EP3666404A1 - Machine à laver pour laver des récipients vides et son procédé de fonctionnement - Google Patents

Machine à laver pour laver des récipients vides et son procédé de fonctionnement Download PDF

Info

Publication number
EP3666404A1
EP3666404A1 EP18212342.2A EP18212342A EP3666404A1 EP 3666404 A1 EP3666404 A1 EP 3666404A1 EP 18212342 A EP18212342 A EP 18212342A EP 3666404 A1 EP3666404 A1 EP 3666404A1
Authority
EP
European Patent Office
Prior art keywords
beams
basin
containers
washing machine
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18212342.2A
Other languages
German (de)
English (en)
Inventor
Claudio Berzaghi
Michele COMPOSTA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sidel End of Line and Tunnels Solutions SRL
Original Assignee
Gebo Packaging Solutions Italy SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebo Packaging Solutions Italy SRL filed Critical Gebo Packaging Solutions Italy SRL
Priority to EP18212342.2A priority Critical patent/EP3666404A1/fr
Priority to MX2021007016A priority patent/MX2021007016A/es
Priority to PCT/EP2019/084939 priority patent/WO2020120695A1/fr
Publication of EP3666404A1 publication Critical patent/EP3666404A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • B08B3/123Cleaning travelling work, e.g. webs, articles on a conveyor
    • B08B3/126Cleaning travelling work, e.g. webs, articles on a conveyor in particular moving bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • B08B9/28Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking
    • B08B9/30Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking and having conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • B08B9/22Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by soaking alone

Definitions

  • the invention relates to a washing machine for washing empty containers and to an operating method thereof.
  • washing machines are known with the purpose of cleaning the empty containers upstream of a filling and a labelling station, in which the containers are respectively filled with a pourable product and labelled with respective labels.
  • washing machine is known, e.g. from EP2727660 in the name of the same Applicant.
  • Known washing machines essentially comprise:
  • the chain conveyor comprises a plurality of beams, which are fed at the inlet station by the feeding system with respective rows of containers.
  • each beam comprises a plurality of aligned pockets, which receive, convey and outlet the respective washed containers.
  • Each beam is discharged of the respective washed containers at the outlet station and then is returned to the inlet station, where it receives new empty containers to be washed.
  • the treatment zones comprise, in sequence, a prewash zone, a first cleaning zone, a second cleaning zone and a plurality of consecutive rinsing zones.
  • the prewash zone, the first cleaning zone, and the second cleaning zone comprise respective cleaning baths, which are filled with a washing chemical agent at high temperature and through which the containers are advanced.
  • Each rinsing zone comprises a corresponding rinsing bath filled with rinsing liquid and/or ejecting devices for directing sprinkles of rinsing liquid toward the containers.
  • the rinsing liquid delivered to the containers has both the function of removing therefrom any residuals of washing chemical agent and of cooling down the same containers after being conveyed out from the cooling baths.
  • the conveying beams are exposed to the washing chemical agent and then to the rinsing liquid.
  • the beams tend to show limescale deposits after many washing cycles, such that the same beams need periodical treatments in order to be recovered to the initial operating conditions.
  • the beams may also show encrusted dirt deposit, including for instance rust, which should be removed to avoid corrosion of the beams themselves or contaminations in general.
  • the beams are one by one disassembled from the washing machine and are separately restored in a manual manner or even replaced, if conditions thereof are particularly critic.
  • the invention further relates to an operating method of a washing machine for washing empty containers, as claimed in claim 10.
  • numeral 1 indicates a washing machine for washing containers 2, in particular empty bottles intended to be filled with a pourable product.
  • Each container 2 has an external surface 2a delimiting an inner volume 2b adapted to receive the pourable product and extends along an axis A (lying on a vertical plane, in the embodiment shown) from a base portion 2c to a neck portion 2d.
  • the neck portion 2d is provided with an inlet opening 2f about axis A, which allow the filling of the inner volume 2b of the corresponding container 2.
  • Washing machine 1 comprises:
  • chain conveyor 4 comprises:
  • each beam 16 comprises a row of pockets 17 aligned orthogonally to path P and adapted to receive corresponding containers 2.
  • containers 2 carried by a corresponding beam 16 are aligned orthogonally to path P and housed inside the respective pockets 17.
  • Washing machine 1 comprises also a feeding system 8 for feeding a sequence of empty containers 2 along a direction F and at an inlet station I of washing tunnel 3.
  • containers 2 fed along direction F are arranged in rows orthogonal to path P.
  • Feeding system 8 comprises:
  • the most forward containers 2 of each row of containers 2 are transferred by sequencing device 105 to the respective pockets 17 of the beam 16 that is travelling at inlet station I.
  • direction F is horizontal and orthogonal to axes A of containers 2 fed along the same direction F.
  • Washing machine 1 further comprises an outfeed conveyor 14, which receives rows of cleaned containers 2 from chain conveyor 4 at an outlet station 0 of washing tunnel 3.
  • path P comprises:
  • washing machine 1 comprises in sequence along washing branch Q:
  • washing machine 1 comprises respective baths 11, 12, 13 filled with a cleaning agent, preferably a basic aqueous solution comprising sodium hydroxide.
  • a cleaning agent preferably a basic aqueous solution comprising sodium hydroxide.
  • washing machine 1 comprises also a plurality of sprinkling devices 106 arranged in sequence along washing branch Q.
  • Sprinkling devices 106 deliver, in use, sprinkles of the above cleaning agent to external surfaces 2a and inner volumes 2b of containers 2, while the latter are advanced through the prewash zone P1 itself.
  • the cleaning agent within bath 11 and the cleaning agent ejected by sprinkling devices 106 are brought to a relatively high temperature, for instance between 45 °C and 60 °C, so that the encrusted dirt on containers 2 starts to dissolve as containers 2 themselves advance through prewash zone P1.
  • the cleaning agent within baths 12, 13 is brought to a higher temperature, for instance between 65 °C and 80 °C, so that dirt on advancing containers 2 is fully removed together with possible labels arranged thereon.
  • containers 2 come out from bath 13 cleaned and heated up to a temperature likely between 60 °C and 70 °C, so that the same containers 2 needs to be cooled down to environmental temperature before being discharged at outlet station 0.
  • washing machine 1 comprises a cooling apparatus 101, which is arranged within heat exchange zone H1 and allows containers 2 and beams 16 to come in thermal contact with heat transfer medium having a temperature lower than that of the cleaning agent within bath 13, such that the same containers 2 and beams 16 are cooled for a first time while the corresponding heat transfer medium is heated.
  • a cooling apparatus 101 which is arranged within heat exchange zone H1 and allows containers 2 and beams 16 to come in thermal contact with heat transfer medium having a temperature lower than that of the cleaning agent within bath 13, such that the same containers 2 and beams 16 are cooled for a first time while the corresponding heat transfer medium is heated.
  • washing machine 1 comprises another cooling apparatus 102, which is arranged within heat exchange zone H2 and allows containers 2 and beams 16 to come in thermal contact with further heat transfer medium having a lower temperature, such that the same containers 2 and beams 16 are cooled for a second time while the corresponding heat transfer medium is heated.
  • another cooling apparatus 102 which is arranged within heat exchange zone H2 and allows containers 2 and beams 16 to come in thermal contact with further heat transfer medium having a lower temperature, such that the same containers 2 and beams 16 are cooled for a second time while the corresponding heat transfer medium is heated.
  • each mentioned heat transfer medium comprises a rinsing medium, in particular water, which is brought in contact with containers 2 and beams 16, while the latter are advanced through heat exchange zones H1, H2.
  • the equilibrium temperatures respectively reached by containers 2, beams 16 and the heat transfer medium at heat exchange zone are between 45 °C and 60 °C, while the equilibrium temperatures respectively reached by containers 2, beams 16 and the heat transfer medium at heat exchange zone H2 is between 25 °C and 35 °C.
  • cooling apparatus 101 comprises a basin 70 suitable for holding heat transfer medium and arranged within heat exchange zone H1, in particular along a stretch Q1 of washing branch Q.
  • Basin 70 is filled with heat transfer medium and is arranged in a position such that beams 16 are conveyed by chains 15 through the same basin 70.
  • basin 70 may be considered part of a rinsing apparatus aimed to remove cleaning agent from containers 2 and from beams 16 by delivering rinsing medium to the containers 2 and beams 16 themselves.
  • washing branch Q comprises a stretch Q2 within heat exchange zone H1 and along which containers 2 are advanced with their axes A inclined with respect to a vertical direction.
  • each container 2 advancing along stretch Q2 has a corresponding orientation that is intermediate in respect of two extremal orientations, according to which axis A is vertical and inlet opening 2f is respectively above and below the base portion 2c.
  • each container 2 assumes a plurality of progressive orientations, among which at least one is distinguished by that the corresponding axis A is horizontal.
  • containers 2 are conveyed through stretch Q2 with respective axes A that progressively form angles with the vertical direction between 30° and 140°, more in particular between 60° and 120°.
  • washing machine 1 comprises a basin 74 that is suitable for holding heat transfer medium and is arranged in heat exchange zone H1 below stretch Q2, so as to receive and gather the portion of the heat transfer medium fallen down from containers 2 and beams 16.
  • cooling apparatus 102 comprises a rinsing apparatus arranged within heat exchange zone H2, and configured to deliver a rinsing medium onto containers 2 and beams 16, while the latter are advanced through heat exchange zone H2.
  • the above rinsing apparatus is defined by an ejection assembly 77 and the rinsing medium comprises a liquid defining the heat transfer medium within heat exchange zone H2.
  • Ejection assembly 77 comprises a plurality of sprinkling devices 78 arranged in sequence along washing branch Q for delivering sprinkles of the rinsing medium to external surfaces 2a and inner volumes 2b of containers 2, as well as to beams 16 carrying the same containers 2.
  • At least one of the sprinkling devices 78 is supplied by a source of rinsing medium; specifically washing machine 1 comprises a tank T4 defining the above source of rinsing medium.
  • tank T4 supplies only the last sprinkling device 78 of the respective sequence, according to the advancing direction of containers 2.
  • ejection assembly 77 comprises also a plurality of basins 79 respectively arranged in sequence below sprinkling devices 78 and fluidly connected thereto.
  • the last basin 79 in the respective sequence gathers the rinsing medium that is ejected by the corresponding sprinkling device 78, since the same ejected rinsing medium falls down from containers 2 and beams 16 that advance above the same last basin 79.
  • the previously referred last basin 79 supplies, in use, all the other basins 79, which in turn supply the corresponding sprinkling devices 78.
  • each basin 79 comprises at the top a corresponding spillway 80 toward the immediately upstream basin 79.
  • the last basin 79 in the respective sequence is the first one that is completely filled since indirectly receiving rinsing medium from tank T4 via the corresponding sprinkling device 78; the other basins 79 are completely filled in succession according to a direction opposite to the advancing direction of containers 2.
  • the first basin 79 of the respective sequence is adjacent to basin 74 and comprises at the top a spillway 81 toward the same basin 74.
  • Washing machine 1 further comprises:
  • the equilibrium temperatures respectively reached by beams 16 and heat transfer medium at return zone R1 are between 25 °C and 35 °C.
  • washing machine 1 further comprises a cleaning device, which is arranged within return zone (R1) and is configured to clean beams 16, while the latter advance through the return zone (R1).
  • a cleaning device which is arranged within return zone (R1) and is configured to clean beams 16, while the latter advance through the return zone (R1).
  • the cleaning device comprises a basin 104 arranged so as to allow therein a recovering bath treatment for beams 16.
  • path P extends through the basin 104 itself.
  • heating apparatus 36 comprises the basin 104, which is also suitable for holding heat transfer medium.
  • Basin 104 is filled with heat transfer medium, such that beams 16 advanced through basin 104 result fully in contact with the heat transfer medium itself and, in particular, immersed therein.
  • Circulation system 35 comprises a fluidic circuit 110, which:
  • fluidic circuit 110 comprises a fluidic line L1, which fluidly connects the basin 104 to the basin 70 so as to allow flowing of the above second portion from basin 104 to basin 70.
  • fluidic line L1 is provided with a tank T1, which is filled with the heat transfer medium at the same temperature of the second portion, is arranged below basin 104, and is connected to basin 104 for receiving the second portion.
  • fluidic circuit 110 is provided also with a pump 114 arranged along fluidic line L1 for pumping the second portion from tank T1 to basin 70, which is arranged above both tank T1 and basin 104.
  • Fluidic circuit 110 further comprises another fluidic line L2, which fluidly connects basin 104 to basin 74 so as to allow transport of the above first portion from basin 74 to basin 104.
  • Basin 74 is arranged above basin 104, such that the first portion is conveyed by fluidic line L2 due to gravity action, without the needing of any pump.
  • washing machine 1 comprises another fluidic circuit 111, which withdraws a further portion of the heat transfer medium heated at heat exchange zone H1 to convey the same further portion to prewash zone P1.
  • fluidic circuit 111 comprises a fluidic line L3, which fluidly connects basin 74 with sprinkling devices 106, so as to supply the same sprinkling devices 106 with the above further portion of the heat transfer medium.
  • the aforementioned cleaning device comprises an ultrasonic wave generator UG, which is coupled to the basin 104 and is configured to propagate ultrasonic waves through the heat transfer medium within basin 104 itself, such that beams 16 may receive an ultrasonic cleaning treatment while advancing through basin 104.
  • an ultrasonic wave generator UG which is coupled to the basin 104 and is configured to propagate ultrasonic waves through the heat transfer medium within basin 104 itself, such that beams 16 may receive an ultrasonic cleaning treatment while advancing through basin 104.
  • the ultrasonic wave generator comprises a plurality of ultrasonic transducers 90 ( Figure 2 ), which are conveniently plate-shaped, configured to convert electric power into ultrasounds, and sequentially arranged adjacent and parallel to each other along a stretch R2, which is part of return branch R and is placed within basin 104.
  • Ultrasonic transducers 90 preferably emit ultrasonic waves having an action range of at least 350 mm and a frequency between 25 kHz and 28 kHz.
  • ultrasonic transducers 90 are parallel to stretch R2 and fixed with respect to basin 104, so as to be placed immediately below the advancing beams 16.
  • ultrasonic transducers 90 have a maximum clearance from beams 16 that is equal to 10 mm, according to a direction orthogonal to stretch R2.
  • beams 16 advances through stretch R2, the same beams 16 have respective portions facing ultrasonic transducers 90 in close proximity.
  • Stretch R2 is preferably rectilinear and, more preferably horizontal. Moreover, stretch R2 conveniently has a length between 0.5 m and 2 m.
  • beams 16 are advanced throughout the whole stretch R2 during a time interval between 20 s and 60 s, in order to have optimal performances of the ultrasonic cleaning treatment.
  • Washing machine 1 further comprises:
  • control unit ECU controls the activation of ultrasonic transducers 90 in a periodic or discontinuous manner, e.g. for a duration of 30 s after each period of 420 working hours of the washing machine 1.
  • Ultrasonic waves generated by ultrasonic wave generator UG have a relative periodic motion with respect to the heat transfer medium in which the same waves propagate; therefore, local micro-zones within the heat transfer medium pass periodically from a depressurized to a pressurized state.
  • Such energy is useful to disaggregate possible tough calcium deposit or encrusted dirt on the beams 16 themselves.
  • washing machine 1 The operation of washing machine 1 is described in detail in the following.
  • Feeding system 8 advances a plurality of rows of containers 2 to be washed through conveyor 103 in a parallel manner to direction F.
  • the properly positioned containers 2 are arranged with respective axes A orthogonal to path P and with respective base portions 2c lying on conveyor 103.
  • Beams 16 of chain conveyor 4 withdraw respective rows of containers 2 at inlet station I from sequencing device 105, advance containers 2 inside washing tunnel 3 along the washing branch Q, discharge rows of cleaned containers 2 at outlet station 0 onto outfeed conveyor 14, and return along return branch R without containers 2.
  • containers 2 of each row are first carried by pockets 17 through prewash zone P1, where containers 2 are preliminary washed and heated through immersion within bath 11 and by means of sprinkling devices 106.
  • both containers 2 and beams 16 continue to receive heat from cleaning agent within baths 12, 13 up to reach elevated temperatures, for instance between 60 °C and 70° C.
  • containers 2 and beams 16 are advanced through basin 70 within heat exchange zone H1, where the containers 2 and the beams 16 themselves are immersed into the heat transfer medium and establish a thermal equilibrium with the latter, so as to reach intermediate temperatures, for instance between 45 °C and 60 °C.
  • part of the heated heat transfer medium is dragged out from basin 70 by containers 2 and beams 16, while the latter are conveyed out from the basin 70 itself.
  • the entire heat transfer medium gathered within basin 74 has a temperature essentially equal to that of the above part; then, two different further parts of the heat transfer medium within the same basin 74 are split to be respectively supplied to sprinkling devices 106 via fluidic line L3 and transported to basin 104 via fluidic line L2.
  • containers 2 and beams 16 When containers 2 and beams 16 reach the heat exchange zone H2, the containers 2 and beams 16 themselves receive the heat transfer medium by means of sprinkling devices 78, so as to be further cooled down to low temperatures, for instance between 25 °C and 35 °C.
  • Cooled beams 16 are immersed within basin 104 while advancing through the return branch R; here, a heat exchange occur between the heat transfer medium within basin 104 and the cooled beams 16.
  • beams 16 receive a complete ultrasonic cleaning treatment by means of ultrasonic wave generator UG, with above described modes.
  • beams 16 are warmed and conveyed toward inlet station I, whereas the heat transfer medium is cooled down.
  • basin 70 part of the cooled down heat transfer medium is transported to basin 70, so as to be re-used for cooling other containers 2 and beams 16, which advance through basin 70 itself.
  • washing machine 1 From an analysis of the features of washing machine 1 and of the method according to the invention, the advantages they allow to obtain are apparent.
  • Return zone R1 which, in the known solutions, is only aimed to allow the return of beams 16 to inlet station I, is here provided with cleaning means to allow removal of limescale or encrusted dirt deposits during the operation of washing machine 1.
  • the waves generated by ultrasonic generator UG through basin 104 reveals significantly effective in restoring beams 16.
  • ultrasonic transducers 90 allows a simple and compact arrangement of ultrasonic wave generator UG within basin 104 under the advancing beams 16 through stretch R2.
  • the reduced spacing between ultrasonic transducers 90 and beams 16 optimizes the effectiveness of the cleaning treatment of beams 16 themselves, since an increased amount of energy affects the limescale or encrusted dirt deposits thereon.
  • the energetic impact of the operation of ultrasonic wave generator UG is particularly limited thanks to the intelligent control performed by electronic control unit ECU, which selectively activate each ultrasonic transducer 90 according to a predetermined optimized period.
  • the relatively high temperature of the heat transfer medium which enables the ultrasonic wave transmission, enhances the cleaning performances of the transmitted ultrasonic waves.
  • the length of stretch R2 is chosen according to an optimized compromise between energetic expenditure and cleaning performances, as demonstrated by several experiments accomplished by the Applicant.
  • washing machine 1 and to the method as described and illustrated herein without, however, departing from the scope of protection as defined in the accompanying claims.
  • each ultrasonic transducer 90 may be different from what described and illustrated in the above disclosure.
  • ultrasonic wave generator UG may even be lacking and basin 104 may be filled, for instance, with an acid solution suitable for descaling beams 16.
  • circulation system 36 would not be present and basin 104 would be isolated from heat exchange zones H1, H2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)
EP18212342.2A 2018-12-13 2018-12-13 Machine à laver pour laver des récipients vides et son procédé de fonctionnement Pending EP3666404A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18212342.2A EP3666404A1 (fr) 2018-12-13 2018-12-13 Machine à laver pour laver des récipients vides et son procédé de fonctionnement
MX2021007016A MX2021007016A (es) 2018-12-13 2019-12-12 Lavadora para lavar recipientes vacios y metodo de funcionamiento de la misma.
PCT/EP2019/084939 WO2020120695A1 (fr) 2018-12-13 2019-12-12 Machine de lavage pour laver des récipients vides et procédé de fonctionnement correspondant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18212342.2A EP3666404A1 (fr) 2018-12-13 2018-12-13 Machine à laver pour laver des récipients vides et son procédé de fonctionnement

Publications (1)

Publication Number Publication Date
EP3666404A1 true EP3666404A1 (fr) 2020-06-17

Family

ID=64745888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18212342.2A Pending EP3666404A1 (fr) 2018-12-13 2018-12-13 Machine à laver pour laver des récipients vides et son procédé de fonctionnement

Country Status (3)

Country Link
EP (1) EP3666404A1 (fr)
MX (1) MX2021007016A (fr)
WO (1) WO2020120695A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB763391A (en) * 1953-07-30 1956-12-12 Capito And Klein Ag A process and apparatus for de-scaling metals
DE1801797A1 (de) * 1968-10-08 1970-05-27 Enzinger Union Werke Ag Flaschenreinigungsmaschine
EP0291674A1 (fr) * 1985-07-19 1988-11-23 Mitsubishi Jukogyo Kabushiki Kaisha Appareil de manipulation de récipients
EP0536920A1 (fr) * 1991-10-09 1993-04-14 Eisai Co., Ltd. Dispositif pour le rinçage de conteneurs
DE9317374U1 (de) * 1993-11-12 1994-02-03 Khs Masch & Anlagenbau Ag Vorrichtung zum Reinigen von Flaschen
US5368650A (en) * 1992-10-15 1994-11-29 House Food Industrial Co., Ltd. Method and apparatus for washing conveyer belt in heat treatment apparatus
EP2727660A1 (fr) 2012-11-05 2014-05-07 Sidel S.p.A. Con Socio Unico Unité de traitement de récipients et procédé pour la reconfiguration d'une unité de traitement de récipients
WO2015094122A1 (fr) * 2013-12-20 2015-06-25 K-One Industries Pte. Ltd. Lave-vaisselle industriel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB763391A (en) * 1953-07-30 1956-12-12 Capito And Klein Ag A process and apparatus for de-scaling metals
DE1801797A1 (de) * 1968-10-08 1970-05-27 Enzinger Union Werke Ag Flaschenreinigungsmaschine
EP0291674A1 (fr) * 1985-07-19 1988-11-23 Mitsubishi Jukogyo Kabushiki Kaisha Appareil de manipulation de récipients
EP0536920A1 (fr) * 1991-10-09 1993-04-14 Eisai Co., Ltd. Dispositif pour le rinçage de conteneurs
US5368650A (en) * 1992-10-15 1994-11-29 House Food Industrial Co., Ltd. Method and apparatus for washing conveyer belt in heat treatment apparatus
DE9317374U1 (de) * 1993-11-12 1994-02-03 Khs Masch & Anlagenbau Ag Vorrichtung zum Reinigen von Flaschen
EP2727660A1 (fr) 2012-11-05 2014-05-07 Sidel S.p.A. Con Socio Unico Unité de traitement de récipients et procédé pour la reconfiguration d'une unité de traitement de récipients
WO2015094122A1 (fr) * 2013-12-20 2015-06-25 K-One Industries Pte. Ltd. Lave-vaisselle industriel

Also Published As

Publication number Publication date
WO2020120695A1 (fr) 2020-06-18
MX2021007016A (es) 2021-07-21

Similar Documents

Publication Publication Date Title
EP3666403A1 (fr) Machine à laver pour laver des récipients vides et son procédé de fonctionnement
US8574371B2 (en) Method for cleaning containers and cleaning machine
RU2007114273A (ru) Способ и устройство для очистки металлической ленты
EP3666404A1 (fr) Machine à laver pour laver des récipients vides et son procédé de fonctionnement
EP3666407B1 (fr) Procédé de refroidissement de récipients lavés à chaud dans une machine de lavage et machine de lavage mettant en oeuvre ce procédé
EP3741474A1 (fr) Machine à laver des récipients et son procédé de traitement de récipients
KR101965551B1 (ko) 생선 가공장치
NL2015322B1 (en) Crate washing device and method.
JP2006150336A (ja) 洗浄装置
CN215997742U (zh) 钛篮自动清洗装置
JP5484966B2 (ja) 資源並びにエネルギー消費節約の洗壜機およびその使用方法
US2774361A (en) Bottle washer
JP5294730B2 (ja) 袋状ワークの表面処理ライン及び表面処理方法
EP3666408A1 (fr) Procédé de chauffage d'un liquide de lavage dans une machine de lavage de récipients et machine à laver pour mettre en oeuvre un tel procédé
EP4286067A1 (fr) Machine à laver pour récipients vides conçue pour être remplie d'un produit versable
EP3656479B1 (fr) Machine à laver et procédé relatif de lavage de récipients vides
KR950026564A (ko) 도포장치
US2412342A (en) Apparatus for preventing foaming
JPH11138440A (ja) ブラスト式洗浄装置
KR20090106180A (ko) 평판 가공품 세정장치 및 그를 이용한 세정 방법
KR102252654B1 (ko) 단품 자동 래크 회전 전기도금장치
KR100834454B1 (ko) 봉형태의 피처리물을 세척하기위한 방법과 장치
WO1999015285A1 (fr) Nettoyage par ultrasons et transporteur vibrant associe
CA1225306A (fr) Machines de nettoyage de recipients
CN110935688A (zh) 清洗方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201216

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220728

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240212