EP3675144A1 - Herstellungsverfahren für transformatorleiterplatte und transformator damit - Google Patents

Herstellungsverfahren für transformatorleiterplatte und transformator damit Download PDF

Info

Publication number
EP3675144A1
EP3675144A1 EP18215834.5A EP18215834A EP3675144A1 EP 3675144 A1 EP3675144 A1 EP 3675144A1 EP 18215834 A EP18215834 A EP 18215834A EP 3675144 A1 EP3675144 A1 EP 3675144A1
Authority
EP
European Patent Office
Prior art keywords
metal plate
outer insulation
metal plates
metal
insulation layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18215834.5A
Other languages
English (en)
French (fr)
Other versions
EP3675144B1 (de
Inventor
Eric Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WANG, WEN-CHIN
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP18215834.5A priority Critical patent/EP3675144B1/de
Priority to ES18215834T priority patent/ES2900553T3/es
Publication of EP3675144A1 publication Critical patent/EP3675144A1/de
Application granted granted Critical
Publication of EP3675144B1 publication Critical patent/EP3675144B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections

Definitions

  • the present invention relates to transformers, and more particularly, to a manufacturing method of transformer circuit board and transformer thereof.
  • the manufacturing process of a transformer will set up the copper wire diameter, the amount of wire rounds, and a plurality of windings according to the demands upon performance, voltage, current, inductance, leakage inductance, magnetic saturation efficiency, and layout.
  • a conventional manufacturing method of a transformer circuit board applies a photographing technique for manufacturing the layout.
  • exposing, developing, etching, boring, and electroplating operations are carried out on a copper foil, so as to manufacture the needed layout of each layer structure.
  • the layout of each layer structures are pressed to be combined into a complete printed circuit board, which is then combined with magnetic core.
  • a chemical agent is applied for etching the surface of the copper foil.
  • a lateral etching might be caused during the etching process.
  • the upper layer of the layout is etched for a duration longer than the bottom portion of the layout.
  • the upper layer of the layout becomes narrower than the bottom portion of the layout.
  • the diameter of the copper foil layout varies due to lateral etching effect, thus affecting the property of the transformer.
  • the lateral etching of the copper foil surface easily causes an uneven flow of glue during the combination process.
  • recess is easily produced on the copper foil of different layer structures.
  • bubbles or incomplete adherence might be caused between layer structures, which might even cause the separation of layer structures, leading to the discard of products and failing to achieve a stabilized manufacturing process.
  • the manufacturing of the copper foil layout is complicated with the use of various chemical agents, which might cause danger upon the manufacturing environment. Further, the application of chemical agents is unable to effectively control the manufacturing quality of the layout, and might also cause the lateral etching effect of the copper foil. As a result, the manufacturing efficiency and yield rate of the transformer circuit board is affected.
  • a manufacturing method of transformer circuit board is disclosed. With the layout on the copper foil being stamping molded without the operations of exposing, developing, and etching, the lateral etching issues is resolved, and the yield rate of the transformer circuit board is improved.
  • the manufacturing method of transformer circuit board comprising steps of:
  • a transformer in accordance with an embodiment of the present invention comprising the transformer circuit board formed by the manufacturing method aforementioned.
  • the metal plates of the present invention are stamped to be formed with corresponding mold, so as to replace the conventional operations of exposing, developing, and etching by use of chemical agents, thus preventing lateral etching upon copper foil from occurring and improving the yield rate of the manufacturing process of transformer circuit board. Also, consistency of the layouts on each metal plate is enhanced, thus improving the production quality and efficiency.
  • a manufacturing method of transformer circuit board 100 and transformer thereof comprising following steps: plate stamping S1 , primary layering S2 , primary pressing S3 , secondary layering S4 , secondary pressing S5 , and boring S6 .
  • each metal plate 10 is a self-adhesive copper foil, and the stamping mold for stamping each metal plate 10 is manufactured by CNC lathe or laser engraving.
  • each metal plate 10 has an alignment hole 101 disposed at the center of the metal plate 10 , respectively, and the alignment holes 101 are arranged in an axial alignment.
  • the inner layout of each metal plate 10 will differ according to different layering orders.
  • a plurality of metal plates 10 of each layer are equidistantly placed in a horizontal alignment, and the metal plate 10 of two neighboring layers are placed in a vertical alignment, so as to manufacture a plurality of transformer circuit boards 100 in a single time. Therefore, the manufacturing efficiency is significantly improved.
  • the embodiment of the present invention is illustrated with a singular transformer circuit board 100 .
  • the primary layering S2 step of the transformer circuit board 100 is illustrated below.
  • a plurality of metal plates 10 are vertically layered between two outer insulation layers 20 , and the metal plates 10 are arranged in alignment by the alignment holes 101 , with an inner insulation layer 21 disposed between each two neighboring metal plate 10 , so as to form a plurality of metal plates 10 and inner insulation layer 21 that are alternately layered.
  • two layers of metal plates 10 are layered between two outer insulation layers 20 , with a singular inner insulation layer 21 disposed between the two metal plates 10 .
  • the metal plates 10 between the two outer insulation layers 20 are allowed to be layered to more than two layers.
  • the outer insulation layer 20 and the inner insulation layer 21 are glass fiber resin sheets having consistent area and thickness.
  • the corresponding vertical positions of the metal plates 10 on each layer are important, such that any deviation will invalidate the conduction between the layouts. Therefore, the self-adhesive metal plates 10 of each layer are allowed to be manually layered or layered by use of automatic equipment. Therein, regarding to the manually layering manner, the relative positions are projected on two sides of the corresponding inner insulations through infrared rays with a layout patterns in a 1:1 scale. Next, each self-adhesive metal plate 10 is adhered on the target position on each inner insulation layer 21 . Finally, the outer insulation layers 20 are placed on each corresponding metal plate 10 , such that the metal plate 10 are layered between two outer insulation layers 20 .
  • each metal plate 10 is grabbed by mechanical arm of the automatic equipment, so as to be placed on the relative position corresponding to each inner insulation layer 21 . Therefore, two metal plate 10 are accurately layered, and the outer insulation layers 20 are then placed on each metal plate 10 by the mechanical arm.
  • the neighboring outer insulation layers 20 and the inner insulation layer 21 are hot-pressed by a hot press machine 40 , so as to fill the gap between the outer insulation layer 20 and the inner insulation layer 21 by thermal melting. Therefore, the metal plate 10 is fixed between the two outer insulation layers 20 , and the thermally melted combination between the outer insulation layer 20 and the inner insulation layer 21 is evenly distributed.
  • the secondary layering S4 step as shown by Fig. 1 , Fig. 7 , and Fig. 8 , after the primary pressing S3 , the aforementioned manually or automatically layering process is repeated, so as to layer another metal plate 10 on the outer side of each outer insulation layer 20 with the alignment holes 101 of each metal plate 10 being arranged in alignment. No additional insulations are needed to be placed. Therefore, the metal plate 10 is formed in a four-layer structured. For further improving the accuracy of the layering position of metal plates 10 on each layer, when the layering process is complete, the layering positions and layouts of the metal plates 10 are scanned by X-ray for preventing any deviations from existing, thus precisely improving the accuracy of the layering position of the metal plates 10 .
  • the metal plate 10 of the present invention comprises a first metal plate 11 , a second metal plate 12 , a third metal plate 13 , and a fourth metal plate 14 , wherein the first metal plate 11 and the fourth metal plate 14 are disposed on the outer side of the two outer insulation layers 20 , respectively, and the second metal plate 12 and the third metal plate 13 are disposed on the inner side of the two outer insulation layers 20 and the two sides of the inner insulation layer 21 , respectively. Therefore, the inner insulation layer 21 is positioned between the second metal plate 12 and the third metal plate 13 .
  • the layout of the first metal plate 11 is identical to the layout of the fourth metal plate 14
  • the layout of the second metal plate 12 is identical to the layout of the third metal plate 13
  • the layout of the first metal plate 11 is different from the layout of the second metal plate 12 .
  • Fig. 2 , Fig. 3 , and Fig. 8 when the metal plate 10 is alternately layered with each outer insulation layer 20 and each inner insulation layer 21 , the first metal plate 11 and the fourth metal plate 14 are horizontally presented in a mirror image; also, the second metal plate 12 and the third metal plate 13 are horizontally presented in a mirror image. Therefore, after the vertical layering process, the first metal plate 11 and the fourth metal plate 14 are structurally reversed; the second metal plate 12 and the third metal plate 13 are structurally reversed.
  • the hot press machine 40 is applied again for assuring that the first metal plate 11 and the fourth metal plate 14 are stably adhered on the two outer insulation layers 20 , respectively.
  • an amount of through bores for electrical conduction are formed according to different demands.
  • An automatic boring machine is applied for boring the layout of each metal plate 10 , so as to form the needed through bores, and the through bores of the metal plates 10 of each layer are then electroplated by a horizontal electroplating equipment.
  • a solder mask ink is coated on the outer side of each outer insulation layer 20 to undergo a screen printing process, so as to form a solder mask layer 30 on each outer insulation layer 20 for protecting the metal plates 10 exposed on the outer side of the outer insulation layer 20 , thus preventing short cut or open cut due to scrape from occurring, and achieving a solder mask function.
  • solder mask layer 30 is plated with an anti-oxidative layer for preventing the exposed solder mask layer 30 and through bores from oxidation, facilitating further soldering operation. Then, the whole metal plate 10 is cut by a forming machine to form a transformer circuit board 100 in the target size.
  • each through bore is soldered with a connection pillar 50 for fixing the structure of the transformer circuit board 100 .
  • each connection pillar 50 is formed in a column shape tapering from the bottom to the top. Also, each connection pillar 50 has a helical surface which is favorable for the solder to flow into a guide groove 51 of each connection pillar 50 .
  • the transformer circuit board 100 is glued with a matched magnetic core to form a transformer, which subsequently undergoes various property tests of different inspection instruments, including inductance, coils ratio, leakage inductance, voltage, and pressure resistance. Therefore, a transformer with low leakage inductance and high electro-magnetic interference shield is acquired.
  • the metal plates 10 of the present invention are stamped to be formed with corresponding mold, so as to replace the conventional operations of exposing, developing, and etching by use of chemical agents, thus preventing lateral etching upon copper foil from occurring and improving the yield rate of the manufacturing process of transformer circuit board 100 . Also, consistency of the layouts on each metal plate 10 is enhanced, thus improving the production quality and efficiency.
  • the metal plates 10 of each layer are arranged in a precise alignment for preventing positional deviation between the metal plates 10 from occurring.
  • the manufacturing process of the metal plates 10 of the present invention eliminates the issues of lateral etching, so as to further increase the stability of transformer circuit board 100 .
  • the transformer circuit board 100 is combined with corresponding magnetic core, thus forming a transformer having low leakage inductance and high electro-magnetic interference shield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
EP18215834.5A 2018-12-24 2018-12-24 Herstellungsverfahren für transformatorleiterplatte und transformator damit Active EP3675144B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18215834.5A EP3675144B1 (de) 2018-12-24 2018-12-24 Herstellungsverfahren für transformatorleiterplatte und transformator damit
ES18215834T ES2900553T3 (es) 2018-12-24 2018-12-24 Método de fabricación de placa de circuito de transformador y transformador correspondiente

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18215834.5A EP3675144B1 (de) 2018-12-24 2018-12-24 Herstellungsverfahren für transformatorleiterplatte und transformator damit

Publications (2)

Publication Number Publication Date
EP3675144A1 true EP3675144A1 (de) 2020-07-01
EP3675144B1 EP3675144B1 (de) 2021-10-20

Family

ID=64901435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18215834.5A Active EP3675144B1 (de) 2018-12-24 2018-12-24 Herstellungsverfahren für transformatorleiterplatte und transformator damit

Country Status (2)

Country Link
EP (1) EP3675144B1 (de)
ES (1) ES2900553T3 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059170A1 (en) * 1998-05-11 1999-11-18 Nidec America Corporation Surface mounted magnetic components having sheet material windings and a power supply including such components
US20050270745A1 (en) * 2004-06-04 2005-12-08 Kanghua Chen Integration of planar transformer and/or planar inductor with power switches in power converter
CN101599347B (zh) * 2009-06-17 2011-04-06 北京科耐特科技有限公司 生产多层平板变压器的方法
US20170027061A1 (en) * 2015-07-22 2017-01-26 Cyntec Co., Ltd. Multi-layer wiring structure, magnetic element and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059170A1 (en) * 1998-05-11 1999-11-18 Nidec America Corporation Surface mounted magnetic components having sheet material windings and a power supply including such components
US20050270745A1 (en) * 2004-06-04 2005-12-08 Kanghua Chen Integration of planar transformer and/or planar inductor with power switches in power converter
CN101599347B (zh) * 2009-06-17 2011-04-06 北京科耐特科技有限公司 生产多层平板变压器的方法
US20170027061A1 (en) * 2015-07-22 2017-01-26 Cyntec Co., Ltd. Multi-layer wiring structure, magnetic element and manufacturing method thereof

Also Published As

Publication number Publication date
EP3675144B1 (de) 2021-10-20
ES2900553T3 (es) 2022-03-17

Similar Documents

Publication Publication Date Title
US7097394B2 (en) Circuit board production method and circuit board production data
JP5688162B2 (ja) 部品内蔵基板の製造方法及びこの方法を用いて製造した部品内蔵基板
KR20160111153A (ko) 인덕터 및 인덕터의 제조 방법
US10068693B2 (en) Multi-layer wiring structure, magnetic element and manufacturing method thereof
US11367564B2 (en) Manufacturing method of transformer circuit board and transformer thereof
EP3675144B1 (de) Herstellungsverfahren für transformatorleiterplatte und transformator damit
KR102126822B1 (ko) 변압기 회로 기판의 제조 방법 및 변압기
CN106376173B (zh) 印刷电路板的多层导线结构、磁性元件及其制造方法
JP2006324378A (ja) 多層プリント配線板およびその製造方法
CN113840461B (zh) 一种背光板的制作方法
CN111885857B (zh) 印刷电路板的制作方法及印刷电路板
CN110536560B (zh) 变压器线路板的制作方法及其变压器
TWI658481B (zh) 變壓器線路板的製作方法及其變壓器
KR101525027B1 (ko) 인쇄회로기판 제조 방법
CN112533383A (zh) 一种22层低损耗的pcb制作方法
CN113056100A (zh) 一种高精度隐埋导电碳油电阻印制线路板的制作方法
CN105555040A (zh) 一种可提高外层图形及钻孔位置精度的pcb的制作方法
JP6678725B1 (ja) 変圧器回路板の作製方法とその変圧器
CN114900976B (zh) 一种高密度线路板对位焊接结构及生产方法
KR100809807B1 (ko) 2메탈 tab 및 양면 csp, bga 테이프 및 그제조방법
CN112867251B (zh) 一种多层线路板的制作方法
JP2019204877A (ja) 配線基板、配線基板の製造方法、及び電子部品素子パッケージの製造方法
CN114900987B (zh) 一种高密度线路板对位焊接结构及生产方法
CN115038253B (zh) 一种线路板上多种类型的pad精准等大的制作方法
JP2010263035A (ja) プリント配線板の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WANG, WEN-CHIN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WANG, ERIC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210519

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018025252

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1440613

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1440613

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211020

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2900553

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018025252

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

26N No opposition filed

Effective date: 20220721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211224

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211224

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20221226

Year of fee payment: 5

Ref country code: IT

Payment date: 20221116

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230112

Year of fee payment: 5

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 6

Ref country code: DE

Payment date: 20231204

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020