polymere sind Polyurethane oder Polyharnstoffe, die durch Umsetzen von Polyisocyanaten oder Harnstoffen mit Polyolen oder Polyaminen erhalten worden sind.
Bevorzugte Polyole, sind Alkenoxidaddukte von Ethylenglykol, 1 ,2-Propandiol, Bisphenol A, Trimethylolpropan, Glycerin, Pentaerythrol, Sorbit, Zucker oder abgebauter Stärke. Es lassen sich auch Polyester-Polyole einsetzen. Diese können durch Polykondensation eines Polyalkoholes wie Ethylenglykol,
Diethylenglykol, Propylenglykol, 1 ,4-Butandiol, 1 ,5-Pentandiol, Methylpentandiol, 1 ,6-Hexandiol, Trimethylolpropan, Glycerin, Pentaerythritol, Diglycerol,
Traubenzucker und/oder Sorbit mit einer dibasischen Säure wie Oxalsäure, Malonsäure, Bernsteinsäure, Weinsäure, Adipinsäure, Sebacinsäure,
Maleinsäure, Fumarsäure, Phthalsäure und/oder Terephthalsäure erhalten werden.
Geeignete Polyisocyanate sind aromatische, alicyclische oder aliphatische
Polyisocyanate, mit nicht weniger als zwei Isocyanat-Gruppen und Mischungen davon. Bevorzugt sind aromatische Polyisocyanate, wie Tolyldiisocyanat,
Methylendiphenyldiisocyanat, Naphthylendiisocyanate, Xylyiendiisocyanat, Tris-4- isocyanatophenyl)methan und Polymethylenpolyphenylendiisocyanate;
alicyclische Polyisocyanate wie Methylendiphenyldiisocyanat, Tolyldiisocyanat; aliphatische Polyisocyanate und Hexamethylendiisocyanat, Isophorendiisocyanat, Demeryldiisocyanat, 1 ,1 -Methylenbis(4-isocyanatocyclohexan-4,4'-Diisocyanato- dicyclohexylmethan-lsomerengemisch, 1 ,4-Cyclohexyldiisocyanat, Desmodur®- Typen (Bayer) und Lysindiisocyanat und Mischungen davon.
Geeignete Polyisocyanate sind auch modifizierte Produkte, die durch Reaktion von Polyisocyanat mit Polyol, Harnstoff, Carbodiimid und/oder Biuret erhalten werden.
Bevorzugt handelt es sich bei den erfindungsgemäß als Komponente G
eingesetzten Polymeren um thermoplastische Polymere, besonders bevorzugt um
Polystyrol-HI, Polyphenylenether, Polyamide, Polyester, Polycarbonate und Blends oder Polymerblends vom Typ ABS (Acrylnitril-Butadien-Styrol) oder PC/ABS (Polycarbonat/Acrylnitril-Butadien-Styrol) oder PPE/HIPS
(Polyphenylenether/Polystyrol- Hl). Polystyrol-HI ist ein Polystyrol mit erhöhter Schlagzähigkeit.
Besonders bevorzugt eingesetzte thermoplastische Polymere sind Polyamide, Polyester und PPE/HIPS Blends. Die erfindungsgemäß eingesetzten Flammschutzmittelkombinationen stabilisieren die Polymere (Komponente F) sehr gut gegen thermischen Abbau. Dieses zeigt sich an der Veränderung der spezifischen Viskosität von thermoplastischen Polymeren bei Compoundierung und Formgebung der erfindungsgemäßen Polymerzusammensetzungen. Die dort erfolgende thermische Belastung hat einen teilweisen Abbau der Polymerketten zur Folge, was in einer Verringerung des mittleren Molekulargewichts und damit verbunden in einer Verringerung der Viskosität einer Polymerlösung ausdrückt.
So betragen beispielsweise typische Werte für die spezifische Viskosität von Polybutylenterephthalat, gemessen als 0,5 %-ige-Lösung in Phenol/Dichlorbenzol (1 :1 ) bei 25 °C gemäß ISO 1628 mit einem Kapillarviskosimeter, etwa 130 cm3/g. Nach dem Compoundieren und der Formgebung einer erfindungsgemäßen Polybutylenterephthalatzusammensetzung bewegen sich typische Werte für die spezifische Viskosität des verarbeiteten Polybutylenterephthalats (ermittelt wie oben angegeben) im Bereich zwischen 1 10 und 129 cm3/g.
Bevorzugt werden für die genannte Verwendung die
Flammschutzmittelkomponenten A bis D oder A bis E in einer
Gesamtkonzentration von 1 bis 40 Gew.-%, insbesondere von 3 bis 30 Gew.-%, bezogen auf die Polymerzusammensetzung, eingesetzt.
In der erfindungsgemäßen Polymerzusammensetzung beträgt der Anteil an Komponente F üblicherweise 25 bis 95 Gew.-%, vorzugsweise 25 bis 75 Gew.-%.
In der erfindungsgemäßen Polymerzusammensetzung beträgt der Anteil an Komponente A üblicherweise 1 bis 35 Gew.-%, vorzugsweise 5 bis 20 Gew.-%. In der erfindungsgemäßen Polymerzusammensetzung beträgt der Anteil an
Komponente B üblicherweise 0,01 bis 3 Gew.-%, vorzugsweise 0,05 bis 1 ,5 Gew.- %.
In der erfindungsgemäßen Polymerzusammensetzung beträgt der Anteil an Komponente C üblicherweise 0,001 bis 1 Gew.-%, vorzugsweise 0,01 bis
0,6 Gew.-%.
In der erfindungsgemäßen Polymerzusammensetzung beträgt der Anteil an Komponente D üblicherweise 1 bis 25 Gew.-%, vorzugsweise 4 bis 10 Gew.-%.
In der erfindungsgemäßen Polymerzusammensetzung beträgt der Anteil an Komponente E üblicherweise 0 bis 10 Gew.-%, vorzugsweise 1 bis 8 Gew.-%.
Dabei beziehen sich die Prozentangaben für die Anteile der Komponenten A bis F auf die Gesamtmenge der Polymerzusammensetzung.
Bevorzugt sind erfindungsgemäße flammhemmende
Polymerzusammensetzungen, die einen Comparative Tracking Index, gemessen nach dem International Electrotechnical Commission Standard IEC-601 12/3, von größer gleich 500 Volt aufweisen.
Ebenfalls bevorzugte erfindungsgemäße flammhemmende
Polymerzusammensetzungen erreichen eine Bewertung von V0 nach UL-94, insbesondere gemessen an Formteilen von 3,2 mm bis 0,4 mm Dicke.
Weitere bevorzugte erfindungsgemäße flammhemmende
Polymerzusammensetzungen weisen einen Glow Wire Flammability Index nach
IEC-60695-2-12 von größer gleich 960 °C auf, insbesondere gemessen an Formteilen von 0,75 - 3 mm Dicke.
Bei den besonders bevorzugten Polyamiden der Komponente F handelt es sich in der Regel um Homo- oder Copolyamide, die sich von (cyclo)aliphatischen
Dicarbonsäuren oder deren polyamidbildenden Derivaten, wie deren Salzen, und von (cyclo)aliphatischen Diaminen oder von (cyclo)aliphatischen
Aminocarbonsäuren oder deren polyamidbildenden Derivaten, wie deren Salzen, ableiten.
Die erfindungsgemäß als Komponente F eingesetzten Polyamide können nach verschiedenen Verfahren hergestellt und aus sehr unterschiedlichen Bausteinen synthetisiert werden und im speziellen Anwendungsfall allein oder in Kombination mit Verarbeitungshilfsmitteln, Stabilisatoren oder auch polymeren
Legierungspartnern, bevorzugt Elastomeren, zu Werkstoffen mit speziell eingestellten Eigenschaftskombinationen ausgerüstet.
Zur Herstellung von Polyamiden sind eine Vielzahl von Verfahrensweisen bekannt geworden, wobei je nach gewünschtem Endprodukt unterschiedliche
Monomerbausteine, verschiedene Kettenregler zur Einstellung eines angestrebten Molekulargewichtes oder auch Monomere mit reaktiven Gruppen für später beabsichtigte Nachbehandlungen eingesetzt werden.
Die technisch relevanten Verfahren zur Herstellung von Polyamiden laufen meist über die Polykondensation in der Schmelze. In diesem Rahmen wird auch die hydrolytische Polymerisation von Lactamen als Polykondensation verstanden.
Bevorzugt als Komponente F einzusetzende Polyamide sind teilkristalline aliphatische Polyamide mit einem Schmelzpunkt von kleiner gleich 290 °C, vorzugsweise von kleiner gleich 280 °C. Diese können ausgehend von
aliphatischen Diaminen und aliphatischen Dicarbonsäuren und/oder
cycloaliphatischen Lactamen mit wenigstens 5 Ringgliedern oder entsprechenden Aminosäuren hergestellt werden.
Als Edukte kommen aliphatische Dicarbonsäuren, bevorzugt Adipinsäure, 2,2,4- und 2,4,4-Trimethyladipinsäure, Azelainsäure und/oder Sebazinsäure, aliphatische Diamine, bevorzugt Tetramethylendiamin, Hexamethylendiamin, 1 ,9-Nonandiamin, 2,2,4- und 2,4,4-Trimethylhexamethylendiamin, die isomeren
Diaminodicyclohexylmethane, Diaminodicyclohexylpropane,
Bisaminomethylcyclohexan, Aminocarbonsäuren, bevorzugt Aminocapronsäure oder die entsprechenden Lactame in Betracht. Copolyamide aus mehreren der genannten Monomeren sind eingeschlossen. Besonders bevorzugt werden
Caprolactame, ganz besonders bevorzugt wird ε-Caprolactam eingesetzt.
Bevorzugt handelt es sich bei den erfindungsgemäß eingesetzten aliphatischen Homo- oder Copolyamiden um Polyamid 12, Polyamid 4, Polyamid 4.6, Polyamid 6, Polyamid 6.6, Polyamid 6.9, Polyamid 6.10, Polyamid 6.12, Polyamid 6.66, Polyamid 7.7, Polyamid 8.8, Polyamid 9.9, Polyamid 10.9, Polyamid 10.10,
Polyamid 1 1 oder Polyamid 12. Diese sind z.B. unter den Handelsnamen Nylon®,
Fa. DuPont, Ultramid®, Fa. BASF, Akulon® K122, Fa. DSM, Zytel® 7301 ,
Fa. DuPont; Durethan® B 29, Fa. Bayer und Grillamid®, Fa. Ems Chemie bekannt. Besonders geeignet sind weiterhin auf PA6, PA6.6 und anderen aliphatischen Homo- oder Copolyamiden basierende Compounds, bei denen auf eine
Polyamidgruppe in der Polymerkette 3 bis 1 1 Methylengruppen kommen.
Bevorzugt werden flammhemmende Polyamidzusammensetzungen, bei denen als Komponente F ein oder mehrere Polyamide ausgewählt ist aus der Gruppe bestehend aus PA 6, PA 6.6, PA 4.6, PA 12, PA 6.10 eingesetzt werden.
Besonders bevorzugt werden flammhemmende Polyamidzusammensetzungen, bei denen als Komponente F Polyamid 6.6 oder Polymer-Gemische aus Polyamid 6.6 und Polyamid 6 eingesetzt werden.
Ganz besonders bevorzugt werden flammhennnnende
Polyamidzusammensetzungen, bei denen Komponente F zu mindestens 75 Gew.-% aus Polyamid 6.6 und zu höchstens 25 Gew.-% aus Polyamid 6 besteht. Bei den besonders bevorzugten Polyestern der Komponente F handelt es sich in der Regel um (cyclo)aliphatische oder um aromatisch-aliphatische Polyester, die sich von (cyclo)aliphatischen und/oder aromatischen Dicarbonsauren oder deren polyesterbildenden Derivaten, wie deren Dialkylestern oder Anhydriden, und von (cyclo)aliphatischen und/oder araliphatischen Diolen oder von (cyclo)aliphatischen und/oder aromatischen Hydroxycarbonsäuren oder deren polyesterbildenden Derivaten, wie deren Alkylestern oder Anhydriden, ableiten. Der Begriff
„(cyclo)aliphatisch" umfasst cycloaliphatische und aliphatische Verbindungen.
Die thermoplastischen Polyester der Komponente F werden vorzugsweise ausgewählt aus der Gruppe der Polyalkylenester von aromatischen und/oder aliphatischen Dicarbonsauren oder deren Dialkylestern.
Bevorzugt eingesetzte Komponenten F sind aromatisch-aliphatische
thermoplastische Polyester und davon bevorzugt thermoplastische Polyester abgeleitet durch Umsetzung von aromatischen Dicarbonsauren oder deren polyester-bildenden Derivaten mit aliphatischen C2-Cio-Diolen, insbesondere mit C2-C4-Diolen.
Erfindungsgemäß bevorzugt eingesetzte Komponenten F sind
Polyalkylenterepthalate, und davon besonders bevorzugt Polyethylenterephthalate oder Polybutylenterephthalate.
Polyalkylenterephthalate enthalten vorzugsweise mindestens 80 mol-%, insbesondere 90 mol-%, bezogen auf die Dicarbonsäure, von Terephthalsäure abgeleitete Einheiten.
Die erfindungsgemäß als Komponente F bevorzugt eingesetzten
Polyalkylenterephthalate können neben Terephthalsäureresten bis zu 20 mol-%
Reste anderer aromatischer Dicarbonsäuren mit 8 bis 14 C-Atomen oder Reste aliphatischer Dicarbonsäuren mit 4 bis 12 C-Atomen enthalten, wie Reste von Phthalsäure, Isophthalsäure, Naphthalin-2,6-dicarbonsäure, 4,4'-Diphenyldi- carbonsäure, Bernstein-, Adipin-, Sebacin- oder Azelainsäure, Cyclohexan- diessigsäure oder Cyclohexandicarbonsäure.
Die erfindungsgemäß als Komponente F bevorzugt eingesetzten
Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4-wertiger Alkohole oder 3- oder 4-basischer Carbonsäuren, wie sie z. B. in der DE-A-19 00 270 beschrieben sind, verzweigt werden. Beispiele für bevorzugte Verzweigungsmittel sind Trimesinsäure, Trimellitsäure, Trimethylolethan und - propan und Pentaerythrit.
Besonders bevorzugte Komponenten F sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z. B. deren
Dialkylestern) und Ethylenglykol und/oder Propandiol-1 ,3 und/oder Butandiol-1 ,4 hergestellt werden (Polyethylen- und Polytrimethylen- und Polybutylen- terephthalat) und Mischungen dieser Polyalkylenterephthalate. Bevorzugte Polybutylenterephthalate enthalten mindestens 80 mol-%,
vorzugsweise 90 mol-%, bezogen auf die Dicarbonsäure, Terephthalsäurereste und mindestens 80 mol-%, vorzugsweise mindestens 90 mol-%, bezogen auf die Diolkomponente Butandiol-1 ,4-reste. Die bevorzugten Polybutylenterephthalate können des Weiteren neben Butandiol- 1 ,4-resten bis zu 20 mol-% anderer aliphatischer Diole mit 2 bis 12 C-Atomen oder cycloaliphatischer Diole mit 6 bis 21 C-Atomen enthalten, z. B. Reste von
Ethylenglykol; Propandiol-1 ,3; 2-Ethylpropandiol-1 ,3; Neopentylglykol; Pentandiol- 1 ,5; Hexandiol-1 ,6; Cyclohexandimethanol-1 ,4; 3-Methylpentandiol-2,4; 2-Methyl- pentandiol-2,4; 2,2,4-Trimethylpentandiol-1 ,3; 2-Ethylhexandiol-1 ,3; 2,2-Diethyl- propandiol-1 ,3; Hexandiol-2,5;1 ,4-Di-([beta]-hydroxyethoxy)-benzol; 2,2-Bis-(4- hydroxycyclohexyl)-propan; 2,4-Dihydroxy-1 ,1 ,3,3-tetramethyl-cyclobutan; 2,2-Bis-
(3-[beta]-hydroxyethoxyphenyl)-propan und 2,2-Bis-(4-hydroxypropoxyphenyl)- propan.
Erfindungsgemäß bevorzugt als Komponente F eingesetzte
Polyalkylenterephthalate sind auch Copolyester, die aus mindestens zwei der oben genannten Säurekomponenten und/oder aus mindestens zwei der oben genannten Alkoholkomponenten und/oder Butandiol-1 ,4 hergestellt werden.
Die als Komponente F erfindungsgemäß eingesetzten thermoplastischen
Polyester können auch im Gemisch mit anderen Polyestern und/oder weiteren Polymeren eingesetzt werden.
Die erfindungsgemäßen Polymerzusammensetzungen können als Komponente G noch weitere Additive enthalten. Bevorzugte Komponenten G im Sinne der vorliegenden Erfindung sind Antioxidantien, UV-Stabilisatoren,
Gammastrahlenstabilisatoren, Hydrolysestabilisatoren, Co-Stabilisatoren für Antioxidantien, Antistatika, Emulgatoren, Nukleierungsmittel, Weichmacher, Verarbeitungs-hilfsmittel, Schlagzähmodifikatoren, Farbstoffe, Pigmente,
Füllstoffe, Verstärkungsstoffe und/oder weitere Flammschutzmittel, die sich von Komponenten A, B, C, D und E unterscheiden.
Der Anteil von Komponente(n) G in der erfindungsgemäßen
Polymerzusammensetzung beträgt in der Regel bis zu 60 Gew.-%, vorzugsweise zwischen 10 und 50 Gew.-%, bezogen auf die Gesamtmenge der
Polymerzusammensetzung.
Besonders bevorzugt werden erfindungsgemäße Polymerzusammensetzungen, die Füllstoffe und/oder insbesondere Verstärkungsstoffe enthalten, bevorzugt Glasfasern. Es können auch Mischungen aus zwei oder mehreren
unterschiedlichen Füllstoffen und/oder Verstärkungsstoffen, eingesetzt werden.
Bevorzugte Füllstoffe sind mineralische teilchenförmige Füllstoffe auf der Basis von Talk, Glimmer, Silikat, Quarz, Titandioxid, Wollastonit, Kaolin, amorphe
Kieselsäuren, nanoskaligen Mineralien, besonders bevorzugt Montmohlloniten oder Nano-Böhmiten, Magnesiumcarbonat, Kreide, Feldspat,Glaskugeln und/oder Bariumsulfat. Besonders bevorzugt werden mineralische teilchenförmige Füllstoffe auf der Basis von Talk, Wollastonit und/oder Kaolin.
Besonders bevorzugt werden ferner auch nadeiförmige mineralische Füllstoffe eingesetzt. Unter nadeiförmigen mineralischen Füllstoffen wird erfindungsgemäß ein mineralischer Füllstoff mit stark ausgeprägtem nadeiförmigen Charakter verstanden. Bevorzugt sind nadeiförmige Wollastonite. Bevorzugt weist das Mineral ein Länge zu Durchmesser - Verhältnis von 2:1 bis 35:1 , besonders bevorzugt von 3:1 bis 19:1 , insbesondere bevorzugt von 4:1 bis 12:1 auf. Die mittlere Teilchengröße der erfindungsgemäß als Komponente B eingesetzten nadeiförmigen mineralischen Füllstoffe liegt bevorzugt bei kleiner 20 μιτι, besonders bevorzugt bei kleiner 15 μιτι, insbesondere bevorzugt bei kleiner 10 μιτι, bestimmt mit einem CILAS Granulometer.
Bei den erfindungsgemäß vorzugsweise eingesetzten Verstärkungsstoffen kann es sich um Kohlenstofffasern und/oder um Glasfasern handeln. Der Füllstoff und/oder Verstärkungsstoff kann in einer bevorzugten
Ausführungsform oberflächenmodifiziert sein, vorzugsweise mit einem
Haftvermittler bzw. einem Haftvermittlersystem, besonders bevorzugt auf
Silanbasis. Insbesondere bei Verwendung von Glasfasern können zusätzlich zu Silanen auch Polymerdispersionen, Filmbildner, Verzweiger und/oder
Glasfaserverarbeitungshilfsmittel verwendet werden.
Bei den erfindungsgemäß bevorzugt eingesetzten Glasfasern kann es sich um Kurzglasfasern und/oder um Langglasfasern handeln. Als Kurz- oder
Langglasfasern können Schnittfasern eingesetzt werden. Kurzglasfasern können auch in Form von gemahlenen Glasfasern zum Einsatz kommen. Daneben können Glasfasern außerdem in der Form von Endlosfasern eingesetzt werden, beispiels-weise in der Form von Rovings, Monofilamenten, Filamentgarnen oder Zwirnen, oder Glasfasern können in der Form von textilen Flächengebilden
eingesetzt werden, beispielsweise als Glasgewebe, als Glasgeflecht oder als Glasmatte.
Typische Faserlängen für Kurzglasfasern vor dem Einarbeiten in die
Polyamidmatrix bewegen sich im Bereich von 0,05 bis 10 mm, vorzugsweise von 0,1 bis 5 mm. Nach dem Einarbeiten in die Polyamidmatrix hat sich die Länge der Glasfasern verringert. Typische Faserlängen für Kurzglasfasern nach dem
Einarbeiten in die Polyamidmatrix bewegen sich im Bereich von 0,01 bis 2 mm, vorzugsweise von 0,02 bis 1 mm.
Die Durchmesser der einzelnen Fasern kann in weiten Bereichen schwanken. Typische Durchmesser der einzelnen Fasern bewegen sich im Bereich von 5 bis 20 μηη. Die Glasfasern können beliebige Querschnittsformen aufweisen, beispielsweise runde, elliptische, n-eckige oder irreguläre Querschnitte. Es können Glasfasern mit mono- oder multilobalen Querschnitten verwendet werden.
Glasfasern können als Endlosfasern oder als geschnittene oder gemahlene Glasfasern eingesetzt werden.
Die Glasfasern selbst, unabhängig von deren Querschnittfläche und deren Länge, können dabei beispielsweise ausgewählt sein aus der Gruppe der E-Glasfasern, A-Glasfasern, C-Glasfasern, D-Glasfasern, M-Glasfasern, S-Glasfasern,
R-Glasfasern und/oder ECR-Glasfasern, wobei die E-Glasfasern, R-Glasfasern, S-Glasfasern und ECR-Glasfasern besonders bevorzugt sind. Die Glasfasern sind vorzugsweise mit einer Schlichte versehen, welche vorzugsweise Polyurethan als Filmbildner und Aminosilan als Haftvermittler enthält. Besonders bevorzugt eingesetzte E-Glasfasern weisen folgende chemische
Zusammensetzung auf: S1O2 50-56 %; AI2O3 12-16 %; CaO 16-25 %; MgO < 6 %; B2O3 6-13 %; F < 0,7 %; Na2O 0,3-2 %; K2O 0,2-0,5 %; Fe2Os 0,3 %.
Besonders bevorzugt eingesetzte R-Glasfasern weisen folgende chemische Zusammensetzung auf: S1O2 50-65 %; AI2O3 20-30 %; CaO 6-16 %; MgO 5-20 %; Na2O 0,3-0,5 %; K2O 0,05-0,2 %; Fe2O3 0,2-0,4 %, T1O2 0,1 -0,3 %. Besonders bevorzugt eingesetzte ECR-Glasfasern weisen folgende chemische Zusammensetzung auf: S1O2 57,5-58,5 %; AI2O3 17,5-19,0 %; CaO 1 1 ,5-13,0 %; MgO 9,5-1 1 ,5.
Der Anteil an Füllstoffen und/oder Verstärkungsstoffen in der erfindungsgemäßen Polymerzusammensetzung beträgt üblicherweise 1 bis 45 Gew.-%, vorzugsweise 20 bis 40 Gew.-%.
Die weiteren Additive G sind als Zusätze zu Polymerzusammensetzungen an sich bekannt und können alleine oder in Mischung oder in Form von Masterbatches eingesetzt werden .
Die vorgenannten Komponenten A, B, C, D, F und gegebenenfalls E und/oder G können in den verschiedensten Kombinationen zur erfindungsgemäßen
flammgeschützten Polymerzusammensetzung verarbeitet werden. So ist es möglich, bereits zu Beginn oder am Ende der Polykondensation oder in einem folgenden Compoundierprozess die Komponenten in die Polymerschmelze einzumischen. Weiterhin gibt es Verarbeitungsprozesse bei denen einzelne Komponenten erst später zugefügt werden. Dies wird insbesondere beim Einsatz von Pigment- oder Additivmasterbatches praktiziert. Außerdem besteht die
Möglichkeit, insbesondere pulverförmige Komponenten auf das durch den
Trocknungsprozess eventuell warme Polymergranulat aufzutrommeln.
Auch können zwei oder mehrere der Komponenten der erfindungsgemäßen Polymerzusammensetzungen vor dem Einbringen in die Polymermatrix durch Vermischen kombiniert werden. Dabei können herkömmliche Mischaggregate eingesetzt werden, in denen die Komponenten in einem geeigneten Mischer, z. B. 0,01 bis 10 Stunden bei 0 bis 300 °C gemischt werden.
Aus zwei oder mehreren der Komponenten der erfindungsgemäßen Polymerzusammensetzungen können auch Granulate hergestellt werden, die anschließend in die Polymermatrix eingebracht werden können. Dazu können zwei oder mehr Komponenten der erfindungsgemäßen
Polymerzusammensetzung mit Granulierhilfsmittel und/oder Bindemittel in einem geeigneten Mischer oder einem Granulierteller zu Granulaten verarbeitet werden.
Das zunächst entstehende Rohprodukt kann in einem geeigneten Trockner getrocknet beziehungsweise zum weiteren Kornaufbau getempert werden.
Die erfindungsgemäße Polymerzusammensetzung oder zwei oder mehrere Komponenten davon kann in einer Ausführungsform durch Rollkompaktierung hergestellt werden.
Die erfindungsgemäße Polymerzusammensetzung oder zwei oder mehrere Komponenten davon kann in einer Ausführungsform dadurch hergestellt werden, dass die Inhaltsstoffe gemischt, stranggepresst, abgeschlagen (bzw.
gegebenenfalls gebrochen und klassiert) und getrocknet (und gegebenenfalls gecoated) werden.
Die erfindungsgemäße Polymerzusammensetzung oder zwei oder mehrere Komponenten davon kann in einer Ausführungsform durch Sprühgranulierung hergestellt werden.
Die erfindungsgemäße flammgeschützte Polymerformmasse liegt bevorzugt in Granulatform, z. B. als Extrudat oder als Compound, vor. Das Granulat hat bevorzugt Zylinderform mit kreisförmiger, elliptischer oder unregelmäßiger Grundfläche, Kugelform, Kissenform, Würfelform, Quaderform, Prismenform.
Typische Längen-zu-Durchmesser-Verhältnis des Granulates betragen 1 zu 50 bis 50 zu 1 , bevorzugt 1 zu 5 bis 5 zu 1 .
Das Granulat hat bevorzugt einen Durchmesser von 0,5 bis 15 mm, besonders bevorzugt von 2 bis 3 mm und bevorzugt eine Länge von 0,5 bis 15mm, besonders bevorzugt von 2 bis 5 mm. Beim Einsatz von Polymeren oder Vorläufern davon, die zu duroplastischen Polymerzusammensetzungen verarbeitet werden, können unterschiedliche Herstellungsverfahren zum Einsatz gelangen.
Ein Verfahren zur Herstellung von flammwidrigen duroplastischen Massen ist dadurch gekennzeichnet, dass man ein duroplastisches Harz mit einer
erfindungsgemäßen Flammschutzmittelkombination enthaltend die oben definierten Komponenten A, B, C, D und gegebenenfalls E und ggf. mit weiteren Flammschutzmitteln, Synergisten, Stabilisatoren, Additiven und Füll- oder
Verstärkungsstoffen vermischt und die resultierende Mischung bei erhöhtem Druck, beispielsweise bei Drücken von 3 bis 10 bar und bei moderaten
Temperaturen, beispielsweise bei Temperaturen von 20 bis 60 °C, nass presst (Kaltpressung).
Ein weiteres Verfahren zur Herstellung von flammwidrigen duroplastischen Massen ist dadurch gekennzeichnet, dass man ein duroplastisches Harz mit einer erfindungsgemäßen Flammschutzmittelkombination enthaltend die oben definierten Komponenten A,B, C, D und gegebenenfalls E und ggf. mit weiteren Flammschutzmitteln, Synergisten, Stabilisatoren, Additiven und Füll- oder
Verstärkungsstoffen vermischt und die resultierende Mischung bei erhöhtem Druck, beispielsweise bei Drücken von 3 bis 10 bar und bei erhöhten
Temperaturen, beispielsweise bei Temperaturen von 80 bis 150 °C, nass presst (Warm- oder Heißpressung).
Gegenstand der Erfindung sind auch Formteile hergestellt aus der oben beschriebenen flammhemmenden Polymerzusammensetzung enthaltend die
Komponenten A, B, C, D und F und gegebenenfalls die Komponenten E und/oder G.
Bei den erfindungsgemäßen Formteilen kann es sich um beliebige Ausformungen handeln. Beispiele dafür sind Fasern, Folien oder Formkörper, erhältlich aus den erfindungsgemäßen flammgeschützten Polymerformmassen durch beliebige Formverfahren, insbesondere durch Spritzguss oder Extrusion.
Die Herstellung der erfindungsgemäßen flammgeschützten Polymer-Formkörper kann durch beliebige Formverfahren erfolgen. Beispiele dafür sind Spritzgießen, Pressen, Schaumspritzgießen, Gasinnendruck-Spritzgießen, Blasformen,
Foliengießen, Kalandern, Laminieren oder Beschichten bei höheren Temperaturen mit der flammgeschützten Polyamid-Formmasse.
Bei den Formteilen handelt es sich vorzugsweise sich um Spritzgussteile oder um Extrusionsteile. Die erfindungsgemäßen flammgeschützten Polymerzusammensetzungen eignen sich zur Herstellung von Fasern, Folien und Formkörpern, insbesondere für Anwendungen im Elektro- und Elektronikbereich.
Die Erfindung betrifft bevorzugt die Verwendung der erfindungsgemäßen flammgeschützten Polymerzusammensetzungen in oder für Steckverbinder, stromberührten Teilen in Stromverteilern (Fl-Schutz), Platinen, Vergußmassen, Stromsteckern, Schutzschaltern, Lampengehäusen, LED Gehäusen,
Kondensatorgehäusen, Spulenkörpern und Ventilatoren, Schutzkontakten, Steckern, in/auf Platinen, Gehäusen für Stecker, Kabeln, flexiblen Leiterplatten, Ladekabeln für Handys, Motorabdeckungen oder Textilbeschichtungen.
Die Erfindung betrifft ebenfalls bevorzugt die Verwendung der erfindungsgemäßen flammgeschützten Polymerzusammensetzungen zur Herstellung von Formkörpern in Form von Bauteilen für den Elektro/Elektronikbereich, insbesondere für Teile von Leiterplatten, Gehäusen, Folien, Leitungen, Schaltern, Verteilern, Relais, Widerständen, Kondensatoren, Spulen, Lampen, Dioden, LED, Transistoren, Konnektoren, Reglern, Speichern und Sensoren, in Form von großflächigen
Bauteilen, insbesondere von Gehäuseteilen für Schaltschränke und in Form aufwendig gestalteter Bauteile mit anspruchsvoller Geometrie.
Die Wandstärke der erfindungsgemäßen Formkörper kann typischerweise bis zu 10 mm betragen. Besonders geeignet sind Formkörper mit weniger als 1 ,5 mm Wandstärke, mehr bevorzugt von weniger als 1 mm Wandstärke und besonders bevorzugt von weniger als 0,5 mm Wandstärke.
Die nachfolgenden Beispiele erläutern die Erfindung ohne diese zu begrenzen.
1 . Eingesetzte Komponenten Flammschutzmittel FM 1 (Komponente A):
Aluminiumsalz der Diethylphosphinsäure hergestellt in Analogie zu Beispiel 1 der DE 196 07 635 A1
Flammschutzmittel FM 2 (Komponenten A und B):
Aluminiumsalz der Diethylphosphinsäure enthaltend 0,9 mol % an Aluminium- Ethylbutylphospinat hergestellt in Analogie zu Beispiel 1 der DE 10 2014 001 222 A1
Flammschutzmittel FM 3 (Komponenten A, B und C):
Aluminiumsalz der Diethylphosphinsäure enthaltend 0,9 mol % an Aluminium- Ethylbutylphospinat und 0,5 mol % an Aluminium-Ethylphosphonat hergestellt nach Beispiel 3 der US 7,420,007 B2
Flammschutzmittel FM 4 (Komponenten A, B und C):
Aluminiumsalz der Diethylphosphinsäure enthaltend 2,7 mol % an Aluminium- Ethylbutylphospinat und 0,8 mol % an Aluminium-Ethylphosphonat hergestellt nach Beispiel 4 der US 7,420,007 B2
Flammschutzmittel FM 5 (Komponenten A, B und C):
Aluminiumsalz der Diethylphosphinsäure enthaltend 0,5 mol % an Aluminium- Ethylbutylphospinat und 0,05 mol % an Aluminium-Ethylphosphonat hergestellt nach dem Verfahren gemäß US 7,420,007 B2 Flammschutzmittel FM 6 (Komponenten A, B und C):
Aluminiumsalz der Diethylphosphinsäure enthaltend 10 mol % an Aluminium- Ethylbutylphospinat und 5 mol % an Aluminium-Ethylphosphonat hergestellt nach dem Verfahren gemäß US 7,420,007 B2 Flammschutzmittel FM 7 (Komponente E):
Aluminiumsalz der Phosphonsäure hergestellt nach Beispiel 1 der DE
10201 1 120218 A1
Flammschutzmittel FM 8 (Komponente D):
Melamincyanuarat, Melapur® MC (BASF)
Handelsübliche Polymere (Komponente F):
Polyamid 6.6 (PA 6.6-GV; Schmelzbereich von 255-260°C): Ultramid® A27 (BASF) Polyamid 6 (Schmelzbereich von 217-222°C): Durethan® B29 (Lanxess)
Polyamid 6T/6.6 (Schmelzbereich von 310-320°C): Vestamid® HAT plus 1000 (Evonik)
Polybutylenterephthalat (PBT): Ultradur® 4500 (BASF)
Glasfasern (Komponente G):
Glasfasern PPG HP 3610 10μηη Durchmesser, 4,5 mm Länge (Fa. PPG, NL),
2. Herstellung, Verarbeitung und Prüfung von flammhemmenden
thermoplastischen Formmassen 2.1 Polyamid-Formmassen
Die Flammschutzmittelkomponenten wurden in dem in den Tabellen angegebenen Verhältnissen vermischt und über den Seiteneinzug eines Doppel-schnecken- Extruders (Typ Leistritz ZSE 27/44D) bei Temperaturen von 260 bis 310 °C in
PA 6.6 bzw. bei 250 bis 275 °C in PA 6 bzw. bei 310 bis 330 °C PA 6T/6.6 eingearbeitet. Die Glasfasern wurden über einen zweiten Seiteneinzug
zugegeben. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert.
Nach ausreichender Trocknung wurden die Formmassen auf einer
Spritzgießmaschine (Typ Arburg 320 C Allrounder) bei Massetemperaturen von 250 bis 320 °C zu Prüfkörpern verarbeitet und anhand des UL 94-Tests
(Underwriter Laboratories) auf Flammwidrigkeit geprüft und klassifiziert. Neben der Klassifikation wurde auch die Nachbrennzeit angegeben.
Der Comparative Tracking Index der Formteile wurde gemäß dem International Electrotechnical Commission Standard IEC-601 12/3 ermittelt. Der Glow Wire Flammability Index (GWFI-Index) wurde nach der Norm IEC- 60695-2-12 ermittelt.
Die Röntgenspektren (Röntgenpulverdiffraktogramme,„XRD-Werte") der
Polymerzusammensetzungen werden mit einem Röntgenpulverdiffraktometer (XTert-MPD, Fa. Phillips) vermessen. Die Probe wurde mit Cu-K-alpha-Strahlung bestrahlt und die Schrittzeit betrug 1 Sekunde.
Sämtliche Versuche der jeweiligen Serie wurden, falls keine anderen Angaben gemacht wurden, aufgrund der Vergleichbarkeit unter identischen Bedingungen (wie Temperaturprogramme, Schneckengeometrien und Spritzgießparameter) durchgeführt.
2.2 Polyester-Formmassen
Es wurde wie bei den Polyamid-Formmassen verfahren. Nur erfolgte das
Einarbeiten der Flammschutzmittelkomponenten in das Polymere im Doppelschnecken-Extruder bei Temperaturen von 240 bis 280 °C.
Die Verarbeitung der getrockneten Formmassen zu Prüfkörpern auf der
Spritzgießmaschine erfolgte bei Massetemperaturen von 260 bis 280 °C.
Beispiele 1 -5 und Vergleichsbeispiele V1 -V4 mit PA 6.6
Die Ergebnisse der Versuche mit PA 6.6-Formmassen sind in den in der nachfolgenden Tabelle aufgeführten Beispielen aufgelistet. Alle Mengen sind als Gew.-% angegeben und beziehen sich auf die Polyamid-Formmasse
einschließlich der Flammschutzmittel und Verstärkungsstoffe.
Tabelle 1 : PA 6.6 GF 30 Versuchsergebnisse (1 -5 erfindungsgemäß; V1 -V4 Vergleiche)
1) die Probezeigte Reflexe im Bereich von 9,099° bis 9,442°, von 10,802° bis 11, 004°, von 11,775 bis 11,990, von 18,619° bis 18,984° und von 26,268° bis 26,679°
die Probe zeigte Reflexe im Bereich von 9,099° bis 9,442°, von 18,619° bis 18,984° und von 26,268° bis 26,679°
Die erfindungsgemäßen Polyamidzusammensetzungen der Beispiele 1 bis 5 sind Formmassen, welche die Brandklasse UL 94 V-0 bei 0,4 mm erreichen und gleichzeitig CTI 500 Volt und GWFI 960 °C aufweisen. Der Zusatz von Komponente E in Beispiel 5 führt zu einer nochmaligen Verbesserung des Flammschutzes ausgedrückt durch eine verringerte Nachbrennzeit.
Das Weglassen von Komponenten B und C in Vergleichsbeispiel V1 hatte eine verlängerte Nachbrennzeit im Vergleich zu Beispiel 2 zur Folge. Das Weglassen von Komponente C in Vergleichsbeispiel V2 hatte eine verlängerte Nachbrennzeit im Vergleich zu Beispiel 2 zur Folge.
Das Weglassen von Komponente D in Vergleichsbeispiel V3 hatte im Vergleich zu Beispiel 2 Verlängerung der Nachbrennzeit zur Folge.
In Vergleichsbeispiel V4 wurde durch Erhöhung der Konzentration an Komponenten A, B und C im Vergleich zu Beispiel V3 zwar eine Verkürzung der Nachbrennzeit erreicht. Allerdings zeigte diese Polyamidzusammensetzung immer noch eine im Vergleich zu Beispiel 2 verlängerte Nachbrennzeit.
Beispiele 6-10 und Vergleichsbeispiele V5-V8 mit PA 6.6/PA6
Die Ergebnisse der Versuche mit PA 6/PA6.6-Formmassen sind in den in der nachfolgenden Tabelle aufgeführten Beispielen aufgelistet. Alle Mengen sind als Gew.-% angegeben und beziehen sich auf die Polyamid-Formmasse einschließlich der Flammschutzmittel und Verstärkungsstoffe.
Tabelle 2: PA 6/PA 6.6 GF 30 Versuchsergebnisse (6-10 erfindungsgemäß; V5-V8 Vergleiche)
1) die Probe zeigte Reflexe im Bereich von 9,099° bis 9,442°, von 10,802° bis 11,004°, von 1,775 bis 11,990, von 18,619° bis 18,984° und von 26,268° bis 26,679°
2) die Probe zeigte Reflexe im Bereich von 9,099° bis 9,442°, von 18,619° bis 18,984° und von 26,268° bis 26,679°
Die erfindungsgemäßen Polyamidzusammensetzungen der Beispiele 6 bis 10 sind Formmassen, welche die Brandklasse UL 94 V-0 bei 0,4 mm erreichen, gleichzeitig CTI 500 Volt und GWFI 960 °C aufweisen. Der Zusatz von Komponente E in Beispiel 10 führt zu einer nochmaligen Verbesserung des Flammschutzes ausgedrückt durch eine verringerte Nachbrennzeit.
Das Weglassen von Komponenten B und C in Vergleichsbeispiel V5 hatte eine verlängerten Nachbrennzeit im Vergleich zu Beispiel 7 zur Folge. Das Weglassen von Komponente C in Vergleichsbeispiel V6 hatte eine verlängerte Nachbrennzeit im Vergleich zu Beispiel 7 zur Folge.
Das Weglassen von Komponente D in Vergleichsbeispiel V7 hatte im Vergleich zu Beispiel 7 eine Verlängerung der Nachbrennzeit zur Folge.
In Vergleichsbeispiel V8 wurde durch Erhöhung der Konzentration an Komponenten A, B und C im Vergleich zu Beispiel V7 zwar eine Verkürzung der Nachbrennzeit erreicht. Allerdings zeigte diese Polyamidzusammensetzung immer noch eine im Vergleich zu Beispiel 7 verlängerte Nachbrennzeit.
Beispiele 1 1 -15 und Vergleichsbeispiele V9-V12 mit PBT
Die Ergebnisse der Versuche mit PBT-Formmassen sind in den in der nachfolgenden Tabelle aufgeführten Beispielen aufgelistet. Alle Mengen sind als Gew.-%
angegeben und beziehen sich auf die Polyester-Formmasse einschließlich der Flammschutzmittel und Verstärkungsstoffe.
Tabelle 3: PBT GF 30 Versuchsergebnisse (11-15 erfindungsgemäß; V9-V12 Vergleiche)
1) die Probezeigte Reflexe im Bereich von 9,099° bis 9,442°, von 10,802° bis 11,004°, von 11,775 bis 11,990, von 18,619° bis 18,984° und von 26,268° bis 26,679°
2) die Probe zeigte Reflexe im Bereich von 9,099° bis 9,442°, von 18,619° bis 18,984° und von 26,268° bis 26,679°
Die erfindungsgemäßen Polyesterzusammensetzungen der Beispiele 1 1 bis 15 sind Formmassen, welche die Brandklasse UL 94 V-0 bei 0,4 mm erreichen und gleichzeitig CTI 500 Volt und GWFI 960 °C aufweisen. Der Zusatz von Komponente E in Beispiel 15 führt zu einer nochmaligen Verbesserung des Flammschutzes ausgedrückt durch eine verringerte Nachbrennzeit.
Das Weglassen von Komponenten B und C in Vergleichsbeispiel V9 hatte eine verlängerte Nachbrennzeit im Vergleich zu Beispiel 12 zur Folge. Das Weglassen von Komponente C in Vergleichsbeispiel V10 hatte eine verlängerte Nachbrennzeit im Vergleich zu Beispiel 12 zur Folge.
Das Weglassen von Komponente D in Vergleichsbeispiel V1 1 hatte im Vergleich zu Beispiel 12 eine Verlängerung der Nachbrennzeit zur Folge.
In Vergleichsbeispiel V12 wurde durch Erhöhung der Konzentration an Komponenten A, B und C im Vergleich zu Beispiel V1 1 zwar eine Verkürzung der Nachbrennzeit. Allerdings zeigte diese Polyesterzusammensetzung immer noch eine im Vergleich zu Beispiel 12 verlängerte Nachbrennzeit.
Claims
Flammschutzmittelkombinationen enthaltend
m
worin Ri und R2 Ethyl bedeuten,
M AI, Fe, TiOp oder Zn ist,
m 2 bis 3 bedeutet, und
p = (4 - m) / 2 ist
Verbindung ausgewählt aus der Gruppe der AI-, Fe-, TiOp- oder Zn-Salze der Ethylbutylphosphinsäure, der Dibutylphosphinsäure, der
Ethylhexylphosphinsäure, der Butylhexylphosphinsäure und/oder der
Dihexylphosphinsäure als Komponente B
Phosphonsäuresalz der Formel (II) als Komponente C
0 9_
1 I _
Γ o— p o 1 n+
Met (")■
R,
n/2
worin R3 Ethyl bedeutet,
Met AI, Fe, TiOq oder Zn ist,
n 2 bis 3 bedeutet, und
q = (4 - n) / 2 ist, und
Melamincyanurat als Komponente D, wobei
das Röntgenpulverdiffraktrogramm der Flammschutzmittelkombinationen folgende Reflexe enthält:
im Winkelbereich 2Θ von 9,099° bis 9,442°, von 10,802° bis 1 1 ,004°, von 1 1 ,775 bis 1 1 ,990, von 18,619° bis 18,984° und von 26,268° bis 26,679° und/oder
im Winkelbereich 2Θ von 5,1 12° bis 5,312°, von 6,097° bis 6,297°, von 10,082° bis 10,282°, von 10,350° bis 10,550°, von 10,802° bis 1 1 ,004°, von 1 1 ,775° bis 1 1 ,990° und von 12,308° bis 12,508° und/oder
im Winkelbereich 2Θ von 9,1 17° bis 9,317°, von 10,802° bis 1 1 ,004° , von 1 1 ,775° bis 1 1 ,990° und von 18,537° bis 18,737° und/oder
im Winkelbereich 2Θ von 8,300° bis 8,500°, von 10,802° bis 1 1 ,004° und von 1 1 ,775° bis 1 1 ,990°.
2. Flammschutzmittelkombinationen nach Anspruch 1 , dadurch gekennzeichnet, dass das Röntgenpulverdiffraktrogramm folgende Reflexe enthält: im Winkelbereich
2Θ von 9,099° bis 9,442°, von 10,802° bis 1 1 ,004° , von 1 1 ,775° bis 1 1 ,990°, von 18,619° bis 18,984° und von 26,268° bis 26,679°.
3. Flammschutzmittelkombinationen nach mindestens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass M und Met AI bedeuten, m und n 3 sind und dass Komponente B ein Aluminiumsalz ist.
4. Flammschutzmittelkombinationen nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
- der Anteil von Komponente A 5 bis 85 Gew.-%,
der Anteil von Komponente B 0,01 bis 10 Gew.-%,
der Anteil von Komponente C 0,01 bis 10 Gew.-%, und
der Anteil von Komponente D 5 bis 50 Gew.-%,
beträgt, wobei die Prozentangaben sich auf die Gesamtmenge der Komponenten A bis D beziehen.
5. Flammschutzmittelkombinationen nach Anspruch 4, dadurch gekennzeichnet, dass
der Anteil von Komponente A 10 bis 60 Gew.-%,
- der Anteil von Komponente B 0,1 bis 2,5 Gew.-%,
der Anteil von Komponente C 0,1 bis 2,5 Gew.-%, und
der Anteil von Komponente D 10 bis 30 Gew.-%,
beträgt.
6. Flammschutzmittelkonnbinationen nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Komponenten A, B, C und D in Teilchenform vorliegen, wobei die mittlere Teilchengröße dso dieser Komponenten 1 bis 100 μιτι beträgt.
7. Flammschutzmittelkombinationen nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass diese anorganisches Phosphonat als weitere Komponente E enthalten.
8. Flammschutzmittelkombinationen nach Anspruch 7, dadurch gekennzeichnet, dass das anorganische Phosphonat eine Verbindung der Formel (III) ist
worin Me Fe, TiOr, Zn oder insbesondere AI ist,
o 2 bis 3, vorzugsweise 2 oder 3, bedeutet, und
r = (4 - o) / 2 ist),
wobei die Verbindung der Formel (III) in einer Menge von 0,01 bis 10 Gew.-%, insbesondere in einer Menge von 0,1 bis 2,5 Gew.-%, bezogen auf die
Gesamtmenge der Komponenten A bis E, vorliegt.
9. Polymerzusammensetzungen enthaltend thermoplastische und/oder duroplastische Polymere als Komponente F und eine Flammschutzmittelkombination enthaltend die Komponenten A, B, C, D und gegebenenfalls E nach einem der Ansprüche 1 bis 8.
10. Polymerzusammensetzungen nach Anspruch 9, dadurch gekennzeichnet, dass diese einen Comparative Tracking Index, gemessen nach dem International Electrotechnical Commission Standard IEC-601 12/3, von größer gleich 500 Volt aufweisen.
1 1 Polymerzusammensetzungen nach mindestens einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, dass diese eine Bewertung von VO nach UL-94, insbesondere gemessen an Formteilen von 3,2 mm bis 0,4 mm Dicke, erreichen.
12. Polymerzusammensetzungen nach mindestens einem der Ansprüche 9 bis
1 1 , dadurch gekennzeichnet, dass diese einen Glow Wire Flannnnability Index nach IEC-60695-2-12 von größer gleich 960°C aufweisen, insbesondere gemessen an Formteilen von 0,75 - 3 mm Dicke.
13. Polymerzusammensetzungen nach mindestens einem der Ansprüche 9 bis
12, dadurch gekennzeichnet, dass Komponente F ein teilkristallines aliphatisches Polyamid mit einem Schmelzpunkt von kleiner gleich 290 °C, vorzugsweise von kleiner gleich 280 °C ist.
14. Polymerzusammensetzungen nach Anspruch 13, dadurch gekennzeichnet, dass Komponente F ausgewählt wird aus der Gruppe bestehend aus PA6, PA6.6 und anderen aliphatischen Homo- oder Copolyamiden basierenden Compounds, bei denen auf eine Polyamidgruppe in der Polymerkette 3 bis 1 1 Methylengruppen kommen, insbesondere ausgewählt wird aus der Gruppe bestehend aus PA 6, PA 6.6, PA 4.6, PA 12 und PA 6.10.
15. Polymerzusammensetzungen nach Anspruch 9, dadurch gekennzeichnet, dass Komponente F ein Polyalkylenterepthalat ist, bevorzugt ein
Polyethylenterephthalat oder ein Polybutylenterephthalat.
16. Polymerzusammensetzungen nach mindestens einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, dass
der Anteil von Komponente A 1 bis 35 Gew.-%,
der Anteil von Komponente B 0,01 bis 3 Gew.-%,
der Anteil von Komponente C 0,001 bis 1 Gew.-%,
der Antei von Komponente D 1 bis 25 Gew.-%,
der Antei von Komponente E 0 bis 10 Gew.-%, und
der Antei von Komponente F 25 bis 95 Gew.-%
beträgt, wobei die Prozentangaben sich auf die Gesamtmenge der
Polymerzusammensetzung beziehen.
17. Polymerzusammensetzungen nach Anspruch 16, dadurch gekennzeichnet, dass
der Anteil von Komponente A 5 bis 20 Gew.-%,
der Anteil von Komponente B 0,05 bis 1 ,5 Gew.-%,
der Anteil von Komponente C 0,01 bis 0,6 Gew.-%,
der Anteil von Komponente D 4 bis 10 Gew.-%,
- der Anteil von Komponente E 1 bis 8 Gew.-%, und
der Anteil von Komponente F 25 bis 75 Gew.-%,
beträgt.
18. Polymerzusammensetzungen nach mindestens einem der Ansprüche 9 bis 17, dadurch gekennzeichnet, dass diese weitere Additive als Komponente G enthält, wobei die weiteren Additive ausgewählt sind aus der Gruppe bestehend aus
Antioxidantien, UV-Stabilisatoren, Gammastrahlenstabilisatoren,
Hydrolysestabilisatoren, Co-Stabilisatoren für Antioxidantien, Antistatika,
Emulgatoren, Nukleierungsmitteln, Weichmachern, Verarbeitungshilfsmitteln, Schlagzähmodifikatoren, Farbstoffen, Pigmenten, Füllstoffen, Verstärkungsstoffen und/oder weiteren Flammschutzmitteln, die sich von Komponenten A, B, C, D und E unterscheiden .
19. Polymerzusammensetzungen nach mindestens einem der Ansprüche 9 bis 18, dadurch gekennzeichnet, dass diese Glasfasern enthalten.
20. Verwendung der Polymerzusammensetzungen nach einem der Ansprüche 9 bis 19 zur Herstellung von Fasern, Folien und Formkörpern, insbesondere für Anwendungen im Elektro- und Elektronikbereich.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18762271.7A EP3679094A1 (de) | 2017-09-07 | 2018-08-29 | Flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017215779.8 | 2017-09-07 | ||
DE102017215779.8A DE102017215779B4 (de) | 2017-09-07 | 2017-09-07 | Flammschutzmittelkombinationen für Polymerzusammensetzungen, sowie Polymerzusammensetzungen und deren Verwendung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019048312A1 true WO2019048312A1 (de) | 2019-03-14 |
Family
ID=63442630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/073235 WO2019048312A1 (de) | 2017-09-07 | 2018-08-29 | Flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3679094A1 (de) |
CN (1) | CN109467751A (de) |
DE (1) | DE102017215779B4 (de) |
TW (1) | TW201920417A (de) |
WO (1) | WO2019048312A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4011827A4 (de) * | 2020-10-12 | 2023-02-15 | Jiangsu Liside New Material Co., Ltd. | Poly/monohypophosphit-wasserstoffdiphosphitverbindung, ihre herstellung und verwendung |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018220696A1 (de) | 2018-11-30 | 2020-06-04 | Clariant Plastics & Coatings Ltd | Flammschutzmittelmischungen, flammhemmende Polymerzusammensetzungen, damit ausgerüstete Kabel und deren Verwendung |
JP7553262B2 (ja) | 2020-04-06 | 2024-09-18 | ポリプラスチックス株式会社 | 棒状成形品 |
CN114479273B (zh) * | 2022-02-09 | 2023-06-16 | 昕亮科技(深圳)有限公司 | 一种高性能聚丙烯阻燃剂及其制备方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1900270A1 (de) | 1968-01-04 | 1969-11-06 | Rhodiaceta | Neue thermoplastische Formmassen |
DE2252258A1 (de) | 1972-10-25 | 1974-05-09 | Hoechst Ag | Schwerentflammbare thermoplastische polyester |
DE2447727A1 (de) | 1974-10-07 | 1976-04-08 | Hoechst Ag | Schwerentflammbare polyamidformmassen |
DE19607635A1 (de) | 1996-02-29 | 1997-09-04 | Hoechst Ag | Schwerentflammbare Polyamidformmassen |
WO1997039053A1 (de) | 1996-04-12 | 1997-10-23 | Clariant Gmbh | Synergistische flammschutzmittel-kombination für thermoplastische polymere |
WO1998003515A1 (de) | 1996-07-22 | 1998-01-29 | Ticona Gmbh | Aluminiumsalze von phosphinsäuren |
DE19734437A1 (de) | 1997-08-08 | 1999-02-11 | Clariant Gmbh | Synergistische Flammschutzmittel-Kombination für Polymere |
DE19737727A1 (de) | 1997-08-29 | 1999-07-08 | Clariant Gmbh | Synergistische Flammschutzmittel-Kombination für Kunststoffe |
WO2002028953A1 (en) | 2000-10-05 | 2002-04-11 | Ciba Specialty Chemicals Holding Inc. | Halogen-free flame retarder composition and flame retardant polyamide composition |
EP1544206A1 (de) * | 2003-12-19 | 2005-06-22 | Clariant GmbH | Dialkylphosphinsäure-Salze |
WO2012045414A1 (de) | 2010-10-09 | 2012-04-12 | Clariant International Ltd | Flammschutzmittel- stabilisator-kombination für thermoplastische polymere |
DE102011120218A1 (de) | 2011-12-05 | 2013-06-06 | Clariant International Ltd. | Alkali-Aliminium-Mischphosphite, Verfahren zur ihrer Herstellung sowie deren Verwendung |
WO2014135256A1 (de) | 2013-03-08 | 2014-09-12 | Clariant International Ltd | Flammhemmende polyamidzusammensetzung |
DE102014001222A1 (de) | 2014-01-29 | 2015-07-30 | Clariant lnternational Ltd | Halogenfreie feste Flammschutzmittelmischung und ihre Verwendung |
WO2016065971A1 (zh) | 2014-10-29 | 2016-05-06 | 广州金凯新材料有限公司 | 一种用于聚合物的添加剂组合物和其制备方法及由其组成的阻燃热塑性聚合物模塑材料 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103937027A (zh) * | 2014-03-18 | 2014-07-23 | 广州金凯新材料有限公司 | 一种用于塑料的添加剂和其应用以及由其组成的阻燃聚合物模塑组合物 |
CN105220520B (zh) * | 2015-10-27 | 2017-08-15 | 上海华峰超纤材料股份有限公司 | 无卤革用阻燃聚氨酯树脂浆料及其应用 |
-
2017
- 2017-09-07 DE DE102017215779.8A patent/DE102017215779B4/de active Active
-
2018
- 2018-02-12 CN CN201810146076.3A patent/CN109467751A/zh active Pending
- 2018-08-27 TW TW107129743A patent/TW201920417A/zh unknown
- 2018-08-29 WO PCT/EP2018/073235 patent/WO2019048312A1/de unknown
- 2018-08-29 EP EP18762271.7A patent/EP3679094A1/de not_active Withdrawn
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1900270A1 (de) | 1968-01-04 | 1969-11-06 | Rhodiaceta | Neue thermoplastische Formmassen |
DE2252258A1 (de) | 1972-10-25 | 1974-05-09 | Hoechst Ag | Schwerentflammbare thermoplastische polyester |
DE2447727A1 (de) | 1974-10-07 | 1976-04-08 | Hoechst Ag | Schwerentflammbare polyamidformmassen |
DE19607635A1 (de) | 1996-02-29 | 1997-09-04 | Hoechst Ag | Schwerentflammbare Polyamidformmassen |
WO1997039053A1 (de) | 1996-04-12 | 1997-10-23 | Clariant Gmbh | Synergistische flammschutzmittel-kombination für thermoplastische polymere |
WO1998003515A1 (de) | 1996-07-22 | 1998-01-29 | Ticona Gmbh | Aluminiumsalze von phosphinsäuren |
DE19734437A1 (de) | 1997-08-08 | 1999-02-11 | Clariant Gmbh | Synergistische Flammschutzmittel-Kombination für Polymere |
DE19737727A1 (de) | 1997-08-29 | 1999-07-08 | Clariant Gmbh | Synergistische Flammschutzmittel-Kombination für Kunststoffe |
WO2002028953A1 (en) | 2000-10-05 | 2002-04-11 | Ciba Specialty Chemicals Holding Inc. | Halogen-free flame retarder composition and flame retardant polyamide composition |
EP1544206A1 (de) * | 2003-12-19 | 2005-06-22 | Clariant GmbH | Dialkylphosphinsäure-Salze |
US7420007B2 (en) | 2003-12-19 | 2008-09-02 | Clariant Produkte (Deutschland) Gmbh | Dialkylphosphinic salts |
WO2012045414A1 (de) | 2010-10-09 | 2012-04-12 | Clariant International Ltd | Flammschutzmittel- stabilisator-kombination für thermoplastische polymere |
DE102011120218A1 (de) | 2011-12-05 | 2013-06-06 | Clariant International Ltd. | Alkali-Aliminium-Mischphosphite, Verfahren zur ihrer Herstellung sowie deren Verwendung |
WO2014135256A1 (de) | 2013-03-08 | 2014-09-12 | Clariant International Ltd | Flammhemmende polyamidzusammensetzung |
DE102014001222A1 (de) | 2014-01-29 | 2015-07-30 | Clariant lnternational Ltd | Halogenfreie feste Flammschutzmittelmischung und ihre Verwendung |
WO2016065971A1 (zh) | 2014-10-29 | 2016-05-06 | 广州金凯新材料有限公司 | 一种用于聚合物的添加剂组合物和其制备方法及由其组成的阻燃热塑性聚合物模塑材料 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4011827A4 (de) * | 2020-10-12 | 2023-02-15 | Jiangsu Liside New Material Co., Ltd. | Poly/monohypophosphit-wasserstoffdiphosphitverbindung, ihre herstellung und verwendung |
Also Published As
Publication number | Publication date |
---|---|
DE102017215779A1 (de) | 2019-03-07 |
CN109467751A (zh) | 2019-03-15 |
TW201920417A (zh) | 2019-06-01 |
DE102017215779B4 (de) | 2021-03-18 |
EP3679094A1 (de) | 2020-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3487957B1 (de) | Flammschutzmittelmischungen, ihre herstellung und ihre verwendung | |
EP2788416B1 (de) | Flammschutzmittel-mischungen enthaltend flammschutzmittel und aluminiumphosphite, verfahren zu ihrer herstellung und ihre verwendung | |
EP2593505B1 (de) | Flammschutzmittel-stabilisator-kombination für thermoplastische polymere | |
EP3487861B1 (de) | Diorganylphosphinsäuresalze, ein verfahren zu deren herstellung und ihre verwendung | |
EP3679095A1 (de) | Synergistische flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung | |
WO2018015252A1 (de) | Flammschutzmittelmischungen, ihre herstellung und ihre verwendung | |
DE102017212100A1 (de) | Additivmischungen für Kunststoffe, lasermarkierbare Polymerzusammensetzungen enthaltend diese und deren Verwendung | |
EP1945708A1 (de) | Halogenfreie flammgeschützte thermoplastische polyester | |
WO2019048312A1 (de) | Flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung | |
WO2019048309A1 (de) | Flammhemmende polyesterzusammensetzungen und deren verwendung | |
DE102017214048A1 (de) | Flammhemmende Polyamidzusammensetzungen mit hoher Glühdrahtentzündungstemperatur und deren Verwendung | |
DE102017214046A1 (de) | Flammhemmende Polyamidzusammensetzungen und deren Verwendung | |
EP3652242B1 (de) | Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung | |
WO2019048311A1 (de) | Flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung | |
EP3679092A1 (de) | Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung | |
DE102017214051B4 (de) | Flammhemmende Polyamidzusammensetzungen mit hoher Wärmeformbeständigkeit und deren Verwendung | |
DE102017212099A1 (de) | Additivmischungen für Kunststoffe, lasermarkierbare Polymerzusammensetzungen enthaltend diese und deren Verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18762271 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018762271 Country of ref document: EP Effective date: 20200407 |