EP3657066B1 - Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen einer lichtverteilung mit hell-dunkel-grenze - Google Patents

Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen einer lichtverteilung mit hell-dunkel-grenze Download PDF

Info

Publication number
EP3657066B1
EP3657066B1 EP18207781.8A EP18207781A EP3657066B1 EP 3657066 B1 EP3657066 B1 EP 3657066B1 EP 18207781 A EP18207781 A EP 18207781A EP 3657066 B1 EP3657066 B1 EP 3657066B1
Authority
EP
European Patent Office
Prior art keywords
reflector
baffle
section
diaphragm
lighting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18207781.8A
Other languages
English (en)
French (fr)
Other versions
EP3657066A1 (de
Inventor
Stephan Arlinghaus
Helmut Erdl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Bayerische Motoren Werke AG
Original Assignee
ZKW Group GmbH
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZKW Group GmbH, Bayerische Motoren Werke AG filed Critical ZKW Group GmbH
Priority to EP18207781.8A priority Critical patent/EP3657066B1/de
Priority to US17/295,506 priority patent/US11421842B2/en
Priority to PCT/EP2019/082053 priority patent/WO2020104576A1/de
Priority to KR1020217019083A priority patent/KR102578466B1/ko
Priority to CN201980076985.7A priority patent/CN112997034B/zh
Priority to JP2021529066A priority patent/JP7220287B2/ja
Publication of EP3657066A1 publication Critical patent/EP3657066A1/de
Application granted granted Critical
Publication of EP3657066B1 publication Critical patent/EP3657066B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/334Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors
    • F21S41/336Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors with discontinuity at the junction between adjacent areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/165Arrangement or contour of the emitted light for high-beam region or low-beam region the borderlines between emitted regions and dark regions other than cut-off lines being variable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • Numerous embodiments of lighting units for a motor vehicle headlight for generating a light distribution with a cut-off line are already known from the prior art.
  • the creation of a defined cut-off line in the photo of a motor vehicle headlight is either required by law - for example, a low beam with a horizontal cut-off line is mentioned - or such a cut-off line is used by vehicle manufacturers as a defined additional light function of the corresponding Motor vehicle headlights desired.
  • the light functions of glare-free high beam or adaptive driving light which can usually be ordered as special equipment when buying a new car, should be mentioned.
  • light-dark boundaries are required in a vertical, horizontal or combined form.
  • light-dark boundaries in lighting units for motor vehicle headlights are implemented either by direct mapping of sufficiently large gradients of the illuminance of the light source or - if the light source used is used does not have such gradients - artificially generated by introducing appropriate diaphragms into the beam path of the lighting unit.
  • the correspondingly produced intermediate light images then have areas which are cropped or darkened by one or more diaphragms and which are imaged with the aid of lenses or reflectors as a light distribution in front of the road in front of the motor vehicle headlight.
  • a corresponding cut-off line can be created by introducing a diaphragm into the beam path. Since the desired light patterns are often restricted to small angular ranges or high illuminance levels are required, if the emitter has wide radiation cones - as can be the case, for example, when using LED light sources or laser light sources - focusing in the area of the beam diaphragm must take place.
  • Such an optical arrangement therefore in any case requires a light source as an emitter, a first reflector that concentrates the light from the light source or the emitter on a focal point, a diaphragm that shades part of the light, and a second reflector that covers the Focal plane of the focal point generated intermediate light image.
  • the entire intermediate light image in the focal plane is formed by the diaphragm or trimmed by the diaphragm. Since the desired light image generated by the motor vehicle headlight usually not only has a light-dark boundary, but also has to meet defined requirements, for example with regard to its light image width in the front of the road, it is usually not sufficient to depict the intermediate image directly in the case of homogeneously radiating light sources or emitters it has to go through a second reflector be widened accordingly. In order to avoid an undesirable softening of the light-dark boundary, i.e.
  • the second reflector can be subdivided into several facets or designed with facets, each of the facets being the part of the Slightly shifts the intermediate image in the horizontal direction.
  • the sum of the individual facet images then results in the entire light image of the motor vehicle headlight.
  • the disadvantage of such an arrangement is that the diaphragm for generating the light-dark border is effective in each individual one of the facet images, and not only in an outer or in the outermost of the facet images, where the use of the diaphragm for generating the light- Dark border is actually needed. This disadvantageously reduces the luminous flux of the motor vehicle headlight, which also reduces its overall efficiency.
  • the present invention therefore has the object of avoiding the disadvantages known from the prior art for lighting units of the type mentioned, reducing the losses in the luminous flux of the lighting unit caused by the diaphragm and increasing the efficiency of the lighting unit.
  • the emerging beam is split into at least two separate beam.
  • the at least one diaphragm in the beam path, it is possible to assign the diaphragm to a specific, first reflector section of the first reflector, in which the generation of a partially cropped or partially shaded intermediate light image with the formation of a light-dark boundary is required and desired. This is achieved by a corresponding arrangement of the diaphragm at a small distance near the first beam emanating from this first reflector section.
  • said at least one diaphragm is spaced at a comparatively significantly greater distance than the small distance set between said diaphragm and the first bundle of rays of the first reflector section. It is thus possible to crop only the intermediate light image generated in the first reflector section with the diaphragm to form a light-dark boundary, but not the intermediate light image generated in at least the second reflector section, for which due to the comparatively larger distance between the outgoing second beam and the diaphragm whose diaphragm edge is not suitable for forming a light-dark boundary.
  • the intermediate image generated at least in the second reflector section thus remains essentially free from the influence of shadowing of the diaphragm arrangement.
  • the invention also includes embodiments of a lighting unit in which the first reflector is subdivided into three or more reflector sections, for example, as well as embodiments in which one or more diaphragms are assigned to individual reflector sections.
  • the losses in the luminous flux of the lighting unit caused by the diaphragm are advantageously minimized and the overall efficiency of the lighting unit is increased if at least one of the three or more reflector sections is essentially free of the influence of shading of the diaphragm arrangement.
  • the at least two or more separate reflector sections of the first reflector can, for example, be designed in one piece, with a transition area being formed, for example in the form of a curve or a line, between adjoining reflector sections.
  • individual or all of the reflector sections of the first reflector can also consist of one or more individual ones Components exist and the first reflector can thus be made in several pieces from several assembled components.
  • an intermediate light image generated in the diaphragm plane is then categorized as "essentially free of influence due to shading of the diaphragm arrangement" if the luminous flux of the intermediate light image in question is not or only slightly reduced by introducing the diaphragm into the beam path and thus with such a diaphragm arrangement no functional cut-off line is achieved.
  • first, second or third reflector section of the first reflector or a first, second or third reflector segment of the second reflector are only intended to improve understanding and simplify readability. Due to the selected ordinal numbers, the relevant individual reflector sections or reflector segments are, however, neither ranked in the sense of a rating, nor are their location, position or alignment to one another fixed.
  • a first screen can be assigned to the first reflector section and a second screen can be assigned to the third reflector section of the first reflector and the said screens are each a short distance away from the first reflector section or be arranged from the third reflector section emanating beam, the intermediate light images generated in the first and in the third reflector section are each cropped to form corresponding light-dark boundaries.
  • the second and fourth reflector sections are each free from the influence of shading by the diaphragm arrangements.
  • the multiple reflector sections can be positioned here with regard to their installation positions, for example in a row, essentially in the horizontal direction next to one another, in columns, essentially in a vertical direction, one below the other, or in any desired matrix arrangement.
  • the first reflector can particularly advantageously be constructed in several parts and have several reflector sections with at least one focal point, and the at least one light source can each be arranged in the at least one focal point, the at least one diaphragm being arranged so that it exclusively assigned to the first reflector section of the first reflector and arranged at a small distance near the beam emanating from the first reflector section and the intermediate light image generated in the first reflector section is cropped to form a light-dark boundary, and the at least one aperture at a greater distance away from the second and if necessary, the further reflector sections of the first reflector outgoing ray bundles spaced apart is arranged and the intermediate light images generated in the second and optionally the further reflector sections are essentially free of the influence of shading of the diaphragm arrangement.
  • the diaphragm-related losses in the luminous flux of the lighting unit can be further minimized and the efficiency of the lighting unit can advantageously be increased further.
  • the second reflector can particularly expediently be divided into two or more reflector segments in the manner of facets, a first reflector segment of the second reflector being assigned to the intermediate light image generated in the first reflector section of the first reflector.
  • transitions between the reflector sections of the first reflector fall on transitions between the reflector segments of the second reflector or the transitions between the reflector sections and the reflector segments are also assigned to one another.
  • the proportion of undesired scattered light can therefore advantageously be reduced.
  • the second reflector in a lighting unit can be divided into two or more reflector segments in a facet-like manner, the first reflector segment of the second reflector being assigned to the intermediate light image generated in the first reflector section of the first reflector.
  • the remaining reflector segments each provide a complete image of the light source used.
  • the division of the first reflector is matched to the faceting of the second reflector in such a way that the light focused on the first reflector section only hits the first reflector segment.
  • This embodiment also offers the advantage that the proportion of undesired scattered light can be reduced.
  • a lighting unit can advantageously be constructed in such a way that the at least one screen is fastened directly on or at least close to the first reflector section of the first reflector.
  • Attaching the diaphragm to the first reflector in this way can contribute to a higher mechanical stability of the diaphragm, the positioning accuracy of the at least one diaphragm to one or more focal points also being increased and the tolerance chain of the positioning inaccuracy of the at least one diaphragm being reduced.
  • This compact design can advantageously reduce the tolerances of the at least one diaphragm.
  • tolerance chain used here is understood in the sense of tolerances with regard to the fluctuations, the positioning and the stability of the diaphragm.
  • the at least one screen is attached directly to or at least close to the first reflector segment of the second reflector.
  • This compact design according to which the diaphragm is connected to the second reflector or is at least fastened close to the first reflector segment of the second reflector, can advantageously reduce the tolerances of the diaphragm.
  • a diaphragm plane of the at least one diaphragm can correspond to a focal plane of the at least one focal point of the first reflector segment of the second reflector.
  • a sharp light-dark boundary advantageously results with a large gradient of the light-dark transition not only near the focal point or focal point, but also at a certain distance from it.
  • the at least one diaphragm in such a way that a diaphragm plane of the at least one diaphragm and a focal plane of the at least one focal point of the first reflector segment of the second reflector only intersect in a line through this focal point or focal point.
  • a sharp cut-off line can deliberately only be achieved in the vicinity of the focal point or focal point, with a diaphragm edge far from the focal point being shown blurred - i.e. with a smaller gradient of the light-dark transition.
  • Such designs with only partially or partially sharp light-dark lines can also be favorable and desirable for applications in the automotive industry.
  • At least the first reflector section of the first reflector can be an ellipsoid reflector, which ellipsoid reflector has a second focal point, wherein the at least one diaphragm is arranged so that it is at a small distance from the second focal point of the first reflector portion is spaced.
  • point-like light sources can advantageously be mapped as points.
  • design of a reflector the surface of which is an ellipsoid of revolution, also offers advantages in terms of manufacturing technology. From a photometric point of view, the use of such an ellipsoid reflector can possibly avoid undesirable distortions in the imaging of the light source in the focal plane.
  • the two or more reflector sections of the first reflector can expediently each be ellipsoidal reflectors, the ellipsoidal reflectors each having a second focal point and the at least one diaphragm being arranged so that it is at a small distance near the The second focal point of the first reflector section is arranged and the diaphragm is arranged at a greater distance away from the second focal points of all further reflector sections of the first reflector.
  • the small distance from the beam and / or from the second focal point of the first reflector section of the first reflector to a diaphragm edge of the diaphragm can be defined as close to the diaphragm if the distance is less than 1.7 times the value of a Reference length, preferably less than 1.5 times the value of a reference length, particularly preferably less than 1.3 times the value of a reference length, and the intermediate light image generated in the first reflector section is cropped to form a light-dark boundary, wherein the reference length is selected as the smallest distance from the distances between the maximum illuminance of all reflector sections of the first reflector and the diaphragm edge of the diaphragm.
  • the distance of that bundle of rays from the diaphragm, which bundle of rays emanates from the first reflector section of the first reflector, for which the diaphragm is effective, is thus defined as close to the diaphragm or near the diaphragm edge if the distance is less than 1.7- times the value, preferably smaller than 1.5 times the value, particularly preferably smaller than 1.3 times the value, the previously defined reference length, provided that the intermediate light image generated in the first reflector section also forms a light-dark -Border is trimmed.
  • the maximum of the illuminance E MAX can be measured, for example, by a luminance camera, which records an image of the intermediate light image in the diaphragm plane, which is made visible, for example, by introducing a matt plane into the diaphragm plane.
  • a further possibility for measuring the maximum of the illuminance E MAX offers the introduction of a mirror or further optics in the beam path or in the diaphragm plane in order to measure the intermediate light image with a luminance camera or some other sensor system.
  • the distance from the second focal point of the first reflector section of the first reflector to the diaphragm or to the diaphragm edge is expediently used for the same categorization.
  • a calculation scheme is advantageously specified to determine which conditions a diaphragm arrangement must meet in order to be selectively assigned to a first reflector section of the first reflector and to be suitable for the formation of a cut-off line of the corresponding intermediate light image.
  • the distance between a bundle of rays and / or a second focal point of the corresponding reflector section of the first reflector away from the diaphragm or from its diaphragm edge is defined and the diaphragm arrangement is essentially free of shading influences on that generated in this reflector section Intermediate photo.
  • the greater distance from the beam and / or from the second focal point of the second reflector section and possibly the further reflector sections of the first reflector to a diaphragm edge of the diaphragm is defined as being far from the diaphragm if by Introducing the diaphragm into the beam path, the luminous flux of the intermediate light image generated in the second and optionally the further reflector sections is reduced by at most 10%, preferably by at most 7%, particularly preferably by at most 5%.
  • an intermediate light image is essentially free of the influence of shading of the diaphragm arrangement if the shape of the intermediate light image generated does not change or changes only insignificantly as soon as the corresponding diaphragm is completely removed from the beam path.
  • the luminous flux reduction caused by the diaphragm fulfills the values given above of at most 10%, preferably by at most 7%, particularly preferably by at most 5%.
  • Minor interferences according to which, under certain circumstances, for example, small edge areas of the intermediate light image generated can be shaded, but without being perceived as a functional cut-off line, thus by definition do not represent any significant shadowing or impairment of the corresponding intermediate light image.
  • the at least one diaphragm in a lighting unit can have a first diaphragm edge for generating a first light-dark boundary and a second diaphragm edge for generating a second light-dark boundary and / or in the beam path between the at least one first
  • the reflector and the at least second reflector can be arranged to be adjustable.
  • the at least one panel is designed essentially L-shaped, with each of the two legs of this L-shaped panel acting as a panel edge, with each of which has its own light Dark border can be generated, for example a horizontal and a vertical light-dark border.
  • the first reflector is divided into three, it would also be possible in such a case to assign the first diaphragm edge of the diaphragm to a first reflector section of the first reflector and the second diaphragm edge of the diaphragm to a further second reflector section of the first reflector by means of a suitable diaphragm arrangement.
  • the third reflector section can be so far removed from the two diaphragm edges that the intermediate light image generated in this reflector section is in turn free from the influence of shadowing of the diaphragm arrangement. This increases the luminous flux yield in a favorable manner.
  • a lighting unit with at least one screen which is essentially V-shaped or in which three screen edges are arranged in a triangular shape and the screen edges form the sides of the triangular screen recess.
  • two diaphragm edges can be optically active and the third diaphragm edge can be arranged in such a way that it is not optically active.
  • the at least one light source in a lighting unit according to the invention can be an LED light source.
  • the at least one light source can be a laser light source.
  • a motor vehicle headlight with at least one lighting unit according to the invention can also be specified.
  • Fig. 1 shows schematically a lighting unit according to the prior art, which has a first reflector R 1 and a second reflector R 2 , with a diaphragm in a beam path S symbolized by an arrow between the first reflector R 1 and the second reflector R 2 B is provided.
  • the second reflector R 2 is divided here into four reflector segments R 21 , R 22 , R 23 and R 24 arranged horizontally next to one another are each assigned to the aperture B.
  • the first reflector R 1 is designed here, for example, as an ellipsoid reflector and has a first focal point F 1R1 and a second focal point F 2R1 .
  • a light source 2 for example an LED light source, is located in the first focal point F 1R1 .
  • the second focal point F 2R1 of the first reflector R 1 is spaced a short distance D 1 from a diaphragm edge BK 1 of the diaphragm B.
  • the diaphragm B is arranged such that the second focal point F 2R1 of the first reflector R 1 lies in its diaphragm plane BE.
  • the second reflector R 2 used here is, for example, a free-form reflector, each of the reflector segments R 21 , R 22 , R 23 and R 24 each having a focal point F 1R2 .
  • These focal points F 1R2 of the second reflector R 2 are also arranged in the diaphragm plane BE.
  • the beam S 1 emerging from the light source 2 and deflected by the reflector R 1 emerges from the first reflector R 1 at the same small distance D 1 close to the diaphragm edge BK 1 of the diaphragm B.
  • a disadvantage of this embodiment known from the prior art is at least that the diaphragm B cuts off each of the intermediate light images of all four reflector segments R 21 , R 22 , R 23 and R 24, each forming light-dark boundaries.
  • the overall efficiency of this known lighting unit - expressed as the quotient of the luminous flux used to the luminous flux exiting (in each case specified in lumens [lm]) - is disadvantageously reduced.
  • FIG. 2a to 2d show the respective intermediate light images of the individual reflector segments R 21 , R 22 , R 23 and R 24 of the in Fig. 1 sketched second reflector R 2 . Due to the different geometries, each of the reflector segments R 21 , R 22 , R 23 and R 24 generates different intermediate light images, each with different distortions of the intermediate light image, the light-dark boundary created by the diaphragm B being both deformed and rotated in its position. The individual facets or reflector segments R 21 , R 22 , R 23 and R 24 shift the intermediate light image produced by them to different extents in the horizontal direction.
  • the light-dark boundary of the overall light image which is shown in Fig. 2e is illustrated as the sum of the Figures 2a to 2d
  • the intermediate light images shown are - apart from slight scattered light, which is here with the in Fig. 2d
  • the intermediate light image shown of the fourth reflector segment R 24 occurs - essentially through the light-dark boundary of the in Fig. 2a shown intermediate light image of the reflector segment R 21 generated.
  • a light image generated in this way is therefore inefficient, since the light-dark boundary is only actually required in one of the four intermediate light images, namely here in the intermediate light image obtained in the first reflector segment R 21 , whereas the light-dark boundary is required in all intermediate light images of the four Reflector segments R 21 , R 22 , R 23 and R 24 is generated.
  • a luminous flux of a total of 100 lumens [lm] and one Assuming reflectivity of the reflectors used of 0.95 or 95% an emerging luminous flux of a total of only 53 lumens [lm] is obtained.
  • FIG. 3a shows a lighting unit 1 according to the invention with a first reflector R 1 constructed in two parts with a first reflector section R 11 and a second reflector section R 12 , with FIG Fig. 3a the beam path S of the first reflector section R 11 of the first reflector R 1 is illustrated.
  • This first reflector section R 11 is arranged near the diaphragm B and is assigned to it.
  • the diaphragm B is provided in the beam path S between the first reflector R 1 and the second reflector R 2 .
  • the second reflector R 2 is divided here, for example, into four reflector segments R 21 , R 22 , R 23 and R 24 arranged approximately horizontally next to one another, only the first reflector segment R 21 being assigned to the diaphragm B.
  • the two reflector sections R 11 and R 12 of the first reflector R 1 are each designed as ellipsoid reflectors and each have a first focal point F 1R11 or F 1R12 and a second focal point F 2R11 or F 2R12 .
  • a light source 2 for example an LED light source, is located in the first focal point F 1R11 or F 1R12 of the two reflector sections R 11 and R 12 .
  • Figure 3b shows for the in Fig. 3a Illumination unit 1 according to the invention illustrated the beam path S in the second reflector section R 12 of the first reflector R 1 .
  • the second focal point F is 2R11 of the first reflector portion R 11 from a diaphragm edge BK 1 of the diaphragm B spaced a slight distance D 1 wherein the light emerging from the light source 2 and from the first reflector portion R 11 deflected beam S 11 in this small distance D 1 near the diaphragm edge BK of the orifice B of the first reflector R 1 emerges.
  • the diaphragm B cuts the intermediate light image generated in the first reflector section R 11 , forming a light-dark boundary. This cropped intermediate photograph is in Figure 4a illustrated.
  • the second focal point F 2R12 of the second reflector section R 12 of the first reflector R 1 is illustrated at a greater distance D 2 away from a diaphragm edge BK 1 of the diaphragm B.
  • the smaller distance D 1 of the second focal point F 2R11 of the first reflector section R 11 from the diaphragm edge BK 1 is in any case smaller than the greater distance D 2 of the second focal point F 2R12 of the second reflector section R 12 from the diaphragm edge BK 1 .
  • the diaphragm B is arranged in such a way that the second focal point F 2R11 of the first reflector section R 11 and the second focal point F 2R12 of the second reflector section R 12 each lie in the diaphragm plane BE of the diaphragm B.
  • the second reflector R 2 used here is, for example, a free-form reflector, each of the four reflector segments R 21 , R 22 , R 23 and R 24 each having a focal point F 1R21 , F 1R22 , F 1R23 and F 1R24 .
  • These focal points F 1R21 , F 1R22 , F 1R23 and F 1R24 of the four reflector segments R 21 , R 22 , R 23 and R 24 of the second reflector R 2 are also arranged in the diaphragm plane BE.
  • the first reflector segment R 21 of the second reflector R 2 is assigned to the intermediate light image generated in the first reflector section R 11 of the first reflector R 1 , this intermediate light image in Figure 4a is shown.
  • the further reflector segments R 22 , R 23 and R 24 of the second reflector R 2 are assigned to the second reflector section R 12 of the first reflector R 1 .
  • the corresponding intermediate light images of the second, third and fourth reflector segments R 22 , R 23 and R 24 are shown in the figures Figures 4b to 4d shown. Since the diaphragm B away at a greater distance D 2 each emanating from the second reflector portion R 12 beam S is disposed at a distance 12, the intermediate light images of the second, third and fourth reflector segment R 22, R 23 R 24 substantially free of or influence by shading the aperture arrangement.
  • Figure 4e shows the total light image as the sum of the Figures 4a to 4d intermediate light images shown. Since the diaphragm B only acts on the intermediate light image that is obtained from the pairing of the first reflector section R 11 of the first reflector R 1 and the first reflector segment R 21 of the second reflector R 2 associated therewith, the cut-off line of the overall light image becomes generated only in the first reflector segment R 21 of the second reflector R 2 .
  • the other intermediate light images that are obtained from the second, third and fourth reflector segments R 22 , R 23 and R 24 are advantageously not shaded or not cropped because there the distance D 2 of the diaphragm B from the second focal point F 2R12 of the second reflector section R 12 of the first reflector R 1 is further away compared to the small distance D 1 and therefore the intermediate light images of the reflector segments R 22 , R 23 and R 24 are essentially free of shading influences.
  • the in Figure 4e The overall light image shown of the lighting unit 1 according to the invention is given a luminous flux of a total of 100 lumens [lm] used and an assumed reflectivity of the reflectors used of 0.95 or 95%, thus an exiting luminous flux of 62 lumens [lm] in total.
  • the two illustrations Figures 5a and 5b each relate to an alternative embodiment of the invention and each show a lighting unit 1 with a multi-part first reflector R 1 , which is designed here as a two-part free-form reflector.
  • the reflector R 1 has a first reflector section R 11 with a focal point F 1R11 , the diaphragm B being arranged at a distance D 1 close to the beam S 11 emanating from the first reflector section R 11 .
  • the diaphragm B cuts the intermediate light image generated in the first reflector section R 11 , forming a light-dark boundary.
  • the second reflector R 2 is segmented here, for example, into four reflector segments R 21 , R 22 , R 23 and R 24 arranged next to one another.
  • the diaphragm B is here attached directly to the second reflector R 2 on its first reflector segment R 21 and is only assigned to the first reflector section R 11 of the first free-form reflector. Furthermore, only the first reflector segment R 21 of the second reflector R 2 is assigned to the intermediate light image generated in the first reflector section R 11 of the first reflector R 1 . This is in Figure 5a shown.
  • Figure 5b shows the further, second reflector section R 12 of the first free-form reflector of FIG Figure 5a lighting unit according to the invention shown, here in Figure 5b the beam path S of the second reflector section R 12 is illustrated, which is free from the influence of shading by the diaphragm B.
  • the second, third and fourth reflector segments R 22 , R 23 and R 24 of the second reflector R 2 are assigned to the intermediate light image generated in the second reflector section R 12 of the first reflector R 1 . These intermediate light images are advantageously not cropped or shaded because of the lack of a diaphragm.
  • Fig. 6 shows in a detailed view a lighting unit 1 according to the invention.
  • the lighting unit 1 comprises a light source 2 shown in the picture above, which is positioned behind or below the first reflector R 1 .
  • the reflector R 1 is constructed in one piece here and has two reflector sections R 11 and R 12 . Dashed arrows indicate a first bundle of rays S 11 of the exiting light from the first reflector section R 11 and a second bundle of rays S 12 of the exiting light from the second reflector section R 12 .
  • the aperture B between the first reflector R 1 and the second reflector R 2 has a triangular aperture with three aperture edges BK 1 , BK 2 and BK 3 , the aperture edges forming the three sides of the triangular aperture.
  • the diaphragm B is positioned in such a way that a first diaphragm edge BK 1 of the diaphragm B is optically not active here and is arranged somewhat at a distance from the first beam S 11 and from the second beam S 12 .
  • a second diaphragm edge BK 2 and a third diaphragm edge BK 3 of the diaphragm B are optically active here.
  • the first bundle of rays S 11 is focused here near the optically active diaphragm edge BK 3 .
  • the second beam S 12 is focused near the optically active diaphragm edge BK 2 .
  • the intermediate light image generated in the first reflector section R 11 remains essentially free from the influence of shadowing of the diaphragm edge BK 2 .
  • the intermediate light image generated in the second reflector section R 12 remains essentially free from the influence of shadowing of the diaphragm edge BK 3 .
  • the second reflector R 2 is segmented here, for example, into a plurality of reflector segments, with three reflector segments R 21 , R 22 and R 23 arranged next to one another being considered in more detail for the following description. Only the first reflector segment R 21 of the second reflector R 2 is assigned here to the intermediate light image generated in the first reflector section R 11 of the first reflector R 1 .
  • the intermediate light images generated in the second and third reflector segments R 22 , R 23 are advantageously not cropped, which increases the overall efficiency of the illustrated lighting unit 1.
  • the diaphragm B shown here has a further, second diaphragm edge BK 2 , which, analogously to the preceding description, can in turn serve for selective shading of the intermediate light image of a further reflector segment of the second reflector R 2 .
  • Fig. 7 shows in a detailed view a motor vehicle headlight 10 with the in Fig. 6 illustrated lighting unit 1 according to the invention.
  • the lighting unit 1 is already in the installed position within the motor vehicle headlight 1 and is installed with the corresponding housing components of the headlight.
  • a diffusing screen which is used only to protect the motor vehicle headlight 1 and which has no optical function is shown here in FIG Fig. 7 removed for better overview and not shown.
  • a diaphragm arrangement is shown, the distance between the diaphragm edge BK 1 of the diaphragm B and the second focal point F 2R12 of the second reflector section R 12 being arranged at a greater distance D 2 from the diaphragm.
  • the distance D 2 here is greater than one and a half times the value of the reference length L.
  • the intermediate light image produced is, by definition, essentially free from the influence of shadowing of the diaphragm arrangement.
  • the loss of luminous flux in the right half of Fig. 8 The aperture arrangement shown here is below 7%.
  • Fig. 9 shows in a schematic representation a plurality of intermediate light images spaced differently from a diaphragm B or from its diaphragm edge BK 1 .
  • the maximum illuminance of each individual intermediate light image has a certain minimum distance to the diaphragm or to the diaphragm edge, the shortest of these distances being defined as the reference length L.
  • an intermediate light image is precisely close to the diaphragm edge when the smallest distance of the maximum illuminance of the intermediate light image from the diaphragm edge exceeds a specified value.
  • FIG. 9 An example is here in Fig. 9 as the limit value 1.5 times the value of the reference length L shown as a dashed line.
  • the two middle intermediate light images shown are positioned far from the diaphragm edge by definition, since their distances D 1 and D 2 are greater than the limit value given here of 1.5 times the reference length L.
  • the outer left intermediate light image is by definition close to the diaphragm edge because it is in a distance according to the reference length L from the diaphragm edge of the diaphragm B. This is also located in Fig. 9
  • the outer right intermediate light image shown is only a small distance D 3 away from the diaphragm B and is thus close to the diaphragm edge.
  • Fig. 10 represents in a schematic representation an intermediate light image, which is essentially free of influence from shadowing by the diaphragm arrangement of the diaphragm B is.
  • the hatched area labeled 93% is bounded by the isoline within which 93% of the luminous flux of the intermediate light image is located.
  • the non-hatched outer area of the intermediate light image thus represents that edge area of the light image through which 7% of the luminous flux flows.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

  • Aus JP 2000 348508 A ist ein Kraftfahrzeugscheinwerfer bekannt, der einen ersten elliptischen Reflektor und einen zweiten parabolischen Reflektor aufweist. Zwischen beiden Reflektoren ist eine Blende angeordnet. Die Erfindung betrifft eine Beleuchtungseinheit für einen Kraftfahrzeugscheinwerfer zum Erzeugen einer Lichtverteilung mit Hell-Dunkel-Grenze, wobei die Beleuchtungseinheit
    • zumindest eine Lichtquelle,
    • zumindest einen ersten Reflektor mit mindestens einem Brennpunkt, wobei die zumindest eine Lichtquelle in dem zumindest einen Brennpunkt angeordnet ist, sowie
    • der zumindest eine erste Reflektor zur Abstrahlung und Weiterleitung von Licht an einen zweiten Reflektor eingerichtet ist,
    • zumindest einen zweiten Reflektor mit mindestens einem Brennpunkt, wobei der zumindest eine zweite Reflektor im Strahlengang dem zumindest einen ersten Reflektor nachgeordnet und dazu konfiguriert ist, ein vom ersten Reflektor erzeugtes Zwischenlichtbild abzubilden, sowie
    • zumindest eine Blende, die im Strahlengang zwischen dem zumindest einen ersten Reflektor und dem zumindest zweiten Reflektor angeordnet ist,
      umfasst.
    Weiters wird im Rahmen der Erfindung ein Kraftfahrzeugscheinwerfer mit zumindest einer erfindungsgemäßen Beleuchtungseinheit angegeben.
  • Aus dem Stand der Technik sind bereits zahlreiche Ausführungsformen von Beleuchtungseinheiten für einen Kraftfahrzeugscheinwerfer zum Erzeugen einer Lichtverteilung mit Hell-Dunkel-Grenze bekannt geworden. Die Erstellung einer definierten Hell-Dunkel-Grenze im Lichtbild eines Kraftfahrzeugscheinwerfers ist entweder gesetzlich vorgeschrieben - beispielsweise sei hierzu ein Abblendlicht mit horizontaler Hell-Dunkel-Grenze erwähnt - oder aber wird eine solche Hell-Dunkel-Grenze von Fahrzeugherstellern als definierte zusätzliche Lichtfunktion der entsprechenden Kraftfahrzeugscheinwerfer gewünscht. Beispielsweise seien dazu die Lichtfunktionen von blendfreiem Fernlicht oder adaptivem Fahrlicht (englisch: adaptive driving beam) genannt, die üblicherweise als Sonderausstattung beim Neuwagenkauf bestellt werden können. Dabei werden Hell-Dunkel-Grenzen in vertikaler, horizontaler oder in kombinierter Form benötigt. Technisch werden Hell-Dunkel-Grenzen bei Beleuchtungseinheiten für Kraftfahrzeugscheinwerfer entweder durch direkte Abbildung von hinreichend großen Gradienten der Beleuchtungsstärke der Lichtquelle realisiert oder aber - falls die verwendete Lichtquelle solche Gradienten nicht aufweist - durch Einführung von entsprechenden Blenden in den Strahlengang der Beleuchtungseinheit künstlich erzeugt. Die entsprechend hergestellten Zwischenlichtbilder weisen dann Bereiche auf, die von einer oder von mehreren Blenden beschnitten bzw. abgedunkelt werden und die mit Hilfe von Linsen oder Reflektoren als Vorfeld-Lichtverteilung im Straßenvorfeld des Kraftfahrzeugscheinwerfers abgebildet werden. Nachteilig führt der Einsatz solcher Blenden zum Erzeugen von Hell-Dunkel-Grenzen jedoch immer auch zu unerwünschten Verlusten im Lichtstrom der Beleuchtungseinheit bzw. des Kraftfahrzeugscheinwerfers und damit zu einer insgesamt reduzierten Effizienz des Beleuchtungssystems, wobei die Effizienz als Quotient von eingesetztem Lichtstrom zu austretendem Lichtstrom (jeweils angegeben in Lumen [lm]) ermittelt wird.
  • Dieses Problem stellt sich insbesondere bei Beleuchtungseinheiten, die eine breite Lichtverteilung senkrecht zur Hell-Dunkel-Grenze erzeugen sollen. Beispielsweise ist dies der Fall, wenn ein breites horizontales Lichtbild mit einer vertikalen Hell-Dunkel-Grenze erzeugt werden soll. In offensichtlicher Weise ist dies ebenso zutreffend für Beleuchtungseinheiten, mit denen ein in vertikaler Richtung hohes Lichtmuster mit einer horizontalen Hell-Dunkel-Grenze erzeugt werden soll.
  • Für jene Fälle, in denen die Ausführung der Lichtquelle beispielsweise keine Erzeugung einer vertikalen Hell-Dunkel-Grenze durch direkte Abbildung der Lichtquelle erlaubt, da die Anforderungen an die Breite der Lichtverteilung oder an die Qualität der Hell-Dunkel-Grenze nicht erfüllt werden können, kann durch Einführung einer Blende in den Strahlengang eine entsprechende Hell-Dunkel-Grenze erzeugt werden. Da die gewünschten Lichtmuster häufig auf kleine Winkelbereiche eingeschränkt oder aber hohe Beleuchtungsstärken gefordert sind, muss bei breiten Abstrahlkegeln des Emitters - wie dies beispielsweise bei Einsatz von LED-Lichtquellen oder auch Laser-Lichtquellen der Fall sein kann - eine Fokussierung im Bereich der Strahlenblende erfolgen. Eine derartige Optik-Anordnung erfordert daher jedenfalls eine Lichtquelle als Emitter, einen ersten Reflektor, der das Licht der Lichtquelle bzw. des Emitters auf einen Brennpunkt konzentriert, eine Blende, die einen Teil des Lichts abschattet, sowie einen zweiten Reflektor, der das in der Fokalebene des Brennpunkts erzeugte Zwischenlichtbild abbildet.
  • Für den Fall, dass der erste Reflektor nur einen Brennpunkt aufweist, wird das gesamte Zwischenlichtbild in der Fokalebene durch die Blende geformt bzw. durch die Blende beschnitten. Da das vom Kraftfahrzeugscheinwerfer erzeugte gewünschte Lichtbild üblicherweise nicht nur eine Hell-Dunkel-Grenze aufweist, sondern auch definierte Anforderungen beispielsweise hinsichtlich seiner Lichtbildbreite im Straßenvorfeld erfüllen muss, ist es bei homogen strahlenden Lichtquellen bzw. Emittern meist nicht ausreichend, das Zwischenbild direkt abzubilden, sondern es muss durch einen zweiten Reflektor entsprechend verbreitert werden. Um dabei eine unerwünschte Aufweichung der Hell-Dunkel-Grenze, also eine Verkleinerung des Gradienten des Hell-Dunkel-Übergangs zu vermeiden, kann der zweite Reflektor in mehrere Facetten unterteilt bzw. facettiert ausgeführt werden, wobei jede der Facetten den von ihr erzeugten Teil des Zwischenlichtbildes etwas in horizontaler Richtung verschiebt. Die Summe der einzelnen Facettenbilder ergibt dann das gesamte Lichtbild des Kraftfahrzeugscheinwerfers. Nachteilig bei einer solchen Anordnung ist jedoch, dass die Blende zur Erzeugung der Hell-Dunkel-Grenze in jedem einzelnen der Facettenbilder wirksam ist, und nicht nur in einem äußeren bzw. im äußersten der Facettenbilder, wo der Einsatz der Blende zur Erzeugung der Hell-Dunkel-Grenze tatsächlich benötigt wird. Dadurch wird nachteilig der Lichtstrom des Kraftfahrzeugscheinwerfers reduziert, wodurch auch dessen Gesamteffizienz reduziert wird.
  • Die vorliegende Erfindung stellt sich daher die Aufgabe, für Beleuchtungseinheiten der eingangs genannten Art die aus dem Stand der Technik bekannten Nachteile zu vermeiden, die blendenbedingten Verluste im Lichtstrom der Beleuchtungseinheit zu verringern sowie die Effizienz der Beleuchtungseinheit zu erhöhen.
  • Erfindungsgemäß wird diese Aufgabe bei einer gattungsgemäßen Beleuchtungseinheit gemäß dem Oberbegriff des Anspruchs 1 mit den Merkmalen des kennzeichnenden Teiles des Anspruchs 1 gelöst. Besonders bevorzugte Ausführungsformen und Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
  • Bei einer gattungsgemäßen Beleuchtungseinheit für einen Kraftfahrzeugscheinwerfer zum Erzeugen einer Lichtverteilung mit Hell-Dunkel-Grenze ist
    • der erste Reflektor zumindest zweiteilig aufgebaut und weist einen ersten Reflektorabschnitt sowie zumindest einen separaten zweiten Reflektorabschnitt auf, wobei jeder Reflektorabschnitt jeweils mindestens einen Brennpunkt besitzt, sowie
    • mindestens ein Brennpunkt des ersten und des zumindest zweiten Reflektorabschnitts jeweils deckungsgleich am Ort der zumindest einen Lichtquelle angeordnet sind, wobei
    • der zumindest zweiteilige erste Reflektor das aus der zumindest einen Lichtquelle austretende Strahlenbündel zumindest in zwei separate Strahlenbündel aufspaltet, sowie
    • die zumindest eine Blende so angeordnet ist, dass diese dem ersten Reflektorabschnitt des ersten Reflektors zugeordnet und in einem geringen Abstand nahe des vom ersten Reflektorabschnitt ausgehenden Strahlenbündels angeordnet ist und das im ersten Reflektorabschnitt erzeugte Zwischenlichtbild unter Bildung einer Hell-Dunkel-Grenze beschneidet, und
    • die zumindest eine Blende in einem größeren Abstand fern des vom zumindest zweiten Reflektorabschnitt ausgehenden Strahlenbündels beabstandet angeordnet ist und das zumindest im zweiten Reflektorabschnitt erzeugte Zwischenlichtbild im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung ist.
  • Durch die Aufteilung des ersten Reflektors in zumindest zwei Reflektorabschnitte mit jeweils mindestens einem eigenen Brennpunkt erfolgt eine Aufspaltung des austretenden Strahlenbündels zumindest in zwei separate Strahlenbündel. Durch geeignete Anordnung der zumindest einen Blende im Strahlengang gelingt es, die Blende einem bestimmten, ersten Reflektorabschnitt des ersten Reflektors zuzuordnen, in dem die Erzeugung eines teilweise beschnittenen bzw. teilweise abgeschatteten Zwischenlichtbildes unter Bildung einer Hell-Dunkel-Grenze erforderlich und gewünscht ist. Dies wird durch eine entsprechende Anordnung der Blende in geringem Abstand nahe des von diesem ersten Reflektorabschnitt ausgehenden ersten Strahlenbündels erreicht.
  • Vom zumindest zweiten Reflektorabschnitt und dem von diesem ausgehenden zweiten Strahlenbündel ist die genannte zumindest eine Blende jedoch in einem vergleichsweise deutlich größeren Abstand entfernt beabstandet als jener geringe Abstand, der zwischen der besagten Blende und dem ersten Strahlenbündel des ersten Reflektorabschnitts eingestellt ist. Damit gelingt es, lediglich das im ersten Reflektorabschnitt erzeugte Zwischenlichtbild mit der Blende unter Bildung einer Hell-Dunkel-Grenze zu beschneiden, nicht jedoch das im zumindest zweiten Reflektorabschnitt erzeugte Zwischenlichtbild, für welches aufgrund des vergleichsweise größeren Abstands zwischen dem ausgehenden zweiten Strahlenbündel und der Blende deren Blendenkante nicht zur Bildung einer Hell-Dunkel-Grenze geeignet ist. Das zumindest im zweiten Reflektorabschnitt erzeugte Zwischenbild bleibt somit im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung.
  • Ebenso sind von der Erfindung Ausführungen einer Beleuchtungseinheit umfasst, bei denen der erste Reflektor beispielsweise in drei oder mehrere Reflektorabschnitte gegliedert ist, sowie Ausführungen, bei denen eine oder mehrere Blenden einzelnen Reflektorabschnitten zugeordnet sind. Auch in diesen Fällen werden vorteilhaft die blendenbedingten Verluste im Lichtstrom der Beleuchtungseinheit minimiert sowie die Effizienz der Beleuchtungseinheit insgesamt erhöht, wenn zumindest einer der drei oder mehreren Reflektorabschnitte im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung ist.
  • Die zumindest zwei oder mehreren separaten Reflektorabschnitte des ersten Reflektors können beispielsweise einstückig ausgeführt sein, wobei zwischen aneinander grenzenden Reflektorabschnitten jeweils ein Übergangsbereich beispielsweise in Form einer Kurve oder eines Linienzuges ausgeformt ist. Alternativ dazu können einzelne oder sämtliche Reflektorabschnitte des ersten Reflektors auch aus einem oder aus mehreren einzelnen Bauteilen bestehen und der erste Reflektor kann somit mehrstückig aus mehreren zusammengefügten Bauteilen hergestellt sein.
  • Definitionsgemäß wird im Folgenden ein in der Blendenebene erzeugtes Zwischenlichtbild dann als "im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung" kategorisiert, wenn durch Einbringen der Blende in den Strahlengang der Lichtstrom des betreffenden Zwischenlichtbildes nicht oder nur geringfügig reduziert wird und somit mit einer solchen Blendenanordnung keine funktionelle Hell-Dunkel-Grenze erzielt wird.
  • Die hier und im Weiteren verwendeten Ordnungszahlwörter zur eindeutigen Bezeichnung eines ersten, zweiten oder dritten Reflektorabschnitts des ersten Reflektors bzw. eines ersten, zweiten oder dritten Reflektorsegments des zweiten Reflektors sollen bloß zum besseren Verständnis bzw. zur vereinfachten Lesbarkeit dienen. Durch die ausgewählten Ordnungszahlwörter sind die betreffenden einzelnen Reflektorabschnitte bzw. Reflektorsegmente jedoch weder im Sinne einer Wertung gereiht, noch in ihrer Lage, Position oder Ausrichtung zueinander festgelegt.
  • Beispielsweise können bei einer Beleuchtungseinheit mit vier Reflektorabschnitten, in welche der erste Reflektor gegliedert ist, eine erste Blende dem ersten Reflektorabschnitt sowie eine zweite Blende dem dritten Reflektorabschnitt des ersten Reflektors zugeordnet sein und die besagten Blenden jeweils in geringem Abstand nahe des vom ersten Reflektorabschnitt bzw. vom dritten Reflektorabschnitt ausgehenden Strahlenbündels angeordnet sein, wobei die im ersten sowie im dritten Reflektorabschnitt erzeugten Zwischenlichtbilder jeweils unter Bildung von entsprechenden Hell-Dunkel-Grenzen beschnitten sind. In diesem Beispiel sind der zweite sowie der vierte Reflektorabschnitt jeweils frei von Einfluss durch Abschattung durch die Blendenanordnungen. Je nach Anforderung des Kraftfahrzeugscheinwerfers können hier die mehreren Reflektorabschnitte hinsichtlich ihrer Einbaulagen beispielsweise zeilenförmig im Wesentlichen in horizontaler Richtung nebeneinander, spaltenförmig im Wesentlichen in vertikaler Richtung untereinander, oder auch in einer beliebigen Matrix-Anordnung positioniert sein.
  • Besonders vorteilhaft kann bei einer Beleuchtungseinheit gemäß der Erfindung der erste Reflektor mehrteilig aufgebaut sein und mehrere Reflektorabschnitte mit mindestens einem Brennpunkt aufweisen, sowie die zumindest eine Lichtquelle jeweils in dem zumindest einen Brennpunkt angeordnet sein, wobei die zumindest eine Blende so angeordnet ist, dass diese ausschließlich dem ersten Reflektorabschnitt des ersten Reflektors zugeordnet und in geringem Abstand nahe des vom ersten Reflektorabschnitt ausgehenden Strahlenbündels angeordnet ist und das im ersten Reflektorabschnitt erzeugte Zwischenlichtbild unter Bildung einer Hell-Dunkel-Grenze beschneidet, sowie die zumindest eine Blende in größerem Abstand fern der vom zweiten und gegebenenfalls den weiteren Reflektorabschnitten des ersten Reflektors ausgehenden Strahlenbündeln beabstandet angeordnet ist und die im zweiten und gegebenenfalls den weiteren Reflektorabschnitten erzeugten Zwischenlichtbilder im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung sind.
  • Somit lassen sich erfindungsgemäß durch geeignete Anordnung der zumindest einen Blende die blendenbedingten Verluste im Lichtstrom der Beleuchtungseinheit weiter minimieren und die Effizienz der Beleuchtungseinheit kann vorteilhaft weiter erhöht werden.
  • Diese Vorteile gelten auch beispielsweise für jenen Ausführungsfall, bei dem mehrere Blenden im Strahlengang zwischen dem ersten und dem zweiten Reflektor angeordnet sind. Auch in diesem Fall können durch geeignete Zuordnung der mehreren Blenden jeweils ausschließlich dem ersten Reflektorabschnitt sowie fern vom zumindest zweiten Reflektorabschnitt und gegebenenfalls den weiteren Reflektorabschnitten diese so positioniert sein, dass das zumindest im zweiten Reflektorabschnitt erzeugte Zwischenbild und gegebenenfalls die in einem oder mehreren weiteren Reflektorabschnitten erzeugten Zwischenlichtbilder jeweils im Wesentlichen frei sind von Einfluss durch Abschattung der Blendenanordnung.
  • Besonders zweckmäßig kann bei einer erfindungsgemäßen Beleuchtungseinheit der zweite Reflektor facettenartig in zwei oder mehrere Reflektorsegmente unterteilt sein, wobei ein erstes Reflektorsegment des zweiten Reflektors dem im ersten Reflektorabschnitt des ersten Reflektors erzeugten Zwischenlichtbild zugeordnet ist.
  • In dieser Ausführung fallen die Übergänge zwischen den Reflektorabschnitten des ersten Reflektors auf Übergänge zwischen den Reflektorsegmenten des zweiten Reflektors bzw. sind auch die Übergänge zwischen den Reflektorabschnitten und den Reflektorsegmenten einander zugeordnet. Vorteilhaft kann daher der Anteil an unerwünschtem Streulicht reduziert werden.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung kann bei einer Beleuchtungseinheit der zweite Reflektor facettenartig in zwei oder mehrere Reflektorsegmente unterteilt sein, wobei genau das erste Reflektorsegment des zweiten Reflektors dem im ersten Reflektorabschnitt des ersten Reflektors erzeugten Zwischenlichtbild zugeordnet ist.
  • Vorteilhaft ist in dieser Ausführung lediglich das Facettenbild des ersten Reflektorsegments des zweiten Reflektors beschnitten, die übrigen Reflektorsegmente liefern jeweils eine vollständige Abbildung der verwendeten Lichtquelle. Die Aufteilung des ersten Reflektors ist dabei so auf die Facettierung des zweiten Reflektors abgestimmt, dass das auf den ersten Reflektorabschnitt fokussierte Licht ausschließlich auf das erste Reflektorsegment trifft. Auch diese Ausführungsform bietet den Vorteil, dass der Anteil an unerwünschtem Streulicht reduziert werden kann.
  • Vorteilhaft kann in einer Ausführungsvariante der Erfindung eine Beleuchtungseinheit so aufgebaut sein, dass die zumindest eine Blende direkt am oder zumindest nahe am ersten Reflektorabschnitt des ersten Reflektors befestigt ist.
  • Eine so ausgeführte Befestigung der Blende am ersten Reflektor kann zu einer höheren mechanischen Stabilität der Blende beitragen, wobei auch die Positioniergenauigkeit von der zumindest einen Blende zu einem oder mehreren Fokalpunkten erhöht werden und die Toleranzkette der Positionierungsungenauigkeit der zumindest einen Blende reduziert werden kann. Vorteilhaft können durch diese kompakte Bauweise die Toleranzen der zumindest einen Blende verringert werden. Der hier verwendete Begriff von "Toleranzkette" wird im Sinne von Toleranzen hinsichtlich der Schwankungen, der Positionierung sowie der Stabilität der Blende verstanden.
  • Gemäß einer alternativen Ausführungsform kann es ebenfalls von Vorteil sein, wenn bei einer erfindungsgemäßen Beleuchtungseinheit die zumindest eine Blende direkt am oder zumindest nahe am ersten Reflektorsegment des zweiten Reflektors befestigt ist.
  • Vorteilhaft können durch diese kompakte Bauweise, wonach die Blende mit dem zweiten Reflektor verbunden oder zumindest nahe am ersten Reflektorsegment des zweiten Reflektors befestigt ist, die Toleranzen der Blende verringert werden.
  • In einer besonders bevorzugten Ausführungsform der Erfindung kann bei einer Beleuchtungseinheit eine Blendenebene der zumindest einen Blende einer Fokalebene des zumindest einen Brennpunkts des ersten Reflektorsegments des zweiten Reflektors entsprechen.
  • Wenn die Blenden- und die Fokalebene zusammenfallen, ergibt sich vorteilhaft eine scharfe Hell-Dunkel-Grenze mit einem großen Gradienten des Hell-Dunkel-Übergangs nicht nur nahe des Brennpunktes bzw. Fokalpunktes, sondern auch in einem gewissen Abstand davon entfernt.
  • Im Rahmen der Erfindung ist es weiters auch denkbar, die zumindest eine Blende derart anzuordnen, dass sich eine Blendenebene der zumindest einen Blende sowie eine Fokalebene des zumindest einen Brennpunkts des ersten Reflektorsegments des zweiten Reflektors nur in einer Linie durch diesen Brennpunkt bzw. Fokalpunkt schneiden. In einer solchen Ausführung kann eine scharfe Hell-Dunkel-Grenze bewusst nur in der Nähe des Brennpunktes bzw. Fokalpunktes erreicht werden, wobei eine Blendenkante fern des Fokalpunktes unscharf - also mit einem kleineren Gradienten des Hell-Dunkel-Überganges - abgebildet wird. Auch solche Ausführungen mit nur teilweise oder bereichsweise scharfen Hell-Dunkel-Linien können für Anwendungen in der Automobilindustrie günstig und erwünscht sein.
  • In einer vorteilhaften Weiterbildung der Erfindung kann bei einer Beleuchtungseinheit zumindest der erste Reflektorabschnitt des ersten Reflektors ein Ellipsoid-Reflektor sein, welcher Ellipsoid-Reflektor einen zweiten Brennpunkt aufweist, wobei die zumindest eine Blende so angeordnet ist, dass diese in einem geringen Abstand vom zweiten Brennpunkt des ersten Reflektorabschnitts beabstandet ist.
  • In dieser Ausführung können punktförmige Lichtquellen vorteilhaft als Punkte abgebildet werden. Weiters bietet die Ausführung eines Reflektors, dessen Fläche ein Rotationsellipsoid ist, auch fertigungstechnische Vorteile. Aus lichttechnischer Sicht können durch den Einsatz eines solchen Ellipsoid-Reflektors möglicherweise unerwünschte Verzerrungen bei der Abbildung der Lichtquelle in der Fokalebene vermieden werden.
  • Zweckmäßig können bei einer Beleuchtungseinheit gemäß der Erfindung die zwei oder mehreren Reflektorabschnitte des ersten Reflektors jeweils Ellipsoid-Reflektoren sein, wobei die Ellipsoid-Reflektoren jeweils einen zweiten Brennpunkt aufweisen und wobei die zumindest eine Blende so angeordnet ist, dass diese in einem geringen Abstand nahe des zweiten Brennpunktes des ersten Reflektorabschnitts angeordnet ist sowie die Blende in größerer Entfernung fern von den zweiten Brennpunkten aller weiterer Reflektorabschnitte des ersten Reflektors beabstandet angeordnet ist.
  • Besonders zweckmäßig kann bei einer erfindungsgemäßen Beleuchtungseinheit der geringe Abstand vom Strahlenbündel und/oder vom zweiten Brennpunkt des ersten Reflektorabschnitts des ersten Reflektors zu einer Blendenkante der Blende dann als nahe der Blende definiert sein, wenn der Abstand kleiner als der 1,7-fache Wert einer Referenzlänge, bevorzugt kleiner als der 1,5-fache Wert einer Referenzlänge, besonders bevorzugt kleiner als der 1,3-fache Wert einer Referenzlänge, ist, sowie das im ersten Reflektorabschnitt erzeugte Zwischenlichtbild unter Bildung einer Hell-Dunkel-Grenze beschnitten ist, wobei die Referenzlänge als kleinster Abstand jeweils aus den Abständen des Maximums der Beleuchtungsstärke aller Reflektorabschnitte des ersten Reflektors zur Blendenkante der Blende ausgewählt ist.
  • Zweckmäßig wird die Referenzlänge L, welche zur Beurteilung bzw. zur Kategorisierung des Abstands bzw. der Entfernung zwischen dem Strahlenbündel und der Blende und/oder bei einem Ellipsoidreflektor zwischen dem zweiten Brennpunkt des ersten Reflektorabschnitts des ersten Reflektors und der Blende herangezogen werden kann, wie folgt bestimmt:
    • Für alle Reflektorabschnitte R11, R12, R1N des ersten Reflektors wird jeweils der Abstand des Maximums der Beleuchtungsstärke EMAX zur Blendenkante der Blende gemessen;
    • der kleinste dieser gemessenen Abstände wird als Referenzlänge L ausgewählt.
  • Der Abstand desjenigen Strahlenbündels von der Blende, welches Strahlenbündel vom ersten Reflektorabschnitt des ersten Reflektors ausgeht, für den die Blende wirksam ist, wird somit genau dann als nahe der Blende bzw. nahe der Blendenkante definiert, wenn der Abstand kleiner als der 1,7-fache Wert, bevorzugt kleiner als der 1,5-fache Wert, besonders bevorzugt kleiner als der 1,3-fache Wert, der zuvor definierten Referenzlänge ist, unter der Voraussetzung, dass das im ersten Reflektorabschnitt erzeugte Zwischenlichtbild auch unter Bildung einer Hell-Dunkel-Grenze beschnitten ist.
  • Die Messung des Maximums der Beleuchtungsstärke EMAX kann beispielsweise durch eine Leuchtdichtekamera erfolgen, wobei diese ein Bild des Zwischenlichtbildes in der Blendenebene aufnimmt, das beispielsweise durch Einführen einer matten Ebene in die Blendenebene sichtbar gemacht wird. Eine weitere Möglichkeit zur Messung des Maximums der Beleuchtungsstärke EMAX bietet das Einbringen eines Spiegels oder einer weiteren Optik in den Strahlengang bzw. in die Blendenebene, um das Zwischenlichtbild mit einer Leuchtdichtekamera oder einer anderweitigen Sensorik zu messen.
  • Im Falle der Ausführung der Beleuchtungseinheit mit einem Ellipsoidreflektor als erstem Reflektor wird zweckmäßigerweise der Abstand vom zweiten Brennpunkt des ersten Reflektorabschnitts des ersten Reflektors zur Blende bzw. zur Blendenkante zur selben Kategorisierung herangezogen. Somit wird vorteilhaft ein Berechnungsschema angegeben, um zu bestimmen, welchen Bedingungen eine Blendenanordnung genügen muss, um selektiv einem ersten Reflektorabschnitt des ersten Reflektors zugeordnet zu werden und für die Bildung einer Hell-Dunkel-Grenze des entsprechenden Zwischenlichtbildes geeignet zu sein.
  • Sind die zuvor dargelegten Bedingungen nicht erfüllt so ist definitionsgemäß der Abstand eines Strahlenbündels und/oder eines zweiten Brennpunktes des entsprechenden Reflektorabschnitts des ersten Reflektors fern von der Blende bzw. von deren Blendenkante und die Blendenanordnung ist im Wesentlichen frei von Abschattungseinflüssen auf das in diesem Reflektorabschnitt erzeugten Zwischenlichtbild.
  • Ebenfalls von Vorteil kann es sein, wenn bei einer erfindungsgemäßen Beleuchtungseinheit der größere Abstand vom Strahlenbündel und/oder vom zweiten Brennpunkt des zweiten Reflektorabschnitts und gegebenenfalls der weiteren Reflektorabschnitte des ersten Reflektors zu einer Blendenkante der Blende dann als fern von der Blende definiert ist, wenn durch Einbringen der Blende in den Strahlengang der Lichtstrom des im zweiten und gegebenenfalls den weiteren Reflektorabschnitten erzeugten Zwischenlichtbildes um höchstens 10%, bevorzugt um höchstens 7%, besonders bevorzugt um höchstens 5%, reduziert ist.
  • Definitionsgemäß ist ein Zwischenlichtbild dann im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung, wenn sich die Form des erzeugten Zwischenlichtbildes nicht oder nur unwesentlich ändert, sobald die entsprechende Blende zur Gänze aus dem Strahlengang entfernt wird. Dies ist dann gegeben, wenn die blendenbedingte Lichtstromreduktion die oben angegebenen Werte von höchstens 10%, vorzugsweise um höchstens 7%, besonders bevorzugt um höchstens 5%, erfüllt. Geringe Störeinflüsse, wonach unter bestimmten Umständen beispielsweise kleine Randbereiche des erzeugten Zwischenlichtbildes abgeschattet werden können, ohne dabei jedoch als funktionelle Hell-Dunkel-Grenze wahrgenommen zu werden, stellen somit definitionsgemäß keine wesentliche Abschattung oder Beeinträchtigung des entsprechenden Zwischenlichtbildes dar.
  • In einer vorteilhaften Weiterbildung der Erfindung kann bei einer Beleuchtungseinheit die zumindest eine Blende eine erste Blendenkante zur Erzeugung einer ersten Hell-Dunkel-Grenze sowie eine zweite Blendenkante zur Erzeugung einer zweiten Hell-Dunkel-Grenze aufweisen und/oder im Strahlengang zwischen dem zumindest einen ersten Reflektor und dem zumindest zweiten Reflektor verstellbar angeordnet sein.
  • Beispielsweise ist es im Rahmen der Erfindung denkbar, eine Beleuchtungseinheit auszuführen, bei der die zumindest eine Blende im Wesentlichen L-förmig gestaltet ist, wobei jeder der beiden Schenkel dieser L-förmigen Blende jeweils als eine Blendenkante wirkt, mit der jeweils eine eigene Hell-Dunkel-Grenze erzeugt werden kann, beispielsweise eine horizontale und eine vertikale Hell-Dunkel-Grenze. Im Falle einer Dreiteilung des ersten Reflektors wäre es in einem solchen Fall auch möglich, durch geeignete Blendenanordnung die erste Blendenkante der Blende einem ersten Reflektorabschnitt des ersten Reflektors sowie die zweite Blendenkante der Blende einem weiteren zweiten Reflektorabschnitt des ersten Reflektors zuzuordnen. Der dritte Reflektorabschnitt kann in diesem Fall so weit von den beiden Blendenkanten entfernt sein, dass das in diesem Reflektorabschnitt erzeugte Zwischenlichtbild wiederum frei von Einfluss durch Abschattung der Blendenanordnung ist. Dadurch wird günstiger Weise die Lichtstromausbeute erhöht.
  • Ebenso kann es im Rahmen der Erfindung vorgesehen sein, eine Beleuchtungseinheit mit zumindest einer Blende auszuführen, die im Wesentlichen V-förmig gestaltet ist oder bei der drei Blendenkanten in Dreiecksform angeordnet sind und die Blendenkanten die Seiten der dreieckförmigen Blendenausnehmung bilden. Beispielsweise können in einem solchen Fall zwei Blendenkanten optisch aktiv sein und die dritte Blendenkante kann so angeordnet sein, dass diese optisch nicht aktiv ist.
  • Vorteilhaft können bei einer oder bei mehreren verstellbaren Blendenkanten Ungenauigkeiten in der Positionierung der Blende ausgeglichen werden, wodurch die Robustheit einer solchen Beleuchtungseinheit weiter erhöht werden kann.
  • In einer besonders kompakten Ausführung kann bei einer erfindungsgemäßen Beleuchtungseinheit die zumindest eine Lichtquelle eine LED-Lichtquelle sein.
  • In einer weiteren vorteilhaften Ausführungsvariante kann bei einer Beleuchtungseinheit gemäß der Erfindung die zumindest eine Lichtquelle eine Laser-Lichtquelle sein.
  • Im Rahmen der Erfindung kann weiters ein Kraftfahrzeugscheinwerfer mit zumindest einer erfindungsgemäßen Beleuchtungseinheit angegeben werden.
  • Sämtliche zuvor genannte Vorteile und vorteilhaften Wirkungen einer erfindungsgemäßen Beleuchtungseinheit gelten sinngemäß auch für einen Kraftfahrzeugscheinwerfer, der mit zumindest einer erfindungsgemäßen Beleuchtungseinheit ausgestattet ist.
  • Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Erläuterung von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen. In den Abbildungen zeigen:
    • Fig. 1 in einer Schnittansicht von der Seite eine Beleuchtungseinheit nach dem Stand der Technik, welche einen ersten und einen zweiten Reflektor aufweist, wobei der zweite Reflektor in vier Reflektorsegmente aufgeteilt ist, die jeweils einer Blende im Strahlengang zwischen dem ersten Reflektor und dem zweiten Reflektor zugeordnet sind;
    • Fig. 2a bis Fig. 2d jeweils Zwischenlichtbilder der einzelnen Reflektorsegmente des in Fig. 1 skizzierten zweiten Reflektors;
    • Fig. 2e veranschaulicht das aus den jeweils in den Figuren 2a bis 2d gezeigten Zwischenlichtbildern zusammengesetzte Gesamtlichtbild;
    • Fig. 3a in einer Schnittansicht von der Seite eine erfindungsgemäße Beleuchtungseinheit mit einem zweiteilig aufgebauten ersten Reflektor, wobei hier der Strahlengang in einem ersten Reflektorabschnitt des ersten Reflektors veranschaulicht ist, welcher erste Reflektorabschnitt nahe der Blende angeordnet und dieser zugeordnet ist;
    • Fig. 3b in einer Schnittansicht von der Seite einen weiteren, zweiten Reflektorabschnitt der in Fig. 3a gezeigten erfindungsgemäßen Beleuchtungseinheit, wobei hier in Fig. 3b der Strahlengang desjenigen zweiten Reflektorabschnitts veranschaulicht ist, welcher von der Blende in einem größeren Abstand entfernt angeordnet ist;
    • Fig. 4a ein Zwischenlichtbild, welches in dem in Fig. 3a veranschaulichten ersten Reflektorabschnitt des ersten Reflektors erzeugt ist und das eine Hell-Dunkel-Grenze aufweist;
    • Fig. 4b bis Fig. 4d jeweils Zwischenlichtbilder, welche in dem in Fig. 3b veranschaulichten zweiten Reflektorabschnitt des mehrteiligen ersten Reflektors erzeugt sind und die nicht beschnitten sind;
    • Fig. 4e veranschaulicht das aus den in den Figuren 4a bis 4d gezeigten Zwischenlichtbildern zusammengesetzte Gesamtlichtbild;
    • Fig. 5a in einer Schnittansicht von der Seite eine alternative Ausführungsform der Erfindung mit einem mehrteiligen ersten Freiform-Reflektor, bei der die Blende direkt am zweiten Reflektor befestigt und einem ersten Reflektorabschnitt des ersten Freiform-Reflektors zugeordnet ist;
    • Fig. 5b in einer Schnittansicht von der Seite einen weiteren, zweiten Reflektorabschnitt des ersten Freiform-Reflektors der in Fig. 5a gezeigten erfindungsgemäßen Beleuchtungseinheit, wobei hier in Fig. 5b der Strahlengang desjenigen zweiten Reflektorabschnitts veranschaulicht ist, welcher frei von Abschattungseinfluss durch die Blende ist;
    • Fig. 6 in einer isometrischen Ansicht schräg von vorne eine Beleuchtungseinheit gemäß der Erfindung;
    • Fig. 7 in einer isometrischen Ansicht schräg von vorne ein Detail eines Kraftfahrzeugscheinwerfers mit der in Fig. 6 dargestellten Beleuchtungseinheit gemäß der Erfindung;
    • Fig. 8 in einer schematischen Gegenüberstellung links im Bild eine Blendenanordnung nahe des vom ersten Reflektorabschnitt erzeugten Zwischenlichtbild mit abgeschatteter Hell-Dunkel-Grenze sowie in der rechten Bildhälfte ein erzeugtes Zwischenlichtbild, das im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung ist;
    • Fig. 9 in einer schematischen Darstellung mehrere unterschiedlich weit von einer Blende beabstandete Zwischenlichtbilder;
    • Fig. 10 in einer schematischen Darstellung ein Zwischenlichtbild, welches im Wesentlichen frei von Einfluss durch Abschattung durch die Blendenanordnung ist.
  • Fig. 1 stellt schematisch eine Beleuchtungseinheit nach dem Stand der Technik dar, welche einen ersten Reflektor R1 und einen zweiten Reflektor R2 aufweist, wobei in einem mit einem Pfeil symbolisierten Strahlengang S des Lichts zwischen dem ersten Reflektor R1 und dem zweiten Reflektor R2 eine Blende B vorgesehen ist. Der zweite Reflektor R2 ist hier in vier horizontal nebeneinander angeordnete Reflektorsegmente R21, R22, R23 und R24 aufgeteilt, die jeweils der Blende B zugeordnet sind. Der erste Reflektor R1 ist hier beispielsweise als Ellipsoid-Reflektor ausgeführt und weist einen ersten Brennpunkt F1R1 sowie einen zweiten Brennpunkt F2R1 auf. Im ersten Brennpunkt F1R1 befindet sich eine Lichtquelle 2, beispielsweise eine LED-Lichtquelle. Der zweite Brennpunkt F2R1 des ersten Reflektors R1 ist in einem geringen Abstand D1 von einer Blendenkante BK1 der Blende B beabstandet. Die Blende B ist dabei so angeordnet, dass der zweite Brennpunkt F2R1 des ersten Reflektors R1 in deren Blendenebene BE liegt. Der hier eingesetzte zweite Reflektor R2 ist beispielsweise ein Freiformreflektor, wobei jedes der Reflektorsegmente R21, R22, R23 und R24 jeweils einen Brennpunkt F1R2 aufweist. Diese Brennpunkte F1R2 des zweiten Reflektors R2 sind ebenfalls in der Blendenebene BE angeordnet. Das aus der Lichtquelle 2 austretende sowie vom Reflektor R1 umgelenkte Strahlenbündel S1 tritt in demselben geringen Abstand D1 nahe an der Blendenkante BK1 der Blende B aus dem ersten Reflektor R1 aus.
  • Nachteilig an dieser aus dem Stand der Technik bekannten Ausführung ist zumindest, dass die Blende B jedes der Zwischenlichtbilder sämtlicher vier Reflektorsegmente R21, R22, R23 und R24 jeweils unter Bildung von Hell-Dunkel-Grenzen beschneidet. Somit wird die Gesamteffizienz dieser vorbekannten Beleuchtungseinheit - ausgedrückt als Quotient von eingesetztem Lichtstrom zu austretendem Lichtstrom (jeweils angegeben in Lumen [lm]) - nachteilig verringert.
  • Die Abbildungen Fig. 2a bis Fig. 2d zeigen der Reihe nach die jeweiligen Zwischenlichtbilder der einzelnen Reflektorsegmente R21, R22, R23 und R24 des in Fig. 1 skizzierten zweiten Reflektors R2. Jedes der Reflektorsegmente R21, R22, R23 und R24 erzeugt aufgrund der unterschiedlichen Geometrien unterschiedliche Zwischenlichtbilder mit jeweils unterschiedlichen Verzerrungen des Zwischenlichtbildes, wobei die durch die Blende B erzeugte Hell-Dunkel-Grenze sowohl verformt als auch in ihrer Lage verdreht wird. Die einzelnen Facetten bzw. Reflektorsegmente R21, R22, R23 und R24 verschieben das jeweils von ihnen erzeugte Zwischenlichtbild dabei unterschiedlich weit in horizontaler Richtung.
  • Die Hell-Dunkel-Grenze des Gesamtlichtbildes, welches in Fig. 2e veranschaulicht ist als Summe der in den Fig. 2a bis Fig. 2d gezeigten Zwischenlichtbilder, wird - abgesehen von leichtem Streulicht, welches hier bei dem in Fig. 2d gezeigten Zwischenlichtbild des vierten Reflektorsegments R24 auftritt - im Wesentlichen durch die Hell-Dunkel-Grenze des in Fig. 2a gezeigten Zwischenlichtbilds des Reflektorsegments R21 erzeugt.
  • Ein solcherart erzeugtes Lichtbild ist daher ineffizient, da die Hell-Dunkel-Grenze nur in einem der vier Zwischenlichtbilder, nämlich hier bei dem im ersten Reflektorsegment R21 erhaltenen Zwischenlichtbild, tatsächlich benötigt wird, die Hell-Dunkel-Grenze jedoch in allen Zwischenlichtbildern der vier Reflektorsegmente R21, R22, R23 und R24 erzeugt wird. Bei einem hier eingesetzten Lichtstrom von insgesamt 100 Lumen [lm] und einer angenommenen Reflektivität der verwendeten Reflektoren von 0,95 bzw. 95% wird somit ein austretender Lichtstrom von insgesamt nur 53 Lumen [lm] erhalten.
  • Fig. 3a zeigt eine erfindungsgemäße Beleuchtungseinheit 1 mit einem zweiteilig aufgebauten ersten Reflektor R1 mit einem ersten Reflektorabschnitt R11 sowie einem zweiten Reflektorabschnitt R12, wobei hier in Fig. 3a der Strahlengang S des ersten Reflektorabschnitts R11 des ersten Reflektors R1 veranschaulicht ist. Dieser erste Reflektorabschnitt R11 ist nahe der Blende B angeordnet und ist dieser zugeordnet. Die Blende B ist im Strahlengang S zwischen dem ersten Reflektor R1 und dem zweiten Reflektor R2 vorgesehen. Der zweite Reflektor R2 ist hier beispielsweise in vier etwa horizontal nebeneinander angeordnete Reflektorsegmente R21, R22, R23 und R24 aufgeteilt, wobei nur das erste Reflektorsegment R21 der Blende B zugeordnet ist. Die beiden Reflektorabschnitte R11 und R12 des ersten Reflektors R1 sind hier jeweils als Ellipsoid-Reflektoren ausgeführt und weisen je einen ersten Brennpunkt F1R11 bzw. F1R12 sowie einen zweiten Brennpunkt F2R11 bzw. F2R12 auf. Im ersten Brennpunkt F1R11 bzw. F1R12 der beiden Reflektorabschnitte R11 und R12 befindet sich eine Lichtquelle 2, beispielsweise eine LED-Lichtquelle.
  • Fig. 3b zeigt für die in Fig. 3a dargestellte erfindungsgemäße Beleuchtungseinheit 1 den Strahlengang S in dem zweiten Reflektorabschnitt R12 des ersten Reflektors R1.
  • Wie aus Fig. 3a ersichtlich ist der zweite Brennpunkt F2R11 des ersten Reflektorabschnitts R11 in einem geringen Abstand D1 von einer Blendenkante BK1 der Blende B beabstandet, wobei das aus der Lichtquelle 2 austretende sowie vom ersten Reflektorabschnitt R11 umgelenkte Strahlenbündel S11 in diesem geringen Abstand D1 nahe an der Blendenkante BK1 der Blende B aus dem ersten Reflektor R1 austritt. Die Blende B beschneidet dabei das im ersten Reflektorabschnitt R11 erzeugte Zwischenlichtbild unter Bildung einer Hell-Dunkel-Grenze. Dieses beschnittene Zwischenlichtbild ist in Fig. 4a veranschaulicht.
  • Wie in Fig. 3b veranschaulicht ist der zweite Brennpunkt F2R12 des zweiten Reflektorabschnitts R12 des ersten Reflektors R1 in einem größeren Abstand D2 fern von einer Blendenkante BK1 der Blende B beabstandet. Der geringere Abstand D1 des zweiten Brennpunkts F2R11 des ersten Reflektorabschnitts R11 von der Blendenkante BK1 ist jedenfalls kleiner als der größere Abstand D2 des zweiten Brennpunkts F2R12 des zweiten Reflektorabschnitts R12 von der Blendenkante BK1. Die Blende B ist dabei so angeordnet, dass der zweite Brennpunkt F2R11 des ersten Reflektorabschnitts R11 sowie der zweite Brennpunkt F2R12 des zweiten Reflektorabschnitts R12 jeweils in der Blendenebene BE der Blende B liegen.
  • Der hier eingesetzte zweite Reflektor R2 ist beispielsweise ein Freiformreflektor, wobei jedes der vier Reflektorsegmente R21, R22, R23 und R24 jeweils einen Brennpunkt F1R21, F1R22, F1R23 bzw. F1R24 aufweist. Diese Brennpunkte F1R21, F1R22, F1R23 bzw. F1R24 der vier Reflektorsegmente R21, R22, R23 und R24 des zweiten Reflektors R2 sind ebenfalls in der Blendenebene BE angeordnet.
  • Das erste Reflektorsegment R21 des zweiten Reflektors R2 ist dem im ersten Reflektorabschnitt R11 des ersten Reflektors R1 erzeugten Zwischenlichtbild zugeordnet, wobei dieses Zwischenlichtbild in Fig. 4a gezeigt ist.
  • Die weiteren Reflektorsegmente R22, R23 sowie R24 des zweiten Reflektors R2 sind dem zweiten Reflektorabschnitt R12 des ersten Reflektors R1 zugeordnet. Die entsprechenden Zwischenlichtbilder des zweiten, dritten und vierten Reflektorsegments R22, R23 bzw. R24 sind in den Abbildungen Fig. 4b bis Fig. 4d gezeigt. Da die Blende B jeweils in einem größeren Abstand D2 fern des vom zweiten Reflektorabschnitt R12 ausgehenden Strahlenbündels S12 beabstandet angeordnet ist, sind die Zwischenlichtbilder des zweiten, dritten und vierten Reflektorsegments R22, R23 bzw. R24 im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung.
  • Fig. 4e zeigt dazu das Gesamtlichtbild als Summe der in den Fig. 4a bis Fig. 4d gezeigten Zwischenlichtbilder. Da die Blende B nur auf das Zwischenlichtbild wirkt, das von der Paarung aus dem ersten Reflektorabschnitt R11 des ersten Reflektors R1 und dem diesem zugeordneten ersten Reflektorsegment R21 des zweiten Reflektors R2 erhalten wird, wird die Hell-Dunkel-Grenze des Gesamtlichtbildes nur im ersten Reflektorsegment R21 des zweiten Reflektors R2 erzeugt. Die weiteren Zwischenlichtbilder, die vom zweiten, dritten und vierten Reflektorsegment R22, R23 bzw. R24 erhalten werden, sind vorteilhaft nicht abgeschattet bzw. nicht beschnitten, da dort der Abstand D2 der Blende B vom zweiten Brennpunkt F2R12 des zweiten Reflektorabschnitts R12 des ersten Reflektors R1 weiter entfernt ist im Vergleich zum geringen Abstand D1 und daher die Zwischenlichtbilder der Reflektorsegmente R22, R23 und R24 im Wesentlichen frei von Abschattungseinflüssen sind.
  • Bei dem in Fig. 4e gezeigten Gesamtlichtbild der erfindungsgemäßen Beleuchtungseinheit 1 wird bei einem eingesetzten Lichtstrom von insgesamt 100 Lumen [lm] und einer angenommenen Reflektivität der verwendeten Reflektoren von 0,95 bzw. 95% wird somit ein austretender Lichtstrom von insgesamt 62 Lumen [lm] erhalten.
  • Im Vergleich zu dem aus dem Stand der Technik bekannten vorgenannten Beispiel gemäß Fig. 1 ergibt sich im erfindungsgemäßen Fall bei einer Beleuchtungseinheit 1 mit einem zweigeteilten ersten Reflektor mit den beiden Reflektorabschnitten R11, R12 gemäß den Abbildungen Fig. 3a und Fig. 3b besonders vorteilhaft eine Effizienzsteigerung des Lichtstroms - ausgehend von 53 Lumen [lm] bei der aus dem Stand der Technik bekannten Lichtverteilung wie in Fig. 2e gezeigt - auf 62 Lumen [lm] gemäß der erfindungsgemäßen Lichtverteilung wie in Fig. 4a veranschaulicht. Dies entspricht einer absoluten
  • Effizienzsteigerung von 9 Lumen [lm] bzw. einer relativen Steigerung der Gesamteffizienz um rund 17%.
  • Die beiden Abbildungen Fig. 5a und Fig. 5b betreffen jeweils eine alternative Ausführungsform der Erfindung und zeigen jeweils eine Beleuchtungseinheit 1 mit einem mehrteiligen ersten Reflektor R1, der hier als zweiteiliger Freiform-Reflektor ausgeführt ist. Der Reflektor R1 weist dazu einen ersten Reflektorabschnitt R11 mit einem Brennpunkt F1R11 auf, wobei die Blende B in einem Abstand D1 nahe des vom ersten Reflektorabschnitt R11 ausgehenden Strahlenbündels S11 angeordnet ist. Die Blende B beschneidet das im ersten Reflektorabschnitt R11 erzeugte Zwischenlichtbild unter Bildung einer Hell-Dunkel-Grenze.
  • Der zweite Reflektor R2 ist hier beispielsweise in vier nebeneinander angeordnete Reflektorsegmente R21, R22, R23 und R24 segmentiert. Die Blende B ist hier direkt am zweiten Reflektor R2 an dessen erstem Reflektorsegment R21 befestigt und ist nur dem ersten Reflektorabschnitt R11 des ersten Freiform-Reflektors zugeordnet. Weiters ist hier nur das erste Reflektorsegment R21 des zweiten Reflektors R2 dem im ersten Reflektorabschnitt R11 des ersten Reflektors R1 erzeugten Zwischenlichtbild zugeordnet. Dies ist in Fig. 5a gezeigt.
  • Fig. 5b zeigt den weiteren, zweiten Reflektorabschnitt R12 des ersten Freiform-Reflektors der in Fig. 5a gezeigten erfindungsgemäßen Beleuchtungseinheit, wobei hier in Fig. 5b der Strahlengang S des zweiten Reflektorabschnitts R12 veranschaulicht ist, welcher frei von Abschattungseinfluss durch die Blende B ist. Das zweite, dritte und vierte Reflektorsegment R22, R23 sowie R24 des zweiten Reflektors R2 sind dem im zweiten Reflektorabschnitt R12 des ersten Reflektors R1 erzeugten Zwischenlichtbild zugeordnet. Vorteilhaft werden diese Zwischenlichtbilder aufgrund der dort fehlenden Blende nicht beschnitten bzw. nicht abgeschattet.
  • Fig. 6 zeigt in einer Detailansicht eine Beleuchtungseinheit 1 gemäß der Erfindung. Die Beleuchtungseinheit 1 umfasst im Bild oben dargestellt eine Lichtquelle 2, die hinter bzw. unter dem ersten Reflektor R1 positioniert ist. Der Reflektor R1 ist hier einteilig aufgebaut und mit zwei Reflektorabschnitten R11 und R12 ausgeführt. Mit strichlierten Pfeilen sind ein erstes Strahlenbündel S11 des austretenden Lichts des ersten Reflektorabschnitts R11 sowie ein zweites Strahlenbündel S12 des austretenden Lichts des zweiten Reflektorabschnitts R12 angedeutet. Die Blende B zwischen dem ersten Reflektor R1 und dem zweiten Reflektor R2 weist hier eine dreieckförmige Blendenöffnung mit drei Blendenkanten BK1, BK2 sowie BK3 auf, wobei die Blendenkanten die drei Seiten der dreieckförmigen Blendenöffnung bilden.
  • Die Blende B ist dabei so positioniert, dass eine erste Blendenkante BK1 der Blende B hier optisch nicht aktiv ist und etwas beabstandet vom ersten Strahlenbündel S11 sowie vom zweiten Strahlenbündel S12 entfernt angeordnet ist. Eine zweite Blendenkante BK2 sowie eine dritte Blendenkante BK3 der Blende B sind hier optisch aktiv. Das erste Strahlenbündel S11 wird hier nahe der optisch aktiven Blendenkante BK3 fokussiert. Das zweite Strahlenbündel S12 wird nahe der optisch aktiven Blendenkante BK2 fokussiert.
  • Damit wird ermöglicht, dass
    1. (i) von der optisch aktiven dritten Blendenkante BK3 nur das im ersten Reflektorabschnitt R11 erzeugte Zwischenlichtbild unter Bildung einer Hell-Dunkel-Grenze beschnitten wird und
    2. (ii) von der optisch aktiven zweiten Blendenkante BK2 nur das im zweiten Reflektorabschnitt R12 erzeugte Zwischenlichtbild unter Bildung einer Hell-Dunkel-Grenze beschnitten wird.
  • Das im ersten Reflektorabschnitt R11 erzeugte Zwischenlichtbild bleibt im Wesentlichen frei von Einfluss durch Abschattung der Blendenkante BK2. Das im zweiten Reflektorabschnitt R12 erzeugte Zwischenlichtbild bleibt im Wesentlichen frei von Einfluss durch Abschattung der Blendenkante BK3.
  • Der zweite Reflektor R2 ist hier beispielsweise in mehrere Reflektorsegmente segmentiert, wobei für die folgende Beschreibung drei nebeneinander angeordnete Reflektorsegmente R21, R22 und R23 näher betrachtet werden. Nur das erste Reflektorsegment R21 des zweiten Reflektors R2 ist hier dem im ersten Reflektorabschnitt R11 des ersten Reflektors R1 erzeugten Zwischenlichtbild zugeordnet. Vorteilhaft werden die im zweiten und dritten Reflektorsegment R22, R23 erzeugten Zwischenlichtbilder nicht beschnitten, wodurch insgesamt die Gesamteffizienz der gezeigten Beleuchtungseinheit 1 erhöht wird.
  • Die hier gezeigte Blende B hat noch eine weitere, zweite Blendenkante BK2, welche analog zur vorhergehenden Beschreibung wiederum zur selektiven Abschattung des Zwischenlichtbildes eines weiteren Reflektorsegments des zweiten Reflektors R2 dienen kann.
  • Fig. 7 zeigt in einer Detailansicht einen Kraftfahrzeugscheinwerfer 10 mit der in Fig. 6 dargestellten Beleuchtungseinheit 1 gemäß der Erfindung. Die Beleuchtungseinheit 1 befindet sich bereits in Einbaulage innerhalb des Kraftfahrzeugscheinwerfers 1 und ist mit den entsprechenden Gehäusebauteilen des Scheinwerfers verbaut. Eine Streuscheibe, die bloß zum Schutz des Kraftfahrzeugscheinwerfers 1 dient und die keine optische Funktion hat, ist hier in der Ansicht von Fig. 7 zur besseren Übersicht entfernt und nicht dargestellt.
  • Fig. 8 zeigt in einer schematischen Gegenüberstellung eine Blendenanordnung eines zweiteilig aufgebauten ersten Reflektors, beispielsweise eines Ellipsoid-Reflektors, gemäß der Erfindung. Links im Bild ist ein vom ersten Reflektorabschnitt R11 erzeugtes Zwischenlichtbild mit abgeschatteter Hell-Dunkel-Grenze veranschaulicht. Die Blendenkante BK1 ist hier in einem geringen Abstand D1 nahe des zweiten Brennpunkts F2R11 des ersten Reflektorabschnitts R11 angeordnet. Dieser Abstand D1 ist gleich einer Referenzlänge L ausgewählt. Die Referenzlänge L, welche zur Beurteilung bzw. zur Kategorisierung des Abstands bzw. der Entfernung zwischen dem entsprechenden Strahlenbündel und der Blende B oder - wie es hier der Fall ist - bei einem Ellipsoidreflektor zwischen dem zweiten Brennpunkt F2R11 des ersten Reflektorabschnitts R11 des ersten Reflektors R1 und der Blende B herangezogen werden kann, wird wie folgt bestimmt:
    • Für alle Reflektorabschnitte R11, R12, R1N des ersten Reflektors R1 wird jeweils der Abstand des Maximums der Beleuchtungsstärke EMAX zur Blendenkante der Blende gemessen;
    • der kleinste dieser gemessenen Abstände wird als Referenzlänge L ausgewählt.
  • Der Lichtstromverlust der in der linken Bildhälfte von Fig. 8 gezeigten Blendenanordnung beträgt hier über 15%.
  • In der rechten Bildhälfte von Fig. 8 ist eine Blendenanordnung dargestellt, wobei der Abstand zwischen der Blendenkante BK1 der Blende B und dem zweiten Brennpunkt F2R12 des zweiten Reflektorabschnitts R12 in einem größeren Abstand D2 von der Blende entfernt angeordnet ist. Der Abstand D2 ist hier größer als der eineinhalb-fache Wert der Referenzlänge L. Das erzeugte Zwischenlichtbild ist definitionsgemäß im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung. Der Lichtstromverlust der in der rechten Bildhälfte von Fig. 8 gezeigten Blendenanordnung beträgt hier unter 7%.
  • Fig. 9 zeigt in einer schematischen Darstellung mehrere unterschiedlich weit von einer Blende B bzw. von deren Blendenkante BK1 beabstandete Zwischenlichtbilder. Die maximale Beleuchtungsstärke jedes einzelnen Zwischenlichtbildes hat einen gewissen minimalen Abstand zur Blende bzw. zur Blendenkante, wobei der kürzeste dieser Abstände als Referenzlänge L definiert wird. Ein Zwischenlichtbild ist definitionsgemäß genau dann nah der Blendenkante, wenn der kleinste Abstand des Maximums der Beleuchtungsstärke des Zwischenlichtbildes von der Blendenkante einen festgelegten Wert überschreitet.
  • Exemplarisch ist hier in Fig. 9 als Grenzwert der 1,5-fache Wert der Referenzlänge L als gestrichelte Linie dargestellt. In Fig. 9 sind also die beiden mittleren dargestellten Zwischenlichtbilder definitionsgemäß fern der Blendenkante positioniert, da deren Abstände D1 und D2 größer sind als der hier vorgegebene Grenzwert der 1,5-fachen Referenzlänge L. Das äußere linke Zwischenlichtbild ist definitionsgemäß nah der Blendenkante, da es in einem Abstand gemäß der Referenzlänge L von der Blendenkante der Blende B entfernt ist. Ebenso befindet sich das in Fig. 9 gezeigte äußere rechte Zwischenlichtbild in nur einem kleinen Abstand D3 von der Blende B entfernt und ist damit nah der Blendenkante.
  • Fig. 10 stellt in einer schematischen Darstellung ein Zwischenlichtbild dar, welches im Wesentlichen frei von Einfluss durch Abschattung durch die Blendenanordnung der Blende B ist. Der schraffierte und mit 93% beschriftete Bereich ist durch diejenige Isolinie begrenzt, innerhalb derer sich 93% des Lichtstromes des Zwischenlichtbildes befinden. Der nicht schraffierte äußere Bereich des Zwischenlichtbildes repräsentiert somit denjenigen Randbereich des Lichtbildes, der von 7% des Lichtstromes durchflossen wird. Durch Einbringen der Blende B in den Strahlengang wird der Lichtstrom des erzeugten Zwischenlichtbildes hier um weniger als 7 % reduziert.
  • LISTE DER BEZUGSZEICHEN:
  • 1
    Beleuchtungseinheit
    2
    Lichtquelle
    10
    Kraftfahrzeugscheinwerfer
    B
    Blende
    BE
    Blendenebene
    BK1
    (erste) Blendenkante der Blende
    BK2
    zweite Blendenkante der Blende
    D1
    Abstand der Blende vom Strahlenbündel des ersten Reflektorabschnitts
    D2
    Abstand der Blende vom Strahlenbündel des zweiten Reflektorabschnitts
    DN
    Abstand der Blende vom Strahlenbündel des dritten bzw. weiteren Reflektorabschnitts
    EMAX
    maximale Beleuchtungsstärke
    F1R1
    (erster) Brennpunkt des ersten Reflektors
    F1R11
    (erster) Brennpunkt des ersten Reflektorabschnitts des ersten Reflektors
    F1R12
    (erster) Brennpunkt des zweiten Reflektorabschnitts des ersten Reflektors
    F1R1N
    (erster) Brennpunkt des dritten bzw. weiteren Reflektorabschnitts des ersten Reflektors
    F2R1
    zweiter Brennpunkt des ersten Reflektors
    F2R11
    zweiter Brennpunkt des ersten Reflektorabschnitts des ersten Reflektors
    F2R12
    zweiter Brennpunkt des zweiten Reflektorabschnitts des ersten Reflektors
    F2R1N
    zweiter Brennpunkt des dritten bzw. weiteren Reflektorabschnitts des ersten Reflektors
    F1R2
    (erster) Brennpunkt des zweiten Reflektors
    F1R21
    (erster) Brennpunkt des ersten Reflektorsegments des zweiten Reflektors
    F1R22
    (erster) Brennpunkt des zweiten Reflektorsegments des zweiten Reflektors
    F1R2N
    (erster) Brennpunkt des dritten bzw. weiteren Reflektorsegments des zweiten Reflektors
    FE
    Fokalebene des (ersten) Brennpunkts des ersten Reflektorsegments des zweiten Reflektors
    L
    Referenzlänge
    R1
    erster Reflektor
    R11
    erster Reflektorabschnitt des ersten Reflektors
    R12
    zweiter Reflektorabschnitt des ersten Reflektors
    R1N
    dritter bzw. weiterer Reflektorabschnitt des ersten Reflektors
    LISTE DER BEZUGSZEICHEN (FORTSETZUNG):
  • R2
    zweiter Reflektor
    R21
    erstes Reflektorsegment des zweiten Reflektors
    R22
    zweites Reflektorsegment des zweiten Reflektors
    R2N
    drittes bzw. weiteres Reflektorsegment des zweiten Reflektors
    S
    Strahlengang
    S1
    Strahlenbündel des ersten Reflektors
    S11
    Strahlenbündel des ersten Reflektorabschnitts des ersten Reflektors
    S12
    Strahlenbündel des zweiten Reflektorabschnitts des ersten Reflektors
    S1N
    Strahlenbündel des dritten bzw. weiteren Reflektorabschnitts des ersten Reflektors

Claims (15)

  1. Beleuchtungseinheit für einen Kraftfahrzeugscheinwerfer zum Erzeugen einer Lichtverteilung mit Hell-Dunkel-Grenze, wobei die Beleuchtungseinheit (1) umfasst:
    - zumindest eine Lichtquelle (2),
    - zumindest einen ersten Reflektor (R1) mit mindestens einem Brennpunkt (F1R1), wobei die zumindest eine Lichtquelle (2) in dem zumindest einen Brennpunkt (F1R1) angeordnet ist, wobei
    - der zumindest eine erste Reflektor (R1) zur Abstrahlung und Weiterleitung von Licht an einen zweiten Reflektor (R2) eingerichtet ist,
    - zumindest einen zweiten Reflektor (R2) mit mindestens einem Brennpunkt (F1R2), wobei der zumindest eine zweite Reflektor (R2) im Strahlengang (S) dem zumindest einen ersten Reflektor (R1) nachgeordnet und dazu konfiguriert ist, ein vom ersten Reflektor (R1) erzeugtes Zwischenlichtbild abzubilden,
    - zumindest eine Blende (B), die im Strahlengang (S) zwischen dem zumindest einen ersten Reflektor (R1) und dem zumindest zweiten Reflektor (R2) angeordnet ist, wobei
    - der erste Reflektor (R1) zumindest zweiteilig (R11, R12) aufgebaut ist und einen ersten Reflektorabschnitt (R11) sowie zumindest einen separaten zweiten Reflektorabschnitt (R12) aufweist, wobei jeder Reflektorabschnitt (R11, R12) jeweils mindestens einen Brennpunkt (F1R11, F1R12) besitzt, sowie
    - mindestens ein Brennpunkt (F1R11, F1R12) des ersten und des zumindest zweiten Reflektorabschnitts (R11, R12) jeweils deckungsgleich am Ort der zumindest einen Lichtquelle (2) angeordnet sind, wobei
    - der zumindest zweiteilige erste Reflektor (R11, R12) das aus der zumindest einen Lichtquelle (2) austretende Strahlenbündel (S1) zumindest in zwei separate Strahlenbündel (Sn, S12) aufspaltet,:
    dadurch gekennzeichnet, dass:
    - die zumindest eine Blende (B) so angeordnet ist, dass diese dem ersten Reflektorabschnitt (R11) des ersten Reflektors (R1) zugeordnet und in einem geringen Abstand (D1) nahe des vom ersten Reflektorabschnitt (R11) ausgehenden Strahlenbündels (S11) angeordnet ist und das im ersten Reflektorabschnitt (R11) erzeugte Zwischenlichtbild unter Bildung einer Hell-Dunkel-Grenze beschneidet, und
    - die zumindest eine Blende (B) in einem größeren Abstand (D2) fern des vom zumindest zweiten Reflektorabschnitt (R12) ausgehenden Strahlenbündels (S12) beabstandet angeordnet ist und das zumindest im zweiten Reflektorabschnitt (R12) erzeugte Zwischenlichtbild im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung ist.
  2. Beleuchtungseinheit (1) nach Anspruch 1, dadurch gekennzeichnet, dass
    - der erste Reflektor (R1) mehrteilig aufgebaut ist und mehrere Reflektorabschnitte (R11, R12, R1N) mit mindestens einem Brennpunkt (F1R11, F1R12, F1R1N) aufweist, wobei die zumindest eine Lichtquelle (2) jeweils in dem zumindest einen Brennpunkt (F1R11, F1R12, F1R1N) angeordnet ist, wobei
    - die zumindest eine Blende (B) so angeordnet ist, dass diese ausschließlich dem ersten Reflektorabschnitt (R11) des ersten Reflektors (R1) zugeordnet und in einem geringen Abstand (D1) nahe des vom ersten Reflektorabschnitt (R11) ausgehenden Strahlenbündels (S11) angeordnet ist und das im ersten Reflektorabschnitt (R11) erzeugte Zwischenlichtbild unter Bildung einer Hell-Dunkel-Grenze beschneidet, sowie
    - die zumindest eine Blende (B) in einem größeren Abstand (D2, DN) fern der vom zweiten (R12) und gegebenenfalls den weiteren Reflektorabschnitten (R1N) des ersten Reflektors (R1) ausgehenden Strahlenbündeln (S12, S1N) beabstandet angeordnet ist und die im zweiten und gegebenenfalls den weiteren Reflektorabschnitten (R12, R1N) erzeugten Zwischenlichtbilder im Wesentlichen frei von Einfluss durch Abschattung der Blendenanordnung sind.
  3. Beleuchtungseinheit (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der zweite Reflektor (R2) facettenartig in zwei oder mehrere Reflektorsegmente (R21, R22, R2N) unterteilt ist, wobei ein erstes Reflektorsegment (R21) des zweiten Reflektors (R2) dem im ersten Reflektorabschnitt (R11) des ersten Reflektors (R1) erzeugten Zwischenlichtbild zugeordnet ist.
  4. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der zweite Reflektor (R2) facettenartig in zwei oder mehrere Reflektorsegmente (R21, R22, R2N) unterteilt ist, wobei genau das erste Reflektorsegment (R21) des zweiten Reflektors (R2) dem im ersten Reflektorabschnitt (R11) des ersten Reflektors (R1) erzeugten Zwischenlichtbild zugeordnet ist.
  5. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zumindest eine Blende (B) direkt am oder zumindest nahe am ersten Reflektorabschnitt (R12) des ersten Reflektors (R1) befestigt ist.
  6. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zumindest eine Blende (B) direkt am oder zumindest nahe am ersten Reflektorsegment (R21) des zweiten Reflektors (R2) befestigt ist.
  7. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine Blendenebene (BE) der zumindest einen Blende (B) einer Fokalebene (FE) des zumindest einen Brennpunkts (F1R21) des ersten Reflektorsegments (R21) des zweiten Reflektors (R2) entspricht.
  8. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zumindest der erste Reflektorabschnitt (R11) des ersten Reflektors (R1) ein Ellipsoid-Reflektor ist, welcher einen zweiten Brennpunkt (F2R11) aufweist, wobei die zumindest eine Blende (B) so angeordnet ist, dass diese in einem geringen Abstand (D1) vom zweiten Brennpunkt (F2R11) des ersten Reflektorabschnitts (R11) beabstandet ist.
  9. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die zwei oder mehreren Reflektorabschnitte (R11, R12, R1N) des ersten Reflektors (R1) jeweils Ellipsoid-Reflektoren sind, die jeweils einen zweiten Brennpunkt (F2R11, F2R12, F2R1N) aufweisen, wobei die zumindest eine Blende (B) so angeordnet ist, dass diese in einem geringen Abstand (D1) nahe des zweiten Brennpunktes (F2R11) des ersten Reflektorabschnitts (R11) angeordnet ist sowie die Blende (B) in einem größeren Abstand (D2, DN) fern von den zweiten Brennpunkten (F2R12, F2R1N) aller weiterer Reflektorabschnitte (R12, R1N) des ersten Reflektors (R1) beabstandet angeordnet ist.
  10. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der geringe Abstand (D1) vom Strahlenbündel (S11) und/oder vom zweiten Brennpunkt (F2R11) des ersten Reflektorabschnitts (R11) des ersten Reflektors (R1) zu einer Blendenkante (BK1) der Blende (B) dann als nahe der Blende (B) definiert ist, wenn der Abstand (D1) kleiner als der 1,7-fache Wert einer Referenzlänge (L), bevorzugt kleiner als der 1,5-fache Wert einer Referenzlänge (L), besonders bevorzugt kleiner als der 1,3-fache Wert einer Referenzlänge (L), ist, sowie das im ersten Reflektorabschnitt (R11) erzeugte Zwischenlichtbild unter Bildung einer Hell-Dunkel-Grenze beschnitten ist, wobei die Referenzlänge (L) als kleinster Abstand jeweils aus den Abständen des Maximums der Beleuchtungsstärke (EMAX) aller Reflektorabschnitte (R11, R12, R1N) des ersten Reflektors (R1) zur Blendenkante (BK1) der Blende (B) ausgewählt ist.
  11. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der größere Abstand (D2, DN) vom Strahlenbündel (S12, S1N) und/oder vom zweiten Brennpunkt (F2R12, F2R1N) des zweiten Reflektorabschnitts (R12) und gegebenenfalls der weiteren Reflektorabschnitte (R1N) des ersten Reflektors (R1) zu einer Blendenkante (BK1) der Blende (B) dann als fern von der Blende (B) definiert ist, wenn durch Einbringen der Blende (B) in den Strahlengang (S) der Lichtstrom des im zweiten und gegebenenfalls den weiteren Reflektorabschnitten (R12, R1N) erzeugten Zwischenlichtbildes um höchstens 10%, bevorzugt um höchstens 7%, besonders bevorzugt um höchstens 5%, reduziert ist.
  12. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die zumindest eine Blende (B) eine erste Blendenkante (BK1) zur Erzeugung einer ersten Hell-Dunkel-Grenze sowie eine zweite Blendenkante (BK2) zur Erzeugung einer zweiten Hell-Dunkel-Grenze aufweist und/oder im Strahlengang (S) zwischen dem zumindest einen ersten Reflektor (R1) und dem zumindest zweiten Reflektor (R2) verstellbar angeordnet ist.
  13. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die zumindest eine Lichtquelle (2) eine LED-Lichtquelle ist.
  14. Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die zumindest eine Lichtquelle (2) eine Laser-Lichtquelle ist.
  15. Kraftfahrzeugscheinwerfer (10) mit zumindest einer Beleuchtungseinheit (1) nach einem der Ansprüche 1 bis 14.
EP18207781.8A 2018-11-22 2018-11-22 Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen einer lichtverteilung mit hell-dunkel-grenze Active EP3657066B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18207781.8A EP3657066B1 (de) 2018-11-22 2018-11-22 Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen einer lichtverteilung mit hell-dunkel-grenze
US17/295,506 US11421842B2 (en) 2018-11-22 2019-11-21 Lighting unit for a motor vehicle headlight for generating a light distribution having a light-dark boundary
PCT/EP2019/082053 WO2020104576A1 (de) 2018-11-22 2019-11-21 Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen einer lichtverteilung mit hell-dunkel-grenze
KR1020217019083A KR102578466B1 (ko) 2018-11-22 2019-11-21 명암 경계를 갖는 광 분포를 생성하기 위한 자동차 헤드램프용 조명 유닛
CN201980076985.7A CN112997034B (zh) 2018-11-22 2019-11-21 用于产生具有明暗边界的光分布的机动车大灯用的照明单元
JP2021529066A JP7220287B2 (ja) 2018-11-22 2019-11-21 明暗境界を有する配光を生成するための自動車投光器用の照射ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18207781.8A EP3657066B1 (de) 2018-11-22 2018-11-22 Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen einer lichtverteilung mit hell-dunkel-grenze

Publications (2)

Publication Number Publication Date
EP3657066A1 EP3657066A1 (de) 2020-05-27
EP3657066B1 true EP3657066B1 (de) 2020-12-30

Family

ID=64453360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18207781.8A Active EP3657066B1 (de) 2018-11-22 2018-11-22 Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen einer lichtverteilung mit hell-dunkel-grenze

Country Status (6)

Country Link
US (1) US11421842B2 (de)
EP (1) EP3657066B1 (de)
JP (1) JP7220287B2 (de)
KR (1) KR102578466B1 (de)
CN (1) CN112997034B (de)
WO (1) WO2020104576A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023039904A1 (zh) * 2021-09-18 2023-03-23 华域视觉科技(上海)有限公司 用于车灯照明装置的光学反射系统和车灯照明装置
CN117515468B (zh) * 2024-01-02 2024-04-12 华域视觉科技(上海)有限公司 照明模组、照明系统及车辆

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220301A (ja) * 1988-02-26 1989-09-04 Koito Mfg Co Ltd 車輌用前照灯
JP2000348508A (ja) * 1999-06-04 2000-12-15 Stanley Electric Co Ltd 車両用灯具
JP4299980B2 (ja) * 2001-04-13 2009-07-22 スタンレー電気株式会社 ヘッドランプ
JP4145526B2 (ja) * 2001-12-26 2008-09-03 株式会社小糸製作所 自動車用前照灯
JP4536479B2 (ja) * 2003-12-02 2010-09-01 株式会社小糸製作所 車両用前照灯
JP2006024395A (ja) * 2004-07-06 2006-01-26 Ichikoh Ind Ltd 車両用灯具
JP2007080637A (ja) * 2005-09-13 2007-03-29 Koito Mfg Co Ltd 車両用灯具
JP2009277482A (ja) * 2008-05-14 2009-11-26 Ichikoh Ind Ltd 車両用灯具
JP5529708B2 (ja) * 2010-10-29 2014-06-25 株式会社小糸製作所 車両用照明灯具
JP5831788B2 (ja) * 2011-07-01 2015-12-09 スタンレー電気株式会社 車両用灯具ユニット
FR2982929B1 (fr) 2011-11-22 2014-01-17 Valeo Vision Dispositif d'emission de lumiere pour projecteur de vehicule automobile
JP6154169B2 (ja) 2013-03-29 2017-06-28 株式会社小糸製作所 車両用前照灯
DE102014226646A1 (de) * 2014-12-19 2016-06-23 Osram Gmbh Beleuchtungseinrichtung
CN206159984U (zh) * 2016-09-14 2017-05-10 苏永道 投射式近光前照灯二倍出光率配光的车灯
AT519119B1 (de) * 2016-11-22 2018-04-15 Zkw Group Gmbh Beleuchtungseinrichtung eines kraftfahrzeugscheinwerfers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20210116445A (ko) 2021-09-27
EP3657066A1 (de) 2020-05-27
US11421842B2 (en) 2022-08-23
WO2020104576A1 (de) 2020-05-28
KR102578466B1 (ko) 2023-09-14
CN112997034B (zh) 2024-01-30
US20220010938A1 (en) 2022-01-13
CN112997034A (zh) 2021-06-18
JP2022513120A (ja) 2022-02-07
JP7220287B2 (ja) 2023-02-09

Similar Documents

Publication Publication Date Title
EP3404313B1 (de) Kraftfahrzeugscheinwerfer mit einem mikroprojektoren aufweisenden lichtmodul
EP3282182B1 (de) Kraftfahrzeugscheinwerfer mit geringer bautiefe
EP3365593B1 (de) Mikroprojektions-lichtmodul für fahrzeugscheinwerfer
EP3330597B1 (de) Primäroptik, sekundäroptik, modul, anordnung, fahrzeugscheinwerfer und scheinwerfersystem
EP3060842B1 (de) Mikroprojektions-lichtmodul für einen kraftfahrzeugscheinwerfer
EP2910847B1 (de) Lichtmodul eines Kraftfahrzeugscheinwerfers und Scheinwerfer mit einem solchen Lichtmodul
EP2828571B1 (de) Projektionsmodul für ein kraftfahrzeug
DE102004035761B4 (de) Leuchteneinheit zur Erzeugung einer Abschneidelinie und diese verwendender Fahrzeugscheinwerfer
EP3803196B1 (de) Lichtmodul für einen kfz-scheinwerfer
EP2386792B1 (de) LED-Lichtmodul
EP2799761A2 (de) Lichtmodul für einen Kraftfahrzeugscheinwerfer
EP3833903B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer aus einer vielzahl von mikro-optiksystemen
WO2018086829A1 (de) Beleuchtungsvorrichtung, insbesondere für ein kraftfahrzeug
EP2742281A1 (de) Led-lichtquellenmodul für einen led-kraftfahrzeugscheinwerfer
EP3372890B1 (de) Kraftfahrzeugscheinwerferlichtmodul
DE102011054234A1 (de) Beleuchtungsvorrichtung
DE102012106490A1 (de) Scheinwerfer für Fahrzeuge
EP3699486B1 (de) Scheinwerfer mit einer mehrzahl von halbleiterlichtquellen und einem einstückigen primäroptikfeld
EP3063463A1 (de) Beleuchtungsvorrichtung für einen kraftfahrzeugscheinwerfer
EP3657066B1 (de) Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen einer lichtverteilung mit hell-dunkel-grenze
EP3571437B1 (de) Leuchtvorrichtung für einen kraftfahrzeugscheinwerfer
DE102015219211A1 (de) Lichtmodul für eine Kfz-Beleuchtungseinrichtung
EP1925876B1 (de) LED-Lichtquellensystem
DE202015103844U1 (de) Fahrzeugbeleuchtungsbaugruppe mit Doppelstrahlenmuster
EP3719391B1 (de) Teilfernlichtmodul für einen kraftfahrzeugscheinwerfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1350286

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018003471

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018003471

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

26N No opposition filed

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201230

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181122

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 6

Ref country code: DE

Payment date: 20231121

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230