EP3666978B1 - Ramp for a sheet element - Google Patents

Ramp for a sheet element Download PDF

Info

Publication number
EP3666978B1
EP3666978B1 EP18211976.8A EP18211976A EP3666978B1 EP 3666978 B1 EP3666978 B1 EP 3666978B1 EP 18211976 A EP18211976 A EP 18211976A EP 3666978 B1 EP3666978 B1 EP 3666978B1
Authority
EP
European Patent Office
Prior art keywords
ramp
weight
elastomer
height
proportion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18211976.8A
Other languages
German (de)
French (fr)
Other versions
EP3666978A1 (en
EP3666978C0 (en
Inventor
Andreas BEYELER
Sascha Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fleyg Ag
Original Assignee
Fleyg Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fleyg Ag filed Critical Fleyg Ag
Priority to EP18211976.8A priority Critical patent/EP3666978B1/en
Publication of EP3666978A1 publication Critical patent/EP3666978A1/en
Application granted granted Critical
Publication of EP3666978B1 publication Critical patent/EP3666978B1/en
Publication of EP3666978C0 publication Critical patent/EP3666978C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/22Gutters; Kerbs ; Surface drainage of streets, roads or like traffic areas
    • E01C11/221Kerbs or like edging members, e.g. flush kerbs, shoulder retaining means ; Joint members, connecting or load-transfer means specially for kerbs
    • E01C11/222Raised kerbs, e.g. for sidewalks ; Integrated or portable means for facilitating ascent or descent
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C9/00Special pavings; Pavings for special parts of roads or airfields
    • E01C9/08Temporary pavings
    • E01C9/086Temporary pavings made of concrete, wood, bitumen, rubber or synthetic material or a combination thereof
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/06Foundation trenches ditches or narrow shafts
    • E02D17/10Covering trenches for foundations

Definitions

  • the subject of the invention is a ramp for a plate element, for example a steel plate, which can be used to cover excavations on traffic routes.
  • the US 20020184718 A1 discloses a reusable ramp that is attached to the edges of the steel plate and enables the vehicles to drive smoothly over the ramp and the steel plate adjoining it largely without initiating an abrupt impact force.
  • the ramp has a shoulder element which is designed as a groove into which the steel plate can be inserted.
  • the base of the groove is chosen to match the thickness of the steel plate and the boundary of the groove is formed by a projection that is elastically prestressed so that the projection can exert a compressive force on the steel plate and so that the steel plate is held fixed in the ramp.
  • ramps with different groove dimensions must be kept in stock.
  • the ramps are placed in such a way that the groove extends essentially transversely to the direction of travel. This means that the ramp essentially extends across the width of the road.
  • rainwater can therefore occur or jammed after a ramp. This rainwater cannot flow away because the weight of the steel plate means that the ramp rests tightly on the road surface.
  • the ramp according to CH711063 B2 Although it allows for an improvement since a lead is no longer needed.
  • the holding element has a surface that is essentially parallel to the ground, so that a film of water can still form at least on the holding element.
  • a ramp includes a ramp element and a holding element.
  • the ramp element has an edge which has a first height and a shoulder which has a second height. The first height is smaller than the second height.
  • a support surface which forms the underside of the ramp element extends between the edge and the shoulder and an inclined surface which forms the top of the ramp element extends between the edge and the shoulder.
  • the holding element has a top and a bottom. The holding element connects to the paragraph. The height between the top of the holding element and the bottom of the holding element is smaller than the height of the shoulder.
  • the height is understood to mean the dimension in a direction that extends normal to the support surface, i.e. in particular normal to the underside of the Ramp element and extends to the underside of the holding element.
  • the height is therefore measured from the support surface in the normal direction to this support surface.
  • the ramp includes a first elastomer and a second elastomer. The use of two elastomers not only increases the shock-absorbing properties of the ramp, but also allows it to be used safely in any weather conditions, especially when wet.
  • the proportion of the first elastomer in the ramp is 25% by weight to 35% by weight.
  • the proportion of the second elastomer in the ramp is 10% by weight to 25% by weight.
  • the properties of the first elastomer can contribute to improving the grip of the surface of the ramp.
  • the proportion of highly volatile substances is a maximum of 7% by weight.
  • the low proportion of volatile substances allows the ramp to be used safely even in enclosed spaces, such as halls, parking garages and the like. Even when exposed to high heat, the proportion of volatile substances that can evaporate is low, meaning that the ramp can also be used safely in closed rooms.
  • the proportion of fillers is 33% by weight to 65% by weight. Due to the high filler content, the ramp can achieve sufficient hardness and abrasion resistance so that the ramp can also be used on construction sites for several years.
  • carbon black and calcium carbonate can be used as fillers.
  • the fillers contain carbon black and silicon dioxide.
  • the fillers contain carbon black and calcium carbonate or silicon dioxide, zinc oxide, magnesium, iron or aluminum.
  • the first elastomer contains acrylonitrile-butadiene rubber (NBR).
  • NBR has a high resistance to oils, fats and hydrocarbons.
  • NBR is also characterized by being cheap aging behavior so that weather-resistant ramps can be produced. The low abrasion increases the lifespan of the ramp.
  • the second elastomer contains styrene-butadiene rubber (SBR).
  • SBR styrene-butadiene rubber
  • the addition of styrene-butadiene rubber can improve the weather resistance of the ramp.
  • the holding element or the ramp element has openings which are suitable for draining liquids, for example water.
  • the openings can be connected to recesses for draining liquids.
  • the ramp element or the holding element contains a porous material.
  • the openings can be formed by pores of the porous material.
  • the pores have a pore size in the range from 0.001 to 5 mm.
  • the pores can have a pore size of 0.01 to 5 mm.
  • the pores can have a pore size of 0.01 to 2 mm.
  • the pores can have a pore size of 0.01 to 1 mm.
  • the height of the holding element can be greater in the area of the shoulder than at the end of the holding element, which is opposite the shoulder.
  • the ramp element is essentially wedge-shaped, particularly in cross section.
  • the ramp element forms a wedge, the cross section of which can be essentially triangular, square or trapezoidal.
  • the height of the ramp element increases gradually in the direction of travel before the vehicle reaches the plate element, so that a vehicle can roll over the ramp element without significant shocks being transmitted to the wheels.
  • the angle of inclination of the incline surface can be different.
  • the inclined surface can have a first inclined surface section and a second inclined surface section.
  • the first inclined surface section can include a larger angle of inclination with the support surface than the second inclined surface section.
  • the maximum inclination angle of the second inclination surface section can be less than 20 degrees, preferably less than 15 degrees.
  • the minimum inclination angle of the first inclination surface section can be at least 3 degrees greater than the minimum inclination angle of the second inclination surface section.
  • the minimum inclination angle of the first incline surface section can be at least 10 degrees.
  • the holding element then connects to the side of the wedge that has the greatest overall height.
  • the plate element is placed on the holding element.
  • the height of the holding element and the thickness of the plate element advantageously correspond to the height of the wedge at its highest point, that is to say the height of the shoulder.
  • the thickness of the plate element can also be less or greater than the optimal thickness, so that the ramp can also be used for plate elements of different thicknesses.
  • the plate element can in particular be a steel plate.
  • the ramp can also be used for panel elements made of other materials, such as plastic panels, boards or the like.
  • the underside of the holding element and the support surface lie on a common plane.
  • This embodiment is advantageous if the entire support element is to rest sealingly on a flat surface.
  • This level contact surface on the level surface can prevent rainwater from getting into the pit from the road. Due to the weight of the plate element, the holding element is pressed onto the surface in such a way that a seal can be created when the ramp extends completely around the plate element.
  • the top side of the holding element can be designed essentially parallel to the underside of the holding element.
  • the plate element can rest flat on the holding element and the weight of the plate element can be introduced evenly into the holding element.
  • the ramp element is preferably manufactured together with the holding element in one piece, that is to say designed as a single component, whereby the entire ramp can be made of the same material.
  • the ramp preferably contains an elastic material, for example an elastic plastic, in particular rubber or rubber compounds.
  • the underside of the ramp element and/or the underside of the holding element can have at least one recess.
  • a recess serves as a collecting channel for liquid, in particular water, which can enter between the support surface, i.e. the underside of the ramp element and the surface of the ground, for example due to unevenness in the ground.
  • the liquid is collected in this recess and can, for example, be drained towards a water collection system located at the edge of the road.
  • the road itself often has a slope that encourages fluid to run off.
  • the liquid accumulating in the recess can be removed by compressing the channel due to the loading of the ramp element by a vehicle driving over it in such a way that the channel is compressed and the liquid in it is consequently displaced from the channel.
  • the channel may have a rectangular, semicircular, polygonal, trapezoidal, slot-like, triangular or polygonal cross-section.
  • the top of the ramp element may have a marking. This marking can in particular serve to make the ramp element more visually recognizable for approaching vehicles, so that vehicle drivers can take note of the ramp element before they reach the ramp element and can adjust the driving speed accordingly.
  • the marking can be designed as an optical marking, which in particular includes security strips.
  • the marking can also be designed as part of a traffic control system.
  • the marking can be luminous, luminous or reflective.
  • the ramp element can contain a fluorescent material that stores daylight and glows in the dark.
  • the ramp can be composed of several sub-elements. This allows the ramp to be adapted to the dimensions of different plate elements. If necessary, the ramp can also be used for wooden boards, for example to create temporary pedestrian crossings.
  • the ramps can be designed such that they can accommodate a corner of a plate element, such as a steel plate or a wooden board.
  • a plate element such as a steel plate or a wooden board.
  • several ramps can be put together in a modular manner according to each of the exemplary embodiments, so that a different number of ramps can be used depending on the length or width of the plate element.
  • the surface of the incline surface and/or the holding element can be rough or water-repellent.
  • the adhesion can be improved so that slipping off the support element is not possible. In particular, this can reduce the risk of two-wheeler riders falling.
  • a seal can be provided to protect against water draining into the excavation pit.
  • recesses can also be provided on the inclined surfaces in order to drain away liquid.
  • the Recesses can, for example, be designed as grooves which extend parallel to the front surface or at an angle thereto over at least part of the inclined surface.
  • Fig. 1a shows a view of a ramp 10 according to a first exemplary embodiment.
  • the ramp 10 according to Fig. 1 comprises a ramp element 1 and a holding element 2.
  • the ramp element 1 has an edge 3, which has a first height, and a shoulder 4, which has a second height.
  • the first height is smaller than that second height. In particular, the first height can be 0 cm if the edge 3 forms a point.
  • a support surface 5 extends between the edge 3 and the shoulder 4 and is at least partially formed by the underside of the ramp element 1.
  • Between the edge 3 and the shoulder 4 extends an inclined surface 6, which forms the top of the ramp element 1.
  • the holding element 2 has a top 7 and a bottom 8.
  • the holding element 2 adjoins paragraph 4.
  • the height between the top 7 of the holding element and the bottom 8 of the holding element is smaller than the height of the paragraph 4.
  • the angle of inclination of the incline surface 6 can be different.
  • the inclined surface can have a first inclined surface section and a second inclined surface section.
  • the first inclined surface section can include a larger angle of inclination with the support surface than the second inclined surface section.
  • the maximum inclination angle of the second inclination surface section can be less than 20 degrees, preferably less than 15 degrees.
  • the minimum inclination angle of the second inclination surface section can preferably be at least 3 degrees, in particular at least 5 degrees.
  • the minimum inclination angle of the first inclination surface section can be at least 3 degrees greater than the minimum inclination angle of the second inclination surface section.
  • the minimum inclination angle of the first incline surface section can be at least 10 degrees.
  • the ramp element 1 is essentially wedge-shaped in cross section.
  • the ramp element ensures that: Fig. 1 a wedge is formed, the cross section of which is essentially triangular, square, or trapezoidal.
  • the height of the ramp element 1 gradually increases in the direction of travel until the vehicle reaches the plate element 100 (see Fig. 5 ) is achieved so that a vehicle can roll over the ramp element 1 without significant shocks being transmitted to the wheels.
  • the holding element 2 connects to the side of the wedge that has the greatest overall height.
  • the plate element 100 is on the holding element 2 hung up.
  • the height of the holding element 2 and the thickness of the plate element 100 advantageously correspond to the height of the wedge at its highest point, that is to say the height of the shoulder 4.
  • the thickness of the plate element 100 can also be less or greater than the optimal thickness, so that the Ramp 10 can also be used for plate elements 100 of different thicknesses.
  • the plate element 100 can in particular be a steel plate, but the ramp 10 can also be used for other plate elements 100, such as plastic plates, boards or the like.
  • the underside 8 of the holding element 2 and the support surface 5 lie on a common plane.
  • This exemplary embodiment is advantageous if the entire ramp 10 is to rest sealingly on a flat surface.
  • This level support surface on a level surface can prevent rainwater from getting into the pit or excavation area from the roadway. Due to the weight of the steel plate, the holding element 2 is pressed onto the surface in such a way that a seal can be created when the ramp 10 surrounds the plate element 100.
  • the top 7 of the holding element 2 can be formed essentially parallel to the underside 8 of the holding element 2, which is shown, for example, in section in the Fig. 1b is shown.
  • the plate element 100 can rest flat on the holding element 2 and the own weight of the plate element 100 can be introduced evenly into the holding element 2.
  • the ramp element 1 and the holding element 2 are preferably designed in one piece, with the ramp 10 in particular containing a first elastomer and a second elastomer.
  • the holding element 2 or the ramp element 1 can have openings 25 which are suitable for draining water.
  • the openings can have any shape; for example, openings 25 with a cuboid or cylindrical volume are shown.
  • the underside of the ramp element 1 and/or the underside of the holding element 2 can have at least one recess 9, 19.
  • a recess serves as a collecting channel for liquid, in particular water, which can enter between the support surface 5 of the ramp element 1 and the surface of the ground, for example due to unevenness in the ground.
  • Such a recess 9, 10 can be in fluid-conducting connection with at least one opening 25.
  • Recesses 9, 19 shown are used to collect liquid striking the ramp element 1 or the holding element 2 and can be diverted, for example, in the direction of a water collection system located on the edge of the road.
  • the road itself often has a slope that encourages fluid to run off.
  • the recesses 9, 19 are components of channels which can extend, for example, along the entire support surface 5.
  • the channels can extend parallel to the edge 3 of the ramp element 1 inside the ramp element.
  • Such a channel can run in a straight line or have a curvature.
  • the liquid accumulating in the recess 9, 19 can be removed by compressing the channel due to the loading of the ramp element 1 by a vehicle driving over it in such a way that the channel is compressed and the liquid contained therein is removed from the channel is displaced.
  • the channel can have a rectangular, semicircular, polygonal, trapezoidal, slot-like, triangular or polygonal cross section.
  • Fig. 2 shows a view of a ramp 20 according to a second exemplary embodiment, which is used to accommodate a corner of a plate element 100 (see Fig. 4 ) is trained.
  • the ramp 20, like the ramp 10 according to the previous exemplary embodiment, has a ramp element 1 and a holding element 2.
  • the ramp element 1 has an incline surface 6 and a support surface 5.
  • the support surface 5 and the inclined surface 6 extend from the edge 3 to the shoulder 4.
  • the shoulder 4 forms a stop for the plate element.
  • the ramp 20 has a further ramp element 11.
  • the ramp element 11 has a Inclination surface 16 and a support surface 15.
  • the support surface 15 and the inclined surface 16 extend from the edge 13 to the shoulder 14.
  • the shoulder 14 forms a stop for the plate element 100.
  • a connecting element 12 can be arranged between the ramp element 1 and the ramp element 11. According to the present exemplary embodiment, the edge 3 continues to the connecting element 12, and the edge 13 also continues to the connecting element 12. The thickness of the connecting element increases from the continuations of the edge 3, 13 to the intersection line of the planes of the paragraphs 4, 14. This results in a substantially smooth transition to the inclined surfaces 6, 16.
  • a connecting element 12 with a triangular inclined surface 16 instead of a connecting element 12 with a triangular inclined surface 16, a connecting element can be provided which has a curve.
  • Fig. 3 shows a view of a ramp 30 according to a third exemplary embodiment, which is designed to accommodate a corner of a plate element 100.
  • This ramp faces one Fig. 2 simplified embodiment. All elements that are also in Fig. 2 shown are labeled the same. For the description of these elements see Fig. 2 referred.
  • the connecting element 12 is omitted. So that a sharp edge is not formed, particularly in the area of the intersection of paragraph 4 with paragraph 14, the inclined surface can not only have an inclination from the respective edges 3, 13 to paragraph 4, 14, but also an inclination from the front surface 18 to the opposite rear surface 27 and an inclination from the front surface 18 to the opposite rear surface 28.
  • Each of the exemplary embodiments according to Fig. 2 or Fig. 3 is equipped with openings 25, 35 and recesses 9, 19 on the support surface in order to be able to drain away liquid.
  • Fig. 4 shows a view of an arrangement of several ramps 10 according to one of Fig. 1a or 1b, as well as a variant of the embodiments according to Fig. 2 or Fig. 3 .
  • the ramp 40 is made up of several composed of partial elements. This allows the ramp 40 to be adapted to the dimensions of different plate elements 100. If necessary, the ramp can also be used for wooden boards, for example to create temporary pedestrian crossings.
  • the ramps 10, 20, 30 of each of the exemplary embodiments according to Fig. 1 to Fig. 3 can therefore be combined with each other as desired.
  • the ramps 20, 30, 40 can be designed such that they can accommodate a corner of a plate element 100, such as a steel plate or a wooden board.
  • a plate element 100 such as a steel plate or a wooden board.
  • several ramps 10, 20, 30 can be put together in a modular manner, for example to form a ramp 40, so that depending on the length or width of the plate element 100, a different number and/or different embodiments of ramps can be used.
  • the top of the ramp element 1 can have a marking 21.
  • a marking 21 is for the ramps 10, 20, 30, 40 according to one of the Fig. 1a, 1b , 2, 3 , 4 shown. This marking can serve in particular to make the support element 10, 30, 40 more visually recognizable for approaching vehicles, so that the vehicle drivers can take note of the position of the ramp element before reaching the ramp element and can adjust the driving speed accordingly.
  • the marking 21 can be designed as an optical marking, which in particular includes security strips.
  • the marking can be luminous, luminous or reflective.
  • the ramp element can contain a fluorescent material that stores daylight and glows in the dark.
  • the marker 21 may include a collection channel to introduce liquid into one of the openings 25.
  • the surface of the inclined surface 6, 16 and/or the top 7 of the holding element can be rough or water-repellent.
  • the adhesion can be improved, so that the plate element cannot slip on the support element. In particular, this can reduce the risk of two-wheeler riders falling.
  • a seal can be provided to protect against water draining into the pit.
  • This seal can be designed, for example, as a projection on the support surface.
  • the edge of the recess 9, 19 that is closer to the shoulder can have a greater length than the length of the edge that is further away from the shoulder. This edge is pressed against the ground by the weight of the plate element, which prevents the passage of liquid from the roadway towards the pit. A liquid barrier is thus created by the projection or extended edge.
  • the ramp element 1 or the holding element 2 has openings which are suitable for the drainage of liquids, for example water.
  • the openings 25, 35 can be connected to recesses 9, 19 for draining away the liquids.
  • the ramp element or the holding element contains a porous material.
  • a detail of a holding element 2 containing a porous material is shown in Fig. 5 shown.
  • the openings or recesses can be formed by pores of the porous material.
  • the pores have an average pore diameter in the range from 0.001 to 5 mm.
  • the pores can have an average pore diameter of 0.01 to 5 mm.
  • the pores can have an average pore diameter of 0.1 to 5 mm.
  • the pores can have an average pore diameter of 0.1 to 2 mm.
  • the average pore diameter of the holding element 2 can be variable in relation to the length L of the ramp.
  • the holding element 2 can contain a first section 22 in which the average pore diameter is smaller than in a second section 23.
  • Fig. 6a is shown that the average pore diameter drops abruptly from the second section 23 to the first section 22.
  • the second section 23 there can be recesses 9, not shown here, similar to those shown in the previous exemplary embodiments.
  • the average pore diameter in the second section 23 can be essentially constant.
  • the first section 22 can thus be designed to be essentially liquid-tight. If the first section 22 comes to rest against the edge of an excavation pit, it can be prevented that liquid gets into the excavation pit. The liquid is collected in the second section 23 and can flow out through the larger pores, openings or recesses.
  • the average pore diameter can be variable in relation to the length L of the ramp of both the holding element 2 and the ramp element 1.
  • the holding element 2 can contain a first section 22 in which the average pore diameter decreases continuously.
  • the average pore diameter becomes smaller in the direction of the edge 33 of the holding element 2. In particular, it can be reduced by more than half with respect to the average pore diameter of the second section 23.
  • the average pore diameter gradually decreases from the second section 23 to the edge 33.
  • the average pore diameter in the second section 23 can be essentially constant.
  • the first section 22 can thus be designed to be essentially liquid-tight. If the first section 22 comes to rest against the edge of an excavation pit, it can be prevented that liquid gets into the excavation pit. The liquid is collected in the second section 23 and can flow out through the larger pores, openings or recesses. Additionally or alternatively, the ramp element 1 can contain a second section 26 in which the average pore diameter decreases continuously or abruptly (not shown in the drawing). The average pore diameter becomes smaller in the direction of the edge 3 of the ramp element 1. In particular, the average pore diameter can be reduced by more than half with respect to the average pore diameter of the first section 24.
  • the average pore diameter in the first section 24 can be essentially constant.
  • the ramp 10, 20, 30, 40 in each case contains a first elastomer and a second elastomer.
  • the proportion of the first elastomer is 25% by weight to 35% by weight.
  • the proportion of the second elastomer is 10% to 25% by weight.
  • the ramp contains highly volatile substances, the proportion of highly volatile substances being a maximum of 7% by weight.
  • the ramp contains fillers, the proportion of fillers being 33% by weight to 65% by weight.
  • the fillers contain carbon black and calcium carbonate.
  • the fillers contain carbon black and silicon dioxide.
  • the fillers contain carbon black and calcium carbonate or silicon dioxide and traces of zinc oxide, magnesium, iron or aluminum.
  • the first elastomer contains acrylonitrile-butadiene rubber (NBR).
  • the second elastomer contains styrene-butadiene rubber (SBR).
  • SBR styrene-butadiene rubber
  • a ramp according to Example 1 contains 26% by weight of NBR and 12% by weight of SBR.
  • the ramp contains 7% by weight of volatile substances such as water or plasticizers.
  • the soot content is 24% by weight.
  • the proportion of calcium carbonate is 20% by weight.
  • the proportion of silicon dioxide is 5% by weight.
  • the proportion of zinc oxide is 1 wt.%.
  • the remaining 5% by weight includes aluminum-containing, magnesium-containing and iron-containing fillers.
  • the chemical composition of the elastomers was determined using Fourier transform infrared spectroscopy (FTIR).
  • FTIR Fourier transform infrared spectroscopy
  • An ATR Golden Gate spectrometer with a wave number range of 4000 1/cm to 600 1/cm, a resolution of 4 1/cm and a number of 10 scans was used.
  • the IR spectra of the samples were compared with reference spectra from the IR database. The highest agreement was found with the reference spectrum of acrylintrile butadiene rubber (NBR).
  • NBR acrylintrile butadiene rubber
  • the main filler of the ramp according to Example 1 was calcium carbonate.
  • TGA thermal gravimetry analysis
  • the measurement program for the ramp according to Example 1 included heating the sample to 550 ° C at 10 ° C / min, after which the temperature is kept isothermal for 40 min. The system then switches to oxygen flow and is heated to a temperature of 850°C at 10°C/min. This temperature was maintained for 15 min in isothermal operation.
  • Fig. 7 shows the measurement results of the TGA for the ramp according to Example 1.
  • the separation of different temperature-dependent mass losses is shown with the first derivative 31 and the second derivative 32.
  • volatile substances such as water or plasticizers evaporate.
  • the mass loss is 7% by weight.
  • the tolerance range is ⁇ 0.5% by weight.
  • the elastomer decomposes at temperatures between 300°C and 500°C.
  • the first and second derivatives 31, 32 show a double peak. There are therefore a first and a second elastomer, in Example 1 26% by weight of NBR and 12% by weight of SBR.
  • the system switches to oxygen flow.
  • Example 1 There is a further weight loss of 24% by weight, which is due to the oxidation of soot to CO 2 .
  • the carbon black content is 24% by weight.
  • At temperatures in the range from 630 °C to 680 °C there is a further decrease in weight, which corresponds to the thermal-oxidative decomposition of calcium carbonate to calcium oxide. This results in a calcium carbonate content of 4-5% for Example 1.
  • An ignition residue of 24% by weight was further examined using semi-quantitative X-ray fluorescence (XCF) analysis.
  • the fillers contained in the ignition residue include 16% by weight of calcium carbonate, 5% by weight of silicon dioxide, 1% by weight of zinc oxide and other fillers, especially magnesium-containing, iron-containing and aluminum-containing fillers.
  • a ramp according to Example 2 contains 42% by weight of NBR and 17% by weight of SBR.
  • the ramp contains 6% by weight of volatile substances such as water or plasticizers.
  • the soot content is 29% by weight.
  • the proportion of calcium carbonate is 0.5 to 1% by weight.
  • the proportion of silicon dioxide is 2% by weight.
  • the proportion of zinc oxide is 1% by weight.
  • the remaining 2% - 3.5% by weight includes aluminum-containing, magnesium-containing and iron-containing fillers.
  • the chemical composition of the elastomers was determined using Fourier transform infrared spectroscopy (FTIR).
  • FTIR Fourier transform infrared spectroscopy
  • An ATR Golden Gate spectrometer with a wave number range of 4000 1/cm to 600 1/cm, a resolution of 4 1/cm and a number of 10 scans was used.
  • the IR spectra of the samples were compared with reference spectra from the IR database. The highest agreement was found with the reference spectrum of acrylintrile butadiene rubber (NBR).
  • NBR acrylintrile butadiene rubber
  • the main filler of the ramp according to Example 2 was silicon dioxide.
  • TGA thermal gravimetry analysis
  • the measurement program for the ramp according to Example 2 included heating the sample to 550 ° C at 10 ° C / min, after which the temperature is kept isothermal for 40 min. The system then switches to oxygen flow and is heated to a temperature of 850°C at 10°C/min. This temperature was maintained for 15 min in isothermal operation.
  • Fig. 8 shows the measurement results of the TGA for the ramp according to Example 2.
  • the separation of different temperature-dependent mass losses is shown with the first derivative 31 and the second derivative 32.
  • volatile substances such as water or plasticizers evaporate.
  • the mass decrease is 6% by weight.
  • the Tolerance range is ⁇ 0.5% by weight.
  • the elastomer decomposes at temperatures between 300°C and 500°C.
  • the first and second derivatives 31, 32 show a double peak. There are therefore a first and a second elastomer, namely 42% by weight of NBR and 17% by weight of SBR.
  • the system switches to oxygen flow.
  • Example 2 There is a further weight loss of 29% by weight, which is due to the oxidation of soot to CO 2 .
  • the carbon black content is 29% by weight.
  • At temperatures in the range from 630 °C to 680 °C there is a further decrease in weight, which corresponds to the thermal-oxidative decomposition of calcium carbonate to calcium oxide. This results in a calcium carbonate content of less than 0.1% for Example 2.
  • An ignition residue of 6 wt% was further examined using semi-quantitative X-ray fluorescence (XCF) analysis.
  • the fillers contained in the ignition residue include 0.5 to 1% by weight of calcium carbonate, 2% by weight of silicon dioxide, 1% by weight of zinc oxide and other, especially magnesium-containing, iron-containing and aluminum-containing fillers.
  • a ramp according to Example 3 contains 34% by weight of NBR and 24% by weight of SBR.
  • the ramp contains 6% by weight of volatile substances such as water or plasticizers.
  • the soot content is 20% by weight.
  • the proportion of calcium carbonate is 0.5 to 1% by weight.
  • the proportion of silicon dioxide is 12% by weight.
  • the proportion of zinc oxide is 1% by weight.
  • the remaining 2% - 2.5% by weight includes aluminum-containing, magnesium-containing and iron-containing fillers.
  • the chemical composition of the elastomers was determined using Fourier transform infrared spectroscopy (FTIR).
  • FTIR Fourier transform infrared spectroscopy
  • An ATR Golden Gate spectrometer with a wave number range of 4000 1/cm to 600 1/cm, a resolution of 4 1/cm and a number of 10 scans was used.
  • the IR spectra of the samples were compared with reference spectra from the IR database. The highest agreement was found with the reference spectrum of acrylintrile butadiene rubber (NBR).
  • NBR acrylintrile butadiene rubber
  • the main filler of the ramp according to Example 3 was silicon dioxide.
  • TGA thermal gravimetry analysis
  • the measurement program for the ramp according to Example 3 included heating the sample to 550 ° C at 10 ° C / min, after which the temperature is kept isothermal for 40 min. The system then switches to oxygen flow and is heated to a temperature of 850°C at 10°C/min. This temperature was maintained for 15 min in isothermal operation.
  • Fig. 9 shows the measurement results of the TGA for the ramp according to Example 3.
  • the separation of different temperature-dependent mass losses is shown with the first derivative 31 and the second derivative 32.
  • volatile substances such as water or plasticizers evaporate.
  • the mass decrease is 6% by weight.
  • the tolerance range is ⁇ 0.5% by weight.
  • the elastomer decomposes at temperatures between 300°C and 500°C.
  • the first and second derivatives 31, 32 show a double peak. There are therefore a first and a second elastomer, namely 34% by weight of NBR and 24% by weight of SBR.
  • the system switches to oxygen flow.
  • Example 3 There is a further weight loss of 20% by weight, which is due to the oxidation of soot to CO 2 .
  • the carbon black content is 20% by weight.
  • At temperatures in the range from 630 °C to 680 °C there is a further decrease in weight, which corresponds to the thermal-oxidative decomposition of calcium carbonate to calcium oxide. This results in a calcium carbonate content of less than 1% by weight for Example 3.
  • An ignition residue of 15 wt.% was further examined using semi-quantitative X-ray fluorescence (XCF) analysis.
  • the fillers contained in the ignition residue include 0.5 to 1% by weight of calcium carbonate, 12% by weight of silicon dioxide, 1% by weight of zinc oxide and other, especially magnesium-containing, iron-containing and aluminum-containing fillers.
  • a ramp according to Example 4 contains 30% by weight of NBR and 15% by weight of SBR.
  • the ramp contains 6% by weight of volatile substances such as water or plasticizers.
  • the soot content is 26% by weight.
  • the proportion of calcium carbonate is 1% by weight.
  • the remaining 22% by weight includes silicon dioxide, zinc oxide and aluminum-containing, magnesium-containing and iron-containing fillers.
  • the chemical composition of the elastomers was determined using Fourier transform infrared spectroscopy (FTIR).
  • FTIR Fourier transform infrared spectroscopy
  • An ATR Golden Gate spectrometer with a wave number range of 4000 1/cm to 600 1/cm, a resolution of 4 1/cm and a number of 10 scans was used.
  • the IR spectra of the samples were compared with reference spectra from the IR database. The highest agreement was found with the reference spectrum of acrylintrile butadiene rubber (NBR).
  • NBR acrylintrile butadiene rubber
  • the main filler of the ramp according to Example 4 is calcium carbonate.
  • TGA thermal gravimetry analysis
  • the measurement program for the ramp according to Example 4 included heating the sample to 550 ° C at 10 ° C / min, after which the temperature is kept isothermal for 40 min. The system then switches to oxygen flow and is heated to a temperature of 850°C at 10°C/min. This temperature was maintained for 15 min in isothermal operation.
  • Fig. 10 shows the measurement results of the TGA for the ramp according to Example 4.
  • the separation of different temperature-dependent mass losses is shown with the first derivative 31 and the second derivative 32.
  • volatile substances such as water or plasticizers evaporate.
  • the mass decrease is 6% by weight.
  • the tolerance range is ⁇ 0.5% by weight.
  • the elastomer decomposes at temperatures between 300°C and 500°C.
  • the first and second derivatives 31, 32 show a double peak. There is therefore a first and a second elastomer, in the present case 30% by weight of NBR and 15% by weight of SBR.
  • the system switches to oxygen flow.
  • the fillers contained in the ignition residue of 21% by weight include calcium carbonate, silicon dioxide, zinc oxide and other fillers, especially magnesium-containing, iron-containing and aluminum-containing fillers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

Gegenstand der Erfindung ist eine Rampe für ein Plattenelement, beispielsweise eine Stahlplatte, die zur Abdeckung von Baugruben auf Verkehrswegen verwendet werden kann.The subject of the invention is a ramp for a plate element, for example a steel plate, which can be used to cover excavations on traffic routes.

Nach der gängigen Praxis werden Stahlplatten auf die Baugrube aufgelegt, um sie abzudecken. Damit sich die Stahlplatte nicht verschieben kann, wenn Fahrzeuge über die Stahlplatte fahren, wird die Stahlplatte an den Rändern mit Asphalt befestigt, um eine Rampe auszubilden. Es hat sich herausgestellt, dass diese Befestigung oftmals erneuert werden muss, da der Asphalt brüchig werden kann und seine Haltefunktion verliert. Nach Beendigung der Bauarbeiten muss der Asphalt entsorgt werden, so dass ein Aufwand beim Befestigen der Stahlplatte anfällt, unter Umständen ein Reparatur und Wartungsaufwand anfällt sowie nach Abschluss der Bauarbeiten ein Abbauaufwand sowie eine Entsorgung des Asphalts erforderlich ist. Daher wurden Überlegungen angestellt, um diesen Aufwand zu verringern. Beispielsweise ist in der US 20020184718 A1 eine wiederverwendbare Rampe offenbart, die auf die Stahlplatte an deren Rändern aufgesteckt wird und ermöglicht, dass die Fahrzeuge weitgehend ohne Einleitung einer abrupt wirkenden Stosskraft sanft über die Rampe sowie die daran anschliessende Stahlplatte fahren können. Die Rampe weist ein Schulterelement auf, welches als Nut ausgebildet ist, in welche die Stahlplatte eingeschoben werden kann. Der Nutgrund ist passend zur Dicke der Stahlplatte gewählt und die die Begrenzung der Nut wird durch einen Vorsprung gebildet, der elastisch vorgespannt ist, so dass der Vorsprung eine Druckkraft auf die Stahlplatte ausüben kann und damit die Stahlplatte in der Rampe fixiert gehalten wird. Mit dieser Lösung fällt der oben genannte Aufwand bei Erstellung und bei Entfernung einer derartigen Abdeckung weg. Allerdings eignet sich diese Rampe wegen ihrer exakten Passform nur für Stahlplatten von einer bestimmten Dicke. D.h. für Stahlplatten unterschiedlicher Dicke müssen dementsprechend Rampen mit unterschiedlichen Nutabmessungen vorrätig gehalten werden. Die Rampen werden derart platziert, dass die Nut sich im Wesentlichen quer zur Fahrtrichtung erstreckt. Das heisst, die Rampe erstreckt sich im Wesentlichen über die Breite der Fahrbahn. Im Fall von Niederschlägen kann das daher vorkommen, dass sich Regenwasser vor oder nach einer Rampe staut. Dieses Regenwasser kann nicht abfliessen, da durch das Gewicht der Stahlplatte die Rampe dicht auf dem Fahrbahnuntergrund aufliegt. Die Rampe gemäss CH711063 B2 ermöglicht zwar eine Verbesserung, da kein Vorsprung mehr benötigt wird. Allerdings weist das Halteelement eine zum Untergrund im Wesentlichen parallele Oberfläche auf, sodass sich zumindest auf dem Halteelement noch ein Wasserfilm ausbilden kann. Insbesondere wenn bei erhöhter Gebrauchsdauer das Halteelement in der Nähe des Absatzes stärkeren Belastungen unterliegt als im Bereich der dem Absatz gegenüberliegenden Kante, kann es zur Dellenbildung kommen, in welcher sich Wasser stauen kann. Zudem ist aus der GB 2 531 245 A eine Rampe zu entnehmen, die aus einem Polymer hergestellt ist.According to common practice, steel plates are placed on the excavation pit to cover it. To prevent the steel plate from shifting when vehicles drive over the steel plate, the edges of the steel plate are secured with asphalt to form a ramp. It has been found that this fastening often needs to be replaced because the asphalt can become brittle and lose its holding function. After the construction work has been completed, the asphalt must be disposed of, so that there is an effort involved in fastening the steel plate, repairs and maintenance work may be required, and dismantling work and disposal of the asphalt may be necessary after the construction work has been completed. Therefore, considerations were made to reduce this effort. For example, in the US 20020184718 A1 discloses a reusable ramp that is attached to the edges of the steel plate and enables the vehicles to drive smoothly over the ramp and the steel plate adjoining it largely without initiating an abrupt impact force. The ramp has a shoulder element which is designed as a groove into which the steel plate can be inserted. The base of the groove is chosen to match the thickness of the steel plate and the boundary of the groove is formed by a projection that is elastically prestressed so that the projection can exert a compressive force on the steel plate and so that the steel plate is held fixed in the ramp. With this solution, the above-mentioned effort in creating and removing such a cover is eliminated. However, because of its precise fit, this ramp is only suitable for steel plates of a certain thickness. This means that for steel plates of different thicknesses, ramps with different groove dimensions must be kept in stock. The ramps are placed in such a way that the groove extends essentially transversely to the direction of travel. This means that the ramp essentially extends across the width of the road. In the event of precipitation, rainwater can therefore occur or jammed after a ramp. This rainwater cannot flow away because the weight of the steel plate means that the ramp rests tightly on the road surface. The ramp according to CH711063 B2 Although it allows for an improvement since a lead is no longer needed. However, the holding element has a surface that is essentially parallel to the ground, so that a film of water can still form at least on the holding element. In particular, if the holding element in the vicinity of the shoulder is subject to greater loads than in the area of the edge opposite the shoulder over a longer period of use, dents can form in which water can accumulate. In addition, from the GB 2 531 245 A to remove a ramp that is made of a polymer.

Somit besteht ein Bedarf nach einer verbesserten Rampe, welche auch bei Regen oder Schneefall erhöhte Griffigkeit aufweist.There is therefore a need for an improved ramp that has increased grip even in rain or snowfall.

Die Lösung dieser Aufgabe erfolgt durch den Gegenstand von Anspruch 1. Vorteilhafte Ausführungsbeispiele ergeben sich durch den Gegenstand der abhängigen Ansprüche.This problem is solved by the subject matter of claim 1. Advantageous exemplary embodiments result from the subject matter of the dependent claims.

Die nachfolgende detaillierte Beschreibung enthält verschiedene Ausführungsbeispiele für die erfindungsgemässe Rampe. Die Beschreibung einer bestimmten Rampe ist nur als beispielhaft anzusehen. In der Beschreibung und den Ansprüchen werden die Begriffe "enthalten", "umfassen", "aufweisen" als "enthalten, aber nicht beschränkt auf" interpretiert.The following detailed description contains various exemplary embodiments of the ramp according to the invention. The description of a specific ramp is only to be viewed as an example. In the description and claims, the terms "include", "comprise", "comprise" are interpreted as "including, but not limited to".

Eine Rampe umfasst ein Rampenelement und ein Halteelement. Das Rampenelement weist eine Kante auf, welche eine erste Höhe aufweist und einen Absatz, der eine zweite Höhe aufweist. Die erste Höhe ist kleiner als die zweite Höhe. Zwischen der Kante und dem Absatz erstreckt sich eine Auflagefläche, welche die Unterseite des Rampenelements ausbildet und zwischen Kante und Absatz erstreckt sich eine Neigungsfläche, welche die Oberseite des Rampenelements ausbildet. Das Halteelement weist eine Oberseite sowie eine Unterseite auf. An den Absatz schliesst das Halteelement an. Die Höhe zwischen der Oberseite des Halteelements und der Unterseite des Halteelements ist kleiner als die Höhe des Absatzes. Unter der Höhe wird dabei die Abmessung in einer Richtung verstanden, die sich normal zur Auflagefläche erstreckt, das heisst insbesondere normal zur Unterseite des Rampenelements sowie zur Unterseite des Halteelements erstreckt. Die Höhe wird somit von der Auflagefläche in Normalrichtung zu dieser Auflagefläche gemessen. Die Rampe enthält ein erstes Elastomer und ein zweites Elastomer. Die Verwendung von zwei Elastomeren erhöht nicht nur die stossdämpfenden Eigenschaften der Rampe, sondern ermöglicht deren sichere Nutzung bei beliebigen Wetterbedingungen, insbesondere bei Nässe.A ramp includes a ramp element and a holding element. The ramp element has an edge which has a first height and a shoulder which has a second height. The first height is smaller than the second height. A support surface which forms the underside of the ramp element extends between the edge and the shoulder and an inclined surface which forms the top of the ramp element extends between the edge and the shoulder. The holding element has a top and a bottom. The holding element connects to the paragraph. The height between the top of the holding element and the bottom of the holding element is smaller than the height of the shoulder. The height is understood to mean the dimension in a direction that extends normal to the support surface, i.e. in particular normal to the underside of the Ramp element and extends to the underside of the holding element. The height is therefore measured from the support surface in the normal direction to this support surface. The ramp includes a first elastomer and a second elastomer. The use of two elastomers not only increases the shock-absorbing properties of the ramp, but also allows it to be used safely in any weather conditions, especially when wet.

Der Anteil des ersten Elastomers in der Rampe beträgt 25 Gew. % bis 35 Gew. %. Gemäss einem Ausführungsbeispiel beträgt der Anteil des zweiten Elastomers in der Rampe 10 Gew. % bis 25 Gew. %. Insbesondere wenn der Anteil des ersten Elastomers grösser als der Anteil des zweiten Elastomers ist, können die Eigenschaften des ersten Elastomers zu einer Verbesserung der Griffigkeit der Oberfläche der Rampe beitragen.The proportion of the first elastomer in the ramp is 25% by weight to 35% by weight. According to one exemplary embodiment, the proportion of the second elastomer in the ramp is 10% by weight to 25% by weight. In particular if the proportion of the first elastomer is greater than the proportion of the second elastomer, the properties of the first elastomer can contribute to improving the grip of the surface of the ramp.

Gemäss einem Ausführungsbeispiel beträgt der Anteil an leichtflüchtigen Substanzen maximal 7 Gew %. Der geringe Anteil an leichtflüchtigen Substanzen ermöglicht die gefahrlose Verwendung der Rampe auch in geschlossenen Räumen, beispielsweise Hallen, Parkhäusern und dergleichen. Selbst bei hoher Wärmeeinwirkung ist der Anteil der leichtflüchtigen Substanzen, die ausdunsten können, gering, sodass die Rampe auch in geschlossenen Räumen bedenkenlos eingesetzt werden kann. Gemäss einem Ausführungsbeispiel beträgt der Anteil an Füllstoffen im 33 Gew. % bis 65 Gew. %. Durch den hohen Füllstoffanteil kann eine ausreichende Härte und Abriebfestigkeit der Rampe erzielt werden, um die Rampe auch für den mehrjährigen Betrieb auf Baustellen zu verwenden. Insbesondere können gemäss einem Ausführungsbeispiel Russ und Calciumcarbonat als Füllstoffe zum Einsatz kommen. Gemäss einem weiteren Ausführungsbeispiel enthalten die Füllstoffe Russ und Siliziumdioxid. Gemäss einem Ausführungsbeispiel enthalten die Füllstoffe Russ und Calciumcarbonat oder Siliziumdioxid, Zinkoxid, Magnesium, Eisen oder Aluminium.According to one exemplary embodiment, the proportion of highly volatile substances is a maximum of 7% by weight. The low proportion of volatile substances allows the ramp to be used safely even in enclosed spaces, such as halls, parking garages and the like. Even when exposed to high heat, the proportion of volatile substances that can evaporate is low, meaning that the ramp can also be used safely in closed rooms. According to one embodiment, the proportion of fillers is 33% by weight to 65% by weight. Due to the high filler content, the ramp can achieve sufficient hardness and abrasion resistance so that the ramp can also be used on construction sites for several years. In particular, according to one exemplary embodiment, carbon black and calcium carbonate can be used as fillers. According to a further exemplary embodiment, the fillers contain carbon black and silicon dioxide. According to one exemplary embodiment, the fillers contain carbon black and calcium carbonate or silicon dioxide, zinc oxide, magnesium, iron or aluminum.

Gemäss der Erfindung enthält das erste Elastomer Acrylnitril-Butadien Kautschuk (NBR). NBR weist eine hohe Beständigkeit gegenüber Ölen, Fetten und Kohlenwasserstoffen auf. Zudem zeichnet sich NBR durch ein günstiges Alterungsverhalten aus, sodass witterungsbeständige Rampen hergestellt werden können. Der geringe Abrieb erhöht die Lebensdauer der Rampe.According to the invention, the first elastomer contains acrylonitrile-butadiene rubber (NBR). NBR has a high resistance to oils, fats and hydrocarbons. NBR is also characterized by being cheap aging behavior so that weather-resistant ramps can be produced. The low abrasion increases the lifespan of the ramp.

Gemäss der Erfindung enthält das zweite Elastomer Styrol-Butadien-Kautschuk (SBR). Die Zugabe von Styrol-Butadien-Kautschuk kann die Witterungsbeständigkeit der Rampe verbessern.According to the invention, the second elastomer contains styrene-butadiene rubber (SBR). The addition of styrene-butadiene rubber can improve the weather resistance of the ramp.

Gemäss einem Ausführungsbeispiel weist Halteelement oder das Rampenelement Öffnungen auf, welche zum Ablauf von Flüssigkeiten, beispielsweise Wasser, geeignet sind. Insbesondere können die Öffnungen mit Ausnehmungen zur Ableitung von Flüssigkeiten verbunden sein.According to one exemplary embodiment, the holding element or the ramp element has openings which are suitable for draining liquids, for example water. In particular, the openings can be connected to recesses for draining liquids.

Nach einem Ausführungsbeispiel enthält das Rampenelement oder das Halteelement ein poröses Material. Insbesondere können die Öffnungen von Poren des porösen Materials gebildet werden. Nach einem Ausführungsbeispiel weisen die Poren eine Porengrösse im Bereich von 0.001 bis 5 mm auf. Insbesondere können die Poren eine Porengrösse von 0.01 bis 5 mm aufweisen. Gemäss einem Ausführungsbeispiel können die Poren eine Porengrösse von 0.01 bis 2 mm aufweisen. Gemäss einem Ausführungsbeispiel können die Poren eine Porengrösse von 0.01 bis 1 mm aufweisen.According to one embodiment, the ramp element or the holding element contains a porous material. In particular, the openings can be formed by pores of the porous material. According to one embodiment, the pores have a pore size in the range from 0.001 to 5 mm. In particular, the pores can have a pore size of 0.01 to 5 mm. According to one embodiment, the pores can have a pore size of 0.01 to 2 mm. According to one embodiment, the pores can have a pore size of 0.01 to 1 mm.

Die Höhe des Halteelements kann im Bereich des Absatzes grösser sein als am Ende des Halteelements, welches dem Absatz gegenüber liegt.The height of the holding element can be greater in the area of the shoulder than at the end of the holding element, which is opposite the shoulder.

Das Rampenelement ist insbesondere im Querschnitt im Wesentlichen keilförmig ausgestaltet. Durch das Rampenelement wird gemäss diesem Ausführungsbeispiel ein Keil ausgebildet, dessen Querschnitt im Wesentlichen dreieckförmig, viereckig oder trapezförmig ausgebildet sein kann.The ramp element is essentially wedge-shaped, particularly in cross section. According to this exemplary embodiment, the ramp element forms a wedge, the cross section of which can be essentially triangular, square or trapezoidal.

Die Höhe des Rampenelements nimmt in Fahrtrichtung graduell zu, bevor das Fahrzeug das Plattenelement erreicht, sodass ein Fahrzeug über das Rampenelement rollen kann, ohne dass nennenswerte Stösse auf die Räder übertragen werden.The height of the ramp element increases gradually in the direction of travel before the vehicle reaches the plate element, so that a vehicle can roll over the ramp element without significant shocks being transmitted to the wheels.

Nach einem Ausführungsbeispiel kann der Neigungswinkel der Neigungsfläche unterschiedlich sein. Insbesondere kann die Neigungsfläche einen ersten Neigungsflächenabschnitt sowie einen zweiten Neigungsflächenabschnitt aufweisen. Der erste Neigungsflächenabschnitt kann einen grösseren Neigungswinkel mit der Auflagefläche einschliessen als der zweite Neigungsflächenabschnitt. Insbesondere kann der maximale Neigungswinkel des zweiten Neigungsflächenabschnitts kleiner als 20 Grad sein, vorzugsweise kleiner als 15 Grad. Der minimale Neigungswinkel des ersten Neigungsflächenabschnitts kann um mindestens 3 Grad grösser als der minimale Neigungswinkel des zweiten Neigungsflächenabschnitts sein. Vorzugsweise kann der minimale Neigungswinkel des ersten Neigungsflächenabschnitts mindestens 10 Grad betragen.According to one embodiment, the angle of inclination of the incline surface can be different. In particular, the inclined surface can have a first inclined surface section and a second inclined surface section. The first inclined surface section can include a larger angle of inclination with the support surface than the second inclined surface section. In particular, the maximum inclination angle of the second inclination surface section can be less than 20 degrees, preferably less than 15 degrees. The minimum inclination angle of the first inclination surface section can be at least 3 degrees greater than the minimum inclination angle of the second inclination surface section. Preferably, the minimum inclination angle of the first incline surface section can be at least 10 degrees.

Dann schliesst Halteelement auf der Seite des Keils an, welche die grösste Bauhöhe aufweist. Das Plattenelement ist auf dem Halteelement aufgelegt. Die Höhe des Halteelements sowie die Dicke des Plattenelements entsprechen dabei vorteilhafterweise der Höhe des Keils an seiner höchsten Stelle, das heisst der Höhe des Absatzes. Allerdings kann die Dicke des Plattenelements auch geringer oder grösser als die optimale Dicke sein, sodass die Rampe auch für Plattenelemente unterschiedlicher Dicke einsetzbar ist.The holding element then connects to the side of the wedge that has the greatest overall height. The plate element is placed on the holding element. The height of the holding element and the thickness of the plate element advantageously correspond to the height of the wedge at its highest point, that is to say the height of the shoulder. However, the thickness of the plate element can also be less or greater than the optimal thickness, so that the ramp can also be used for plate elements of different thicknesses.

Bei dem Plattenelement kann es sich insbesondere um eine Stahlplatte handeln. Auch für Plattenelemente aus anderen Materialien, wie beispielsweise Kunststoffplatten, Bretter oder dergleichen kann die Rampe zum Einsatz kommen.The plate element can in particular be a steel plate. The ramp can also be used for panel elements made of other materials, such as plastic panels, boards or the like.

Nach einem Ausführungsbeispiel liegen die Unterseite des Halteelements und die Auflagefläche auf einer gemeinsamen Ebene. Dieses Ausführungsbeispiel ist vorteilhaft, wenn das gesamte Auflageelement dichtend auf einem ebenen Untergrund aufliegen soll. Durch diese ebene Auflagefläche auf dem ebenen Untergrund kann vermieden werden, dass Regenwasser von der Fahrbahn in die Grube gelangen kann. Durch das Eigengewicht des Plattenelements wird das Halteelement derart auf den Untergrund gepresst, dass eine Abdichtung erfolgen kann, wenn sich die Rampe vollumfänglich um das Plattenelement herum erstreckt.According to one exemplary embodiment, the underside of the holding element and the support surface lie on a common plane. This embodiment is advantageous if the entire support element is to rest sealingly on a flat surface. This level contact surface on the level surface can prevent rainwater from getting into the pit from the road. Due to the weight of the plate element, the holding element is pressed onto the surface in such a way that a seal can be created when the ramp extends completely around the plate element.

Insbesondere kann die Oberseite des Halteelements im Wesentlichen parallel zur Unterseite des Halteelements ausgebildet sein. Hierdurch kann das Plattenelement flächig auf dem Halteelement aufliegen und das Eigengewicht des Plattenelements kann gleichmässig in das Halteelement eingeleitet werden. Das Rampenelement ist zusammen mit dem Halteelement vorzugsweise in einem Stück gefertigt, das heisst als ein einziges Bauteil ausgeführt, wobei die gesamte Rampe aus demselben Material bestehen kann. Vorzugsweise enthält die Rampe ein elastisches Material, beispielsweise einen elastischen Kunststoff, insbesondere Gummi oder Gummiverbindungen.In particular, the top side of the holding element can be designed essentially parallel to the underside of the holding element. As a result, the plate element can rest flat on the holding element and the weight of the plate element can be introduced evenly into the holding element. The ramp element is preferably manufactured together with the holding element in one piece, that is to say designed as a single component, whereby the entire ramp can be made of the same material. The ramp preferably contains an elastic material, for example an elastic plastic, in particular rubber or rubber compounds.

Die Unterseite des Rampenelements und/oder die Unterseite des Halteelements kann zumindest eine Ausnehmung aufweisen. Eine derartige Ausnehmung dient als Sammelkanal für Flüssigkeit, insbesondere Wasser, die beispielsweise bedingt durch Unebenheiten des Untergrunds zwischen die Auflagefläche, also die Unterseite des Rampenelements und die Oberfläche des Untergrunds eintreten kann. In dieser Ausnehmung wird die Flüssigkeit gesammelt und kann beispielsweise in Richtung eines am Fahrbahnrand gelegenen Wassersammelsystems abgeleitet werden. Oftmals weist die Fahrbahn selbst eine entsprechende Neigung auf, die das Ablaufen von Flüssigkeit begünstigt. Nach einer weiteren Ausführungsvariante kann die sich in der Ausnehmung ansammelnde Flüssigkeit dadurch entfernt werden, dass der Kanal durch die Belastung des Rampenelements durch ein darüberfahrendes Fahrzeug derart gestaucht wird, dass der Kanal zusammengepresst wird und die darin befindliche Flüssigkeit demzufolge aus dem Kanal verdrängt wird. Der Kanal kann einen rechteckigen, halbkreisförmigen, polygonalen, trapezförmigen, schlitzartigen, drei- oder mehreckigen Querschnitt aufweisen.The underside of the ramp element and/or the underside of the holding element can have at least one recess. Such a recess serves as a collecting channel for liquid, in particular water, which can enter between the support surface, i.e. the underside of the ramp element and the surface of the ground, for example due to unevenness in the ground. The liquid is collected in this recess and can, for example, be drained towards a water collection system located at the edge of the road. The road itself often has a slope that encourages fluid to run off. According to a further embodiment variant, the liquid accumulating in the recess can be removed by compressing the channel due to the loading of the ramp element by a vehicle driving over it in such a way that the channel is compressed and the liquid in it is consequently displaced from the channel. The channel may have a rectangular, semicircular, polygonal, trapezoidal, slot-like, triangular or polygonal cross-section.

Nach einem Ausführungsbeispiel kann die Oberseite des Rampenelements eine Markierung aufweisen. Diese Markierung kann insbesondere dazu dienen, das Rampenelement optisch für herannahende Fahrzeuge besser erkennbar zu gestalten, sodass Fahrzeuglenker bereits vor Erreichen des Rampenelements Kenntnis vom Rampenelement nehmen können und die Fahrgeschwindigkeit entsprechend anpassen können.According to one embodiment, the top of the ramp element may have a marking. This marking can in particular serve to make the ramp element more visually recognizable for approaching vehicles, so that vehicle drivers can take note of the ramp element before they reach the ramp element and can adjust the driving speed accordingly.

Insbesondere kann die Markierung als eine optische Markierung ausgestaltet sein, die insbesondere Sicherheitsstreifen umfasst. Wahlweise kann die Markierung auch als Teil eines Verkehrsleitsystems ausgebildet sein. Die Markierung kann leuchtend, leuchtfähig oder reflektierend sein. Insbesondere kann das Rampenelement ein fluoreszierendes Material enthalten, welches Tageslicht speichert und in der Dunkelheit leuchtet.In particular, the marking can be designed as an optical marking, which in particular includes security strips. Optionally, the marking can also be designed as part of a traffic control system. The marking can be luminous, luminous or reflective. In particular, the ramp element can contain a fluorescent material that stores daylight and glows in the dark.

Nach einem Ausführungsbeispiel kann die Rampe aus mehreren Teilelementen zusammensetzbar sein. Hierdurch kann die Rampe an die Abmessungen unterschiedlicher Plattenelemente angepasst werden. Gegebenenfalls kann die Rampe auch für Holzbretter zum Einsatz kommen, beispielsweise um temporäre Fussgängerübergänge zu schaffen.According to one embodiment, the ramp can be composed of several sub-elements. This allows the ramp to be adapted to the dimensions of different plate elements. If necessary, the ramp can also be used for wooden boards, for example to create temporary pedestrian crossings.

Insbesondere können die Rampen derart ausgebildet sein, dass sie eine Ecke eines Plattenelements, wie einer Stahlplatte oder eines Holzbretts aufnehmen können. Des Weiteren können mehrere Rampen nach jedem der Ausführungsbeispiele modulartig zusammengesetzt werden, sodass je nach Länge oder Breite des Plattenelements eine unterschiedliche Anzahl von Rampen zum Einsatz kommen kann.In particular, the ramps can be designed such that they can accommodate a corner of a plate element, such as a steel plate or a wooden board. Furthermore, several ramps can be put together in a modular manner according to each of the exemplary embodiments, so that a different number of ramps can be used depending on the length or width of the plate element.

Nach einem Ausführungsbeispiel kann Oberfläche der Neigungsfläche und/oder des Halteelements rau oder wasserabweisend sein. Durch eine Erhöhung der Rauigkeit der Oberfläche kann die Haftfähigkeit verbessert werden, sodass ein Abrutschen vom Auflageelement nicht möglich ist. Insbesondere kann hierdurch die Sturzgefahr für Zweiradfahrer verringert werden.According to one embodiment, the surface of the incline surface and/or the holding element can be rough or water-repellent. By increasing the roughness of the surface, the adhesion can be improved so that slipping off the support element is not possible. In particular, this can reduce the risk of two-wheeler riders falling.

Nach einem Ausführungsbeispiel kann eine Abdichtung zum Schutz vor Wasserablauf in die Baugrube vorgesehen sein. Des Weiteren können auf den Neigungsflächen ebenfalls Ausnehmungen vorgesehen sein, um Flüssigkeit abzuleiten. Die Ausnehmungen können beispielsweise als Rillen ausgebildet sein, die sich parallel zur Frontfläche oder in einem Winkel hierzu über zumindest einen Teil der Neigungsfläche erstrecken.According to one embodiment, a seal can be provided to protect against water draining into the excavation pit. Furthermore, recesses can also be provided on the inclined surfaces in order to drain away liquid. The Recesses can, for example, be designed as grooves which extend parallel to the front surface or at an angle thereto over at least part of the inclined surface.

Nachfolgend wird die erfindungsgemässe Rampe anhand eines Ausführungsbeispiels dargestellt. Es zeigen

  • Fig. 1a eine Ansicht einer Rampe nach einem ersten Ausführungsbeispiel von oben,
  • Fig. 1b einen Schnitt durch die Rampe gemäss Fig. 1,
  • Fig. 2 eine Ansicht einer Rampe nach einem zweiten Ausführungsbeispiel,
  • Fig. 3 eine Ansicht einer Rampe nach einem dritten Ausführungsbeispiel,
  • Fig. 4 eine Ansicht einer Anordnung von mehreren Rampen nach einem vierten Ausführungsbeispiel,
  • Fig. 5 ein Detail eines Halteelements nach einem fünften Ausführungsbeispiel,
  • Fig. 6 eine schematische Darstellung einer Änderung des Porendurchmessers für eine Rampe nach einem der vorhergehenden Ausführungsbeispiele,
  • Fig. 7 Resultate einer TGA-Analyse für eine Rampe einer ersten exemplarischen Zusammensetzung,
  • Fig. 8 Resultate einer TGA-Analyse für eine Rampe einer zweiten exemplarischen Zusammensetzung,
  • Fig. 9 Resultate einer TGA-Analyse für eine Rampe einer dritten exemplarischen Zusammensetzung,
  • Fig. 10 Resultate einer TGA-Analyse für eine Rampe einer vierten exemplarischen Zusammensetzung.
The ramp according to the invention is shown below using an exemplary embodiment. Show it
  • Fig. 1a a view of a ramp according to a first exemplary embodiment from above,
  • Fig. 1b a section through the ramp according to Fig. 1 ,
  • Fig. 2 a view of a ramp according to a second exemplary embodiment,
  • Fig. 3 a view of a ramp according to a third exemplary embodiment,
  • Fig. 4 a view of an arrangement of several ramps according to a fourth exemplary embodiment,
  • Fig. 5 a detail of a holding element according to a fifth exemplary embodiment,
  • Fig. 6 a schematic representation of a change in the pore diameter for a ramp according to one of the previous exemplary embodiments,
  • Fig. 7 Results of a TGA analysis for a ramp of a first exemplary composition,
  • Fig. 8 Results of a TGA analysis for a ramp of a second exemplary composition,
  • Fig. 9 Results of a TGA analysis for a ramp of a third exemplary composition,
  • Fig. 10 Results of a TGA analysis for a ramp of a fourth exemplary composition.

Fig. 1a zeigt eine Ansicht einer Rampe 10 nach einem ersten Ausführungsbeispiel. Die Rampe 10 gemäss Fig. 1 umfasst ein Rampenelement 1 sowie ein Halteelement 2. Das Rampenelement 1 weist eine Kante 3 auf, welche eine erste Höhe aufweist und einen Absatz 4, der eine zweite Höhe aufweist. Die erste Höhe ist kleiner als die zweite Höhe. Insbesondere kann die erste Höhe 0 cm sein, wenn die Kante 3 eine Spitze ausbildet. Zwischen der Kante 3 und dem Absatz 4 erstreckt sich eine Auflagefläche 5, welche zumindest teilweise durch die Unterseite des Rampenelements 1 ausgebildet wird. Zwischen der Kante 3 und dem Absatz 4 erstreckt sich eine Neigungsfläche 6, welche die Oberseite des Rampenelements 1 ausbildet. Das Halteelement 2 weist eine Oberseite 7 sowie eine Unterseite 8 auf. An den Absatz 4 schliesst das Halteelement 2 an. Die Höhe zwischen der Oberseite 7 des Halteelements und der Unterseite 8 des Halteelements ist kleiner als die Höhe des Absatzes 4. Fig. 1a shows a view of a ramp 10 according to a first exemplary embodiment. The ramp 10 according to Fig. 1 comprises a ramp element 1 and a holding element 2. The ramp element 1 has an edge 3, which has a first height, and a shoulder 4, which has a second height. The first height is smaller than that second height. In particular, the first height can be 0 cm if the edge 3 forms a point. A support surface 5 extends between the edge 3 and the shoulder 4 and is at least partially formed by the underside of the ramp element 1. Between the edge 3 and the shoulder 4 extends an inclined surface 6, which forms the top of the ramp element 1. The holding element 2 has a top 7 and a bottom 8. The holding element 2 adjoins paragraph 4. The height between the top 7 of the holding element and the bottom 8 of the holding element is smaller than the height of the paragraph 4.

Nach einem nicht dargestellten Ausführungsbeispiel kann der Neigungswinkel der Neigungsfläche 6 unterschiedlich sein. Insbesondere kann die Neigungsfläche einen ersten Neigungsflächenabschnitt aufweisen sowie einen zweiten Neigungsflächenabschnitt aufweisen. Der erste Neigungsflächenabschnitt kann einen grösseren Neigungswinkel mit der Auflagefläche einschliessen als der zweite Neigungsflächenabschnitt. Insbesondere kann der maximale Neigungswinkel des zweiten Neigungsflächenabschnitts kleiner als 20 Grad sein, vorzugsweise kleiner als 15 Grad. Der minimale Neigungswinkel des zweiten Neigungsflächenabschnitts kann vorzugsweise mindestens 3 Grad betragen, insbesondere mindestens 5 Grad betragen. Der minimale Neigungswinkel des ersten Neigungsflächenabschnitts kann um mindestens 3 Grad grösser als der minimale Neigungswinkel des zweiten Neigungsflächenabschnitts sein. Vorzugsweise kann der minimale Neigungswinkel des ersten Neigungsflächenabschnitts mindestens 10 Grad betragen.According to an exemplary embodiment, not shown, the angle of inclination of the incline surface 6 can be different. In particular, the inclined surface can have a first inclined surface section and a second inclined surface section. The first inclined surface section can include a larger angle of inclination with the support surface than the second inclined surface section. In particular, the maximum inclination angle of the second inclination surface section can be less than 20 degrees, preferably less than 15 degrees. The minimum inclination angle of the second inclination surface section can preferably be at least 3 degrees, in particular at least 5 degrees. The minimum inclination angle of the first inclination surface section can be at least 3 degrees greater than the minimum inclination angle of the second inclination surface section. Preferably, the minimum inclination angle of the first incline surface section can be at least 10 degrees.

Das Rampenelement 1 ist im Querschnitt im Wesentlichen keilförmig ausgestaltet. Durch das Rampenelement wird gemäss Fig. 1 ein Keil ausgebildet, dessen Querschnitt im Wesentlichen dreieckförmig, viereckig, oder trapezförmig ausgebildet ist.The ramp element 1 is essentially wedge-shaped in cross section. The ramp element ensures that: Fig. 1 a wedge is formed, the cross section of which is essentially triangular, square, or trapezoidal.

Die Höhe des Rampenelements 1 nimmt in Fahrtrichtung graduell zu, bis das Fahrzeug das Plattenelement 100 (siehe Fig. 5) erreicht, sodass ein Fahrzeug über das Rampenelement 1 rollen kann, ohne dass nennenswerte Stösse auf die Räder übertragen werden. Das Halteelement 2 schliesst auf der Seite des Keils an, welche die grösste Bauhöhe aufweist. Das Plattenelement 100 ist auf dem Halteelement 2 aufgelegt. Die Höhe des Halteelements 2 sowie die Dicke des Plattenelements 100 entsprechen dabei vorteilhafterweise der Höhe des Keils an seiner höchsten Stelle, das heisst der Höhe des Absatzes 4. Allerdings kann die Dicke des Plattenelements 100 auch geringer oder grösser als die optimale Dicke sein, sodass die Rampe 10 auch für Plattenelemente 100 unterschiedlicher Dicke einsetzbar ist.The height of the ramp element 1 gradually increases in the direction of travel until the vehicle reaches the plate element 100 (see Fig. 5 ) is achieved so that a vehicle can roll over the ramp element 1 without significant shocks being transmitted to the wheels. The holding element 2 connects to the side of the wedge that has the greatest overall height. The plate element 100 is on the holding element 2 hung up. The height of the holding element 2 and the thickness of the plate element 100 advantageously correspond to the height of the wedge at its highest point, that is to say the height of the shoulder 4. However, the thickness of the plate element 100 can also be less or greater than the optimal thickness, so that the Ramp 10 can also be used for plate elements 100 of different thicknesses.

Bei dem Plattenelement 100 kann es sich insbesondere um eine Stahlplatte handeln, aber auch für andere Plattenelemente 100, wie Kunststoffplatten, Bretter oder dergleichen, kann die Rampe 10 zum Einsatz kommen.The plate element 100 can in particular be a steel plate, but the ramp 10 can also be used for other plate elements 100, such as plastic plates, boards or the like.

Nach einem Ausführungsbeispiel liegen die Unterseite 8 des Halteelements 2 und die Auflagefläche 5 auf einer gemeinsamen Ebene. Dieses Ausführungsbeispiel ist vorteilhaft, wenn die gesamte Rampe 10 dichtend auf einem ebenen Untergrund aufliegen soll. Durch diese ebene Auflagefläche auf einem ebenen Untergrund kann vermieden werden, dass Regenwasser von der Fahrbahn in die Grube oder den Aushubbereich gelangen kann. Durch das Eigengewicht der Stahlplatte wird das Halteelement 2 derart auf den Untergrund gepresst, dass eine Abdichtung erfolgen kann, wenn die Rampe 10 das Plattenelement 100 umgibt.According to one exemplary embodiment, the underside 8 of the holding element 2 and the support surface 5 lie on a common plane. This exemplary embodiment is advantageous if the entire ramp 10 is to rest sealingly on a flat surface. This level support surface on a level surface can prevent rainwater from getting into the pit or excavation area from the roadway. Due to the weight of the steel plate, the holding element 2 is pressed onto the surface in such a way that a seal can be created when the ramp 10 surrounds the plate element 100.

Insbesondere kann die Oberseite 7 des Halteelements 2 im Wesentlichen parallel zur Unterseite 8 des Halteelements 2 ausgebildet sein, was beispielsweise im Schnitt in der Fig. 1b dargestellt ist. Hierdurch kann das Plattenelement 100 flächig auf dem Halteelement 2 aufliegen und das Eigengewicht des Plattenelements 100 kann gleichmässig in das Halteelement 2 eingeleitet werden. Das Rampenelement 1 und das Halteelement 2 ist vorzugsweise einstückig ausgeführt, wobei insbesondere die Rampe 10 ein erstes Elastomer und ein zweites Elastomer enthält. Durch die Verwendung eines Gemisches aus einem ersten und zweien Elastomer hat sich überraschenderweise gezeigt, dass die Rutschfestigkeit bei Regen oder Schneefall deutlich erhöht werden kann.In particular, the top 7 of the holding element 2 can be formed essentially parallel to the underside 8 of the holding element 2, which is shown, for example, in section in the Fig. 1b is shown. As a result, the plate element 100 can rest flat on the holding element 2 and the own weight of the plate element 100 can be introduced evenly into the holding element 2. The ramp element 1 and the holding element 2 are preferably designed in one piece, with the ramp 10 in particular containing a first elastomer and a second elastomer. By using a mixture of a first and two elastomers, it has surprisingly been shown that the slip resistance in rain or snowfall can be significantly increased.

Das Halteelement 2 oder das Rampenelement 1 können Öffnungen 25 aufweisen, welche zum Ablauf von Wasser geeignet sind. Die Öffnungen können beliebige Form aufweisen, beispielhaft sind Öffnungen 25 mit quaderförmigem oder zylinderförmigem Volumen gezeigt.The holding element 2 or the ramp element 1 can have openings 25 which are suitable for draining water. The openings can have any shape; for example, openings 25 with a cuboid or cylindrical volume are shown.

Die Unterseite des Rampenelements 1 und/oder die Unterseite des Halteelements 2 kann zumindest eine Ausnehmung 9, 19 aufweisen. Eine derartige Ausnehmung dient als Sammelkanal für Flüssigkeit, insbesondere Wasser, das beispielsweise bedingt durch Unebenheiten des Untergrunds zwischen die Auflagefläche 5 des Rampenelements 1 und der Oberfläche des Untergrunds eintreten kann. Eine derartige Ausnehmung 9, 10 kann mit mindestens einer Öffnung 25 in fluidleitender Verbindung stehen. In den beiden in Fig. 1b dargestellten Ausnehmungen 9, 19 wird auf das Rampenelement 1 oder das Halteelement 2 auftreffende Flüssigkeit gesammelt und kann beispielsweise in Richtung eines am Fahrbahnrand gelegenen Wassersammelsystems abgeleitet werden. Oftmals weist die Fahrbahn selbst eine entsprechende Neigung auf, die das Ablaufen von Flüssigkeit begünstigt. Die Ausnehmungen 9, 19 sind Bestandteile von Kanälen, die sich beispielsweise entlang der gesamten Auflagefläche 5 erstrecken können. Die Kanäle können sich dabei parallel zur Kante 3 des Rampenelements 1 im Inneren des Rampenelements erstrecken. Ein derartiger Kanal kann hierbei geradlinig verlaufen oder auch eine Krümmung aufweisen.The underside of the ramp element 1 and/or the underside of the holding element 2 can have at least one recess 9, 19. Such a recess serves as a collecting channel for liquid, in particular water, which can enter between the support surface 5 of the ramp element 1 and the surface of the ground, for example due to unevenness in the ground. Such a recess 9, 10 can be in fluid-conducting connection with at least one opening 25. In the two in Fig. 1b Recesses 9, 19 shown are used to collect liquid striking the ramp element 1 or the holding element 2 and can be diverted, for example, in the direction of a water collection system located on the edge of the road. The road itself often has a slope that encourages fluid to run off. The recesses 9, 19 are components of channels which can extend, for example, along the entire support surface 5. The channels can extend parallel to the edge 3 of the ramp element 1 inside the ramp element. Such a channel can run in a straight line or have a curvature.

Nach einer weiteren Ausführungsvariante kann die sich in der Ausnehmung 9, 19 ansammelnde Flüssigkeit dadurch entfernt werden, dass der Kanal durch die Belastung des Rampenelements 1 durch ein darüberfahrendes Fahrzeug derart gestaucht wird, dass der Kanal zusammengepresst wird und die sich darin befindliche Flüssigkeit aus dem Kanal verdrängt wird. Der Kanal kann hierbei einen rechteckigen, halbkreisförmigen, polygonalen, trapezförmigen, schlitzartigen, drei- oder mehreckigen Querschnitt aufweisen.According to a further embodiment variant, the liquid accumulating in the recess 9, 19 can be removed by compressing the channel due to the loading of the ramp element 1 by a vehicle driving over it in such a way that the channel is compressed and the liquid contained therein is removed from the channel is displaced. The channel can have a rectangular, semicircular, polygonal, trapezoidal, slot-like, triangular or polygonal cross section.

Fig. 2 zeigt eine Ansicht einer Rampe 20 nach einem zweiten Ausführungsbeispiel, welches zur Aufnahme einer Ecke eines Plattenelements 100 (siehe Fig. 4) ausgebildet ist. Die Rampe 20 weist wie die Rampe 10 gemäss dem vorhergehenden Ausführungsbeispiel ein Rampenelement 1 sowie ein Halteelement 2 auf. Das Rampenelement 1 weist eine Neigungsfläche 6 sowie eine Auflagefläche 5 auf. Die Auflagefläche 5 und die Neigungsfläche 6 erstrecken sich von der Kante 3 bis zum Absatz 4. Der Absatz 4 bildet einen Anschlag für das Plattenelement aus. Die Rampe 20 weist ein weiteres Rampenelement 11 auf. Das Rampenelement 11 weist eine Neigungsfläche 16 sowie eine Auflagefläche 15 auf. Die Auflagefläche 15 und die Neigungsfläche 16 erstrecken sich von der Kante 13 bis zum Absatz 14. Der Absatz 14 bildet einen Anschlag für das Plattenelement 100 aus. Zwischen dem Rampenelement 1 und dem Rampenelement 11 kann ein Verbindungselement 12 angeordnet sein. Gemäss dem vorliegenden Ausführungsbeispiel setzt sich die Kante 3 bis zum Verbindungselement 12 fort, gleichfalls setzt sich die Kante 13 bis zum Verbindungselement 12 fort. Die Dicke des Verbindungselements nimmt von den durch die Fortsetzungen der Kante 3, 13 bis zur Schnittlinie der Ebenen der Absätze 4, 14 zu. Hierdurch erfolgt ein im Wesentlichen fliessender Übergang zu den Neigungsflächen 6, 16. Fig. 2 shows a view of a ramp 20 according to a second exemplary embodiment, which is used to accommodate a corner of a plate element 100 (see Fig. 4 ) is trained. The ramp 20, like the ramp 10 according to the previous exemplary embodiment, has a ramp element 1 and a holding element 2. The ramp element 1 has an incline surface 6 and a support surface 5. The support surface 5 and the inclined surface 6 extend from the edge 3 to the shoulder 4. The shoulder 4 forms a stop for the plate element. The ramp 20 has a further ramp element 11. The ramp element 11 has a Inclination surface 16 and a support surface 15. The support surface 15 and the inclined surface 16 extend from the edge 13 to the shoulder 14. The shoulder 14 forms a stop for the plate element 100. A connecting element 12 can be arranged between the ramp element 1 and the ramp element 11. According to the present exemplary embodiment, the edge 3 continues to the connecting element 12, and the edge 13 also continues to the connecting element 12. The thickness of the connecting element increases from the continuations of the edge 3, 13 to the intersection line of the planes of the paragraphs 4, 14. This results in a substantially smooth transition to the inclined surfaces 6, 16.

Gemäss der in Fig. 4 dargestellten Ausführungsvariante kann anstatt eines Verbindungselements 12 mit dreieckförmiger Neigungsfläche 16 ein Verbindungselement vorgesehen sein, welches eine Rundung aufweist.According to the in Fig. 4 In the embodiment variant shown, instead of a connecting element 12 with a triangular inclined surface 16, a connecting element can be provided which has a curve.

Fig. 3 zeigt eine Ansicht einer Rampe 30 nach einem dritten Ausführungsbeispiel, welches zur Aufnahme einer Ecke eines Plattenelements 100 ausgebildet ist. Diese Rampe stellt eine gegenüber Fig. 2 vereinfachte Ausführungsform dar. Sämtliche Elemente, die auch in Fig. 2 gezeigt sind, sind gleich bezeichnet. Für die Beschreibung dieser Elemente wird auf Fig. 2 verwiesen. Im Unterschied zu Fig. 2 ist in Fig. 3 das Verbindungselement 12 weggelassen. Damit es insbesondere im Bereich der Schnittlinie des Absatzes 4 mit dem Absatz 14 nicht zur Ausbildung einer scharfen Kante kommt, kann die Neigungsfläche nicht nur eine Neigung vom jeweiligen Kanten 3, 13 zum Absatz 4, 14 aufweisen, sondern auch eine Neigung von der Frontfläche 18 zu der gegenüberliegenden Rückfläche 27 sowie eine Neigung von der Frontfläche 18 zu der gegenüberliegenden Rückfläche 28. Fig. 3 shows a view of a ramp 30 according to a third exemplary embodiment, which is designed to accommodate a corner of a plate element 100. This ramp faces one Fig. 2 simplified embodiment. All elements that are also in Fig. 2 shown are labeled the same. For the description of these elements see Fig. 2 referred. In contrast to Fig. 2 is in Fig. 3 the connecting element 12 is omitted. So that a sharp edge is not formed, particularly in the area of the intersection of paragraph 4 with paragraph 14, the inclined surface can not only have an inclination from the respective edges 3, 13 to paragraph 4, 14, but also an inclination from the front surface 18 to the opposite rear surface 27 and an inclination from the front surface 18 to the opposite rear surface 28.

Jedes der Ausführungsbeispiele gemäss Fig. 2 oder Fig. 3 ist mit Öffnungen 25, 35 sowie Ausnehmungen 9, 19 auf der Auflagefläche ausgestattet, um Flüssigkeit ableiten zu können.Each of the exemplary embodiments according to Fig. 2 or Fig. 3 is equipped with openings 25, 35 and recesses 9, 19 on the support surface in order to be able to drain away liquid.

Fig. 4 zeigt eine Ansicht einer Anordnung von mehreren Rampen 10 gemäss einer der Fig. 1a bzw. 1b, sowie einer Variante der Ausführungsformen gemäss Fig. 2 oder Fig. 3. Nach diesem Ausführungsbeispiel ist somit die Rampe 40 aus mehreren Teilelementen zusammengesetzt. Hierdurch kann die Rampe 40 an die Abmessungen unterschiedlicher Plattenelemente 100 angepasst werden. Gegebenenfalls kann die Rampe auch für Holzbretter zum Einsatz kommen, beispielsweise um temporäre Fussgängerübergänge zu schaffen. Die Rampen 10, 20, 30 jedes der Ausführungsbeispiele gemäss Fig. 1 bis Fig. 3 können somit beliebig miteinander kombiniert werden. Fig. 4 shows a view of an arrangement of several ramps 10 according to one of Fig. 1a or 1b, as well as a variant of the embodiments according to Fig. 2 or Fig. 3 . According to this exemplary embodiment, the ramp 40 is made up of several composed of partial elements. This allows the ramp 40 to be adapted to the dimensions of different plate elements 100. If necessary, the ramp can also be used for wooden boards, for example to create temporary pedestrian crossings. The ramps 10, 20, 30 of each of the exemplary embodiments according to Fig. 1 to Fig. 3 can therefore be combined with each other as desired.

Insbesondere können die Rampen 20, 30, 40 derart ausgebildet sein, dass sie eine Ecke eines Plattenelements 100, wie beispielsweise einer Stahlplatte oder eines Holzbretts aufnehmen können. Des Weiteren können mehrere Rampen 10, 20, 30 beispielsweise zu einer Rampe 40 modulartig zusammengesetzt werden, sodass je nach Länge oder Breite des Plattenelements 100 eine unterschiedliche Anzahl und/oder unterschiedliche Ausführungsformen von Rampen zum Einsatz kommen können.In particular, the ramps 20, 30, 40 can be designed such that they can accommodate a corner of a plate element 100, such as a steel plate or a wooden board. Furthermore, several ramps 10, 20, 30 can be put together in a modular manner, for example to form a ramp 40, so that depending on the length or width of the plate element 100, a different number and/or different embodiments of ramps can be used.

Gemäss jedem der Ausführungsbeispiele kann die Oberseite des Rampenelements 1 eine Markierung 21 aufweisen. Eine derartige Markierung ist für die Rampen 10, 20, 30, 40 gemäss einer der Fig. 1a, 1b, 2, 3, 4 gezeigt. Diese Markierung kann insbesondere dazu dienen, das Auflageelement 10, 30, 40 optisch für herannahende Fahrzeuge besser erkennbar zu gestalten, sodass die Fahrzeuglenker bereits vor Erreichen des Rampenelements Kenntnis von der Lage des Rampenelements nehmen können und die Fahrgeschwindigkeit entsprechend anpassen können.According to each of the exemplary embodiments, the top of the ramp element 1 can have a marking 21. Such a marking is for the ramps 10, 20, 30, 40 according to one of the Fig. 1a, 1b , 2, 3 , 4 shown. This marking can serve in particular to make the support element 10, 30, 40 more visually recognizable for approaching vehicles, so that the vehicle drivers can take note of the position of the ramp element before reaching the ramp element and can adjust the driving speed accordingly.

Insbesondere kann die Markierung 21 als eine optische Markierung ausgestaltet sein, die insbesondere Sicherheitsstreifen umfasst. Die Markierung kann leuchtend, leuchtfähig oder reflektierend sein. Insbesondere kann das Rampenelement ein fluoreszierendes Material enthalten, welches das Tageslicht speichert und in der Dunkelheit leuchtet.In particular, the marking 21 can be designed as an optical marking, which in particular includes security strips. The marking can be luminous, luminous or reflective. In particular, the ramp element can contain a fluorescent material that stores daylight and glows in the dark.

Nach jedem der Ausführungsbeispiele kann die Markierung 21 eine Sammelrinne umfassen, um Flüssigkeit in eine der Öffnungen 25 einzuleiten.According to each of the exemplary embodiments, the marker 21 may include a collection channel to introduce liquid into one of the openings 25.

Nach einem Ausführungsbeispiel kann Oberfläche der Neigungsfläche 6, 16 und/oder die Oberseite 7 des Halteelements rau oder wasserabweisend sein. Durch eine Erhöhung der Rauigkeit der Oberfläche kann die Haftfähigkeit verbessert werden, sodass ein Verrutschen des Plattenelements auf dem Auflageelement nicht möglich ist. Insbesondere kann hierdurch die Sturzgefahr für Zweiradfahrer verringert werden.According to one embodiment, the surface of the inclined surface 6, 16 and/or the top 7 of the holding element can be rough or water-repellent. By increasing the roughness of the surface, the adhesion can be improved, so that the plate element cannot slip on the support element. In particular, this can reduce the risk of two-wheeler riders falling.

Nach einem Ausführungsbeispiel kann eine Abdichtung zum Schutz vor Wasserablauf in die Grube vorgesehen sein. Diese Abdichtung kann beispielsweise als Vorsprung auf der Auflagefläche ausgebildet sein. Insbesondere kann die dem Absatz näher liegende Kante der Ausnehmung 9, 19 eine grössere Länge aufweisen, als die Länge der Kante, die vom Absatz weiter entfernt ist. Diese Kante wird durch die Gewichtskraft des Plattenelements gegen den Untergrund gepresst, wodurch ein Durchtritt von Flüssigkeit von der Fahrbahn in Richtung der Grube unterbunden werden kann. Somit wird durch den Vorsprung oder die verlängerte Kante eine Flüssigkeitsbarriere geschaffen.According to one embodiment, a seal can be provided to protect against water draining into the pit. This seal can be designed, for example, as a projection on the support surface. In particular, the edge of the recess 9, 19 that is closer to the shoulder can have a greater length than the length of the edge that is further away from the shoulder. This edge is pressed against the ground by the weight of the plate element, which prevents the passage of liquid from the roadway towards the pit. A liquid barrier is thus created by the projection or extended edge.

Gemäss einem Ausführungsbeispiel weist das Rampenelement 1 oder das Halteelement 2 Öffnungen auf, welche zum Ablauf von Flüssigkeiten, beispielsweise Wasser, geeignet sind. Insbesondere können die Öffnungen 25, 35 mit Ausnehmungen 9, 19 zur Ableitung der Flüssigkeiten verbunden sein.According to one exemplary embodiment, the ramp element 1 or the holding element 2 has openings which are suitable for the drainage of liquids, for example water. In particular, the openings 25, 35 can be connected to recesses 9, 19 for draining away the liquids.

Nach einem Ausführungsbeispiel enthält das Rampenelement oder das Halteelement ein poröses Material. Ein Detail eines Halteelements 2, welches ein poröses Material enthält, ist in Fig. 5 gezeigt. Insbesondere können die Öffnungen oder Ausnehmungen von Poren des porösen Materials gebildet werden. Nach einem Ausführungsbeispiel weisen die Poren einen mittleren Porendurchmesser im Bereich von 0.001 bis 5 mm auf. Insbesondere können die Poren einen mittleren Porendurchmesser von 0.01 bis 5 mm aufweisen. Gemäss einem Ausführungsbeispiel können die Poren einen mittleren Porendurchmesser von 0.1 bis 5 mm aufweisen. Gemäss einem Ausführungsbeispiel können die Poren einen mittleren Porendurchmesser von 0.1 bis 2 mm aufweisen.According to one embodiment, the ramp element or the holding element contains a porous material. A detail of a holding element 2 containing a porous material is shown in Fig. 5 shown. In particular, the openings or recesses can be formed by pores of the porous material. According to one exemplary embodiment, the pores have an average pore diameter in the range from 0.001 to 5 mm. In particular, the pores can have an average pore diameter of 0.01 to 5 mm. According to one embodiment, the pores can have an average pore diameter of 0.1 to 5 mm. According to one embodiment, the pores can have an average pore diameter of 0.1 to 2 mm.

Gemäss dem in Fig. 6a gezeigten Ausführungsbeispiel kann der mittlere Porendurchmesser des Halteelements 2 in Bezug auf die Länge L der Rampe variabel sein. Beispielsweise kann das Halteelement 2 einen ersten Abschnitt 22 enthalten, in welchem der mittlere Porendurchmesser kleiner als in einem zweiten Abschnitt 23 ist.According to the in Fig. 6a In the exemplary embodiment shown, the average pore diameter of the holding element 2 can be variable in relation to the length L of the ramp. For example, the holding element 2 can contain a first section 22 in which the average pore diameter is smaller than in a second section 23.

In Fig. 6a ist gezeigt, dass der mittlere Porendurchmesser vom zweiten Abschnitt 23 zum ersten Abschnitt 22 abrupt abfällt. Im zweiten Abschnitt 23 können sich hier nicht gezeigte Ausnehmungen 9 befinden, ähnlich wie in den vorhergehenden Ausführungsbeispielen gezeigt worden ist. Der mittlere Porendurchmesser im zweiten Abschnitt 23 kann im Wesentlichen konstant verlaufen. Der erste Abschnitt 22 kann somit im Wesentlichen flüssigkeitsdicht ausgebildet sein. Wenn der erste Abschnitt 22 gegen den Rand einer Baugrube zu liegen kommt, kann somit verhindert werden, dass Flüssigkeit in die Baugrube gelangt. Die Flüssigkeit wird im zweiten Abschnitt 23 gesammelt und kann über die grösseren Poren, Öffnungen oder Ausnehmungen abfliessen.In Fig. 6a is shown that the average pore diameter drops abruptly from the second section 23 to the first section 22. In the second section 23 there can be recesses 9, not shown here, similar to those shown in the previous exemplary embodiments. The average pore diameter in the second section 23 can be essentially constant. The first section 22 can thus be designed to be essentially liquid-tight. If the first section 22 comes to rest against the edge of an excavation pit, it can be prevented that liquid gets into the excavation pit. The liquid is collected in the second section 23 and can flow out through the larger pores, openings or recesses.

Gemäss dem in Fig. 6b gezeigten Ausführungsbeispiel kann der mittlere Porendurchmesser in Bezug auf die Länge L der Rampe sowohl des Halteelements 2 als auch des Rampenelements 1 variabel sein. Beispielsweise kann das Halteelement 2 einen ersten Abschnitt 22 enthalten, in welchem der mittlere Porendurchmesser kontinuierlich abnimmt. Der mittlere Porendurchmesser wird in Richtung der Kante 33 des Halteelements 2 kleiner. Insbesondere kann er in Bezug auf den mittleren Porendurchmesser des zweiten Abschnitts 23 um mehr als die Hälfte reduziert werden. In Fig. 6b ist gezeigt, dass der mittlere Porendurchmesser vom zweiten Abschnitt 23 zur Kante 33 graduell abfällt. Im zweiten Abschnitt 23 können sich hier nicht gezeigte Ausnehmungen 9 befinden, ähnlich wie in den vorhergehenden Ausführungsbeispielen gezeigt worden ist. Der mittlere Porendurchmesser im zweiten Abschnitt 23 kann im Wesentlichen konstant verlaufen. Der erste Abschnitt 22 kann somit im Wesentlichen flüssigkeitsdicht ausgebildet sein. Wenn der erste Abschnitt 22 gegen den Rand einer Baugrube zu liegen kommt, kann somit verhindert werden, dass Flüssigkeit in die Baugrube gelangt. Die Flüssigkeit wird im zweiten Abschnitt 23 gesammelt und kann über die grösseren Poren, Öffnungen oder Ausnehmungen abfliessen. Zusätzlich oder alternativ kann das Rampenelement 1 einen zweiten Abschnitt 26 enthalten, in welchem der mittlere Porendurchmesser kontinuierlich oder auch abrupt (nicht zeichnerisch dargestellt) abnimmt. Der mittlere Porendurchmesser wird in Richtung der Kante 3 des Rampenelements 1 kleiner. Insbesondere kann der mittlere Porendurchmesser in Bezug auf den mittleren Porendurchmesser des ersten Abschnitts 24 um mehr als die Hälfte reduziert werden.According to the in Fig. 6b In the exemplary embodiment shown, the average pore diameter can be variable in relation to the length L of the ramp of both the holding element 2 and the ramp element 1. For example, the holding element 2 can contain a first section 22 in which the average pore diameter decreases continuously. The average pore diameter becomes smaller in the direction of the edge 33 of the holding element 2. In particular, it can be reduced by more than half with respect to the average pore diameter of the second section 23. In Fig. 6b is shown that the average pore diameter gradually decreases from the second section 23 to the edge 33. In the second section 23 there can be recesses 9, not shown here, similar to those shown in the previous exemplary embodiments. The average pore diameter in the second section 23 can be essentially constant. The first section 22 can thus be designed to be essentially liquid-tight. If the first section 22 comes to rest against the edge of an excavation pit, it can be prevented that liquid gets into the excavation pit. The liquid is collected in the second section 23 and can flow out through the larger pores, openings or recesses. Additionally or alternatively, the ramp element 1 can contain a second section 26 in which the average pore diameter decreases continuously or abruptly (not shown in the drawing). The average pore diameter becomes smaller in the direction of the edge 3 of the ramp element 1. In particular, the average pore diameter can be reduced by more than half with respect to the average pore diameter of the first section 24.

Der mittlere Porendurchmesser im ersten Abschnitt 24 kann im Wesentlichen konstant verlaufen.The average pore diameter in the first section 24 can be essentially constant.

Die Rampe 10, 20, 30, 40 enthält in jedem Fall ein erstes Elastomer und ein zweites Elastomer.The ramp 10, 20, 30, 40 in each case contains a first elastomer and a second elastomer.

Dabei beträgt der Anteil des ersten Elastomers 25 Gew. % bis 35 Gew. %.The proportion of the first elastomer is 25% by weight to 35% by weight.

Weiter beträgt der Anteil des zweiten Elastomers 10 Gew. bis 25 Gew. %.Furthermore, the proportion of the second elastomer is 10% to 25% by weight.

Gemäss einem Ausführungsbeispiel enthält die Rampe leichtflüchtige Substanzen, wobei der Anteil an leichtflüchtigen Substanzen maximal 7 Gew % beträgt. Gemäss einem Ausführungsbeispiel enthält die Rampe Füllstoffe, wobei der Anteil an Füllstoffen im 33 Gew. % bis 65 Gew. % beträgt.According to one exemplary embodiment, the ramp contains highly volatile substances, the proportion of highly volatile substances being a maximum of 7% by weight. According to one exemplary embodiment, the ramp contains fillers, the proportion of fillers being 33% by weight to 65% by weight.

Gemäss einem Ausführungsbeispiel enthalten die Füllstoffe Russ und Calciumcarbonat.According to one embodiment, the fillers contain carbon black and calcium carbonate.

Gemäss einem Ausführungsbeispiel enthalten die Füllstoffe Russ und Siliziumdioxid.According to one embodiment, the fillers contain carbon black and silicon dioxide.

Gemäss einem Ausführungsbeispiel enthalten die Füllstoffe Russ und Calciumcarbonat oder Siliziumdidioxid und Spuren von Zinkoxid, Magnesium, Eisen oder Aluminium.According to one embodiment, the fillers contain carbon black and calcium carbonate or silicon dioxide and traces of zinc oxide, magnesium, iron or aluminum.

Gemäss der Erfindung enthält das erste Elastomer Acrylnitril-Butadien Kautschuk (NBR).According to the invention, the first elastomer contains acrylonitrile-butadiene rubber (NBR).

Gemäss der Erfindung enthält das zweite Elastomer Styrol-Butadien-Kautschuk (SBR).According to the invention, the second elastomer contains styrene-butadiene rubber (SBR).

Beispiel 1example 1

Eine Rampe gemäss Beispiel 1 enthält 26 Gew. % NBR und 12 Gew. % SBR. Die Rampe enthält 7 Gew. % leichtflüchtige Substanzen, wie Wasser oder Weichmacher. Der Russanteil beträgt 24 Gew. %. Der Anteil an Calciumcarbonat beträgt 20 Gew. %. Der Anteil an Siliziumdioxid beträgt 5 Gew. %. Der Anteil an Zinkoxid beträgt 1 Gew. %. Die restlichen 5 Gew % umfassen aluminiumhaltige, magnesiumhaltige und eisenhaltige Füllstoffe.A ramp according to Example 1 contains 26% by weight of NBR and 12% by weight of SBR. The ramp contains 7% by weight of volatile substances such as water or plasticizers. The soot content is 24% by weight. The proportion of calcium carbonate is 20% by weight. The proportion of silicon dioxide is 5% by weight. The proportion of zinc oxide is 1 wt.%. The remaining 5% by weight includes aluminum-containing, magnesium-containing and iron-containing fillers.

Die chemische Zusammensetzung der Elastomere wurde mittels Fourier-Transform-Infrarot-Spektroskopie (FTIR) ermittelt. Hierbei kam ein ATR Golden Gate Spektrometer mit einem Wellenzahlbereich von 4000 1/cm bis 600 1/cm, einer Auflösung von 4 1/cm sowie einer Anzahl von 10 Scans zum Einsatz. Die IR-Spektren der Proben wurden mit Referenzspektren aus der IR Datenbank verglichen. Die höchste Übereinstimmung wurde mit dem Referenzspektrum von Acrylintril-Butadien-Kautschuk (NBR) gefunden. Der Hauptfüllstoff der Rampe gemäss Beispiel 1 war Calciumcarbonat. Für eine genauere Bestimmung des Elastomeranteils und der Elastomerzusammensetzung wurde eine Thermische Gravimetrie Analyse (TGA) durchgeführt. Das Messprogramm für die Rampe gemäss Beispiel 1 umfasste das Aufheizen der Probe auf 550°C mit 10°C / min, danach wird die Temperatur für 40 min isotherm gehalten. Danach wird auf Sauerstofffluss umgestellt und mit 10°C / min auf eine Temperatur von 850°C beheizt. Diese Temperatur wurde für 15 min im isothermen Betrieb beibehalten.The chemical composition of the elastomers was determined using Fourier transform infrared spectroscopy (FTIR). An ATR Golden Gate spectrometer with a wave number range of 4000 1/cm to 600 1/cm, a resolution of 4 1/cm and a number of 10 scans was used. The IR spectra of the samples were compared with reference spectra from the IR database. The highest agreement was found with the reference spectrum of acrylintrile butadiene rubber (NBR). The main filler of the ramp according to Example 1 was calcium carbonate. For a more precise determination of the elastomer content and the elastomer composition, a thermal gravimetry analysis (TGA) was carried out. The measurement program for the ramp according to Example 1 included heating the sample to 550 ° C at 10 ° C / min, after which the temperature is kept isothermal for 40 min. The system then switches to oxygen flow and is heated to a temperature of 850°C at 10°C/min. This temperature was maintained for 15 min in isothermal operation.

Fig. 7 zeigt die Messergebnisse der TGA für die Rampe gemäss Beispiel 1. Hierbei wird die Trennung unterschiedlicher temperaturabhängiger Massenverluste mit der ersten Ableitung 31 und der zweiten Ableitung 32 dargestellt. Bei tieferen Temperaturen erfolgt das Ausdunsten der leichtflüchtigen Substanzen wie Wasser oder Weichmacher. Die Massenabnahme beträgt gemäss Beispiel 1 Gew. 7%. Der Toleranzbereich beträgt ± Gew. 0.5 %. Bei Temperaturen zwischen 300°C und 500 °C erfolgt die Zersetzung des Elastomers. Die erste und die zweite Ableitung 31, 32 zeigen einen Doppelpeak. Somit liegen ein erstes und ein zweites Elastomer vor, im Beispiel 1 26 Gew. % NBR und 12 Gew % SBR. Ab einer Temperatur von 550°C wird auf Sauerstofffluss umgestellt. Es erfolgt eine weitere Gewichtsabnahme von 24 Gew. %, welche auf die Oxidation von Russ zu CO2 zurückzuführen ist. Der Gehalt an Russ beträgt gemäss Beispiel 1 somit 24 Gew %. Bei Temperaturen im Bereich von 630 °C bis 680 °C kommt es zu einer weiteren Gewichtsabnahme, die der thermisch-oxidativen Zersetzung von Calciumcarbonat zu Calciumoxid entspricht. Somit ergibt sich für Beispiel 1 ein Anteil an Calciumcarbonat von 4-5 %. Ein Glührückstand von 24 Gew % wurde mit der halbquantitativen Röntgenfluoreszenz- Analyse (XCF) weiter untersucht. Die im Glührückstand enthaltenen Füllstoffe umfassen 16 Gew. % Calciumcarbonat, 5 Gew. % Siliziumdioxid, 1 Gew. % Zinkoxid und weitere, vor allem magnesiumhaltige, eisenhaltige und aluminiumhaltige Füllstoffe. Fig. 7 shows the measurement results of the TGA for the ramp according to Example 1. The separation of different temperature-dependent mass losses is shown with the first derivative 31 and the second derivative 32. At lower temperatures, volatile substances such as water or plasticizers evaporate. According to Example 1, the mass loss is 7% by weight. The tolerance range is ± 0.5% by weight. The elastomer decomposes at temperatures between 300°C and 500°C. The first and second derivatives 31, 32 show a double peak. There are therefore a first and a second elastomer, in Example 1 26% by weight of NBR and 12% by weight of SBR. At a temperature of 550°C, the system switches to oxygen flow. There is a further weight loss of 24% by weight, which is due to the oxidation of soot to CO 2 . According to Example 1, the carbon black content is 24% by weight. At temperatures in the range from 630 °C to 680 °C there is a further decrease in weight, which corresponds to the thermal-oxidative decomposition of calcium carbonate to calcium oxide. This results in a calcium carbonate content of 4-5% for Example 1. An ignition residue of 24% by weight was further examined using semi-quantitative X-ray fluorescence (XCF) analysis. The fillers contained in the ignition residue include 16% by weight of calcium carbonate, 5% by weight of silicon dioxide, 1% by weight of zinc oxide and other fillers, especially magnesium-containing, iron-containing and aluminum-containing fillers.

Beispiel 2Example 2

Eine Rampe gemäss Beispiel 2 enthält 42 Gew. % NBR und 17 Gew. % SBR. Die Rampe enthält 6 Gew. % leichtflüchtige Substanzen, wie Wasser oder Weichmacher. Der Russanteil beträgt 29 Gew. %. Der Anteil an Calciumcarbonat beträgt 0.5 bis 1 Gew. %. Der Anteil an Siliziumdioxid beträgt 2 Gew. %. Der Anteil an Zinkoxid beträgt 1 Gew. %. Die restlichen 2% - 3.5 Gew. % umfassen aluminiumhaltige, magnesiumhaltige und eisenhaltige Füllstoffe.A ramp according to Example 2 contains 42% by weight of NBR and 17% by weight of SBR. The ramp contains 6% by weight of volatile substances such as water or plasticizers. The soot content is 29% by weight. The proportion of calcium carbonate is 0.5 to 1% by weight. The proportion of silicon dioxide is 2% by weight. The proportion of zinc oxide is 1% by weight. The remaining 2% - 3.5% by weight includes aluminum-containing, magnesium-containing and iron-containing fillers.

Die chemische Zusammensetzung der Elastomere wurde mittels Fourier-Transform-Infrarot-Spektroskopie (FTIR) ermittelt. Hierbei kam ein ATR Golden Gate Spektrometer mit einem Wellenzahlbereich von 4000 1/cm bis 600 1/cm, einer Auflösung von 4 1/cm sowie einer Anzahl von 10 Scans zum Einsatz. Die IR-Spektren der Proben wurden mit Referenzspektren aus der IR Datenbank verglichen. Die höchste Übereinstimmung wurde mit dem Referenzspektrum von Acrylintril-Butadien-Kautschuk (NBR) gefunden. Der Hauptfüllstoff der Rampe gemäss Beispiel 2 war Siliziumdioxid. Für eine genauere Bestimmung des Elastomeranteils und der Elastomerzusammensetzung wurde eine Thermische Gravimetrie Analyse (TGA) durchgeführt. Das Messprogramm für die Rampe gemäss Beispiel 2 umfasste das Aufheizen der Probe auf 550°C mit 10°C / min, danach wird die Temperatur für 40 min isotherm gehalten. Danach wird auf Sauerstofffluss umgestellt und mit 10°C / min auf eine Temperatur von 850°C beheizt. Diese Temperatur wurde für 15 min im isothermen Betrieb beibehalten.The chemical composition of the elastomers was determined using Fourier transform infrared spectroscopy (FTIR). An ATR Golden Gate spectrometer with a wave number range of 4000 1/cm to 600 1/cm, a resolution of 4 1/cm and a number of 10 scans was used. The IR spectra of the samples were compared with reference spectra from the IR database. The highest agreement was found with the reference spectrum of acrylintrile butadiene rubber (NBR). The main filler of the ramp according to Example 2 was silicon dioxide. For a more precise determination of the elastomer content and the elastomer composition, a thermal gravimetry analysis (TGA) was carried out. The measurement program for the ramp according to Example 2 included heating the sample to 550 ° C at 10 ° C / min, after which the temperature is kept isothermal for 40 min. The system then switches to oxygen flow and is heated to a temperature of 850°C at 10°C/min. This temperature was maintained for 15 min in isothermal operation.

Fig. 8 zeigt die Messergebnisse der TGA für die Rampe gemäss Beispiel 2. Hierbei wird die Trennung unterschiedlicher temperaturabhängiger Massenverluste mit der ersten Ableitung 31 und der zweiten Ableitung 32 dargestellt. Bei tieferen Temperaturen erfolgt das Ausdunsten der leichtflüchtigen Substanzen wie Wasser oder Weichmacher. Die Massenabnahme beträgt gemäss Beispiel 2 6 Gew. %. Der Toleranzbereich beträgt ± 0.5 Gew. %. Bei Temperaturen zwischen 300°C und 500 °C erfolgt die Zersetzung des Elastomers. Die erste und die zweite Ableitung 31, 32 zeigen einen Doppelpeak. Somit liegen ein erstes und ein zweites Elastomer vor, nämlich 42 Gew. % NBR und 17 Gew % SBR. Ab einer Temperatur von 550°C wird auf Sauerstofffluss umgestellt. Es erfolgt eine weitere Gewichtsabnahme von 29 Gew. %, welche auf die Oxidation von Russ zu CO2 zurückzuführen ist. Der Gehalt an Russ beträgt gemäss Beispiel 2 somit 29 Gew %. Bei Temperaturen im Bereich von 630 °C bis 680 °C kommt es zu einer weiteren Gewichtsabnahme, die der thermisch-oxidativen Zersetzung von Calciumcarbonat zu Calciumoxid entspricht. Somit ergibt sich für Beispiel 2 ein Anteil an Calciumcarbonat von weniger als 0.1 %. Ein Glührückstand von 6 Gew % wurde mit der halbquantitativen Röntgenfluoreszenz-Analyse (XCF) weiter untersucht. Die im Glührückstand enthaltenen Füllstoffe umfassen 0.5 bis 1 Gew. % Calciumcarbonat, 2 Gew. % Siliziumdioxid, 1 Gew. % Zinkoxid und weitere, vor allem magnesiumhaltige, eisenhaltige und aluminiumhaltige Füllstoffe. Fig. 8 shows the measurement results of the TGA for the ramp according to Example 2. The separation of different temperature-dependent mass losses is shown with the first derivative 31 and the second derivative 32. At lower temperatures, volatile substances such as water or plasticizers evaporate. According to Example 2, the mass decrease is 6% by weight. The Tolerance range is ± 0.5% by weight. The elastomer decomposes at temperatures between 300°C and 500°C. The first and second derivatives 31, 32 show a double peak. There are therefore a first and a second elastomer, namely 42% by weight of NBR and 17% by weight of SBR. At a temperature of 550°C, the system switches to oxygen flow. There is a further weight loss of 29% by weight, which is due to the oxidation of soot to CO 2 . According to Example 2, the carbon black content is 29% by weight. At temperatures in the range from 630 °C to 680 °C there is a further decrease in weight, which corresponds to the thermal-oxidative decomposition of calcium carbonate to calcium oxide. This results in a calcium carbonate content of less than 0.1% for Example 2. An ignition residue of 6 wt% was further examined using semi-quantitative X-ray fluorescence (XCF) analysis. The fillers contained in the ignition residue include 0.5 to 1% by weight of calcium carbonate, 2% by weight of silicon dioxide, 1% by weight of zinc oxide and other, especially magnesium-containing, iron-containing and aluminum-containing fillers.

Beispiel 3Example 3

Eine Rampe gemäss Beispiel 3 enthält 34 Gew. % NBR und 24 Gew. % SBR. Die Rampe enthält 6 Gew. % leichtflüchtige Substanzen, wie Wasser oder Weichmacher. Der Russanteil beträgt 20 Gew. %. Der Anteil an Calciumcarbonat beträgt 0.5 bis 1 Gew. %. Der Anteil an Siliziumdioxid beträgt 12 Gew. %. Der Anteil an Zinkoxid beträgt 1 Gew. %. Die restlichen 2% - 2.5 Gew. % umfassen aluminiumhaltige, magnesiumhaltige und eisenhaltige Füllstoffe.A ramp according to Example 3 contains 34% by weight of NBR and 24% by weight of SBR. The ramp contains 6% by weight of volatile substances such as water or plasticizers. The soot content is 20% by weight. The proportion of calcium carbonate is 0.5 to 1% by weight. The proportion of silicon dioxide is 12% by weight. The proportion of zinc oxide is 1% by weight. The remaining 2% - 2.5% by weight includes aluminum-containing, magnesium-containing and iron-containing fillers.

Die chemische Zusammensetzung der Elastomere wurde mittels Fourier-Transform-Infrarot-Spektroskopie (FTIR) ermittelt. Hierbei kam ein ATR Golden Gate Spektrometer mit einem Wellenzahlbereich von 4000 1/cm bis 600 1/cm, einer Auflösung von 4 1/cm sowie einer Anzahl von 10 Scans zum Einsatz. Die IR-Spektren der Proben wurden mit Referenzspektren aus der IR Datenbank verglichen. Die höchste Übereinstimmung wurde mit dem Referenzspektrum von Acrylintril-Butadien-Kautschuk (NBR) gefunden. Der Hauptfüllstoff der Rampe gemäss Beispiel 3 war Siliziumdioxid. Für eine genauere Bestimmung des Elastomeranteils und der Elastomerzusammensetzung wurde eine Thermische Gravimetrie Analyse (TGA) durchgeführt. Das Messprogramm für die Rampe gemäss Beispiel 3 umfasste das Aufheizen der Probe auf 550°C mit 10°C / min, danach wird die Temperatur für 40 min isotherm gehalten. Danach wird auf Sauerstofffluss umgestellt und mit 10°C / min auf eine Temperatur von 850°C beheizt. Diese Temperatur wurde für 15 min im isothermen Betrieb beibehalten.The chemical composition of the elastomers was determined using Fourier transform infrared spectroscopy (FTIR). An ATR Golden Gate spectrometer with a wave number range of 4000 1/cm to 600 1/cm, a resolution of 4 1/cm and a number of 10 scans was used. The IR spectra of the samples were compared with reference spectra from the IR database. The highest agreement was found with the reference spectrum of acrylintrile butadiene rubber (NBR). The main filler of the ramp according to Example 3 was silicon dioxide. For a more precise determination of the elastomer content and the elastomer composition, a thermal gravimetry analysis (TGA) was used. carried out. The measurement program for the ramp according to Example 3 included heating the sample to 550 ° C at 10 ° C / min, after which the temperature is kept isothermal for 40 min. The system then switches to oxygen flow and is heated to a temperature of 850°C at 10°C/min. This temperature was maintained for 15 min in isothermal operation.

Fig. 9 zeigt die Messergebnisse der TGA für die Rampe gemäss Beispiel 3. Hierbei wird die Trennung unterschiedlicher temperaturabhängiger Massenverluste mit der ersten Ableitung 31 und der zweiten Ableitung 32 dargestellt. Bei tieferen Temperaturen erfolgt das Ausdunsten der leichtflüchtigen Substanzen wie Wasser oder Weichmacher. Die Massenabnahme beträgt gemäss Beispiel 3 6 Gew. %. Der Toleranzbereich beträgt ± 0.5 Gew. %. Bei Temperaturen zwischen 300°C und 500 °C erfolgt die Zersetzung des Elastomers. Die erste und die zweite Ableitung 31, 32 zeigen einen Doppelpeak. Somit liegen ein erstes und ein zweites Elastomer vor, nämlich 34 Gew. % NBR und 24 Gew % SBR. Ab einer Temperatur von 550°C wird auf Sauerstofffluss umgestellt. Es erfolgt eine weitere Gewichtsabnahme von 20 Gew. %, welche auf die Oxidation von Russ zu CO2 zurückzuführen ist. Der Gehalt an Russ beträgt gemäss Beispiel 3 somit 20 Gew %. Bei Temperaturen im Bereich von 630 °C bis 680 °C kommt es zu einer weiteren Gewichtsabnahme, die der thermisch-oxidativen Zersetzung von Calciumcarbonat zu Calciumoxid entspricht. Somit ergibt sich für Beispiel 3 ein Anteil an Calciumcarbonat von weniger als 1 Gew. %. Ein Glührückstand von 15 Gew. % wurde mit der halbquantitativen Röntgenfluoreszenz-Analyse (XCF) weiter untersucht. Die im Glührückstand enthaltenen Füllstoffe umfassen 0.5 bis 1 Gew. % Calciumcarbonat, 12 Gew. % Siliziumdioxid, 1 Gew. % Zinkoxid und weitere, vor allem magnesiumhaltige, eisenhaltige und aluminiumhaltige Füllstoffe. Fig. 9 shows the measurement results of the TGA for the ramp according to Example 3. The separation of different temperature-dependent mass losses is shown with the first derivative 31 and the second derivative 32. At lower temperatures, volatile substances such as water or plasticizers evaporate. According to Example 3, the mass decrease is 6% by weight. The tolerance range is ± 0.5% by weight. The elastomer decomposes at temperatures between 300°C and 500°C. The first and second derivatives 31, 32 show a double peak. There are therefore a first and a second elastomer, namely 34% by weight of NBR and 24% by weight of SBR. At a temperature of 550°C, the system switches to oxygen flow. There is a further weight loss of 20% by weight, which is due to the oxidation of soot to CO 2 . According to Example 3, the carbon black content is 20% by weight. At temperatures in the range from 630 °C to 680 °C there is a further decrease in weight, which corresponds to the thermal-oxidative decomposition of calcium carbonate to calcium oxide. This results in a calcium carbonate content of less than 1% by weight for Example 3. An ignition residue of 15 wt.% was further examined using semi-quantitative X-ray fluorescence (XCF) analysis. The fillers contained in the ignition residue include 0.5 to 1% by weight of calcium carbonate, 12% by weight of silicon dioxide, 1% by weight of zinc oxide and other, especially magnesium-containing, iron-containing and aluminum-containing fillers.

Beispiel 4Example 4

Eine Rampe gemäss Beispiel 4 enthält 30 Gew. % NBR und 15 Gew. % SBR. Die Rampe enthält 6 Gew. % leichtflüchtige Substanzen, wie Wasser oder Weichmacher. Der Russanteil beträgt 26 Gew. %. Der Anteil an Calciumcarbonat beträgt 1 Gew. %. Die restlichen 22 Gew % umfassen Siliziumdioxid, Zinkoxid sowie aluminiumhaltige, magnesiumhaltige und eisenhaltige Füllstoffe.A ramp according to Example 4 contains 30% by weight of NBR and 15% by weight of SBR. The ramp contains 6% by weight of volatile substances such as water or plasticizers. The soot content is 26% by weight. The proportion of calcium carbonate is 1% by weight. The remaining 22% by weight includes silicon dioxide, zinc oxide and aluminum-containing, magnesium-containing and iron-containing fillers.

Die chemische Zusammensetzung der Elastomere wurde mittels Fourier-Transform-Infrarot-Spektroskopie (FTIR) ermittelt. Hierbei kam ein ATR Golden Gate Spektrometer mit einem Wellenzahlbereich von 4000 1/cm bis 600 1/cm, einer Auflösung von 4 1/cm sowie einer Anzahl von 10 Scans zum Einsatz. Die IR-Spektren der Proben wurden mit Referenzspektren aus der IR Datenbank verglichen. Die höchste Übereinstimmung wurde mit dem Referenzspektrum von Acrylintril-Butadien-Kautschuk (NBR) gefunden. Der Hauptfüllstoff der Rampe gemäss Beispiel 4 ist Calciumcarbonat. Für eine genauere Bestimmung des Elastomeranteils und der Elastomerzusammensetzung wurde eine Thermische Gravimetrie Analyse (TGA) durchgeführt. Das Messprogramm für die Rampe gemäss Beispiel 4 umfasste das Aufheizen der Probe auf 550°C mit 10°C / min, danach wird die Temperatur für 40 min isotherm gehalten. Danach wird auf Sauerstofffluss umgestellt und mit 10°C / min auf eine Temperatur von 850°C beheizt. Diese Temperatur wurde für 15 min im isothermen Betrieb beibehalten.The chemical composition of the elastomers was determined using Fourier transform infrared spectroscopy (FTIR). An ATR Golden Gate spectrometer with a wave number range of 4000 1/cm to 600 1/cm, a resolution of 4 1/cm and a number of 10 scans was used. The IR spectra of the samples were compared with reference spectra from the IR database. The highest agreement was found with the reference spectrum of acrylintrile butadiene rubber (NBR). The main filler of the ramp according to Example 4 is calcium carbonate. For a more precise determination of the elastomer content and the elastomer composition, a thermal gravimetry analysis (TGA) was carried out. The measurement program for the ramp according to Example 4 included heating the sample to 550 ° C at 10 ° C / min, after which the temperature is kept isothermal for 40 min. The system then switches to oxygen flow and is heated to a temperature of 850°C at 10°C/min. This temperature was maintained for 15 min in isothermal operation.

Fig. 10 zeigt die Messergebnisse der TGA für die Rampe gemäss Beispiel 4. Hierbei wird die Trennung unterschiedlicher temperaturabhängiger Massenverluste mit der ersten Ableitung 31 und der zweiten Ableitung 32 dargestellt. Bei tieferen Temperaturen erfolgt das Ausdunsten der leichtflüchtigen Substanzen wie Wasser oder Weichmacher. Die Massenabnahme beträgt gemäss Beispiel 4 6 Gew. %. Der Toleranzbereich beträgt ± Gew. 0.5 %. Bei Temperaturen zwischen 300°C und 500 °C erfolgt die Zersetzung des Elastomers. Die erste und die zweite Ableitung 31, 32 zeigen einen Doppelpeak. Somit liegen ein erstes und ein zweites Elastomer vor, im vorliegenden Fall 30 Gew. % NBR und 15 Gew % SBR. Ab einer Temperatur von 550°C wird auf Sauerstofffluss umgestellt. Es erfolgt eine weitere Gewichtsabnahme von 26 Gew. %, welche auf die Oxidation von Russ zu CO2 zurückzuführen ist. Der Gehalt an Russ beträgt gemäss Beispiel 4 somit 26 Gew %. Bei Temperaturen im Bereich von 630 °C bis 680 °C kommt es zu einer weiteren Gewichtsabnahme, die der thermisch-oxidativen Zersetzung von Calciumcarbonat zu Calciumoxid entspricht. Somit ergibt sich für Beispiel 4 ein Anteil an Calciumcarbonat von 1 %. Die im Glührückstand von 21 Gew % enthaltenen Füllstoffe umfassen Calciumcarbonat, Siliziumdioxid, Zinkoxid und weitere, vor allem magnesiumhaltige, eisenhaltige und aluminiumhaltige Füllstoffe. Fig. 10 shows the measurement results of the TGA for the ramp according to Example 4. The separation of different temperature-dependent mass losses is shown with the first derivative 31 and the second derivative 32. At lower temperatures, volatile substances such as water or plasticizers evaporate. According to Example 4, the mass decrease is 6% by weight. The tolerance range is ± 0.5% by weight. The elastomer decomposes at temperatures between 300°C and 500°C. The first and second derivatives 31, 32 show a double peak. There is therefore a first and a second elastomer, in the present case 30% by weight of NBR and 15% by weight of SBR. At a temperature of 550°C, the system switches to oxygen flow. There is a further weight loss of 26% by weight, which is due to the oxidation of soot to CO 2 . According to Example 4, the carbon black content is 26% by weight. At temperatures in the range from 630 °C to 680 °C there is a further decrease in weight, which corresponds to the thermal-oxidative decomposition of calcium carbonate to calcium oxide. This results in a calcium carbonate content of 1% for Example 4. The fillers contained in the ignition residue of 21% by weight include calcium carbonate, silicon dioxide, zinc oxide and other fillers, especially magnesium-containing, iron-containing and aluminum-containing fillers.

Für den Fachmann ist offensichtlich, dass viele weitere Varianten zusätzlich zu den beschriebenen Ausführungsbeispielen möglich sind, ohne vom erfinderischen Konzept abzuweichen. Der Gegenstand der Erfindung wird somit durch die vorangehende Beschreibung nicht eingeschränkt und ist durch den Schutzbereich bestimmt, der durch die Ansprüche festgelegt ist.It is obvious to the person skilled in the art that many other variants are possible in addition to the exemplary embodiments described without deviating from the inventive concept. The subject matter of the invention is therefore not limited by the foregoing description and is determined by the scope of protection defined by the claims.

Claims (13)

  1. Ramp (10, 30, 40) comprising a ramp element (1) and a retaining element (2), wherein the ramp element has an edge (3) which has a first height and has a shoulder (4) which has a second height, wherein the first height is smaller than the second height, wherein between the edge (3) and the shoulder (4) a supporting surface (5) extends which forms the lower side of the ramp element (1), and wherein between the edge (3) and the shoulder (4) a sloping surface (6) extends which forms the upper side of the ramp element (1), wherein the retaining element (2) has a top (7) and a bottom (8), wherein the retaining element (2) adjoins the shoulder (4), wherein the height between the top (7) of the retaining element (2) and the bottom (8) of the retaining element (2) is less than the height of the shoulder, characterized in that the ramp contains a first elastomer and a second elastomer, wherein the proportion of the first elastomer in the ramp is 25% to 35% by weight, the first elastomer comprising acrylonitrile-butadiene rubber, the second elastomer comprising styrene-butadiene rubber, wherein the proportion of the first elastomer is greater than the proportion of the second elastomer.
  2. The ramp of claim 1, wherein the proportion of the second elastomer in the ramp is from 10% to 25% by weight.
  3. The ramp of one of the preceding claims, wherein the ramp contains highly volatile substances, wherein the proportion of highly volatile substances in the ramp is at most 7% by weight, wherein the highly volatile substances comprise water or plasticizers.
  4. The ramp of one of the preceding claims, wherein the ramp contains fillers, wherein the proportion of the fillers in the ramp is from 33% to 65% by weight.
  5. The ramp of claim 4, wherein the fillers comprise carbon black and calcium carbonate.
  6. The ramp of claim 4, wherein the fillers comprise carbon black and silicon dioxide.
  7. The ramp of one of claims 4 to 6, wherein the fillers comprise carbon black and calcium carbonate or silicon dioxide, zinc oxide, magnesium, iron or aluminum.
  8. The ramp of one of the preceding claims, wherein the retaining element (2) or the ramp element (1) has openings (25, 35) suitable for the drainage of liquids.
  9. The ramp of claim 8, wherein the openings (25, 35) are connected to recesses (9, 19) for draining liquids.
  10. The ramp of one of the preceding claims, wherein the ramp element (1) or the retaining element (2) contains a porous material.
  11. The ramp of claims 8 and 10, wherein the openings (25, 35) are formed by pores of the porous material.
  12. The ramp of claim 11, wherein the pores have an average pore diameter in the range of 0.001 to 5 mm.
  13. The ramp of one of the preceding claims, wherein the ramp element (1) together with the retaining element (2) is manufactured in one piece, i.e., is configured as a single component.
EP18211976.8A 2018-12-12 2018-12-12 Ramp for a sheet element Active EP3666978B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18211976.8A EP3666978B1 (en) 2018-12-12 2018-12-12 Ramp for a sheet element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18211976.8A EP3666978B1 (en) 2018-12-12 2018-12-12 Ramp for a sheet element

Publications (3)

Publication Number Publication Date
EP3666978A1 EP3666978A1 (en) 2020-06-17
EP3666978B1 true EP3666978B1 (en) 2023-09-27
EP3666978C0 EP3666978C0 (en) 2023-09-27

Family

ID=64665042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18211976.8A Active EP3666978B1 (en) 2018-12-12 2018-12-12 Ramp for a sheet element

Country Status (1)

Country Link
EP (1) EP3666978B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4283041A3 (en) 2022-05-03 2024-02-14 Fleyg Ag Ramp for a sheet element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738246U (en) * 1993-12-27 1995-07-14 大明電話工業株式会社 Manhole surrounding step eliminating tool and paving method around manhole
US20020184718A1 (en) 2001-03-21 2002-12-12 Armfield Gregory J. Shouldered ramp for streetwork cover and method of use
GB2531245B (en) * 2014-10-01 2020-04-22 Oxford Plastic Sys Ltd Ramp
CH711063B1 (en) 2015-05-12 2018-06-15 Beyeler Andreas Support element for a plate element.
GB2540738A (en) * 2015-07-13 2017-02-01 Oxford Plastic Sys Ltd Kerb ramp

Also Published As

Publication number Publication date
EP3666978A1 (en) 2020-06-17
EP3666978C0 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
DE1609319B1 (en) Plain bearings for buildings
EP3666978B1 (en) Ramp for a sheet element
DE102009030768A1 (en) Fastening device for a screw fastening to a mounting rail
EP2098662A2 (en) Assembly and repair pit and system for draining waste water from assembly pits
EP4283041A2 (en) Ramp for a sheet element
CH711063B1 (en) Support element for a plate element.
DE102019126110A1 (en) Drainage channel, device for height adjustment and drainage channel with a device for height adjustment
DE202012104056U1 (en) Substructure profile and terrace surface
DE60009330T2 (en) DEVICE AND METHOD FOR FASTENING A FLAT ELEMENT TO A VEHICLE
DE7915422U1 (en) Device for blocking a roadway
EP3832041A1 (en) Capping system, road gully, adapter and method
DE102009012046A1 (en) Collecting pit for car-wash plant for cleaning vehicles, particularly commercial- and construction vehicles for collecting drain water and solid dirt bodies, has fluid-tight cover, particularly bottom plate, which is arranged over base
EP3530862B1 (en) Sealing device and building closure device with a sealing device
DE102017007072A1 (en) mortar carriage
EP3715530B1 (en) Cover for a floor opening near a curb stone
DE202008000236U1 (en) Paving element for traffic calming
EP3631086A2 (en) Rail assembly for rail vehicles having flanged wheels
DE3216857A1 (en) Device for protecting floors under motor vehicles
DE202020101149U1 (en) Collecting tray for substances hazardous to water
DE102022123638A1 (en) Terrace structure with visible profiles
DE202021104409U1 (en) Drip pan
DE202019003793U1 (en) Frame for a track covering for a slab track and arrangement comprising a slab track and a track covering
DE202019106295U1 (en) Manhole cover-plate border
DE234334C (en)
DE202008001530U1 (en) Shower floor element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200618

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FLEYG AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220715

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230713

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013319

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20231002

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231011

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20231017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 6