WO2023039904A1 - 用于车灯照明装置的光学反射系统和车灯照明装置 - Google Patents

用于车灯照明装置的光学反射系统和车灯照明装置 Download PDF

Info

Publication number
WO2023039904A1
WO2023039904A1 PCT/CN2021/119443 CN2021119443W WO2023039904A1 WO 2023039904 A1 WO2023039904 A1 WO 2023039904A1 CN 2021119443 W CN2021119443 W CN 2021119443W WO 2023039904 A1 WO2023039904 A1 WO 2023039904A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
light
reflective surface
optical
reflective
Prior art date
Application number
PCT/CN2021/119443
Other languages
English (en)
French (fr)
Inventor
张洁
陈佳缘
董世琨
周浩
桑文慧
祝贺
Original Assignee
华域视觉科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华域视觉科技(上海)有限公司 filed Critical 华域视觉科技(上海)有限公司
Priority to CN202180100453.XA priority Critical patent/CN117730230A/zh
Priority to PCT/CN2021/119443 priority patent/WO2023039904A1/zh
Priority to EP21957181.7A priority patent/EP4206524A4/en
Publication of WO2023039904A1 publication Critical patent/WO2023039904A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated

Definitions

  • the present disclosure relates to a vehicle light illuminating device, and in particular, the present invention relates to an optical reflection system for a vehicle light illuminating device and a vehicle light illuminating device.
  • an optical collimating element such as a collimating lens is arranged in a vehicle lighting device to obtain approximately parallel outgoing light beams.
  • a lighting device having at least one collimating lens, preferably aspherical.
  • the patent application CN212618084U discloses a bidirectional collimating lens and a vehicle lamp system thereof.
  • the inventors of the present disclosure found that in the existing car lighting device using collimating lenses as optical collimating elements, the curved surface on the collimating lens is a curved surface of revolution based on the optical axis of the lens, and the imaging characteristics of the collimating lens are various Homosexual.
  • the lighting light shape of the vehicle lighting device has anisotropic requirements. For example, for the low beam lighting light shape, the vertical lighting angle needs to be small, and the left and right lighting angles are large. For this reason, the vehicle lighting device based on the collimating lens needs to form a basic light shape with a certain width through an additional optical system, and then image it to the road surface through the collimating lens, which will make the structure of the vehicle lighting device relatively complicated.
  • the lens since there is a certain distance between the light incident surface and the light exit surface of the bidirectional collimator lens, that is, the lens has a certain thickness, when the light that needs to be formed
  • the aspect ratio of the shape is set to a large value
  • the focal length of the light-incident surface and the light-exit surface differ greatly, so the distance between the light-incidence surface and the light-exit surface is relatively large, resulting in increased lens volume and heavy weight.
  • the bidirectional collimator lens is generally injection-molded from transparent plastic, and the thicker it is, the longer the injection molding process time will be, resulting in a slower production cycle, which is not conducive to mass production.
  • Exemplary embodiments of the present disclosure provide an optical reflection system for a vehicle light lighting device
  • the vehicle light lighting device may include a primary optical system having a light source
  • the optical reflection system may be configured to receive A light beam emitted by a light source of the system
  • the optical reflection system may include a first reflector having a first reflective surface and a second reflector having a second reflective surface
  • the first reflective surface may be configured to face light in a first direction collimating
  • the second reflective surface may be configured to collimate the light in a second direction orthogonal to the first direction
  • the first reflective surface and the second reflective surface may have curved shapes characterized by contour lines
  • the first reflective surface and the second reflective surface may have curved shapes characterized by contour lines
  • the first The first reflective surface and the second reflective surface can be curved surfaces formed by stretching the corresponding contour lines along the normal direction of the plane where the contour lines are located, and the optical reflection system can be configured such that: the light beam emitted from the primary optical system with the light source After being reflected
  • the contour line may comprise a parabola or a parabola-like curve.
  • the first direction may be a horizontal direction or a vertical direction.
  • the contour line shape of each of the first reflective surface and the second reflective surface can be set such that the light of the light beam obtained after being reflected by each of the first reflective surface and the second reflective surface The diffusion angle changes as the contour shape of each of the first reflective surface and the second reflective surface changes.
  • the focal length of the first reflective surface may be set to be different from the focal length of the second reflective surface.
  • the first reflector and the second reflector may be adjacently disposed on the same side of the light source, or the first reflector and the second reflector may be disposed on opposite sides of the light source.
  • the primary optical system may be a primary optical system having a cutoff structure, and the focal point of the optical reflection system may be set at the cutoff structure.
  • the first reflector may include a plurality of first reflective surfaces
  • the optical reflection system may be configured such that the light beam emitted from the primary optical system with the light source can be reflected by the first reflector and reflected by the second reflector. After reflection, it emits in a manner close to parallel beams, thus forming a matrix lighting light shape of the car lighting device.
  • the first reflective surface and the second reflective surface of the optical reflection system may be formed by plating with a plating material.
  • the plating material of the first reflective surface and the second reflective surface may be at least one of aluminum, chromium, nickel, silver and gold.
  • the first reflector and the second reflector may be manufactured separately and assembled in place in the vehicle lighting fixture by connecting fasteners.
  • the first reflector and the second reflector may be integrally formed.
  • the primary optical system may include a third reflector configured to reflect light from the light source and direct it to the optical reflection system.
  • the primary optical system may include a light concentrator, which may be configured to collimate and converge the light from the light source and guide it to the optical reflection system, and the lower edge of the light concentrator may be provided with a cut-off line structure.
  • a light concentrator which may be configured to collimate and converge the light from the light source and guide it to the optical reflection system, and the lower edge of the light concentrator may be provided with a cut-off line structure.
  • the reflective optical system may include an additional fourth reflector, and the first reflector, the second reflector, and the fourth reflector may be configured to collectively form a focal point or focal region of the reflective optical system.
  • the present disclosure provides a vehicle lighting device including the above optical reflection system.
  • the optical reflection system comprising two reflectors of the present disclosure
  • collimation and convergence of light beams from a light source in two mutually orthogonal directions can be realized.
  • the optical reflection system structure of the present disclosure has a simple and compact structural design, is easy to manufacture, further improves production efficiency and has significant cost-effectiveness.
  • the vehicle lamp lighting device including the optical reflection system of the present disclosure by setting the focal length of the first reflective surface of the first reflector to be different from the focal length of the second reflector, it is possible to realize illumination light with a large aspect ratio shape.
  • the first reflector and the second reflector of the optical reflection system disclosed in the present disclosure can be constructed relatively independently, have high design flexibility, and can effectively control the direction of the light beam and the range of diffusion, so that an ideal illumination light shape can be obtained as required, and at the same time, It meets the light distribution requirements of the national standard GB25991-2010 for car lighting devices.
  • FIG. 1 is a schematic diagram of a lighting device for a vehicle light including a primary optical system and an optical reflection system according to an exemplary embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of the optical path of a single rotating parabolic reflector
  • FIG. 3 is a schematic diagram of an optical path of an optical reflection system having a first reflector and a second reflector according to an exemplary embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of light paths of light beams in the vertical direction of the optical reflection system of FIG. 3 according to an exemplary embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of an optical path of light beams in the horizontal direction of the optical reflection system of FIG. 3 according to an exemplary embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of a low-beam lighting light shape with a cut-off line
  • Fig. 7 is a schematic diagram of a high beam illumination light shape with a central maximum
  • FIGS. 8A and 8B are schematic diagrams of optical paths of optical reflection systems according to exemplary embodiments of the present disclosure, wherein the first reflection surface is a quasi-paraboloid;
  • FIG. 9 is a schematic diagram of an optical path of an optical reflection system having a first reflector and a second reflector according to an exemplary embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of an optical path of light beams in the horizontal direction of the optical reflection system of FIG. 9 according to an exemplary embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of light paths of light beams in the vertical direction of the optical reflection system of FIG. 9 according to an exemplary embodiment of the present disclosure
  • Fig. 12 is a schematic diagram of an optical path of a vehicle lighting device according to an exemplary embodiment of the present disclosure
  • Fig. 13 is a schematic diagram of an optical path of a vehicle lighting device according to another exemplary embodiment of the present disclosure.
  • FIGS. 14 and 15 are schematic light path diagrams of a vehicle lighting device according to an exemplary embodiment of the present disclosure, wherein the primary optical system of the vehicle lighting device includes a light source and a third reflector having multiple reflecting surfaces;
  • 16 and 17 are schematic light path diagrams of a vehicle lighting device according to an exemplary embodiment of the present disclosure, wherein the lower boundary of the third reflector of the primary optical system of the vehicle lighting device is formed with a cut-off line structure;
  • FIG. 18 to 20 are perspective views of a vehicle lamp lighting device having the light path shown in FIG. 15 according to an exemplary embodiment of the present disclosure
  • FIG. 21 is a front view of the vehicle lamp lighting device shown in FIG. 18 according to an exemplary embodiment of the present disclosure
  • FIG. 22 is a cross-sectional view of the vehicle lamp lighting device shown in FIGS. 18 and 19 according to an exemplary embodiment of the present disclosure
  • Fig. 23 is an optical path diagram of the vehicle light illuminating device shown in Fig. 22 according to an exemplary embodiment of the present disclosure
  • FIG. 24 is a front view of a second reflector according to an exemplary embodiment of the present disclosure.
  • 25 is a longitudinal sectional view of a second reflector according to an exemplary embodiment of the present disclosure.
  • 26 is a lateral cross-sectional view of a second reflector according to an exemplary embodiment of the present disclosure
  • FIG. 27 is a front view of a first reflector according to an exemplary embodiment of the present disclosure.
  • 29 is a lateral cross-sectional view of a first reflector according to an exemplary embodiment of the present disclosure.
  • FIG. 30 is a schematic diagram of an optical path of an optical reflection system according to another exemplary embodiment of the present disclosure, wherein the optical reflection system includes a fourth reflector;
  • Figure 31 is a schematic diagram of the light shape formed by the light reflected by a single rotating parabolic reflector when a 1mmx1mm LED light-emitting chip is placed at the focus of a single rotating parabolic reflector;
  • Fig. 32 is a schematic diagram of the light shape formed by the light projected by the optical reflection system when the 1mmx1mm LED light-emitting chip is placed at the focal point of the optical reflection system of the present disclosure.
  • Vehicle lighting devices in particular vehicle headlights, usually comprise a primary optics system with a light source and optical collimation elements in order to achieve a desired lighting pattern.
  • Bi-directional collimating lenses are used as optical collimation elements in some existing car lighting devices, but when the car lighting device needs to obtain an illumination light shape with a large aspect ratio, the bi-directional collimating lens is usually Manufactured to be bulky and heavy, thus resulting in low production efficiency and high cost.
  • the present disclosure provides an optical reflection system for a vehicle lighting device.
  • An exemplary embodiment of a vehicle lighting device with an optical reflection system according to the present disclosure will be described below with reference to FIG. 1 .
  • FIG. 1 is a schematic diagram of a lighting device for a vehicle light including a primary optical system and an optical reflection system according to an exemplary embodiment of the present disclosure.
  • the primary optical system has a light source 80, and the optical reflection system is configured to reflect the light of the light source 80 that exits through the primary optical system.
  • the primary optical system may include a third reflector 70, and the light beam emitted by the light source 80 may be reflected by the third reflector 70, and then received and reflected by the optical reflection system to form the illumination light shape of the vehicle lighting device.
  • the third reflector 70 in the primary optical system may be a parabola or quasi-parabola reflector, and the focal point of the optical reflection system may be set on the reflective surface of the third reflector 70 .
  • the reflective optical system includes a first reflector with a first reflective surface 10 and a second reflector with a second reflective surface 20 .
  • the first reflective surface 10 is configured to collimate light in a first direction
  • the second reflective surface 20 is configured to collimate light in a second direction orthogonal to the first direction.
  • the first reflective surface 10 and the second reflective surface 20 have curved shapes characterized by contour lines.
  • the first reflective surface 10 and the second reflective surface 20 are respectively curved surfaces formed by stretching corresponding contour lines along the normal direction of the plane where the contour lines are located.
  • the optical reflection system is configured such that the light emitted from the primary optical system with the light source is reflected by the first reflector and the second reflector and exits in a nearly parallel light beam, thereby forming an illumination light shape of the vehicle lighting device.
  • a "light source” may particularly denote a source of light (eg a device or device that emits light).
  • the light source may be a light emitting diode (LED) that emits light when activated.
  • a light source may be essentially any light source or light emitter including, but not limited to, light emitting diodes (LEDs), lasers, fluorescent lights, incandescent lights, and the like.
  • a primary optical system is configured to receive light from a light source, and to guide and transmit the received light to form a primary light distribution that is projected by a reflective optical system to form the desired illumination light shape.
  • the first reflector can be a first mirror and the second reflector can be a second mirror. In some embodiments, either of the first reflector and the second reflector may be a parabolic reflector.
  • parabolic reflector means in particular a reflector having a reflective surface with a parabolic profile in cross-sectional shape formed by stretching a parabola along a direction normal to the plane in which the parabola lies surface.
  • the generatrix forming the reflective surface is a parabola
  • the reflective surface of the parabolic reflector is a parabola formed by stretching a parabola in one direction.
  • Each section line of the reflective surface taken along a plane perpendicular to the stretching direction Corresponding to a focal point, the reflective surface corresponds to a focal line.
  • the illumination light shape formed by the optical reflection system shown in FIG. 1 may be the high beam illumination light shape with a central maximum as shown in FIG. 7 .
  • the focal point of the optical reflection system shown in FIG. 1 can be arranged on the reflection surface of the third reflector 70, to form the high beam light shape as shown in FIG.
  • the maximum value area of the light intensity center can be arranged on the reflection surface of the third reflector 70, to form the high beam light shape as shown in FIG.
  • the maximum value area of the light intensity center so as to meet the light distribution requirements of the high beam with sufficient luminous intensity (refer to the relevant provisions of the national standard "LED Headlights for Automobiles" (GB25991-2010)).
  • Figure 2 shows the schematic diagram of the optical path of a single rotating parabolic reflector.
  • the single rotating parabolic reflector 50 is an axisymmetric quadric reflector.
  • the light source is located at the focal point 501 , the light beam emitted by the light source is reflected by the rotating parabolic reflector 50 to obtain a parallel light beam.
  • FIG. 3 shows a schematic diagram of an optical path of an optical reflection system having a first reflector and a second reflector according to an exemplary embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of light paths of light beams in the vertical direction of the optical reflection system of FIG. 3 according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an optical path of light beams in the horizontal direction of the optical reflection system of FIG. 3 according to an exemplary embodiment of the present disclosure.
  • the light beam is collimated in two directions generally orthogonal to the direction of propagation of the light beam.
  • the two collimation directions are mutually orthogonal to each other.
  • the light beam may be collimated in a horizontal direction (eg, the x-y plane of the coordinate system shown in FIG. 4 ) as well as in a vertical direction (eg, the z direction).
  • horizontal and vertical directions may be determined with respect to an arbitrary frame of reference, and a parallel beam of light provided by an optical reflective system is said to be horizontally collimated and vertically collimated.
  • the first direction will be the horizontal direction and the second direction will be the vertical direction below (that is, the first reflective surface 10 is configured to collimate the light beam in the horizontal direction, and the second reflective surface 20 is configured to collimate the light beam in the vertical direction.
  • the beam is collimated in the direction) for illustration.
  • the first reflective surface 10 has a converging effect on the light beam in a horizontal section (that is, a section taken along the horizontal direction), namely It can have a certain collimating effect on the light beam.
  • the first reflective surface 10 has no collimating effect on the light beam in the vertical section (that is, the section taken along the vertical direction) (the first reflective surface 10 along the The section curve in the section taken in the vertical direction is a straight line), and the first reflective surface 10 has a single-direction collimating effect on the light beam within the scope of the horizontal section, that is to say, the collimation direction of the first reflective surface 10 is limited to the horizontal direction.
  • “Vertical collimation” can specifically mean: Referring to Fig. 4, the second reflective surface 20 has a converging effect on the beam in the vertical section, that is, it can have a certain collimation effect on the beam. Compared with Fig. 5, the first The second reflective surface 20 has no collimating effect on the light beam in the horizontal section, and the second reflective surface 20 has a single-direction collimating effect on the light beam in the vertical section range, that is to say, the collimation direction of the second reflective surface 20 is limited. in vertical orientation.
  • the second reflective surface 20 has an optical feature similar to that of the first reflective surface 10 to collimate the light beam emitted by the light source in one direction.
  • the first reflective surface 10 of the optical reflection system can be configured to collimate light in the horizontal direction (see FIG. 5 ), and the second reflective surface 20 Can be configured to collimate light in the vertical direction (see Figure 4).
  • the optical reflection system shown in Figure 3 makes the diffusion degree of the light beam in the horizontal direction larger than that in the horizontal direction.
  • the degree of diffusion in the vertical direction can obtain an illumination light shape that is wider in the horizontal direction and relatively narrow in the vertical direction, that is, it can form an illumination light shape that is wide left and right and narrow up and down.
  • a 1mmx1mm LED light-emitting chip is placed at the focal point of a single rotating paraboloid (such as the single rotating paraboloid 50 shown in FIG. 2 ) to form a square light spot as shown in FIG. 31 .
  • a single rotating paraboloid such as the single rotating paraboloid 50 shown in FIG. 2
  • the 1mmx1mm LED light-emitting chip is placed at the focal point of the bidirectional collimation optical reflection system shown in Figure 3 of the present invention, then form a rectangular asymmetric light spot as shown in Figure 32, because the focal length of the first reflection surface is smaller than that of the first reflection surface
  • the focal length of the two reflective surfaces so the length of the light spot shown in Figure 32 in the horizontal direction is greater than that in the vertical direction.
  • the first reflective surface 10 is a parabola-shaped generatrix (first contour line 15 ) along the normal direction of the plane where the generatrix is located (No. A stretching direction A) a curved surface formed by stretching, the second reflective surface 20 stretches the parabolic generatrix (second contour line 25) along the normal direction (second stretching direction B) of the plane where the generatrix is located surface formed.
  • the generatrix of the first reflective surface 10 of the first reflector is the first contour line
  • the generatrix of the second reflective surface 20 of the second reflector is the second contour line 25
  • the first contour of the first reflective surface 10 The normal direction of the plane where the line 15 is located is the first stretching direction A, that is, the plane where the first contour line 15 of the first reflective surface 10 is located is perpendicular to the first stretching direction A.
  • the normal direction of the plane where the second contour line 25 of the second reflective surface 20 of the second reflector is located is the second stretching direction B, that is, the plane where the second contour line 25 of the second reflective surface 20 is located and the second stretching direction B vertical.
  • the second reflective surface 20 has a focal line, the intersection of the vertical plane passing through the focal point 300 of the optical reflective system and the focal line intersection of the second reflective surface 20 is the first focal point 200, the focal point 300 of the optical reflective system and the second reflector
  • the first focal point 200 of the surface 20 may be a mirror image (see FIG. 4 ) with respect to the first elongated guideline 101 , which is the vertical plane passing through the focal point 300 of the reflective optical system and the first reflective surface. 10 intersecting intersecting lines.
  • the focal point 300 of the optical reflection system and the first focal point 200 of the second reflective surface 20 are mirror images with respect to the first elongated guideline 101, by comparing the first elongated guideline 101 with respect to the first focal point 200 of the second reflective surface
  • the position of the focus 300 of the optical reflection system can be adjusted by adjusting the position.
  • the position of the focal line of the second reflective surface can be determined.
  • the connecting line between the focal point 300 of the optical reflection system and the first focal point 200 of the second contour line of the second reflective surface 20 and the first drawing guide line 101 can form an angle b, so it is possible to change the first reflective surface 10
  • the position of the angle b is further changed to adjust the position of the focal point 300 of the optical reflection system.
  • the focus 300 of the optical reflection system can be adjusted by adjusting the relative position of the first focus 200 of the first reflection surface 10 relative to the second contour line of the second reflection surface 20 Therefore, the flexible spatial structure arrangement of the two reflective surfaces can be realized while keeping the light output direction unchanged, thereby further improving the applicability of the optical reflective system on vehicles.
  • the contour of the reflective surface may include a parabola or a parabola-like curve.
  • both the first contour line of the first reflective surface 10 and the second contour line of the second reflective surface 20 are parabolas. If a light source is set at the focal point 300 of the optical reflection system, the light beam emitted by the light source can be collimated in the horizontal direction after being reflected by the first reflecting surface 10, and can be collimated in the vertical direction after being reflected by the second reflecting surface 20. collimation.
  • FIG. 8A is a schematic diagram of the optical path of the light beam in the vertical direction of the optical reflection system according to another exemplary embodiment of the present disclosure
  • FIG. 8B is a light beam in the horizontal direction of the optical reflection system according to another exemplary embodiment of the present disclosure.
  • the first contour line of the first reflective surface 10 may be a parabola
  • the second contour line of the second reflective surface 20 may be a parabola.
  • the shape of the outline of the reflective surface of the reflector is configured so that the light beam reflected by the reflective surface presents a light diffusion angle.
  • the optical reflective system is configured such that the parallel light beams are reflected by the first reflective surface 10 and the second reflective surface 20 and converge to a line segment or close to the line segment area.
  • a light source is arranged near the focal point 300 of the optical reflection system, that is, the light beam emitted by the light source can be diffused in the horizontal direction after being reflected by the first reflective surface 10, for example, diffused at a certain diffusion angle (see, for example, angle a in FIG. 8 ).
  • the divergence angle in the horizontal direction is in the range between 5° and 60°.
  • the outline shape of each of the first reflective surface and the second reflective surface can be set so that the light diffusion angle of the light beam obtained after being reflected by each of the first reflective surface and the second reflective surface increases with the first reflective surface.
  • the shape of the contour line of each of the reflective surface and the second reflective surface is changed. Therefore, by changing the shape of the first contour line of the first reflective surface, the diffusion angle of the light beam reflected by the first reflective surface in the horizontal direction can be adjusted, and/or by changing the second contour of the second reflective surface
  • the shape of the line adjusts the diffusion angle of the light beam reflected by the second reflective surface in the vertical direction.
  • the contour line shape of one or both of the first reflective surface and the second reflective surface it is possible to adjust the light diffusion angle of the light beam reflected through the corresponding reflective surface. adjust. Therefore, the shapes of the first reflective surface and the second reflective surface can be respectively set according to the requirements of the horizontal and vertical light diffusion ranges of the specific illumination light shape, thereby improving the design flexibility.
  • FIG. 9 to 11 are schematic diagrams of light paths of an optical reflection system according to another exemplary embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an optical path of an optical reflection system having a first reflector and a second reflector according to an exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of an optical path of light beams in the horizontal direction of the optical reflection system of FIG. 9 according to an exemplary embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of light paths of light beams in the vertical direction of the optical reflection system of FIG. 9 according to an exemplary embodiment of the present disclosure. Differences between the optical reflection system shown in FIG. 3 and the optical reflection system shown in FIG. 9 will be described below.
  • the first reflective surface 10 of the optical reflection system shown in FIG. 9 is configured to collimate light in the vertical direction
  • the second reflective surface 20 is configured to to collimate the light in the horizontal direction.
  • the optical reflective system shown in Figure 9 makes the degree of diffusion of the light beam in the horizontal direction smaller than that in the vertical direction. According to the degree of diffusion in the direction, an illumination light shape with a narrow horizontal direction and a relatively wide vertical direction can be obtained, that is, an illumination light shape with narrow left and right and wide up and down can be formed.
  • the focal length of the first reflective surface may be set to be greater than the focal length of the second reflective surface.
  • the optical reflection system of the present disclosure by setting the focal length of the first reflective surface of the first reflector to be different from that of the second reflector, an illumination light shape with a larger aspect ratio can be realized.
  • the first reflector and the second reflector of the optical reflection system of the present disclosure can be constructed and arranged relatively independently, have high design flexibility, and can effectively control the optical path direction and diffusion range of the light beam in the horizontal direction and vertical direction, so that it can be According to the needs, the ideal lighting light shape can be obtained, and at the same time, it can meet the light distribution requirements of the national standard GB25991-2010 for the lighting device of the car light.
  • Fig. 12 is a schematic diagram of an optical path of a vehicle lighting device according to an exemplary embodiment of the present disclosure.
  • the primary optical system includes a light source 80 and a third reflector (for example, a third reflector) 701 , and the third reflector 701 of the primary optical system shown in FIG. 12 It may be an ellipsoidal or quasi-ellipsoidal reflector, and a light-shielding plate is arranged in front of the reflector, and the light-shielding plate includes a cut-off line structure 60 .
  • the cut-off structure 60 is designed to form an illumination light pattern with a light and dark cut-off.
  • the focal point of the optical reflection system can be set on the cut-off line structure 60, and the vehicle light lighting device correspondingly forms a low-beam lighting light shape with a light and dark cut-off line as shown in FIG. 6 .
  • the cut-off line structure 60 is arranged between the third reflector 701 and the optical reflection system including the first reflector and the second reflector.
  • the primary optical system is configured to basically converge the light beam emitted by the light source 80 to the focal point or focal area of the optical reflection system through the third reflector 701, and the focal point of the optical reflection system can be set on the cut-off line structure 60, so that a light and dark light beam can be formed. Illumination light shape for the cutoff line.
  • Fig. 13 is a schematic diagram of an optical path of a vehicle lighting device according to another exemplary embodiment of the present disclosure.
  • the primary optical system of the vehicle lighting device includes a light source 80 and Concentrator 702 .
  • the light concentrator 702 can be a transparent light guide body, and the light concentrator 702 can be configured to receive the light emitted from the light source 80 , collimate and converge the received light, and guide it to an optical reflection system.
  • a cut-off line structure 600 is arranged on the lower edge of the light-emitting surface of the concentrator 702, and the focus of the optical reflection system can be set on the cut-off line structure 600.
  • the cut-off line refers to the boundary line where the light and shade changes significantly when the light beam is transmitted to the light distribution screen. Therefore, by setting the focal point of the optical reflection system on the cut-off line structure 60 or 600, a low-beam lighting light shape with a clear cut-off line can be obtained. It can be seen from Fig. 6 that the low beam light pattern formed by projecting the light distribution test on the light distribution screen according to the vehicle lamp lighting device including the optical reflection system according to the present disclosure has a clear cut-off line, which is in line with the current According to the relevant provisions of the national standard "LED Headlights for Automobiles" (GB25991-2010), there are no situations where multiple cut-off lines are visible to the eye.
  • a vehicle lighting device includes a primary optical system and an optical reflection system, and the primary optical system includes a plurality of light sources 800 and a third reflector with a plurality of reflective surfaces 703, for example, the primary optical system includes 5 light sources 800 and a third reflector 703 with 5 reflective surfaces, the optical reflective system includes a first reflective surface 10 and a second reflective surface 20, the focus of the optical reflective system can be set at On the third reflector 703 with 5 reflective surfaces, the car light lighting device can form a group of ADB light shapes with 5 light spots, thereby realizing high beam ADB lighting.
  • a vehicle lighting device may include a primary optical system and an optical reflection system.
  • the primary optical system includes a plurality of light sources 800 and a third reflector with a plurality of reflective surfaces. 704 , the optical reflection system includes multiple first reflection surfaces and one second reflection surface 20 .
  • the primary optical system includes 20 light sources 800 and a third reflector 704 with 20 reflective surfaces
  • the optical reflective system includes four first reflective surfaces 11, 12, 13 and 14 and one first reflective surface Two reflective surfaces 20 .
  • the car light lighting device shown in Figure 15 can form an illumination area with 20 light spots (4 groups in total, 5 light spots in each group).
  • the 4 groups of lighting areas are interlaced and superimposed to form an ADB light shape with narrower pixels, so that the far-reaching Light ADB lighting and light shape control accuracy is higher.
  • the car light lighting device shown in Figure 15 can form multiple sets of matrix light shapes, and after superposition of multiple sets of matrix light shapes, a number of parallel and connected pixels can be formed, so that far Optical ADB light shape control has higher precision.
  • the primary optical system can be configured to cooperate with the optical reflection system to form multiple sets of matrix illumination light shapes.
  • the vehicle lighting device may include a primary optical system and an optical reflection system
  • the primary optical system may include a light source 800 and a third reflector 705, the third reflector
  • the lower boundary of 705 is formed with a cut-off line structure 600.
  • the optical reflection system may include a first reflective surface 10 and a second reflective surface 20.
  • the focus of the optical reflection system may be set on the cut-off line structure 600.
  • the vehicle lighting device may form a The low-beam lighting light shape with the cut-off line shown in Figure 6.
  • the vehicle light lighting device of the exemplary embodiment of the present disclosure shown in FIG. 17 is basically the same as the vehicle light lighting device of the exemplary embodiment of the present disclosure shown in FIG.
  • the positions of the first reflective surface 10 and the second reflective surface 20 of the optical reflective system of the vehicle lighting device of the exemplary embodiment are different relative to the light source.
  • both the first reflector and the second reflector can be arranged on the upper side of the light source 800 in the vertical direction, collimated by the first reflector and the second reflector The reflected light exits above the light source.
  • both the first reflector and the second reflector can be arranged on the upper side of the light source 800 in the vertical direction, collimated by the first reflector and the second reflector The reflected light exits above the light source.
  • FIG. 16 in the embodiment shown in FIG.
  • both the first reflector and the second reflector can be arranged on the lower side of the light source 800 in the vertical direction, and after being collimated and reflected by the first reflector and the second reflector The rays of light exit below the light source. Therefore, the positions of the first reflector and the second reflector relative to the light source can be designed according to the space in the lamp body of the specific vehicle lamp, thereby increasing the adaptability of the vehicle lamp lighting device including the optical reflection system, and can be applied to various types on the headlights.
  • two reflectors may be placed adjacently on the same side of the light source (see Figure 12 or Figure 13). In some embodiments, two reflectors can be arranged on opposite sides of the light source (refer to FIG. 17 ), thereby significantly saving installation space, improving space utilization, and reducing the overall size of the optical reflection system, thus The applicability of the vehicle lamp lighting device including the optical reflection system on the vehicle is greatly improved.
  • the relative positions of the first reflective surface 10 of the first reflector and the second reflective surface 20 of the second reflector of the optical reflection system can be flexibly adjusted and changed, thereby better adapting to the installation space of the vehicle lighting device .
  • the optical reflection system used for the vehicle lighting device may also include a plurality of additional reflectors.
  • the optical reflection system may also include parameters such as the direction of the light
  • the adjusted fourth reflector includes a fourth reflective surface 400 .
  • the fourth reflector is a flat mirror configured to only redirect light rays.
  • the fourth reflector can also be configured as a curved surface. The curved fourth reflector can not only change the light direction, but also redistribute the light to make the light shape better.
  • the light emitted from the light source may exit through the optical reflection system along the direction of the light path.
  • the fourth reflector may be arranged downstream of the light source and upstream of the first reflector along the optical path direction and configured to receive light emitted from the light source of the primary optical system and reflect the received light to the first reflector. a reflector.
  • a fourth reflector may be disposed between the first reflector and the second reflector, and configured to receive and reflect light collimated by the first reflector to the second reflector, the fourth reflector
  • the reflector is used as an additional light distribution element to further adjust the parameters such as the direction of the light, which is beneficial to redistribute the light collimated and reflected by the first reflector and then reflect it to the second reflector to form a consistent lighting The ideal lighting shape needed.
  • the fourth reflector can be arranged downstream of the second reflector along the direction of the optical path, that is, the fourth reflecting surface 400 of the fourth reflector can be arranged at the second position along the direction of the optical path.
  • the downstream of the second reflective surface 20 is configured to receive and reflect the light collimated and reflected by the second reflective surface 20 to form an illumination light shape, so the fourth reflector is used as an additional light distribution element, which is beneficial to the first Both the reflector and the second reflector collimate and reflect the light and distribute it again, so as to form an ideal lighting light shape that meets lighting requirements.
  • the optical reflection system may include a first reflector, a second reflector and an additional fourth reflector, wherein the first reflector, the second reflector and the additional fourth reflector may be used to jointly form The focal point of the optical reflection system.
  • the light emitted by the light source can be better adjusted in the outgoing direction of the light through multi-stage reflection, so as to better form a desired light shape. It should be understood that the number of reflectors and the relative positions of each reflector can be selected according to the desired light shape and light distribution requirements.
  • the vehicle lamp lighting device having the optical path shown in FIG. 15 according to the exemplary embodiment of the present disclosure will be described below with reference to FIGS. 18 to 29 .
  • the vehicle lighting device includes a primary optical system and an optical reflection system, and the primary optical system includes a light source 800 and a third reflector with multiple reflective surfaces 700.
  • the optical reflection system includes multiple first reflection surfaces 10 (for example, six first reflection surfaces) and one second reflection surface 20.
  • the first reflective surface 10 of the first reflector 110 has a linear shape in a section taken along the longitudinal direction (vertical direction) (refer to FIG. 28), and the first reflective surface 10 of the first reflector 110 is in the It has a parabolic shape in a cross section taken along the lateral direction (horizontal direction) (see FIG. 29 ).
  • the first reflective surface 10 of the first reflector 110 has a curved shape characterized by a parabola, and the curved shape is a curved surface where the parabola is stretched along the normal direction of the plane where the parabola is located. Accordingly, the first reflector 110 is a parabolic reflector and is configured to collimate light in the horizontal direction.
  • the second reflector 210 includes the second reflective surface 20 .
  • the second reflective surface 20 of the second reflector 210 has a parabolic shape in a section taken along the longitudinal direction (vertical direction) (refer to FIG. It has a linear shape in a cross-section taken (horizontally) (see FIG. 26 ).
  • the second reflective surface 20 of the second reflector 210 has a curved shape represented by a parabola, and the curved shape is a curved surface where the parabola is stretched along the normal direction of the plane where the parabola is located.
  • the second reflector 210 is a parabolic reflector and is configured to collimate light in a vertical direction.
  • the optical reflection system structure of the present disclosure has a simple and compact structural design, is easy to manufacture, further improves production efficiency and has significant cost-effectiveness.
  • the first reflective surface 10 of the first reflector 110 of the optical reflection system and the first reflective surface 20 of the second reflector 210 are made by using plating It is achieved by plating the cladding material.
  • the first reflective surface 10 and the second reflective surface 20 are realized by aluminum or silver plating.
  • the coating materials of the first reflective surface 10 of the first reflector 110 of the optical reflection system and the first reflective surface 20 of the second reflector 110 may include but not limited to: aluminum, chromium, nickel, silver and gold.
  • the first reflector 110 and the third reflector 700 can be formed as one piece, the first reflector 110 and the second reflector 210 are manufactured separately, and the first reflector 110 and the second reflector
  • the device 210 is detachably assembled in place in the vehicle lamp lighting device by fastening connectors (such as screws) 33 .
  • the first reflector 110 and the second reflector 210 are assembled in place in the vehicle lamp lighting device through snap connection, bonding, riveting, welding, etc. The positioning in the body is accurate, the fixation is good, and movement is prevented.
  • the first reflector 110 and the second reflector 210 may be formed as an integral molding. It should be understood that, in some implementations, under the condition of meeting the lighting requirements, the selected reflectors can be constructed in the form of two-by-two arrangement in one piece according to the actual space of the lamp body.
  • the car lighting device also includes a circuit board 31 for installing the light source 800
  • the circuit board 31 is provided with a radiator 32
  • the radiator 32 can improve the heat dissipation performance of the circuit board 31, and avoid the light source 800 If the temperature is too high, improve the stability of the light source 800 .
  • the third reflector 700 arranged under the light source of the primary optical system forms an integral structure with the first reflector 110 having the first reflective surface 10, and the integral structure formed by the third reflector 700 and the first reflector 110 is integrated with
  • the second reflector 210 having the second reflective surface 20 , the circuit board 31 , and the heat sink 32 are connected by fastening connectors 33 . Referring to the exemplary optical path diagram shown in FIG.
  • the light beam emitted by the light source 800 is first partially converged by the third reflector 700, and then reflected by the first reflective surface 10 of the first reflector 110 to achieve horizontal collimation. After being reflected by the second reflective surface 20 of the second reflector 210, collimation in the vertical direction can be realized.
  • the focal length of the first reflective surface 10 is different from the focal length of the first reflective surface 20, the It is desirable to form an ideal illumination light shape with a large aspect ratio.
  • the present disclosure provides an optical reflection system for a vehicle lighting device capable of collimating and converging light beams from a light source in two directions substantially orthogonal to each other.
  • the optical reflection system structure of the present disclosure has a simple and compact structural design, is easy to manufacture, further improves production efficiency and has significant cost-effectiveness.
  • the vehicle lamp lighting device including the optical reflection system of the present disclosure by setting the focal length of the first reflective surface of the first reflector to be different from the focal length of the second reflector, it is possible to obtain illumination light with a large aspect ratio shape.
  • the optical reflective system, vehicle lighting device of the present disclosure is reproducible and can be applied in various industrial applications.
  • the optical reflection system of the present application can be applied to a car lamp lighting device that needs to form an illumination light shape with a relatively large aspect ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种用于车灯照明装置的光学反射系统和车灯照明装置,包括具有光源(80)的初级光学系统,光学反射系统配置成接收由初级光学系统的光源(80)出射的光束,光学反射系统包括具有第一反射面(10)的第一反射器和具有第二反射面(20)的第二反射器,第一反射面(10)构造成在第一方向上对光进行准直,并且第二反射面(20)构造成在与第一方向正交的第二方向上对光进行准直,第一反射面(10)和第二反射面(20)具有由轮廓线表征的弯曲形状,弯曲形状是轮廓线沿着轮廓线所在平面的法向方向拉伸的曲面,光学反射系统配置成使得从具有光源(80)的初级光学系统出射的光束经第一反射器和第二反射器的反射后以接近平行光束的形式出射,从而形成车灯照明装置的照明光形。

Description

用于车灯照明装置的光学反射系统和车灯照明装置 技术领域
本公开涉及车灯照明装置,具体地,本发明涉及用于车灯照明装置的光学反射系统和车灯照明装置。
背景技术
本部分提供了与本公开有关的背景信息,但是这些信息并不必然构成现有技术。
为了适应不同的车灯造型以及照明光形的要求,车辆上的照明装置的形式越来越多样化,出现了近光照明装置、远光照明装置、远近光一体照明装置、辅助近光照明装置和辅助远光照明装置等,近几年关于设置有光学准直元件的车灯照明装置的新技术也层出不穷。
通常在车灯照明装置中设置光学准直元件比如准直透镜以得到近似平行的出射光束。例如,专利申请CN107208859A公开了一种照明设备,该照明设备具有至少一个优选非球面的准直透镜。另外,专利申请CN212618084U公开了一种双向准直透镜及其车灯系统。
发明内容
本部分提供本公开的一般概要,而不是本公开的全部范围或全部特征的全面披露。
本公开的发明人发现,在现有的采用准直透镜作为光学准直元件的车灯照明装置中,准直透镜上的曲面为基于透镜光轴的回转曲面,准直透镜的成像特点是各向同性的。然而,车灯照明装置的照明光形具有各向异性的要求,例如对于近光照明光形,需要上下照明角度小,左右照明角度大。为此,基于准直透镜的车灯照明装置需要通过额外的光学系统形成具有一定宽度的基础光形,再通过准直透镜成像到路面,这将使得车灯照明装置的结构相对复杂。此外,对于现有的采用双向准直透镜作为光学准直元件的车灯系统,由于双向准直透镜的入光面及出光面之间存在一定距离,即透镜具有一定厚度,当需要形成的光形的长宽尺寸比设置成较大值时,入光面焦距与出光面焦距相差较大,因而入光面和出光面之间的间距较大,导致透镜体积加大,重量较重。另外,双向准直透镜一般为透明塑料注塑成型,厚度越厚,其注塑工艺时间也较长,导致生产节拍减慢,不利于大批量生产。
因此,存在对车灯照明装置的光学准直元件进行改进的需要,以克服或缓解上述技术问题中的全部或至少一部分。
本公开的示例性实施方式提供了一种光学反射系统,该光学反射系统用于车灯照明装置,该车灯照明装置可以包括具有光源的初级光学系统,光学反射系统可以配置成接收由初级光学系统的光源出射的光束,其中,光学反射系统可以包括具有第一反射面的第一反射器和具有第二反射面的第二反射器,第一反射面可以构造成在第一方向上对光进行准直,并且第二反射面可以构造成在与第一方向正交的第二方向上对光进行准直,第一反射面和第二反射面可以具有由轮廓线表征的弯曲形状,第一反射面和第二反射面可以是将相应的轮廓线沿着轮廓线所在平面的法向方向拉伸而形成的曲面,光学反射系统可以配置成使得:从具有光源的初级光学系统出射的光束可以经第一反射器的反射以及第二反射器的反射后以接近平行光的形式出射,从而形成车灯照明装置的照明光形。
在一些实施方式中,轮廓线可以包括抛物线或类抛物线。
在一些实施方式中,第一方向可以是水平方向或竖向方向。
在一些实施方式中,第一反射面和第二反射面中的每一者的轮廓线形状可以设置成使得经由第一反射面和第二反射面中的每一者反射后获得的光束的光扩散角度随着第一反射面和第二反射面中的每一者的轮廓线形状的改变而改变。
在一些实施方式中,第一反射面的焦距可以设置成与第二反射面的焦距不同。
在一些实施方式中,第一反射器和第二反射器可以相邻地设置在光源的同一侧,或者第一反射器和第二反射器 可以设置在光源的相反的两侧。
在一些实施方式中,初级光学系统可以是具有截止线结构的初级光学系统,光学反射系统的焦点可以设置在截止线结构处。
在一些实施方式中,第一反射器可以包括多个第一反射面,光学反射系统可以配置成:从具有光源的初级光学系统出射的光束可以经第一反射器的反射以及第二反射器的反射后以接近平行光束的方式出射,从而形成车灯照明装置的矩阵式照明光形。
在一些实施方式中,光学反射系统的第一反射面和第二反射面可以是通过使用镀覆材料进行镀覆来形成的。
在一些实施方式中,第一反射面和第二反射面的镀覆材料可以为铝、铬、镍、银和金中的至少一种。
在一些实施方式中,第一反射器和第二反射器可以是单独制造的并且通过连接紧固件在车灯照明装置中组装就位。
在一些实施方式中,第一反射器和第二反射器可以是一体成型的。
在一些实施方式中,初级光学系统可以包括第三反射器,第三反射器配置成对来自光源的光进行反射并且引导至光学反射系统。
在一些实施方式中,初级光学系统可以包括聚光器,聚光器可以配置成对来自光源的光进行准直会聚并且引导至光学反射系统,聚光器的下边缘可以设置有截止线结构。
在一些实施方式中,光学反射系统可以包括附加的第四反射器,第一反射器和第二反射器和第四反射器可以构造成共同形成光学反射系统的焦点或聚焦区域。
在一些实施方式中,本公开提供了包括上述光学反射系统的车灯照明装置。
根据本公开的包括两个反射器的光学反射系统,能够实现对来自光源的光束在两个彼此正交的方向上的准直会聚。相比于现有的准直透镜元件而言,本公开的光学反射系统结构具有简单且紧凑的结构设计,易于制造,进一步提高了生产效率并且具有显著的成本效益。
根据本公开的包括光学反射系统的车灯照明装置,通过将第一反射器的第一反射面的焦距设置成与第二反射器的焦距不同,可以实现具有较大长宽尺寸比的照明光形。本公开的光学反射系统的第一反射器和第二反射器能够相对独立地构造,设计灵活度高,可以有效控制光束走向和扩散范围,从而可以根据需要获得理想的照明光形,同时又能达到国家标准GB25991-2010对车灯照明装置的配光要求。
通过以下结合附图对本公开的示例性实施方式的详细说明,本公开的上述特征和优点以及其他特征和优点将更加明显。
附图说明
参照下面结合附图对本公开的示例性实施方式的详细说明,可以更加容易地理解本公开的以上和其他目的、特点和优点。在所有附图中,相同的或对应的技术特征或组成部分将采用相同或对应的附图标记来表示。在附图中,各组成部分的尺寸和相对位置并不必然是按比例绘制出的。在附图中:
图1是根据本公开的示例性实施方式的车灯照明装置的示意图,该车灯照明装置包括初级光学系统和光学反射系统;
图2是单个旋转抛物面反射器的光路原理图;
图3是根据本公开的示例性实施方式的具有第一反射器和第二反射器的光学反射系统的光路示意图;
图4是根据本公开的示例性实施方式的图3的光学反射系统的竖向方向上的光束的光路示意图;
图5是根据本公开的示例性实施方式的图3的光学反射系统的水平方向上的光束的光路示意图;
图6是具有明暗截止线的近光照明光形的示意图;
图7是具有中心最大值的远光照明光形的示意图;
图8A和图8B是根据本公开的示例性实施方式的光学反射系统的光路示意图,其中,第一反射面为类抛物面;
图9是根据本公开的示例性实施方式的具有第一反射器和第二反射器的光学反射系统的光路示意图;
图10是根据本公开的示例性实施方式的图9的光学反射系统的水平方向上的光束的光路示意图;
图11是根据本公开的示例性实施方式的图9的光学反射系统的竖向方向上的光束的光路示意图;
图12是根据本公开的示例性实施方式的车灯照明装置的光路示意图;
图13是根据本公开的另一示例性实施方式的车灯照明装置的光路示意图;
图14和图15是根据本公开的示例性实施方式的车灯照明装置的光路示意图,其中,车灯照明装置的初级光学系统包括光源和具有多个反射面的第三反射器;
图16和图17是根据本公开的示例性实施方式的车灯照明装置的光路示意图,其中,车灯照明装置的初级光学系统的第三反射器的下边界形成有截止线结构;
图18至图20是根据本公开的示例性实施方式的具有图15所示的光路的车灯照明装置的立体图;
图21是根据本公开的示例性实施方式的图18所示的车灯照明装置的正视图;
图22是根据本公开的示例性实施方式的图18和图19所示的车灯照明装置的横截面图;
图23是根据本公开的示例性实施方式的图22所示的车灯照明装置的光路图;
图24是根据本公开的示例性实施方式的是第二反射器的正视图;
图25是根据本公开的示例性实施方式的是第二反射器的纵向截面图;
图26是根据本公开的示例性实施方式的是第二反射器的横向截面图;
图27是根据本公开的示例性实施方式的是第一反射器的正视图;
图28是根据本公开的示例性实施方式的是第一反射器的纵向截面图;
图29是根据本公开的示例性实施方式的是第一反射器的横向截面图;
图30是根据本公开的另外的示例性实施方式的光学反射系统的光路示意图,其中,该光学反射系统包括第四反射器;
图31是1mmx1mm的LED发光芯片置于单个旋转抛物面反射器的焦点上时其光线经单个旋转抛物面反射器反射后所形成的光形示意图;以及
图32是1mmx1mm的LED发光芯片置于本公开的光学反射系统焦点上时其光线经该光学反射系统投射所形成的光形示意图。
具体实施方式
下面将参照附图借助于示例性实施方式对本公开进行详细描述。要注意的是,本公开的示例性实施方式旨在使得本领域的普通技术人员可以容易地实施本公开,本公开的各实施方式可以以许多不同的形式来实现,而不应当被解释为限于本公开中所阐述的实施方式。相应的,对本公开的以下详细描述仅仅是出于说明目的,而绝不是对本公开的限制。此外,在各个附图中采用相同的附图标记来表示相同的部件。
还需要说明的是,为了清楚起见,在说明书和附图中并未描述和示出实际的特定实施方式的所有特征,并且,为了避免不必要的细节模糊了本公开关注的技术方案,在附图和说明书中仅描述和示出了与本公开的技术方案密切相关的装置结构,而省略了与本公开的技术内容关系不大的且本领域技术人员已知的其他细节。
车灯照明装置、特别是车辆的前照灯通常包括具有光源的初级光学系统以及光学准直元件以实现符合要求的照明光形。在一些现有的车灯照明装置中采用双向准直透镜作为光学准直元件,但是在车灯照明装置需要获得具有较 大的长宽尺寸比的照明光形的情况下,双向准直透镜通常被制造成具有大体积和较重的重量,因此导致生产效率低并且成本较高。
针对上述问题,本公开提供了用于车灯照明装置的光学反射系统,以下结合图1对根据本公开的具有光学反射系统的车灯照明装置的示例性实施方式进行说明。
图1是根据本公开的示例性实施方式的车灯照明装置的示意图,该车灯照明装置包括初级光学系统和光学反射系统。初级光学系统具有光源80,光学反射系统配置成对光源80的经由初级光学系统出射的光进行反射。初级光学系统可以包括第三反射器70,光源80出射的光束可以经第三反射器70反射后,由光学反射系统接收并反射以形成车灯照明装置的照明光形。初级光学系统中的第三反射器70可以为抛物面或类抛物面反射镜,光学反射系统的焦点可以设置在第三反射器70的反射面上。在示出的示例性实施方式中,光学反射系统包括具有第一反射面10的第一反射器和具有第二反射面20的第二反射器。第一反射面10构造成在第一方向上对光进行准直,并且第二反射面20构造成在与第一方向正交的第二方向上对光进行准直。第一反射面10和第二反射面20具有由轮廓线表征的弯曲形状。第一反射面10和第二反射面20分别是将相应的轮廓线沿着轮廓线所在平面的法向方向拉伸而形成的曲面。光学反射系统配置成:从具有光源的初级光学系统出射的光经第一反射器的反射以及第二反射器的反射后以接近平行光束的方式出射,从而形成车灯照明装置的照明光形。
在本公开的上下文中,“光源”可以特别地表示光的来源(例如,发光的装置或设备)。例如,光源可以是当被激活时发光的发光二极管(LED)。在本公开的上下文中,光源基本上可以是任何光源或光发射器,其包括但不限于发光二极管(LED)、激光器、荧光灯、白炽灯等。
在本公开的上下文中,初级光学系统配置成用于接收来自光源的光,并且对所接收的光进行引导和传输以形成初级光分布,初级光分布经光学反射系统投射后形成期望的照明光形。
在一些实施方式中,第一反射器可以是第一反射镜,并且第二反射器可以是第二反射镜。在一些实施方式中,第一反射器和第二反射器中的任一者可以是抛物面反射器。在本公开的上下文中,“抛物面反射器”特别地表示具有横截面形状呈抛物线轮廓的反射面的反射器,该反射面是将一抛物线沿着抛物线所在平面的法向方向拉伸而形成的曲面。换言之,形成该反射面的母线是抛物线,该抛物面反射器的反射面是将一抛物线单向拉伸而形成的抛物面,反射面的沿着与拉伸方向垂直的平面所截取的每个截面线对应于一个焦点,反射面对应于一条焦线。
在一些实施方式中,图1所示的光学反射系统所形成的照明光形可以是如图7所示的具有中心最大值的远光照明光形。图1所示的光学反射系统的焦点可以设置在第三反射器70的反射面上,以形成如图7所示的远光光形,远光照明光形具有光强中心位置(一般情况下是光强中心最大值区域),从而符合远光的具有足够大的发光强度的配光要求(参照国家标准《汽车用LED前照灯》(GB25991-2010)的相关规定)。
图2示出了单个旋转抛物面反射器的光路原理图。该单个旋转抛物面反射器50是一个轴对称二次曲面反射镜,当光源位于焦点501处时,光源出射的光束,经旋转抛物面反射器50反射得到平行光束。
接下来参照图3至图7来具体描述根据本公开的光学反射系统的基本构造。图3示出了根据本公开的示例性实施方式的具有第一反射器和第二反射器的光学反射系统的光路示意图。图4是根据本公开的示例性实施方式的图3的光学反射系统的竖向方向上的光束的光路示意图。图5是根据本公开的示例性实施方式的图3的光学反射系统的水平方向上的光束的光路示意图。
在本公开的实施方式中,光束在通常与光束的传播方向正交的两个方向上被准直。另外,两个准直方向彼此相互正交。例如,光束可以在水平方向上(例如,图4中所示的坐标系的x-y平面)以及在竖向方向上(例如,z方向)被准直。在本公开的上下文中,例如,可以相对于任意参考系确定水平方向和竖向方向,由光学反射系统提供的平行光束被称为是水平准直且竖向准直的。
作为示例,以下将以第一方向为水平方向并且第二方向为竖向方向(即第一反射面10构造成在水平方向上对光束进行准直,并且第二反射面20构造成在竖向方向上对光束进行准直)来进行说明。
在本公开的上下文中,“水平方向上的准直”可以特别地表示:参照图5,第一反射面10在水平截面(即沿着水平方向截取的截面)中对光束起会聚效应,即能够对光束具有一定的准直作用,对比图4,第一反射面10在竖向截面(即沿着竖向方向截取的截面)中对光束没有准直效果(第一反射面10的沿着竖向方向截取的截面中的截面曲线为直线),第一反射面10在水平截面范围内对光束具有单一方向的准直效果,也就是说,第一反射面10的准直方向限定在水平方向。“竖向方向上的准直”可以特别地表示:参见图4,第二反射面20在竖向截面中对光束起会聚效应,即能够对光束具有一定的准直作用,对比图5,第二反射面20在水平截面中对光束没有准直效果,第二反射面20在竖向截面范围内对光束具有单一方向的准直效果,也就是说,第二反射面20的准直方向限定在竖向方向。第二反射面20具有与第一反射面10类似的对光源出射的光束进行单方向准直的光学特点。
如图3所示,在根据本公开的一些实施方式中,光学反射系统的第一反射面10可以构造成能够在水平方向上对光进行准直(参见图5),并且第二反射面20可以构造成在竖向方向上对光进行准直(参见图4)。在第一反射面10的焦距小于第二反射面20的焦距的情况下,根据焦距越大,成像越小的原理,图3所示的光学反射系统使得光束在水平方向上的扩散程度大于在竖向方向上的扩散程度,可以得到水平方向较宽、竖向方向相对较窄的照明光形,即能够形成左右宽上下窄的照明光形。在一些示例中,将1mmx1mm的LED发光芯片置于单个旋转抛物面(如图2所示的单个旋转抛物面50)的焦点处,形成如图31所示的正方形光斑。而将1mmx1mm的LED发光芯片置于本发明的如图3所示的双向准直光学反射系统的焦点处,则形成如图32所示的长方形非对称光斑,由于第一反射面的焦距小于第二反射面的焦距,所以图32所示的光斑在水平方向上的长度大于竖向方向。
如图4和图5所示,在根据本公开的一些示例性实施方式中,第一反射面10是将抛物线形的母线(第一轮廓线15)沿着母线所在平面的法向方向(第一拉伸方向A)拉伸而形成的曲面,第二反射面20是将抛物线形的母线(第二轮廓线25)沿着母线所在平面的法向方向(第二拉伸方向B)拉伸而形成的曲面。具体地,第一反射器的第一反射面10的母线是第一轮廓线15,第二反射器的第二反射面20的母线是第二轮廓线25,第一反射面10的第一轮廓线15所在平面的法向方向为第一拉伸方向A,即第一反射面10的第一轮廓线15所在平面与第一拉伸方向A垂直。第二反射器的第二反射面20的第二轮廓线25所在平面的法向方向为第二拉伸方向B,即第二反射面20的第二轮廓线25所在平面与第二拉伸方向B垂直。第二反射面20具有一条焦线,经过光学反射系统的焦点300的竖向平面与第二反射面20的焦线相交处的交点为第一焦点200,光学反射系统的焦点300与第二反射面20的第一焦点200关于第一拉伸引导线101可以是镜像的(参照图4),该第一拉伸引导线101是经过光学反射系统的焦点300的竖向平面与第一反射面10相交的相交线。
由于光学反射系统的焦点300与第二反射面20的第一焦点200关于第一拉伸引导线101是镜像的,通过对第一拉伸引导线101相对于第二反射面的第一焦点200的位置进行调节可以调节光学反射系统的焦点300的位置。在一些实施方式中,在第二反射面20的轮廓线形状被确定的情况下,第二反射面的焦线的位置可以被确定。光学反射系统的焦点300和第二反射面20的第二轮廓线的第一焦点200之间的连接线与第一拉伸引导线101可以形成一角度b,因此可以通过改变第一反射面10的位置进而改变角度b,从而对光学反射系统的焦点300的位置进行调节。
根据本公开的上述示例性实施方式的构型,由于可以通过调节第一反射面10相对于第二反射面20的第二轮廓线的第一焦点200的相对位置来调节光学反射系统的焦点300的位置,因此可以在保持出光方向不变的情况下实现了对两个反射面的灵活的空间结构布置,从而进一步提高光学反射系统在车辆上的适用性。
在一些实施方式中,反射面的轮廓线可以包括抛物线或类抛物线。例如,如图5所示,在根据本公开的一些实施方式中,第一反射面10的第一轮廓线和第二反射面20的第二轮廓线均为抛物线。如果在光学反射系统的焦点300处设置光源,光源出射的光束经第一反射面10反射后能够实现水平方向上的准直,再经第二反射面20的反射后能够实现竖向方向上的准直。
图8A是根据本公开的另外的示例性实施方式的光学反射系统的竖向方向的光束的光路示意图,图8B是根据本公开的另外的示例性实施方式的光学反射系统的水平方向上的光束的光路示意图。如图8A和图8B所示,在根据本 公开的一些实施方式中,第一反射面10的第一轮廓线可以为类抛物线,而第二反射面20的第二轮廓线可以为抛物线。反射器的反射面的轮廓线的形状构造成使得经由反射面反射后的光束呈现一光扩散角度。如图8所示的第一反射面10为类抛物面的实施方式中,光学反射系统构造成使得平行光束经由第一反射面10和第二反射面20反射后会聚至一条线段或接近该线段的区域。换言之,如果在光学反射系统的焦点300附近设置光源,即光源出射的光束经第一反射面10反射后能够实现水平方向的扩散,例如以一定扩散角(例如参见图8中的角度a)扩散,再经第二反射面20反射后能够实现竖向方向上的准直。优选地,该水平方向上的扩散角在介于5°至60°之间的范围内。
第一反射面和第二反射面中的每一者的轮廓线形状可以设置成使得经由第一反射面和第二反射面中的每一者反射后获得的光束的光扩散角度随着第一反射面和第二反射面中的每一者的轮廓线形状的改变而改变。因此,可以通过改变第一反射面的第一轮廓线的形状,对经第一反射面反射的光束在水平方向上的扩散角度进行调节,并且/或者可以通过改变第二反射面的第二轮廓线的形状,对经第二反射面反射的光束在竖向方向上的扩散角度进行调节。
根据本公开的上述示例性实施方式的构型,通过改变第一反射面和第二反射面中的一者或两者的轮廓线形状,可以对经由相应反射面反射的光束的光扩散角度进行调节。因此,可以根据具体照明光形的在水平方向和竖向上的光扩散范围的需要,分别设置第一反射面和第二反射面的形状,从而提高了设计灵活度。
图9至图11是根据本公开的另一示例性实施方式的光学反射系统的光路示意图。图9是根据本公开的示例性实施方式的具有第一反射器和第二反射器的光学反射系统的光路示意图。图10是根据本公开的示例性实施方式的图9的光学反射系统的水平方向上的光束的光路示意图。图11是根据本公开的示例性实施方式的图9的光学反射系统的竖向方向上的光束的光路示意图。以下对图3所示的光学反射系统与图9所示的光学反射系统的区别进行说明。
与图3所示的示例性实施方式相比较而言,图9所示的光学反射系统的第一反射面10构造成能够在竖向方向上对光进行准直,并且第二反射面20构造成在水平方向上对光进行准直。在第一反射面的焦距小于第二反射面的焦距的情况下,根据焦距越大,成像越小的原理,图9所示的光学反射系统使得光束在水平方向上的扩散程度小于在竖向方向上的扩散程度,可以得到水平方向较窄、竖向方向相对较宽的照明光形,即能够形成左右窄上下宽的照明光形。
在另外一些实施方式中,第一反射面的焦距可以设置成大于第二反射面的焦距。
因此,根据本公开的光学反射系统,通过将第一反射器的第一反射面的焦距设置成与第二反射器的焦距不同,可以实现具有较大长宽尺寸比的照明光形。本公开的光学反射系统的第一反射器和第二反射器能够相对独立地构造和设置,设计灵活度高,可以有效控制光束在水平方向和竖向方向上的光路走向和扩散范围,从而可以根据需要获得理想的照明光形,同时又能达到国家标准GB25991-2010对车灯照明装置的配光要求。
图12是根据本公开的示例性实施方式的车灯照明装置的光路示意图。如图12所示,在根据本公开的一些实施方式中,初级光学系统包括光源80和第三反射器(例如第三反射镜)701,图12所示的初级光学系统的第三反射器701可以为椭球面或类椭球面反射镜,在该反射镜前设置有遮光板,该遮光板包括截止线结构60。该截止线结构60构造成用于形成具有明暗截止线的照明光形。光学反射系统的焦点可以设置在截止线结构60上,该车灯照明装置对应形成如图6所示的具有明暗截止线的近光照明光形。优选地,该截止线结构60设置在第三反射器701与包括第一反射器和第二反射器的光学反射系统之间。初级光学系统构造成将光源80发出的光束通过第三反射器701基本上会聚到光学反射系统的焦点或聚焦区域,并且光学反射系统的焦点可以设置在截止线结构60上,从而可以形成具有明暗截止线的照明光形。
图13是根据本公开的另一示例性实施方式的车灯照明装置的光路示意图,如图13所示,在根据本公开的一些实施方式中,车灯照明装置的初级光学系统包括光源80和聚光器702。聚光器702可以为透明导光体,聚光器702可以配置成接收从光源80出射的光、将接收的光进行准直会聚并且引导至光学反射系统。在聚光器702的出光面的下边缘设置有截止线结构600,光学反射系统的焦点可以设置在截止线结构600上,图13所示的车灯照明装置可以形成如图6所示的具有明暗截止线的近光照明光形。
在本公开的上下文中,明暗截止线指的是光束透射到配光屏幕上,目视感觉到的明暗显著变化的分界线。因此,通过使光学反射系统的焦点设置在截止线结构60或600上,可以获得具有清晰的明暗截止线的近光照明光形。从图6中可以看出,根据本公开的包括光学反射系统的车灯照明装置进行配光试验时投射到配光屏幕上所形成的近光光形图具有明显的明暗截止线,符合现行的国家标准《汽车用LED前照灯》(GB25991-2010)的相关规定,不存在多条明暗截止线目视可见的情况。
如图14所示,在本公开的一些示例性实施方式中,车灯照明装置包括初级光学系统和光学反射系统,该初级光学系统包括多个光源800和具有多个反射面的第三反射器703,例如,该初级光学系统包括5个光源800和具有5个反射面的第三反射器703,光学反射系统包括第一反射面10和第二反射面20,光学反射系统的焦点可以设置在具有5个反射面的第三反射器703上,该车灯照明装置能够形成一组具有5个光斑的ADB光形,从而实现远光ADB照明。
如图15所示,在本公开的一些示例性实施方式中,车灯照明装置可以包括初级光学系统和光学反射系统,该初级光学系统包括多个光源800和具有多个反射面的第三反射器704,光学反射系统包括多个第一反射面和一个第二反射面20。例如,如图15所示,该初级光学系统包括20个光源800和具有20个反射面的第三反射器704,光学反射系统包括四个第一反射面11、12、13和14和一个第二反射面20。图15所示的车灯照明装置可以形成具有20个光斑(共4组,每组5个光斑)的照明区域,4组照明区域交错叠加后形成更窄像素的ADB光形,从而能够实现远光ADB照明并且光形控制精度更高。与图14所示的车灯照明装置相比,图15所示的车灯照明装置可以形成多组矩阵式光形,多组矩阵式光形叠加后可以形成若干并排且衔接的像素,使得远光ADB光形控制精度更高。在一些实施方式中,初级光学系统可以配置成与光学反射系统相配合以形成多组矩阵式照明光形。
如图16所示,在本公开的一些示例性实施方式中,车灯照明装置可以包括初级光学系统和光学反射系统,该初级光学系统可以包括光源800和第三反射器705,第三反射器705的下边界形成有截止线结构600,光学反射系统可以包括第一反射面10和第二反射面20,该光学反射系统的焦点可以设置在截止线结构600上,该车灯照明装置可以形成如图6所示的具有明暗截止线的近光照明光形。
图17所示的本公开的示例性实施方式的车灯照明装置与图16所示的本公开的示例性实施方式的车灯照明装置基本上相同,区别在于:图17所示的本公开的示例性实施方式的车灯照明装置的光学反射系统的第一反射面10和第二反射面20相对于光源的设置位置不同。具体地,在图16所示的实施方式中,第一反射器和第二反射器两者可以在竖向方向上设置在光源800的上侧,经第一反射器和第二反射器准直反射后的光线在光源的上方出射。而在图17所示的实施方式中,第一反射器和第二反射器两者可以在竖向方向上设置在光源800的下侧,经第一反射器和第二反射器准直反射后的光线在光源的下方出射。因此,第一反射器和第二反射器相对于光源的位置可以根据具体车灯灯体内空间来设计,从而增加了包括光学反射系统的车灯照明装置的适配性,可应用于多种类型的车灯上。
在一些实施方式中,可以将两个反射器相邻地设置在光源的同一侧(参照图12或图13)。在一些实施方式中,可以将两个反射器设置在光源的相反的两侧(参照图17),从而显著地节省安装空间,提高了空间利用率,使光学反射系统的总体尺寸减小,因而大大提高了包括光学反射系统的车灯照明装置在车辆上的适用性。
因此,可以对光学反射系统的第一反射器的第一反射面10和第二反射器的第二反射面20的相对位置进行灵活调整和改变,从而更好地适应车灯照明装置的安装空间。
在本公开的一些实施方式中,用于车灯照明装置的光学反射系统还可以包括多个另外的反射器,例如在一些实施方式中,光学反射系统还可以包括用于对光线的方向等参数进行调整的第四反射器,并且第四反射器包括第四反射面400。在一些实施方式中,第四反射器是平面反射镜,该平面反射镜配置成仅改变光线方向。在另外一些实施方式中,第四反射器也可以构造为呈曲面形状,呈曲面形状的第四反射器不仅可以改变光线方向,还可以对光线进行再次配光,使光形效果更好。
在本公开的上下文中,从光源发出的光可以沿着光路方向经由光学反射系统而出射。
在一些实施方式中,第四反射器可以沿着光路方向设置在光源的下游且在第一反射器的上游并且构造成接收从初级光学系统的光源发出的光并且将所接收的光反射到第一反射器。
在一些实施方式中,第四反射器可以设置在第一反射器与第二反射器之间,并且构造成将经第一反射器准直的光接收并且反射至第二反射器,该第四反射器作为用于对光线的方向等参数进行进一步调整的附加配光元件,有利于对由第一反射器准直反射后的光线进行再次配光后反射至第二反射镜,以形成符合照明需要的理想照明光形。
在另外一些实施方式中,如图30所示,第四反射器可以沿着光路方向设置在第二反射器的下游,即第四反射器的第四反射面400可以沿着光路方向设置在第二反射面20的的下游并且构造成将经第二反射面20准直反射后的光接收并且反射而形成照明光形,因此第四反射器作为附加的配光元件,有利于对由第一反射器和第二反射器两者准直反射后的光线进行再次配光,以形成符合照明需要的理想照明光形。
根据上述实施方式的光学反射系统可以包括第一反射器、第二反射器和附加的第四反射器,其中,第一反射器、第二反射器和附加的第四反射器可以用于共同形成光学反射系统的焦点。通过上述实施方式的光学反射系统构型,使得光源发出的光线经过多级反射能够更好地调节光线的出射方向,从而更好地形成期望光形。需要理解的是,可以根据期望形成的光形和配光需求来选择反射器的数目以及各反射器的相对位置。
如下参照图18至图29对本公开的示例性实施方式的具有图15所示的光路的车灯照明装置进行说明。
如图18至图29所示,在根据本公开的一些实施方式中,车灯照明装置包括初级光学系统和光学反射系统,该初级光学系统包括光源800和具有多个反射面的第三反射器700,光学反射系统包括多个第一反射面10(例如具有6个第一反射面)和一个第二反射面20。参照图19,第一反射器110的第一反射面10在沿着纵向方向(竖向方向)截取的截面中呈直线形状(参照图28),第一反射器110的第一反射面10在沿着横向方向(水平方向)截取的截面中呈抛物线形状(参照图29)。换言之,第一反射器110的第一反射面10具有由抛物线表征的弯曲形状,该弯曲形状是抛物线沿着抛物线所在平面的法向方向拉伸的曲面。因此,第一反射器110是抛物面反射器,并且构造成在水平方向上对光进行准直。
参照图19,第二反射器210包括第二反射面20。第二反射器210的第二反射面20在沿着纵向方向(竖向方向)截取的截面中呈抛物线形状(参照图25),第二反射器210的第二反射面20在沿着横向方向(水平方向)截取的截面中呈直线形状(参照图26)。换言之,第二反射器210的第二反射面20具有由抛物线表征的弯曲形状,该弯曲形状是抛物线沿着抛物线所在平面的法向方向拉伸的曲面。因此,第二反射器210是抛物面反射器,并且构造成在竖向方向上对光进行准直。
根据本公开的示例性实施方式的上述构型,由于采用两个反射器对从光源发射的光束在两个彼此基本正交的方向上进行准直会聚。相比于现有的准直透镜元件而言,本公开的光学反射系统结构具有简单且紧凑的结构设计,易于制造,进一步提高了生产效率并且具有显著的成本效益。
如图18至图29所示,在根据本公开的一些实施方式中,光学反射系统的第一反射器110的第一反射面10和第二反射器210的第一反射面20是通过使用镀覆材料进行镀覆来实现的。在一些示例中,第一反射面10和第二反射面20通过镀铝或镀银来实现。在一些实施方式中,光学反射系统的第一反射器110的第一反射面10和第二反射器110的第一反射面20的镀覆材料可以包括但不限于:铝、铬、镍、银和金。
参照图20,第一反射器110和第三反射器700可以形成为一体件,第一反射器110和第二反射器210是分别单独制造的,并且第一反射器110和所述第二反射器210通过紧固连接件(例如螺钉)33以可拆卸的方式在车灯照明装置中组装到位。在一些实施方式中,第一反射器110和所述第二反射器210通过卡扣连接、粘接、铆接、焊接等在车灯照明装置中组装到位,从而确保光学反射系统作为一个整体在灯体内定位准确,固定良好,防止窜动。在另外一些实施方式中,第一反射器110和第二反射器210可以形成为一体成型件。应理解的是,在一些实施方式中,在满足照明需求的情况下,可以根据实际灯体空间将所选用的各个反射器以两两设置为一体件的形式来构造。
参照图18至图20,车灯照明装置还包括用于安装光源800的线路板31,该线路板31上设置有散热器32,散热 器32能够提高线路板31的散热性能,避免光源800的温度过高,提升光源800的稳定性。设置在初级光学系统的光源下方的第三反射器700与具有第一反射面10的第一反射器110形成为一体结构,并且第三反射器700和第一反射器110所形成的一体结构与具有第二反射面20的第二反射器210、线路板31、散热器32通过紧固连接件33进行连接。参照图23所示的示例性光路图,光源800发出的光束首先经由第三反射器700部分会聚,然后经第一反射器110的第一反射面10反射后可以实现水平方向上的准直,再经第二反射器210的第二反射面20的反射后可以实现竖向方向上的准直,通过将第一反射面10的焦距设置成与第一反射面20的焦距不同,可以根据实际需要形成具有较大的长宽尺寸比的理想照明光形。
以上参照附图并通过实施方式的描述对本公开进行了说明,但是本公开并不局限于上述实施方式。本领域技术人员可以理解,在不脱离本公开技术思想的情况下可以进行修改和变型,这些修改和变型同样包含在本公开的保护范围内。
工业实用性
本公开提供了用于车灯照明装置的光学反射系统,该光学反射系统能够实现对来自光源的光束在两个彼此基本正交的方向上的准直会聚。相比于现有的准直透镜元件而言,本公开的光学反射系统结构具有简单且紧凑的结构设计,易于制造,进一步提高了生产效率并且具有显著的成本效益。根据本公开的包括光学反射系统的车灯照明装置,通过将第一反射器的第一反射面的焦距设置成与第二反射器的焦距不同,可以获得具有较大长宽尺寸比的照明光形。
此外,可以理解的是,本公开的光学反射系统、车灯照明装置是可以重现的,并且可以应用在多种工业应用中。例如,本申请的光学反射系统可以应用于需要形成长宽尺寸比较大的照明光形的车灯照明装置中。

Claims (16)

  1. 一种光学反射系统,所述光学反射系统用于车灯照明装置,所述车灯照明装置包括具有光源的初级光学系统,所述光学反射系统配置成对所述初级光学系统的所述光源出射的光进行反射,
    其中,所述光学反射系统包括具有第一反射面的第一反射器和具有第二反射面的第二反射器,所述第一反射面构造成在第一方向上对光进行准直,并且所述第二反射面构造成在与所述第一方向正交的第二方向上对光进行准直,所述第一反射面和所述第二反射面具有由轮廓线表征的弯曲形状,所述第一反射面和所述第二反射面是将相应的轮廓线沿着所述轮廓线所在平面的法向方向拉伸而形成的曲面,所述光学反射系统配置成使得:从具有所述光源的所述初级光学系统出射的光束经所述第一反射器的反射以及所述第二反射器的反射后以接近平行光的形式出射,从而形成所述车灯照明装置的照明光形。
  2. 根据权利要求1所述的光学反射系统,其中,所述轮廓线包括抛物线或类抛物线。
  3. 根据权利要求2所述的光学反射系统,其中,所述第一方向是水平方向或竖向方向。
  4. 根据权利要求1所述的光学反射系统,其中,所述第一反射面和所述第二反射面中的每一者的轮廓线形状设置成使得经由所述第一反射面和所述第二反射面中的每一者反射后获得的光的光扩散角度随着所述第一反射面和所述第二反射面中的每一者的轮廓线形状的改变而改变。
  5. 根据权利要求4所述的光学反射系统,其中,所述第一反射面的焦距设置成与所述第二反射面的焦距不同。
  6. 根据权利要求1至5中的任一项所述的光学反射系统,其中,所述第一反射器和所述第二反射器相邻地设置在所述光源的同一侧,或者所述第一反射器和所述第二反射器设置在所述光源的相反的两侧。
  7. 根据权利要求1至5中的任一项所述的光学反射系统,其中,所述初级光学系统是具有截止线结构的初级光学系统,所述光学反射系统的焦点设置在所述截止线结构处。
  8. 根据权利要求1至5中的任一项所述的光学反射系统,其中,所述第一反射器包括多个第一反射面,所述光学反射系统配置成:从具有所述光源的所述初级光学系统出射的光经所述第一反射器的反射以及所述第二反射器的反射后以接近平行光束的形式出射,从而形成所述车灯照明装置的矩阵式照明光形。
  9. 根据权利要求1至5中的任一项所述的光学反射系统,其中,所述光学反射系统的所述第一反射面和所述第二反射面是通过使用镀覆材料进行镀覆来形成的。
  10. 根据权利要求9所述的光学反射系统,其中,所述第一反射面和所述第二反射面的所述镀覆材料为铝、铬、镍、银和金中的至少一种。
  11. 根据权利要求1至5中的任一项所述的光学反射系统,其中,所述第一反射器和所述第二反射器是单独制造的并且通过连接紧固件在所述车灯照明装置中组装就位。
  12. 根据权利要求1至5中的任一项所述的光学反射系统,其中,所述第一反射器和所述第二反射器是一体成型的。
  13. 根据权利要求1至5中的任一项所述的光学反射系统,其中,所述初级光学系统包括第三反射器,所述第三反射器配置成将来自所述光源的光进行反射并且引导至所述光学反射系统。
  14. 根据权利要求1至5中的任一项所述的光学反射系统,其中,所述初级光学系统包括聚光器,所述聚光器配置成将来自所述光源的光进行准直会聚并且引导至所述光学反射系统,所述聚光器的出光面的下边缘设置有截止线结构。
  15. 根据权利要求1至5中的任一项所述的光学反射系统,其中,所述光学反射系统包括附加的第四反射器,所述第一反射器和所述第二反射器和所述第四反射器构造成共同形成所述光学反射系统的焦点或聚焦区域。
  16. 一种车灯照明装置,所述车灯照明装置包括根据权利要求1至15中的任一项所述的光学反射系统。
PCT/CN2021/119443 2021-09-18 2021-09-18 用于车灯照明装置的光学反射系统和车灯照明装置 WO2023039904A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180100453.XA CN117730230A (zh) 2021-09-18 2021-09-18 用于车灯照明装置的光学反射系统和车灯照明装置
PCT/CN2021/119443 WO2023039904A1 (zh) 2021-09-18 2021-09-18 用于车灯照明装置的光学反射系统和车灯照明装置
EP21957181.7A EP4206524A4 (en) 2021-09-18 2021-09-18 OPTICAL REFLECTION SYSTEM FOR VEHICLE LAMP ILLUMINATION DEVICE, AND VEHICLE LAMP ILLUMINATION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119443 WO2023039904A1 (zh) 2021-09-18 2021-09-18 用于车灯照明装置的光学反射系统和车灯照明装置

Publications (1)

Publication Number Publication Date
WO2023039904A1 true WO2023039904A1 (zh) 2023-03-23

Family

ID=85602349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119443 WO2023039904A1 (zh) 2021-09-18 2021-09-18 用于车灯照明装置的光学反射系统和车灯照明装置

Country Status (3)

Country Link
EP (1) EP4206524A4 (zh)
CN (1) CN117730230A (zh)
WO (1) WO2023039904A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2086843U (zh) * 1990-03-20 1991-10-16 于仲华 抛物柱面准焦点光源新型照明灯具
JP2008218146A (ja) * 2007-03-02 2008-09-18 Stanley Electric Co Ltd 光量回収型車両用灯具
JP2015185400A (ja) * 2014-03-25 2015-10-22 スタンレー電気株式会社 車両用灯具
CN107208859A (zh) 2014-12-19 2017-09-26 欧司朗有限公司 照明设备
CN111373195A (zh) * 2018-02-08 2020-07-03 宝马股份公司 用于机动车的照明设备
CN212618084U (zh) 2020-04-30 2021-02-26 华域视觉科技(上海)有限公司 光学透镜、光学透镜组、车灯系统及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2966221B1 (fr) * 2010-08-04 2015-09-18 Valeo Vision Module d'eclairage a coupure avec reflecteur parabolique dispose sur un reflecteur elliptique
DE102011004569A1 (de) * 2011-02-23 2012-08-23 Automotive Lighting Reutlingen Gmbh Zum Einbau in einem Kraftfahrzeug vorgesehene Beleuchtungseinrichtung
DE102017001019A1 (de) * 2017-02-04 2018-08-09 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Fahrzeugscheinwerfer
EP3657066B1 (de) * 2018-11-22 2020-12-30 ZKW Group GmbH Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen einer lichtverteilung mit hell-dunkel-grenze
CN212565607U (zh) * 2020-06-29 2021-02-19 华域视觉科技(上海)有限公司 车灯光学系统、车灯模组和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2086843U (zh) * 1990-03-20 1991-10-16 于仲华 抛物柱面准焦点光源新型照明灯具
JP2008218146A (ja) * 2007-03-02 2008-09-18 Stanley Electric Co Ltd 光量回収型車両用灯具
JP2015185400A (ja) * 2014-03-25 2015-10-22 スタンレー電気株式会社 車両用灯具
CN107208859A (zh) 2014-12-19 2017-09-26 欧司朗有限公司 照明设备
CN111373195A (zh) * 2018-02-08 2020-07-03 宝马股份公司 用于机动车的照明设备
CN212618084U (zh) 2020-04-30 2021-02-26 华域视觉科技(上海)有限公司 光学透镜、光学透镜组、车灯系统及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206524A4

Also Published As

Publication number Publication date
CN117730230A (zh) 2024-03-19
EP4206524A1 (en) 2023-07-05
EP4206524A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
JP5596282B2 (ja) 自動車用照明または信号装置
US11221119B2 (en) Thin aspect lighting system with cutoff
US6616299B2 (en) Single optical element LED signal
US8287167B2 (en) Lamp unit
WO2020244229A1 (zh) 车灯光学元件及车辆前照灯
CN108534078B (zh) 一种led阵列远近光双功能模组系统
US11454370B2 (en) Line source lighting system
US10161592B2 (en) LED headlamp with refractive interface creating cut-off for vehicles
US20090129084A1 (en) Optical device for altering light shape and light source module comprising same
KR102611832B1 (ko) 차량용 램프 조명 모듈, 차량용 램프 및 차량
CN113958921A (zh) 照明模组、照明装置及车辆
CN110440217B (zh) 一种车灯模组、车灯及车辆
US11047536B2 (en) Tubular LED fixture
CN111981431A (zh) 一种照明灯具
WO2023039904A1 (zh) 用于车灯照明装置的光学反射系统和车灯照明装置
WO2023039903A1 (zh) 车灯照明装置的光学透反系统和车灯照明装置
CN108302447B (zh) 直射式汽车前照灯模组及汽车前照灯
CN209977777U (zh) 一种条形灯
CN211716301U (zh) 一种照明灯的光学组件以及线光源照明灯
WO2021218826A1 (zh) 透镜单元、光学透镜、照明模组、车灯及车辆
TWI582335B (zh) Lights
CN113339749A (zh) 一种小口径远光单元及其组件
CN105546484A (zh) 一种基于led光源的准直光发生装置
CN212456691U (zh) 一种照明灯具
WO2021218356A1 (zh) 车灯用光导体、远光照明模组及车灯

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021957181

Country of ref document: EP

Effective date: 20230331

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100453.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE