EP3654937A1 - Emulsions eau-dans-huile injectables et leurs utilisations - Google Patents

Emulsions eau-dans-huile injectables et leurs utilisations

Info

Publication number
EP3654937A1
EP3654937A1 EP18740230.0A EP18740230A EP3654937A1 EP 3654937 A1 EP3654937 A1 EP 3654937A1 EP 18740230 A EP18740230 A EP 18740230A EP 3654937 A1 EP3654937 A1 EP 3654937A1
Authority
EP
European Patent Office
Prior art keywords
oil
emulsion
nanoparticles
emulsion according
emulsions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18740230.0A
Other languages
German (de)
English (en)
Inventor
Frédéric Deschamps
Thierry DE BAERE
Lambros TSELIKAS
Thomas ISOARDO
Nicolas HUANG
Laurence Moine
Nicolas Tsapis
Elias Fattal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut Gustave Roussy (IGR)
Universite Paris Saclay
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut Gustave Roussy (IGR)
Universite Paris Saclay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut Gustave Roussy (IGR), Universite Paris Saclay filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3654937A1 publication Critical patent/EP3654937A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to injectable and stable water-in-oil therapeutic emulsions. It also relates to the use of said emulsions, in particular for the treatment of cancer.
  • Hepatic arterial chemoembolization is the standard treatment for certain liver tumors, such as inoperable hepatocellular carcinoma and hypervascular metastases.
  • This treatment consists of a combination of chemotherapy injection (usually doxorubicin) and ischemic arterial embolization directly into the tumor arteries.
  • Chemotherapy is released slowly and prolonged into the tumor arteries through the use of a vector in which chemotherapy is previously "loaded". This vector should ideally have diagnostic properties (visibility in imaging) and therapeutic (controlled and prolonged release of chemotherapy).
  • none of the vectors currently used Lipiodol® or loaded beads has this theranostic property (diagnostic and therapeutic).
  • the loaded beads are microspheres based on polyvinyl alcohol which can be loaded with chemotherapy (ion exchange mechanism) and are available in different sizes ranging from 70 to 700 ⁇ . These beads have already demonstrated a significant increase in exposure to tumor chemotherapy and a decrease in systemic toxicity but they do not contain contrast agents. Thus, it is impossible to accurately visualize the administration of chemotherapy during the procedure and to quantify the concentration of chemotherapy in the tumor after the procedure. In addition, only doxorubicin and irinotecan can be loaded into beads so far.
  • Lipiodol is used for its hydrophobic radiopaque contrast agent (oil) properties under X-ray fluoroscopy and for its selectivity to tumor arteries.
  • the realization of chemotherapy emulsions with Lipiodol thus makes it possible to hope for a selective and visible delivery of chemotherapy in liver tumors.
  • the theranostic properties of these lipiodolated emulsions are limited by their low stability: the phase shift between chemotherapy and lipiodol is done in a few minutes. Very quickly, the two phases of the emulsion separate and almost all chemotherapy that is soluble in water disappears from the tumor.
  • the present invention therefore aims to provide a new therapeutic water-in-oil emulsion, stable over time, especially for at least 24 hours.
  • the present invention also aims to provide a new stable emulsion preferably having theranostic properties.
  • the present invention also aims to provide a new stable emulsion comprising at least one anticancer agent, and having a tumor selectivity greater than that of conventional emulsions.
  • the present invention also aims to provide a new emulsion that can be loaded with different therapeutic agents and potentially visible magnetic resonance imaging (MRI).
  • MRI visible magnetic resonance imaging
  • the present invention also aims to provide a new biodegradable emulsion, biocompatible and less toxic or irritating than usual emulsions stabilized with synthetic surfactants or mineral particles.
  • the present invention relates to a water-in-oil emulsion comprising a continuous oily phase and a dispersed aqueous phase in the form of drops, said aqueous phase comprising polyester-based nanoparticles, and at least one therapeutic agent.
  • Oily phase
  • the emulsion according to the invention comprises a continuous oily phase (or fatty phase).
  • the oily phase according to the invention comprises at least one oil.
  • the oily phase may comprise a single oil or a mixture of several different oils.
  • Any suitable pharmaceutical oil or oil can be used to form the oil phase.
  • oil is meant a non-aqueous compound, immiscible with water, liquid at room temperature (25 ° C) and atmospheric pressure (760 mm Hg).
  • oils adapted according to the invention mention may in particular be made of fatty acids, esters of fatty acids and mineral oils (especially like squalene).
  • marine oils especially fish oils, and in particular salmon oil.
  • ethyl icosapentate which is one of the polyunsaturated fatty acids contained in fish oil.
  • the oily phase according to the invention preferably comprises injectable oils, preferably injectable vegetable oils.
  • injectable oils mention may be made of those well known to those skilled in the art, especially as described in the article by Hippamgaonkar et al. (2010) AAPS Pharm Sci Tech, 11 (4), p.1526-1540.
  • the oily phase according to the invention comprises long-chain triglycerides (LCT) and / or medium-chain triglycerides (MCT).
  • LCT long-chain triglycerides
  • MCT medium-chain triglycerides
  • the LCTs there may be mentioned triolein, soybean oil, safflower oil, sesame oil and castor oil.
  • the MCT include oil fractionated coconut as triglycerides caprylic / capric acids, such as MIGLYOL 810 ® or 812 products ®, Neobee ® M-5 or Captex ® 300.
  • the oily phase comprises at least one vegetable oil, in particular castor oil, sesame oil, carnation oil, olive oil, soybean oil, coconut oil, triolein and mixtures thereof.
  • the oily phase comprises at least one oil that has been modified with iodine to render it radiopaque.
  • oils mention may be made of flaxseed oil, linseed oil (see J Pharm Sci, 102: 4150, 2013), Labrafac WL1349 (Attia et al., Macromol Biosci, 2017), castor oil (ACS Nano, 8 (10), 10537, 2014) or vitamin E.
  • the oily phase comprises ethyl esters of iodized fatty acids of the carnation oil, and in particular consists of Lipiodol.
  • Lipiodol consists of the ethyl esters of the iodized fatty acids of the carnation oil. It contains 43 to 53% iodine. It is prepared by saponification of the carnation oil which releases the fatty acids in the form of soaps which are subsequently iodinated with iodine chloride and finally esterified with ethanol. The carnation oil is extracted from black poppy seeds (Papaver somniferum). The main fatty acids included in this oil are linoleic acid and linolenic acid. Lipiodol is also used as a contrast agent in radiological investigations.
  • the oily phase comprises triglycerides of average chain length, in particular comprising between 8 and 12 carbon atoms, or a mineral oil composed mainly of squalene.
  • the oily phase of the emulsion according to the invention further comprises a compound, comprising for 100% of its mass, from 10% to 95% of a mineral oil comprising:
  • the oily phase of the emulsion according to the invention may comprise at least one compound chosen from MONTANIDE products marketed by SEPPIC such as those described in application FR 2 955 776.
  • the oily phase of the emulsion according to the invention may further comprise at least one surfactant.
  • the ratio between the volume of oily phase and the volume of aqueous phase is between 4: 1 and 3: 3.
  • this ratio is 4: 1, 3: 1, 2: 1, 3: 2, or 3: 3 and is preferably 3: 1.
  • the emulsion according to the invention comprises from 40% to 80%, preferably from 60% to 80%, by weight of oily phase relative to the total weight of said emulsion.
  • the emulsion according to the invention comprises a dispersed aqueous phase.
  • the aqueous phase according to the invention comprises at least water.
  • the emulsion according to the invention comprises from 20% to 60%, preferably from 20% to 40%, by weight of aqueous phase relative to the total weight of said emulsion.
  • the aqueous phase according to the invention is in the form of drops, sizes greater than one micron.
  • the droplet size of the aqueous phase is between 10 ⁇ and 100 ⁇ , preferably between 20 ⁇ and 50 ⁇ .
  • the aqueous phase of the invention comprises at least one nanoparticle based on polyester.
  • the nanoparticles according to the invention are biodegradable.
  • the biodegradable polyester-based nanoparticles are used as solid particles to stabilize the water / oil interface in the emulsions. These nanoparticles have low toxicity and a limited inflammatory response is observed in the presence of these nanoparticles.
  • the emulsions according to the invention have the advantages of being biodegradable, biocompatible and potentially less toxic or irritating than usual emulsions stabilized with synthetic surfactants or mineral particles.
  • nanoparticles according to the invention are polymeric nanoparticles well known to those skilled in the art.
  • these nanoparticles are solid particles having at least two dimensions less than 1 ⁇ .
  • these nanoparticles are nanospheres with a matrix core of average size less than 1 ⁇ (when measured by light scattering).
  • the nanoparticles have an average size of 200 nm. They are generally between 50 nm and 400 nm and more precisely between 100 nm and 300 nm.
  • size refers to the diameter
  • the emulsions of the invention comprise between 5 and 25 mg / ml, preferably 15 mg / ml, of nanoparticles as defined above.
  • the nanoparticles according to the invention are based on polyester. As mentioned above, they are preferably solid and therefore consist of at least one polyester. According to one embodiment, the polyester-based nanoparticles are chosen from the group consisting of polyacetic acid polylactide-based nanoparticles, poly glycolic acid (polyglycolide), lactide-glycolide copolymers (with different ratios of lactide / glycolic), copolymers of lactide-glycolide-co-polyethylene glycol, polyorthoesters, polyanhydrides, polybutylacetone, polyvalerolactone, poly malic acid, polylactones and mixtures thereof.
  • polyacetic acid polylactide-based nanoparticles poly glycolic acid (polyglycolide), lactide-glycolide copolymers (with different ratios of lactide / glycolic), copolymers of lactide-glycolide-co-polyethylene glycol, polyorthoesters, polyanhydr
  • the nanoparticles based on polyester further comprise iron oxide particles, preferably of size between 5 nm and 30 nm, and preferably equal to 10 nm.
  • An advantage of using Pickering emulsions for injection is the possibility of making them detectable by MRI, thanks to the oily nature of the vector and / or through the incorporation of iron oxide particles.
  • MRI is increasingly used in patients because of a significantly higher accuracy and sensitivity for diagnosis in the detection of hepatocellular carcinoma compared to CT.
  • an imaging agent has been introduced into the stabilizing nanoparticles used according to the invention.
  • the iron oxide particles are considered effective T2 contrast agents. Therefore, according to one embodiment, the therapeutic agent is encapsulated within the water droplets, while the iron oxide particles are incorporated into the nanoparticles stabilizing these droplets. Having the therapeutic agent with the iron oxide nanoparticles in a single injectable form makes it possible to follow the fate of the therapy after administration.
  • the emulsion according to the invention comprises at least one therapeutic agent.
  • said therapeutic agent is encapsulated in the drops of aqueous phase.
  • This encapsulation is advantageous in that it makes it possible to protect and thus stabilize certain types of therapeutic agents, in particular fragile molecules such as monoclonal antibodies.
  • Monoclonal antibodies de facto of their protein structure can be degraded when exposed to heat, light, pH, or with strong agitation, in the presence of certain metals and oils / organic solvents. These are fragile molecules whose handling may present risks of aggregation even denaturing. They may be altered and denatured when incorporated into a vector except to provide a protection system. Current emulsions do not allow the transport of these active ingredients and their controlled release. By introducing a physical barrier via the stabilizing nanoparticles between the water droplets containing the therapeutic agent and the oil, the antibody remains stable.
  • the therapeutic agent is chosen from immunomodulators, anticancer drugs, anti-angiogenic drugs, anti-infective drugs, anti-inflammatory drugs, imaging contrast agents, radioactive agents and agents. infectious.
  • the term “immunomodulator” designates a compound capable of modulating the immune response.
  • tumor antigen refers to a molecule specifically present on the surface of cells (for example: vascular endothelial growth factor, CTLA-4, PD1 or PDL-1).
  • anti-angiogenic drug refers to a medicament for inhibiting the growth process of new blood vessels (neovascularization) from preexisting vessels (eg Bevacizumab, Sunitinib or Sorafenib).
  • anti-infective drug refers to a medicament for the treatment of infections of microbial origin (antibiotics, anti-virals or anti-fungal, for example).
  • antibiotics there may be mentioned for example arnoxicillin or cefazolin.
  • anti-inflammatory drug refers to a medicament for the treatment of inflammations (steroidal and non-steroidal anti-inflammatory drugs).
  • steroids and non-steroidal anti-inflammatory drugs for example, there may be mentioned methylprednisolone or ketoprofen.
  • the term "imaging contrast agent” refers to a substance that artificially increases the contrast to visualize an anatomical structure or naturally little or no contrast. It is more particularly possible to mention iodinated contrast products, MRI contrast products or radio-elements.
  • the term “radio-elements” denotes a chemical element that emits ⁇ , ⁇ - or ⁇ radiation often accompanied by the emission of high energy photons. These elements are used in nuclear medicine for low-dose diagnostic purposes, and for high-dose therapeutic purposes to treat cancers ( 99m Technetium, 18 Fluor, 123 lode, 90 Yttrium, 131 Iodine or 166 Holmium for example).
  • infectious agent refers to a biological agent responsible for an infectious disease (such as bacteria, viruses, prions, yeasts and parasites).
  • the emulsion according to the invention comprises, as therapeutic agent, at least one anticancer drug.
  • the anticancer drug is selected from the group consisting of alkylating agents, platinum derivatives, cytotoxic antibiotic agents, antimicrotubule agents, anthracyclines, group I and II topoisomerase inhibitors, fluoropyrimidines, cytidine analogues. , adenosine analogs, methotrexate, folinic acid, enzymes, antivascular agents, anti-angiogenic agents, antimitotic agents, including spindle poisons, kinase inhibitors, hormones, antibodies monoclonal antibodies, radioelements, oncolytic viruses and their mixtures.
  • alkylating agents examples include cyclophosphamide, melphalan, ifosfamide, chlorambucil, busulfan, thiotepa, prednimustine, carmustine, lomustine, semustine, steptozotocine, decarbazine, temozolomide, procarbazine and hexamethylmelamine.
  • platinum derivatives mention may in particular be made of cisplatin, carboplatin and oxaliplatin.
  • cytotoxic antibiotic agents there may be mentioned, for example, bleomycin, mitomycin and dactinomycin.
  • antimicrotubule agents there may be mentioned vinblastine, vincristine, vindesine, vinorelbine and taxoids (paclitaxel and docetaxel).
  • anthracyclines mention may be made of doxorubicin, daunorubicin, idarubicin, epirubicin, mitoxantrone and losoxantrone.
  • topoisomerase inhibitors of groups I and II mention may be made, for example, of etoposide, teniposide, amsacrine, irinotecan, topotecan and tomudex.
  • Cytidine analogues include 5-azacytidine, cytarabine, gemcitabine, 6-mercaptomurine and 6-thioguanine.
  • adenosine analogues such as pentostatin, cytarabine or fludarabine phosphate
  • L-asparaginase hydroxyurea
  • trans-retinoic acid hydroxyurea
  • suramin hydroxyurea
  • dexrazoxane amifostine
  • herceptin as well as estrogenic and androgenic hormones.
  • combretastatin derivatives for example CA4P
  • chalcones or colchicine for example ZD6126
  • Anti-angiogenic agents include bevacizumab, sorafenib or sunitinib malate.
  • Therapeutic tyrosine kinase inhibitors include imatinib, gefitinib, sunitinib, sorafenib, vandetanib and erlotinib.
  • the poisonous spindle agents there may be mentioned vincristine, vinblastine, taxol and taxotere.
  • radioelements 99m Technetium, 18 Fluor, 123 lode, 32 Phosphorus, 89 Strontium, 90 Yttrium, 131 lode, 166 Holmium, 18 ⁇ Rhenium and 169 Erbium.
  • Oncolytic viruses include T-VEC.
  • the therapeutic agent is an anticancer drug selected from the group consisting of doxorubicin, irinotecan, oxaliplatin and mixtures thereof.
  • the emulsion according to the invention comprises, as therapeutic agent, at least one antibody targeting the antigens, and more particularly at least one monoclonal antibody.
  • the antibody is an antibody targeting the tumor antigens selected from the group consisting of the anti-human monoclonal antibodies. angiogenic, anti-CTLA-4 monoclonal antibodies, anti-PD-1 monoclonal antibodies, anti-PD-L1 monoclonal antibodies, and mixtures thereof.
  • anti-CTLA-4 include ipilimumab and tremelimumab.
  • monoclonal antibodies anti-PD-1 include nivolumab and pembrolizumab.
  • Atezolizumab and Avelumab.
  • the emulsion according to the invention comprises between 5 and 25 mg / ml of therapeutic agent.
  • the therapeutic agent concentration is between 10 and 25 mg / mL, and is preferably 20 mg / mL.
  • the therapeutic agent concentration is 20 mg / ml.
  • the therapeutic agent concentration is 5 mg / ml.
  • the therapeutic agent concentration is 5 mg / ml.
  • the present invention also relates to a medicament, characterized in that it comprises an emulsion as defined above.
  • the present invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an emulsion as defined above, as well as at least one pharmaceutically acceptable excipient.
  • compositions contain an effective dose of at least one emulsion according to the invention (containing at least one therapeutic agent), as well as at least one pharmaceutically acceptable excipient.
  • Said excipients are chosen according to the pharmaceutical form and the desired mode of administration, from the usual excipients which are known to those skilled in the art.
  • compositions of the present invention for oral, sublingual, subcutaneous, intramuscular, intravenous, intra-arterial, topical, local, intratracheal, intranasal, transdermal or rectal, the emulsion can be administered in unit dosage form, in admixture with conventional pharmaceutical excipients, to animals and humans for the treatment of disorders or disorders. diseases above.
  • the dosage appropriate to each patient is determined by the physician according to the mode of administration, the weight and the response of said patient.
  • the present invention also relates to an emulsion as defined above for use as a medicament.
  • the present invention also relates to an emulsion as defined above for its use for the treatment of cancer.
  • the present invention also relates to a method of treating cancer comprising administering to a patient an effective dose of an emulsion according to the invention.
  • Figure 1 shows optical microscopy images of the emulsions obtained at different concentrations of PLGA nanoparticles.
  • Figure 2 shows optical microscopy images of the emulsions obtained at different Lipiodol / physiological saline ratios.
  • Figure 3 shows 24-hour turbiscan creaming monitoring of a 3/1 emulsion stabilized with 15 mg / mL of nanoparticles.
  • FIG. 4 represents the 15-minute turbiscan phase shift monitoring of a non-stabilized 3/1 emulsion by nanoparticles (before emulsion and after 15 minutes of follow-up).
  • Figure 5 relates to the injectability of emulsions.
  • Figure 5A relates to the injectability of emulsions through a Progreat 2.4F catheter at different ratios at a rate of 2 mm / s (the curve 'a' corresponds to an emulsion with an oil / water ratio of 8: 3 the curve 'b' corresponds to an emulsion with an oil / water ratio of 3: 1, the curve 'c' corresponds to an emulsion with an oil / water ratio of 6: 1 and the curve 'd' corresponds to Lipiodol alone
  • Figure 5B relates to the injectability of a 3/1 emulsion at different injection speeds (a: 6 mm / s, b: 4 mm / s, c: 2 mm / s and d: 1 mm / s).
  • Figure 5C relates to the injectability of emulsions through a 18G needle at different ratios at a rate of 2 mm / s (a: Lipiodol alone, b: ratio 3: 2, c: ratio 6: 1 and d : 8: 3 ratio).
  • Figure 6 shows 24-hour turbiscan creaming of a 3/1 emulsion stabilized with 15 mg / mL of nanoparticles at a concentration of 20 mg / mL of doxorubicin.
  • Figure 7 shows the 4-hour turbiscan phase shift monitoring of a 4/1 unstabilized emulsion by nanoparticles at a concentration of 20 mg / mL of doxorubicin.
  • FIG. 8 relates to the in vitro release of doxorubicin from lipiodolated emulsions of ratio 3/1 loaded at a concentration of 20 mg / ml of doxorubicin without nanoparticles (curve with diamonds) and with nanoparticles at 15 mg / mL (curve with triangles) and charged balls (curve with squares).
  • Figure 9 relates to the in vitro release of irinotecan with nanoparticle (NP) stabilized emulsions at an irinotecan concentration of 20 mg / mL (round), at a ratio of 3/1 compared to an unstabilized emulsion (triangles). ), to balls loaded with irinotecan (diamonds) and free irinotecan (squares).
  • NP nanoparticle
  • Figure 10 relates to the in vitro release of irinotecan with NP stabilized emulsions at a concentration of 15 mg / mL at a ratio of 3/1 (triangles), 3/2 (squares) and 1/1 (diamonds). ).
  • Figure 1 1 represents the percentage of in vitro release of platinum with emulsions made with different ratios of Lipiodol and oxaliplatin, with or without stabilizing nanoparticles.
  • the curve with the diamonds corresponds to a ratio of 3/1 without nanoparticles
  • the curve with the squares corresponds to a ratio of 3/1 with nanoparticles
  • the curve with the triangles corresponds to a 2/1 ratio with nanoparticles
  • the curve with the crosses corresponds to a 1/1 ratio with nanoparticles.
  • Figure 12 represents the amount of platinum released in vitro with emulsions made with different ratios of Lipiodol and oxaliplatin, with or without stabilizing nanoparticles.
  • the curve with the diamonds corresponds to a ratio of 3/1 without nanoparticles
  • the curve with the squares corresponds to a ratio of 3/1 with nanoparticles
  • the curve with the triangles corresponds to a 2/1 ratio with nanoparticles
  • the curve with the crosses correspond to a 1: 1 ratio with nanoparticles.
  • Figure 13 relates to the in vitro release of ipilimumab of lipiodolated emulsions of ratio 3/1 stabilized by NP at a concentration of 15 mg / ml.
  • Figure 14 shows the plasma pharmacokinetics of oxaliplatin after injection of lipiodolated Pickering emulsions (dotted line) or conventional lipiodol emulsions (solid line) into the left hepatic arteries.
  • PLGA nanoparticles were prepared according to the emulsion-evaporation process already described in the literature (Astete, CE, Sabliov, CM Synthesis and Characterization of PLGA Nanoparticles, J. Biomater, Sci Polym Ed, 2006, 77 (3)). , 247-289). 100 mg of PLGA were dissolved in 5 ml of dichloromethane and emulsified by sonication (VibraCell sonicator, Fisher Scientific, France) at a power of 40% for 1 minute with 20 ml of an aqueous solution containing 2.5 mg / ml of PVA. The organic solvent was then evaporated at room temperature with magnetic stirring for 2 h.
  • the NPs were purified by ultracentrifugation (Beckman Coulter Optima TM LE-80K Ultracentrifuge) at 4 ° C, 37,000 g for 1 h. After removal of the supernatant, the NPs were resuspended in an aqueous solution containing 50 mg / mL of trehalose (cryoprotectant). Then, the suspension of the NPs was lyophilized. Prior to use, the lyophilized NPs were redispersed in MilliQ water at the desired concentration.
  • the emulsions were formulated with a lipiodol ratio (Guerbet, France) / physiological saline solution of 3/1 (v / v) by repetitive pump (70 round trip) of 2 10 ml syringes through a 3-way stopcock. 70 seconds.
  • the first syringe contains lipiodol, the second is empty and saline arranged in a 3 rd syringe is gradually introduced into the system via a pump with a flow rate of 1 mL / min.
  • the aqueous phase is a suspension of nanoparticles at different concentrations in physiological saline (see Figure 1).
  • Example 3 Obtaining a water-in-oil emulsion of physiological serum stabilized with PLGA nanoparticles at different oil / water ratios
  • Example 4 Determination of the direction of the emulsion by a drop test
  • the type of emulsion was determined by a colorimetric test using two solutions, one containing Lipiodol (previously colored with Sudan red) and the other. other containing physiological saline (previously stained with methylene blue).
  • a droplet of one of the solutions was added to one drop of the tested emulsion.
  • the continuous phase of the emulsion was revealed by observing the possible miscibility of the solution droplets with the emulsion drop. The test was carried out immediately after emulsification.
  • the emulsion was analyzed using a Turbiscan® MA 2000 (Formulation, L'Union, France).
  • the tube containing the emulsion was not removed or even touched from the instrument until the end of the measurement to avoid any disturbance of the system.
  • the measurements were made at predetermined times according to the evolution of the system. This monitoring was carried out until the change in intensities was negligible.
  • Turbiscan is used to measure the reversible (creaming and sedimentation) and irreversible (coalescence and segregation) destabilization phenomena in the sample without dilution ( Figures 3 and 4).
  • the emulsions were formulated according to the same protocol as Example 2.
  • the aqueous phase is composed of doxorubicin hydrochloride reconstituted at a concentration of 10 or 20 mg / ml in a saline solution (Adriblastine, Pfizer, USA) for the formulation of emulsions.
  • the emulsions were made using different Lipiodol / doxorubicin ratios, different concentrations of doxorubicin and different concentrations of nanoparticles (see Table 1 below).
  • the therapeutic emulsions obtained were all in the water-in-oil direction, that is to say reversed, whatever the conditions used.
  • Example 8 Stability of lipiodolated water-in-oil emulsions loaded with doxorubicin stabilized with nanoparticles
  • the emulsions were formulated according to the same protocol as Example 2.
  • the aqueous phase is composed of an antibody (5 mg / ml Ipilimumab, Yervoy, Bristol Myers Squibb).
  • the emulsions were carried out at a Lipiodol / ipilimumab ratio of 3/1 with a concentration of 15 mg / ml of nanoparticles.
  • the emulsions obtained were in the water-in-oil direction and stable over several weeks. No aggregation of the antibodies was observed contrary to the emulsions prepared without nanoparticles.
  • the integrity of the antibodies was verified by western blot in denaturing condition. The migration was made on polyacrylamide gel and the samples were prepared with 2% SDS (method known to those skilled in the art). Electrophoresis is performed at 120V for 90 minutes and membrane transfer at 100V for 45 minutes. The membrane is washed with ethanol and the revelation of the antibodies was made with Ponceau red.
  • the nanoparticles have shown their effectiveness in maintaining the integrity of the therapeutic agent, in this example ipilimumab.
  • TRIS buffered saline
  • the emulsions were formulated according to the same protocol as Example 2.
  • the aqueous phase is composed of irinotecan (irinotecan hydrochloride trihydrate, 20 mg / ml, Campto®, Pfizer).
  • the released amounts of irinotecan were quantified by 370 nm UV spectroscopy (FIGS. 9 and 10).
  • the emulsions were formulated according to the same protocol as Example 2.
  • the aqueous phase is composed of oxaliplatin (Eloxatin®, 5 mg / ml, Sanofi-Aventis).
  • the released amounts of platinum were quantified by ICP mass spectrometry (FIGS. 11 and 12).
  • Example 13 Water-in-oil emulsions stabilized with nanoparticles formulated from different oils
  • the emulsions were formulated at a ratio of 3/1 according to the same protocol as Example 2.
  • the aqueous phase is composed of either physiological saline or doxorubicin at a concentration of 20 mg / ml.
  • the oil phase is composed of either olive oil, sesame oil, castor oil, carnation oil or miglyol. All emulsions are formulated with nanoparticles at a concentration of 15 mg / ml.
  • the emulsions are water-in-oil type according to the colorimetric test and stable over more than one week.
  • Example 14 Preparation of Biodegradable Nanoparticles of PLGA
  • the PLGA-Iron nanoparticles were prepared according to the same process described in Example 1. 500 ⁇ of solution of Fe 3 O 4 nanoparticles decorated with oleic acid (25 mg ml -1 , size 10 nm, Ocean, USA) were added to 100 mg of PLGA previously dissolved in 5 ml of dichloromethane and emulsified by sonication ( VibraCell sonicator, Fisher Scientific, France) at a power of 40% for 1 minute with 20 ml of an aqueous solution containing 2.5 mg / ml of PVA The organic solvent was then evaporated at room temperature with magnetic stirring for 2 minutes.
  • NP were purified by ultracentrifugation (Beckman Coulter Optima TM LE-80K Ultracentrifuge) at 4 ° C., 37000 g for 1 h After removal of the supernatant, the NPs were resuspended in an aqueous solution containing 50 ml. mg / mL trehalose (cryoprotectant) and the NP suspension was lyophilized. Prior to use, the lyophilized NPs were redispersed in MilliQ water at the desired concentration.
  • Example 15 Obtaining a water-in-oil lipiodolated emulsion of physiological serum stabilized with various concentrations of PLGA-Iron nanoparticles
  • the emulsions were formulated according to the same protocol as Example 2 at different concentrations of PLGA-Iron nanoparticles (20, 15 or 10 mg / mL).
  • the emulsions are of water-in-oil type according to the colorimetric test.
  • Example 16 Obtaining a lipiodolated water-in-oil emulsion of doxorubicin stabilized with PLGA-Iron nanoparticles
  • the emulsion was formulated according to the same protocol as Example 2 at a concentration of 20 mg / ml of doxorubicin and 15 g / ml of PLGA-Fer nanoparticles. A water-in-oil emulsion was obtained.
  • the microscopic structure of the emulsions was observed using a confocal laser scanning microscope (Leica TCS SP8 - STED, Germany) equipped with a WLL laser (488 and 563 nm excitation waves) and an immersion goal CS2 63x / 1, 40.
  • a confocal laser scanning microscope Leica TCS SP8 - STED, Germany
  • WLL laser 488 and 563 nm excitation waves
  • immersion goal CS2 63x / 1, 40 To prevent deformation of the emulsion droplets, the sample was placed on a curved glass slide.
  • PLGA-Iron nanoparticles have been used to formulate emulsions in order to visualize them in transmission (avoids interference with the emission spectrum of doxorubicin).
  • the fluorescence of doxorubicin was observed with a 600-710 nm filter under 590 nm laser illumination. The red fluorescence emissions were collected in a sequential mode.
  • the emulsions were evaluated in MRI to confirm that this imaging modality made it possible to quantify the ratio of oil contained in a tumor ghost.
  • Table 2 MRI Quantification of the Percent Lipiodol in Emulsions with Decreasing Levels of Lipiodol.
  • the emulsions were formulated according to the same protocol as Example 2.
  • the aqueous phase is composed of active ingredient previously reconstituted at a therapeutic concentration recommended by the supplier or directly from an active ingredient in aqueous solution to the concentration of the commercial form. .
  • the emulsions were made at a Lipiodol / active ingredient ratio in solution of 3/1 with a concentration of 15 mg / ml in nanoparticles.
  • the aqueous phase consists of either gemcitabine (40 mg / mL), fludarabine (25 mg / mL), clamoxyl (200 mg / mL), cefazolin (330 mg / mL), sunitinib (0.5 mg / mL), and mL), methylprednisolone (10 mg / mL) or ketoprofen (25 mg / mL).
  • the therapeutic emulsions obtained were all in the water-in-oil direction according to the colorimetric test.
  • the drop size measurement was performed with a particle counter by image analysis technique (Flowcell FC200S + HR, Occhio, Belgium).
  • the emulsion is first diluted 20 times in the oil and then 0.5 ml of the diluted emulsion are introduced through a spacer of 400 ⁇ for analysis.
  • Each sample was measured at least 4 times on day 7 and on different days (day 0, day 7, day 35) for samples containing saline and ipilimumab.
  • the calculations were done on at least 500 drops.
  • the emulsions were formulated according to the same protocol as Example 9.
  • the in vitro release of ipilimumab from a lipiodolated emulsion was evaluated.
  • 0.8 ml of emulsion corresponding to 1 mg of ipilimumab were deposited in tubes containing 20 ml of buffered saline solution (PBS, pH 7.4) and placed in an incubator at 37 ° C. at a speed of 150 rpm .
  • PBS buffered saline solution
  • aliquots 300 ⁇
  • the released amounts of ipilimumab were quantified by the BCA method: colorimetric protein assay based on bicinchonic acid ( Figure 13).
  • VX2 tumors of the liver were implanted percutaneously in New Zealand white rabbits under general anesthesia (intramuscular injections of Ketamine 20-40mg / kg and xylazine 3-5mg / kg, isoflurane 3-5% for induction and 1, 5-3% in a mixture with 0 2 at 1 L / min for the procedure).
  • hepatic intra-arterial injections were performed by an interventional radiologist. This was done under general anesthesia and under fluoroscopic guidance in a room equipped with an X-ray angiography table.
  • the femoral artery was surgically exposed and catheterized with a 4F vascular angiography catheter.
  • a 2.4F micro-catheter was used for selective catheterization of the left branch of the hepatic artery and to inject 0.5 ml of emulsion (ie 0.625 mg of oxaliplatin).
  • Venous blood samples (2 mL) were taken at 5, 10, 20, 30 and 60 minutes post injection to determine the plasma oxaliplatin concentration. 4 groups of rabbits were made:
  • the pharmacokinetics of oxaliplatin after injection of both types of emulsion are summarized in Table 4 and Figure 14.
  • the plasma peak of oxaliplatin (Cmax) is significantly lower after injection of the Pickering emulsion compared to conventional emulsion (0.49 ⁇ 0.14 ng / mL vs. 1.08 ⁇ 0.41 ng / mL, p ⁇ 0.01).
  • Table 4 Average concentration of oxaliplatin (ng / mg) in the liver tissues according to the type of emulsion injected and the sacrifice time.
  • Tissue concentrations of oxaliplatin are shown in Tables 4 & 5.
  • Table 5 Average concentration of oxaliplatin (ng / mg) in liver tumors according to the type of emulsion injected and the sacrifice time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

La présente invention concerne une émulsion eau-dans-huile comprenant une phase huileuse continue et une phase aqueuse dispersée sous forme de gouttes, ladite phase aqueuse comprenant des nanoparticules à base de polyester, et au moins un agent thérapeutique.

Description

EMULSIONS EAU-DANS-HUILE INJECTABLES ET LEURS UTILISATIONS
La présente invention a pour objet des émulsions thérapeutiques eau-dans- huile injectables et stables. Elle a également pour objet l'utilisation desdites émulsions notamment pour le traitement du cancer.
La chimio-embolisation artérielle hépatique est le traitement de référence de certaines tumeurs du foie, comme le carcinome hépatocellulaire inopérable et les métastases hypervasculaires. Ce traitement consiste en l'association d'une injection de chimiothérapie (en général de la doxorubicine) à une embolisation artérielle ischémique, directement dans les artères tumorales. La chimiothérapie est libérée de façon lente et prolongée dans les artères tumorales grâce à l'utilisation d'un vecteur dans lequel la chimiothérapie est préalablement « chargée ». Ce vecteur doit idéalement posséder des propriétés diagnostique (visibilité en imagerie) et thérapeutique (libération contrôlée et prolongée de la chimiothérapie). Cependant, aucun des vecteurs utilisés actuellement (Lipiodol® ou billes chargées) ne possède cette propriété théranostique (diagnostique et thérapeutique). Les billes chargées sont des microsphères à base d'alcool polyvinylique qui peuvent être chargées avec une chimiothérapie (mécanisme d'échange d'ions) et sont disponibles dans des tailles différentes allant de 70 à 700 μηι. Ces billes ont déjà démontré une augmentation significative de l'exposition à la chimiothérapie tumorale et une diminution de la toxicité systémique mais elles ne contiennent pas d'agents de contraste. Ainsi, il est impossible de visualiser avec précision l'administration de la chimiothérapie pendant la procédure et de quantifier la concentration de chimiothérapie dans la tumeur après la procédure. En outre, seuls la doxorubicine et l'irinotécan peuvent être chargés dans des billes jusqu'à présent.
Le lipiodol est utilisé pour ses propriétés d'agent de contraste radio-opaque hydrophobe (huile) visible sous fluoroscopie aux rayons X et pour sa sélectivité pour les artères tumorales. La réalisation d'émulsions de chimiothérapie avec le Lipiodol permet donc d'espérer une délivrance sélective et visible de la chimiothérapie dans les tumeurs hépatiques. Cependant, les propriétés théranostiques de ces émulsions lipiodolées sont limitées par leur faible stabilité : le déphasage entre la chimiothérapie et le lipiodol se fait en quelques minutes. Très rapidement, les deux phases de l'émulsion se séparent et la quasi-totalité de la chimiothérapie qui est soluble dans l'eau disparaît de la tumeur. En outre, comme l'émulsification est obtenue par pompage répétitif de 2 seringues (1 de chimiothérapie et 1 de lipiodol) par un robinet à trois voies, la technique n'est pas reproductible d'un opérateur à l'autre. Cette mauvaise stabilité se traduit par une concentration tissulaire tumorale aléatoire de la chimiothérapie. Bien que diverses techniques (mélangeur, ultrasons, émulsifiants) et divers types d'émulsion lipiodol (eau-dans-huile par rapport à huile- dans-eau, différents rapports de lipiodol et de chimiothérapie) ont été utilisés dans des études précliniques pour améliorer la stabilité et la reproductibilité de l'émulsion, aucune d'entre elles n'a réussi.
Jusqu'à présent, les tensioactifs synthétiques sont utilisés pour stabiliser les émulsions pharmaceutiques. Cependant, ce type d'émulsifiant soulève directement ou indirectement des problèmes de toxicité et d'environnement. En particulier, lors de l'administration parentérale, il a été observé une certaine cytotoxicité et un comportement hémolytique de ces agents.
La présente invention a donc pour but de fournir une nouvelle émulsion thérapeutique eau-dans-huile, stable au cours du temps, notamment pendant au moins 24 heures.
La présente invention a également pour but de fournir une nouvelle émulsion stable possédant de préférence des propriétés théranostiques.
La présente invention a également pour but de fournir une nouvelle émulsion stable comprenant au moins un agent anticancéreux, et présentant une sélectivité tumorale supérieure à celle des émulsions classiques.
La présente invention a également pour but de fournir une nouvelle émulsion pouvant être chargée avec différents agents thérapeutiques et potentiellement visible par imagerie par résonance magnétique (IRM).
La présente invention a également pour but de fournir une nouvelle émulsion biodégradable, biocompatible et moins toxique ou irritante que les émulsions habituelles stabilisées avec des tensioactifs synthétiques ou des particules minérales.
Ainsi, la présente invention concerne une émulsion eau-dans-huile comprenant une phase huileuse continue et une phase aqueuse dispersée sous forme de gouttes, ladite phase aqueuse comprenant des nanoparticules à base de polyester, et au moins un agent thérapeutique. Phase huileuse
L'émulsion selon l'invention comprend une phase huileuse (ou phase grasse) continue.
Selon un mode de réalisation, la phase huileuse selon l'invention comprend au moins une huile. La phase huileuse peut comprendre une huile unique ou un mélange de plusieurs huiles différentes.
Toute huile ou toute huile pharmaceutique appropriée peut être utilisée pour constituer la phase huileuse.
Par « huile », on entend un composé non aqueux, non miscible à l'eau, liquide à température ambiante (25°C) et pression atmosphérique (760 mm de Hg).
Parmi les huiles adaptées selon l'invention, on peut citer notamment les acides gras, les esters d'acides gras et les huiles minérales (notamment comme le squalène).
On peut également citer les huiles marines, notamment les huiles de poisson, et en particulier l'huile de saumon. On peut par exemple citer l'icosapentate d'éthyle qui est l'un des acides gras polyinsaturés contenu dans l'huile de poisson.
La phase huileuse selon l'invention comprend de préférence des huiles injectables, de préférence des huiles végétales injectables.
Parmi les huiles injectables, on peut citer celles bien connues de l'homme du métier, notamment comme décrit dans l'article de Hippamgaonkar et al. (2010) AAPS Pharm Sci Tech, 1 1 (4), p.1526-1540.
Selon un mode de réalisation, la phase huileuse selon l'invention comprend des triglycérides à chaîne longue (LCT) et/ou des triglycérides à chaîne moyenne (MCT). Parmi les LCT, on peut citer la trioléine, l'huile de soja, l'huile de carthame, l'huile de sésame et l'huile de ricin. Parmi les MCT, on peut citer l'huile de noix de coco fractionnée, comme encore les triglycérides d'acides caprylique/caprique, comme les produits MIGLYOL 810® ou 812®, NEOBEE® M-5 ou Captex® 300.
On peut également citer les triglycérides d'acides caprylique/caprique/linoléique (MIGLYOL 818®), les triglycérides d'acides caprylique/caprique/succinique (MIGLYOL 829®), ou encore le MIGLYOL 840® (nom INCI : propylène glycol dicaprylate/dicaprate). Selon un mode de réalisation, la phase huileuse comprend au moins une huile végétale, en particulier l'huile de ricin, l'huile de sésame, l'huile d'œillette, l'huile d'olive, l'huile de soja, l'huile de noix de coco, la trioléine et leurs mélanges.
Selon un mode de réalisation, la phase huileuse comprend au moins une huile qui a été modifiée par de l'iode pour la rendre radio-opaque. Parmi ces huiles, on peut citer l'huile d'oeillette, l'huile de lin (cf. J Pharm Sci, 102 :4150, 2013), le Labrafac WL1349 (Attia et al., Macromol Biosci, 2017), l'huile de ricin (ACS Nano, 8(10), 10537, 2014) ou encore la vitamine E.
Selon un mode de réalisation, la phase huileuse comprend des esters éthyliques d'acides gras iodés de l'huile d'œillette, et notamment est constituée de Lipiodol.
Le Lipiodol est constitué des esters éthyliques des acides gras iodés de l'huile d'œillette. Il contient de 43 à 53% d'iode. Il est préparé par saponification de l'huile d'œillette ce qui libère les acides gras sous forme de savons qui sont ultérieurement iodés par le chlorure d'iode et enfin estérifiés par l'éthanol. L'huile d'œillette est extraite des graines de pavot noir (Papaver somniferum). Les principaux acides gras compris dans cette huile sont l'acide linoléique et l'acide linolénique. Le Lipiodol est également utilisé comme agent de contraste dans le cadre d'investigations radiologiques.
Selon un mode de réalisation, la phase huileuse comprend des triglycérides de longueurs de chaîne moyennes, notamment comprenant entre 8 et 12 atomes de carbone, ou une huile minérale composée principalement de squalène.
Selon un mode de réalisation, la phase huileuse de l'émulsion selon l'invention comprend en outre un composé, comprenant pour 100% de sa masse, de 10 % à 95 % d'une huile minérale comprenant :
- de 0,05% à 10% de chaînes hydrocarbonées ayant moins de 16 atomes de carbone ;
- de 0,05% à 5% de chaînes hydrocarbonées ayant plus de 28 atomes de carbone ;
- et possédant un rapport P/N, correspondant au rapport de la quantité massique des chaînes hydrocarbonées de type paraffinique sur la quantité massique des chaînes hydrocarbonées de type naphténique, compris entre 2 et 6. Selon un mode de réalisation, la phase huileuse de l'émulsion selon l'invention peut comprendre au moins un composé choisi parmi les produits MONTANIDE commercialisés par SEPPIC tels que ceux décrits dans la demande FR 2 955 776.
La phase huileuse de l'émulsion selon l'invention peut en outre comprendre au moins un tensioactif.
Selon un mode de réalisation, le ratio entre le volume de phase huileuse et le volume de phase aqueuse est compris entre 4:1 et 3:3. De préférence, ce ratio est égal à 4:1 , 3:1 , 2:1 , 3:2, ou 3:3 et est de préférence 3:1 .
Selon un mode de réalisation, l'émulsion selon l'invention comprend de 40% à 80%, de préférence de 60% à 80%, en poids de phase huileuse par rapport au poids total de ladite émulsion.
Phase aqueuse
L'émulsion selon l'invention comprend une phase aqueuse dispersée.
La phase aqueuse selon l'invention comprend au moins de l'eau.
Selon un mode de réalisation, l'émulsion selon l'invention comprend de 20% à 60%, de préférence de 20% à 40%, en poids de phase aqueuse par rapport au poids total de ladite émulsion.
La phase aqueuse selon l'invention est sous forme de gouttes, de tailles supérieures au micron.
Selon un mode de réalisation, la taille des gouttes de la phase aqueuse est comprise entre 10 μηι et 100 μηι, de préférence entre 20 μηι et 50 μηι.
Nanoparticules
La phase aqueuse de l'invention comprend au moins une nanoparticule à base de polyester.
L'utilisation de particules solides dans la formulation d'une émulsion permet de réduire, voire d'éviter, l'utilisation de tensioactifs synthétiques, et des interfaces très stables sont obtenues. De telles émulsions stabilisées par des particules solides sont appelées émulsions de Pickering. Les émulsions de Pickering conservent les propriétés basiques des émulsions classiques stabilisées par les tensioactifs, de sorte qu'une émulsion classique peut être substituée par une émulsion de Pickering dans la plupart des applications. Leur caractère «sans agent tensioactif» les rend très attractives, en particulier pour les applications biomédicales telles que la chimio-embolisation.
Selon un mode de réalisation, les nanoparticules selon l'invention sont biodégradables.
Les nanoparticules à base de polyester biodégradables sont utilisées comme particules solides pour stabiliser l'interface eau / huile dans les émulsions. Ces nanoparticules ont une faible toxicité et une réponse inflammatoire limitée est observée en présence de ces nanoparticules. Ainsi, les émulsions selon l'invention présentent les avantages d'être biodégradables, biocompatibles et potentiellement moins toxiques ou irritantes que les émulsions habituelles stabilisées avec des tensioactifs synthétiques ou des particules minérales.
Les nanoparticules selon l'invention sont des nanoparticules polymériques bien connues de l'homme du métier.
Selon l'invention, ces nanoparticules sont des particules pleines ayant au moins deux dimensions inférieures à 1 μηι. De préférence, ces nanoparticules sont des nanosphères avec un cœur matriciel de taille moyenne inférieure à 1 μηι (lorsqu'elles sont mesurées par diffusion de la lumière).
De préférence, les nanoparticules ont une taille en moyenne de 200 nm. Elles sont globalement comprises entre 50 nm et 400 nm et plus précisément entre 100 nm et 300 nm.
Dans le cadre de la présente invention, le terme "taille" désigne le diamètre.
Selon un mode de réalisation, les émulsions de l'invention comprennent entre 5 et 25 mg/mL, de préférence 15 mg/mL, de nanoparticules telles que définies ci- dessus.
Les nanoparticules selon l'invention sont à base de polyester. Comme mentionné ci-dessus, elles sont de préférence pleines et donc constituées d'au moins un polyester. Selon un mode de réalisation, les nanoparticules à base de polyester sont choisies dans le groupe constitué des nanoparticules à base de poly acide lactique (polylactide), poly acide glycolique (polyglycolide), de copolymères de lactide- glycolide (avec différents ratios de lactide / glycolique), de copolymères de lactide- glycolide-co-polyéthylène glycol, de polyorthoesters, de polyanhydrides, de polybutylacétone, de polyvalérolactone, de poly acide malique, de polylactones et de leurs mélanges.
Selon un mode de réalisation, les nanoparticules à base de polyester comprennent en outre des particules d'oxyde de fer, de préférence de taille comprise entre 5 nm et 30 nm, et préférentiellement égale à 10 nm.
Un avantage de l'utilisation d'émulsions de Pickering pour l'injection est la possibilité de les rendre détectables par IRM, grâce à la nature huileuse du vecteur et/ou grâce à l'incorporation de particules d'oxyde de fer. Aujourd'hui, l'IRM est de plus en plus utilisée chez les patients en raison d'une précision et d'une sensibilité pour le diagnostic significativement plus élevées dans la détection des carcinomes hépatocellulaires par rapport au scanner. Ainsi, un agent d'imagerie a été introduit dans les nanoparticules stabilisantes utilisées selon l'invention. Les particules d'oxyde de fer sont considérées comme des agents de contraste T2 efficaces. Par conséquent, selon un mode de réalisation, l'agent thérapeutique est encapsulé à l'intérieur des gouttelettes d'eau, alors que les particules d'oxyde de fer sont incorporées dans les nanoparticules stabilisant ces gouttelettes. Avoir l'agent thérapeutique avec les nanoparticules d'oxyde de fer sous une seule forme injectable permet de suivre le devenir de la thérapie après administration.
Agent thérapeutique
L'émulsion selon l'invention comprend au moins un agent thérapeutique.
Selon l'invention, ledit agent thérapeutique est encapsulé dans les gouttes de phase aqueuse.
Cette encapsulation est avantageuse en ce qu'elle permet de protéger et donc stabiliser certains types d'agents thérapeutiques, notamment les molécules fragiles comme les anticorps monoclonaux.
Les anticorps monoclonaux de fait de leur structure protéinique peuvent être dégradés quand ils sont exposés à la chaleur, lumière, pH, ou sous forte agitation, en présence de certains métaux et huiles / solvants organiques. Ce sont des molécules fragiles dont la manipulation peut présenter des risques d'agrégation voire de dénaturation. Ils risquent d'être altérés et dénaturés lors de leur incorporation dans un vecteur sauf à prévoir un système de protection. Les émulsions actuelles ne permettent pas le transport de ces principes actifs et leur libération contrôlée. En introduisant une barrière physique via les nanoparticules stabilisantes entre les gouttelettes d'eau contenant l'agent thérapeutique et l'huile, l'anticorps reste stable.
Selon un mode de réalisation, l'agent thérapeutique est choisi parmi les immunomodulateurs, les médicaments anticancéreux, les médicaments anti- angiogéniques, les médicaments anti-infectieux, les médicaments antiinflammatoires, les agents de contraste d'imagerie, les agents radioactifs et les agents infectieux.
Selon l'invention, le terme « immunomodulateur » désigne un composé apte à moduler la réponse immunitaire.
Parmi les agents thérapeutiques, on peut également citer les anticorps ciblant les antigènes tumoraux. Selon l'invention, le terme « antigène tumoral » désigne une molécule spécifiquement présente à la surface des cellules (par exemple : facteur de croissance de l'endothélium vasculaire, CTLA-4, PD1 ou PDL-1 ).
Selon l'invention, le terme « médicament anti-angiogénique » désigne un médicament destiné à inhiber le processus de croissance de nouveaux vaisseaux sanguins (néovascularisation) à partir de vaisseaux préexistants (par exemple Bevacizumab, Sunitinib ou Sorafenib).
Selon l'invention, le terme « médicament anti-infectieux » désigne un médicament destiné au traitement des infections d'origine microbienne (antibiotiques, anti-viraux ou anti-fongiques par exemple). Parmi les antibiotiques, on peut citer par exemple l'arnoxicilline ou la céfazoline.
Selon l'invention, le terme « médicament anti-inflammatoire » désigne un médicament destiné au traitement des inflammations (anti-inflammatoires stéroïdiens et non stéroïdiens). Par exemple, on peut citer la méthylprednisolone ou le kétoprofène.
Selon l'invention, le terme « agent de contraste d'imagerie » désigne une substance qui augmente artificiellement le contraste permettant de visualiser une structure anatomique ou naturellement peu ou pas contrastée. On peut plus particulièrement citer les produits de contraste iodés, les produits de contraste IRM ou les radio-éléments. Selon l'invention, le terme « radio-éléments » désigne un élément chimique qui émet un rayonnement α, β- ou γ souvent accompagné de l'émission de photons de haute énergie. Ces éléments sont utilisés en médecine nucléaire à des fins de diagnostic à faible dose, et à des fins thérapeutiques à forte dose pour soigner les cancers (99mTechnetium, 18Fluor, 123lode, 90Yttrium, 131 Iode ou 166Holmium par exemple).
Selon l'invention, le terme « agent infectieux » désigne un agent biologique responsable d'une maladie infectieuse (comme les bactéries, les virus, les prions, les levures et les parasites).
Selon un mode de réalisation, l'émulsion selon l'invention comprend, à titre d'agent thérapeutique, au moins un médicament anticancéreux.
De préférence, le médicament anticancéreux est choisi dans le groupe constitué des agents alkylants, des dérivés du platine, des agents antibiotiques cytotoxiques, des agents antimicrotubules, des anthracyclines, des inhibiteurs de topoisomérases des groupes I et II, des fluoropyrimidines, des analogues de cytidine, des analogues d'adénosine, du méthotrexate, de l'acide folinique, des enzymes, des agents antivasculaires, des agents anti-angiogéniques, des agents antimitotiques, notamment des agents poisons du fuseau, des inhibiteurs de kinases, des hormones, des anticorps monoclonaux, des radioéléments, des virus oncolytiques et de leurs mélanges.
Parmi les agents alkylants, on peut citer par exemple le cyclophosphamide, le melphalan, l'ifosfamide, le chlorambucil, le busulfan, le thiotepa, la prednimustine, la carmustine, la lomustine, la semustine, la steptozotocine, la decarbazine, la témozolomide, la procarbazine et l'hexaméthylmélamine.
Parmi les dérivés du platine, on peut citer notamment le cisplatine, le carboplatine et l'oxaliplatine.
Parmi les agents antibiotiques cytotoxiques, on peut par exemple citer la bléomycine, la mitomycine et la dactinomycine.
Parmi les agents antimicrotubules, on peut mentionner notamment la vinblastine, la vincristine, la vindésine, la vinorelbine et les taxoïdes (paclitaxel et docétaxel).
Parmi les anthracyclines, on peut mentionner la doxorubicine, la daunorubicine, l'idarubicine, l'épirubicine, la mitoxantrone et la losoxantrone. Parmi les inhibiteurs de topoisomérases des groupes I et II, on peut par exemple citer l'étoposide, le teniposide, l'amsacrine, l'irinotécan, le topotecan et le tomudex.
Parmi les antimétabolites, on peut citer le métothréxate ou l'hydroxyurée. Parmi les fluoropyrimidines, on peut citer la 5-fluorouracile, l'UFT ou la floxuridine.
Parmi les analogues de cytidine, on peut citer la 5-azacytidine, la cytarabine, la gemcitabine, la 6-mercaptomurine et la 6-thioguanine.
Parmi les analogues d'adénosine, on peut tels que la pentostatine, la cytarabine ou le phosphate de fludarabine
Parmi les enzymes et composés divers, on peut aussi citer la L-asparaginase, l'hydroxyurée, l'acide trans-rétinoique, la suramine, la dexrazoxane, l'amifostine, l'herceptine ainsi que les hormones oestrogéniques et androgéniques.
Parmi les agents antivasculaires, on peut mentionner les dérivés de la combretastatine, par exemple la CA4P, des chalcones ou de la colchicine, par exemple le ZD6126, et leurs prodrogues.
Parmi les agents anti-angiogéniques, on peut citer le bevacizumab, le sorafenib ou le sunitinib malate.
Parmi les agents thérapeutiques inhibiteurs de tyrosine kinase, on peut citer l'imatinib, le gefitinib, le sunitinib, le sorafenib, le vandetanib et l'erlotinib.
Parmi les agents poisons du fuseau, on peut citer la vincristine, la vinblastine, le taxol et le taxotère.
Parmi les radioéléments, on peut citer le 99mTechnetium, le 18Fluor, l'123lode, le 32Phosphore, le 89Strontium, l'90Yttrium, l'131 lode, l'166Holmium, le 18§Rhenium et l'169Erbium.
Parmi les virus oncolytiques, on peut citer le T-VEC.
De préférence, l'agent thérapeutique est un médicament anticancéreux choisi dans le groupe constitué de la doxorubicine, de l'irinotécan, de l'oxaliplatine et de leurs mélanges.
Selon un mode de réalisation, l'émulsion selon l'invention comprend, à titre d'agent thérapeutique, au moins un anticorps ciblant les antigènes, et plus particulièrement au moins un anticorps monoclonal.
Selon un mode de réalisation, l'anticorps est un anticorps ciblant les antigènes tumoraux choisi dans le groupe constitué des anticorps monoclonaux anti- angiogéniques, des anticorps monoclonaux anti-CTLA-4, des anticorps monoclonaux anti-PD-1 , des anticorps monoclonaux anti-PD-L1 , et de leurs mélanges.
Parmi les anticorps monoclonaux anti-angiogeniques, on peut citer notamment le bévacizumab.
Parmi les anticorps monoclonaux anti-CTLA-4, on peut citer notamment l'ipilimumab et le tremelimumab.
Parmi les anticorps monoclonaux anti-PD-1 , on peut citer notamment le nivolumab et le pembrolizumab.
Parmi les anticorps monoclonaux anti-PD-L1 , on peut notamment citer l'Atezolizumab et l'Avelumab.
Selon un mode de réalisation, l'émulsion selon l'invention comprend entre 5 et 25 mg/mL d'agent thérapeutique.
De préférence, lorsque l'émulsion comprend de la doxorubicine à titre d'agent thérapeutique, la concentration en agent thérapeutique est comprise entre 10 et 25 mg/mL, et est de préférence égale à 20 mg/mL.
De préférence, lorsque l'émulsion comprend de l'irinotécan à titre d'agent thérapeutique, la concentration en agent thérapeutique est égale à 20 mg/mL.
De préférence, lorsque l'émulsion comprend de l'oxaliplatine à titre d'agent thérapeutique, la concentration en agent thérapeutique est égale à 5 mg/mL.
De préférence, lorsque l'émulsion comprend de l'ipilimumab à titre d'agent thérapeutique, la concentration en agent thérapeutique est égale à 5 mg/mL.
La présente invention concerne également un médicament, caractérisé en ce qu'il comprend une émulsion telle que définie ci-dessus.
La présente invention concerne également une composition pharmaceutique comprenant une émulsion telle que définie ci-dessus, ainsi qu'au moins un excipient pharmaceutiquement acceptable.
Ces compositions pharmaceutiques contiennent une dose efficace d'au moins une émulsion selon l'invention (contenant au moins un agent thérapeutique), ainsi qu'au moins un excipient pharmaceutiquement acceptable.
Lesdits excipients sont choisis selon la forme pharmaceutique et le mode d'administration souhaité, parmi les excipients habituels qui sont connus de l'homme du métier.
Dans les compositions pharmaceutiques de la présente invention pour l'administration orale, sublinguale, sous-cutanée, intramusculaire, intra-veineuse, intra-artérielle, topique, locale, intratrachéale, intranasale, transdermique ou rectale, l'émulsion peut être administrée sous forme unitaire d'administration, en mélange avec des excipients pharmaceutiques classiques, aux animaux et aux êtres humains pour le traitement des troubles ou des maladies ci-dessus.
Selon la pratique habituelle, le dosage approprié à chaque patient est déterminé par le médecin selon le mode d'administration, le poids et la réponse dudit patient.
La présente invention concerne également une émulsion telle que définie ci- dessus pour son utilisation à titre de médicament.
La présente invention concerne également une émulsion telle que définie ci- dessus pour son utilisation pour le traitement du cancer.
La présente invention, selon un autre de ses aspects, concerne également une méthode de traitement du cancer comprenant l'administration, à un patient, d'une dose efficace d'une émulsion selon l'invention.
DESCRIPTION DES FIGURES
La Figure 1 représente des images de microscopie optique des émulsions obtenues à différentes concentrations de nanoparticules de PLGA.
La Figure 2 représente des images de microscopie optique des émulsions obtenues à différents ratios Lipiodol / sérum physiologique.
La Figure 3 représente le suivi du crémage au turbiscan sur 24 heures d'une émulsion 3/1 stabilisée avec 15 mg/mL de nanoparticules.
La Figure 4 représente le suivi du déphasage au turbiscan sur 15 minutes d'une émulsion 3/1 non stabilisée par des nanoparticules (avant émulsion et après 15 minutes de suivi).
La Figure 5 concerne l'injectabilité d'émulsions. La Figure 5A concerne l'injectabilité d'émulsions au travers d'un cathéter Progreat 2.4F à différents ratios à une vitesse de 2 mm/s (la courbe 'a' correspond à une émulsion avec un ratio huile/eau de 8:3, la courbe 'b' correspond à une émulsion avec un ratio huile/eau de 3:1 , la courbe 'c' correspond à une émulsion avec un ratio huile/eau de 6:1 et la courbe 'd' correspond au Lipiodol seul. La Figure 5B concerne l'injectabilité d'une émulsion 3/1 à différentes vitesses d'injection (a : 6 mm/s ; b : 4 mm/s ; c : 2 mm/s et d : 1 mm/s). La Figure 5C concerne l'injectabilité d'émulsions au travers d'une aiguille 18G à différents ratios à une vitesse de 2 mm/s (a : Lipiodol seul ; b : ratio 3:2 ; c : ratio 6:1 et d : ratio 8:3).
La Figure 6 représente le suivi du crémage au turbiscan sur 24 heures d'une émulsion 3/1 stabilisée avec 15 mg/mL de nanoparticules à une concentration de 20 mg/mL de doxorubicine.
La Figure 7 représente le suivi du déphasage au turbiscan sur 4 heures d'une émulsion 4/1 non stabilisée par des nanoparticules à une concentration de 20 mg/mL de doxorubicine.
La Figure 8 concerne la libération in vitro de la doxorubicine d'émulsions lipiodolées de ratio 3/1 chargées à une concentration de 20 mg/mL en doxorubicine sans nanoparticules (courbe avec les losanges) et avec nanoparticules à 15 mg/mL (courbe avec les triangles) et de billes chargées (courbe avec les carrés).
La Figure 9 concerne la libération in vitro de l'irinotécan avec des émulsions stabilisées par des nanoparticules (NP) à une concentration en irinotécan à 20 mg/mL (ronds), à un ratio 3/1 comparée à une émulsion non stabilisée (triangles), à des billes chargées en irinotécan (losanges) et à l'irinotécan libre (carrés).
La Figure 10 concerne la libération in vitro de l'irinotécan avec des émulsions stabilisées par des NP à une concentration de 15 mg/mL, à un ratio 3/1 (triangles), 3/2 (carrés) et 1/1 (losanges).
La Figure 1 1 représente le pourcentage de libération in vitro de platine avec des émulsions réalisées avec différents ratios de Lipiodol et d'oxaliplatine, avec ou sans nanoparticules stabilisatrices. La courbe avec les losanges correspond à un ratio 3/1 sans nanoparticules, la courbe avec les carrés correspond à un ratio 3/1 avec des nanoparticules, la courbe avec les triangles correspond à un ratio 2/1 avec des nanoparticules et la courbe avec les croix correspond à un ratio 1/1 avec des nanoparticules.
La Figure 12 représente la quantité de platine libérée in vitro avec des émulsions réalisées avec différents ratios de Lipiodol et d'oxaliplatine, avec ou sans nanoparticules stabilisatrices. La courbe avec les losanges correspond à un ratio 3/1 sans nanoparticules, la courbe avec les carrés correspond à un ratio 3/1 avec des nanoparticules, la courbe avec les triangles correspond à un ratio 2/1 avec des nanoparticules et la courbe avec les croix correspond à un ratio 1 /1 avec des nanoparticules.
La Figure 13 concerne la libération in vitro de l'ipilimumab d'émulsions lipiodolées de ratio 3/1 stabilisées par des NP à une concentration de 15 mg/mL.
La Figure 14 concerne la pharmacocinétique plasmatique de l'oxaliplatine après injection d'émulsions lipiodolées de Pickering (trait pointillé) ou d'émulsions lipiodolées conventionnelles (trait plein) dans les artères gauches hépatiques. EXEMPLES
Exemple 1 : Préparation de nanoparticules biodégradables de PLGA
Les nanoparticules PLGA ont été préparées selon le procédé d'émulsion- évaporation déjà décrit dans la littérature (Astete, C. E.; Sabliov, C. M. Synthesis and Characterization of PLGA Nanoparticles. J. Biomater. Sci. Polym. Ed. 2006, 77(3), 247-289). 100 mg de PLGA ont été dissous dans un 5 mL de dichlorométhane et émulsifiés par sonication (sonicateur VibraCell, Fisher Scientific, France) à une puissance de 40% pendant 1 minute avec 20 ml d'une solution aqueuse contenant 2,5 mg / mL de PVA. Le solvant organique a ensuite été évaporé à température ambiante sous agitation magnétique pendant 2 h. Après évaporation, les NP ont été purifiées par ultracentrifugation (LE-80K Ultracentrifuge Beckman Coulter OptimaTM) à 4°C, 37 000 g pendant 1 h. Après l'élimination du surnageant, les NP ont été remises en suspension dans une solution aqueuse contenant 50 mg / mL de tréhalose (cryoprotecteur). Puis, la suspension des NP a été lyophilisée. Avant utilisation, les NP lyophilisées ont été redispersées dans de l'eau MilliQ à la concentration désirée.
Exemple 2 : Obtention d'une émulsion eau-dans-huile de sérum physiologique stabilisée par différentes concentrations de nanoparticules de PLGA
Les émulsions ont été formulées avec un ratio lipiodol (Guerbet, France) / sérum physiologique de 3/1 (v/v) par pompage répétitif (70 aller/retour) de 2 seringues de 10 ml au travers d'un robinet 3 voies pendant 70 secondes. La première seringue contient le lipiodol, la seconde est vide et le sérum physiologique disposé dans une 3eme seringue est introduit graduellement dans le système via un pousse-seringue avec un débit de 1 mL/min. La phase aqueuse est une suspension de nanoparticules à différentes concentrations dans du sérum physiologique (cf. Figure 1 ).
Exemple 3 : Obtention d'une émulsion eau-dans-huile de sérum physiologique stabilisée par des nanoparticules de PLGA à différents ratios huile/eau
Les émulsions ont été formulées selon le même protocole que l'exemple 1 à une concentration de 15 mg/ml de nanoparticules avec des ratios lipiodol / sérum physiologique variables (cf. Figure 2). Exemple 4 : Détermination du sens de l'émulsion par un « drop test »
Pour chaque émulsion, le type d'émulsion (eau-dans-huile ou huile-dans-eau) a été déterminé par un test colorimétrique en utilisant deux solutions, l'une contenant du Lipiodol (coloré préalablement par du rouge Soudan) et l'autre contenant du sérum physiologique (colorée préalablement par du bleu de méthylène). Une gouttelette de l'une des solutions a été ajoutée sur une goutte de l'émulsion testée. La phase continue de l'émulsion a été révélée en observant la miscibilité éventuelle des gouttelettes de solutions avec la goutte d'émulsion. Le test a été effectué immédiatement après l'émulsification.
L'analyse colorimétrique d'une émulsion de ratio 3/1 avec 15 mg/ml de nanoparticule par ajout de colorant à la phase aqueuse ou à la phase Lipiodol, a permis de montrer que l'émulsion obtenue est de type eau-dans-huile. En effet, la phase continue de la goutte d'émulsion est colorée par le Lipiodol, et pas par l'eau.
Exemple 5 : Etude de la stabilité des émulsions stabilisées par des nanoparticules vs non stabilisée
L'émulsion a été analysée à l'aide d'un Turbiscan® MA 2000 (Formulation, L'Union, France). Le tube contenant l'émulsion n'a pas été enlevé ou même touché de l'appareil jusqu'à la fin de la mesure afin d'éviter toute perturbation du système. Les mesures ont été effectuées à des temps prédéterminés selon l'évolution du système. Cette surveillance a été effectuée jusqu'à ce que l'évolution des intensités soit négligeable. Le Turbiscan permet de mesurer les phénomènes de déstabilisation réversibles (crémage et sédimentation) et irréversibles (coalescence et ségrégation) dans l'échantillon sans dilution (Figures 3 et 4).
Exemple 6 : Etude d'injectabilité des émulsions eau-dans-huile stabilisées par des nanoparticules
L'injectabilité des émulsions a été étudiée à l'analyseur de texture (TA-XT2, Texture Technologies). Les mesures ont été faites avec des seringues « Médaillon » de 1 ml (Merit®) connectées soit à un micro-cathéter vasculaire (diamètre : 2,4 F) soit à une aiguille 18 gauge. Différents ratios huile/eau (8/3, 3/1 et 6/1 ) ont été étudiés à une vitesse de 2 mm/s et pour le ratio 3/1 , différentes vitesses d'injections ont été testées. L'huile seule (Lipiodol) a été utilisée comme contrôle (Figure 5). Exemple 7 : Obtention d'émulsions lipiodolées eau-dans-huile chargées en doxorubicine stabilisées par des nanoparticules
Les émulsions ont été formulées selon le même protocole que l'exemple 2. La phase aqueuse est composée de chlorhydrate de doxorubicine reconstituée à une concentration de 10 ou 20 mg/ml dans une solution saline (Adriblastine, Pfizer, USA) pour la formulation d'émulsions. Les émulsions ont été réalisées en utilisant différents ratios Lipiodol/doxorubicine, différentes concentrations de doxorubicine et différentes concentrations de nanoparticules (cf. Tableau 1 ci-dessous).
Les émulsions thérapeutiques obtenues étaient toutes dans le sens eau-dans- huile, c'est-à-dire inverses quelles que soient les conditions utilisées.
Exemple 8 : Stabilité des émulsions lipiodolées eau-dans-huile chargées en doxorubicine stabilisées par des nanoparticules
Les analyses ont été réalisées suivant le protocole de l'exemple 5. Le crémage des diverses émulsions a été rapidement observée au Turbiscan mais sans déphasage sur un suivi de 24h (Figure 6).
A contrario, les émulsions thérapeutiques de doxorubicine réalisées sans nanoparticules de PLGA montraient un déphasage complet très rapide (<5h)(Figure 7).
Exemple 9 : Obtention d'émulsions lipiodolées eau-dans-huile chargées en anticorps monoclonaux stabilisées par des nanoparticules
Les émulsions ont été formulées selon le même protocole que l'exemple 2. La phase aqueuse est composée d'un anticorps (5 mg/ml d'Ipilimumab, Yervoy, Bristol Myers Squibb). Les émulsions ont été réalisées à un ratio Lipiodol/ipilimumab de 3/1 avec une concentration de 15 mg/ml en nanoparticules.
Les émulsions obtenues étaient dans le sens eau-dans-huile et stables sur plusieurs semaines. Aucune agrégation des anticorps n'a été observée contrairement aux émulsions préparées sans nanoparticules.
L'intégrité des anticorps a été vérifiée par western-blot en condition dénaturante. La migration a été faite sur gel de polyacrylamide et les échantillons ont été préparés avec 2% de SDS (méthode connue de l'homme du métier). L'électrophorèse est effectuée à 120V pendant 90 minutes et le transfert sur membrane à 100V pendant 45 minutes. La membrane est lavée à l'éthanol et la révélation des anticorps a été faite au rouge de Ponceau.
Les nanoparticules ont montré leur efficacité à conserver l'intégrité de l'agent thérapeutique, dans cet exemple, l'ipilimumab.
Exemple 10 : Etude de la libération in vitro de la doxorubicine des émulsions lipiodolées stabilisées par des nanoparticules
La libération in vitro de la doxorubicine d'émulsions lipiodolées de ratio 3/1 chargées à une concentration de 20 mg/ml en doxorubicine (2 types : sans nanoparticules, avec nanoparticules à 15 mg/ml) ou de billes chargées à 25 mg/mL en doxorubicine (DC beads, Biocompatibles taille 300-500 μηι) a été évaluée. 0,8 mL d'émulsion (correspondant à 4 mg de doxorubicine) ou 0,16 mL de billes chargées ont été introduits dans des tubes GeBAflex (cut-off: 12-14 kDa; Gene Bio- Application Ltd.). Ces tubes ont été immergés dans 40 ml de solution salée tamponnée (TRIS, pH 7,4) et mis dans un incubateur à 37°C à une vitesse de 150 tpm. A des temps prédéterminés, des aliquots (80 μί) ont été collectés et remplacés par des volumes équivalents de TRIS.
Les quantités libérées de doxorubicine ont été quantifiées par densité optique à 492 nm dans une microplaque à 96 puits (Figure 8).
Exemple 11 : Etude de la libération in vitro de l'irinotécan des émulsions lipiodolées stabilisées par des nanoparticules
Les émulsions ont été formulées selon le même protocole que l'exemple 2. La phase aqueuse est composée d'irinotécan (chlorhydrate d'irinotécan trihydraté, 20 mg/mL ; Campto®, Pfizer).
La libération in vitro de l'irinotécan d'émulsions lipiodolées (4 types : sans nanoparticules ratio 3/1 , avec nanoparticules à 15 mg/mL à des ratios 3/1 ; 3/2 ; 1 /1 ) ou de billes chargées à 20 mg/mL en irinotécan (DC beads, Biocompatibles taille 300-500 μηι) a été évaluée. 0,8 mL d'émulsion (correspondant à 4 mg, 6,4 mg et 8 mg d'irinotécan pour les émulsions 3/1 ; 3/2 et 1 /1 respectivement) ou 0,08 mL de billes chargées ont été introduits dans des tubes GeBAflex (cut-off: 12-14 kDa; Gene Bio-Application Ltd.). Ces tubes ont été immergés dans 40 mL de solution salée tamponnée (PBS, pH 7,4) et mis dans un incubateur à 37°C à une vitesse de 150 tpm. A des temps prédéterminés, des aliquots (0,5 mL) ont été collectés et remplacés par des volumes équivalents de PBS.
Les quantités libérées d'irinotécan ont été quantifiées par spectroscopie UV à 370 nm (Figures 9 et 10).
Exemple 12 : Etude de la libération in vitro de l'oxaliplatine des émulsions lipiodolées stabilisées par des nanoparticules
Les émulsions ont été formulées selon le même protocole que l'exemple 2. La phase aqueuse est composée d'oxaliplatine (Eloxatine®, 5 mg/mL, Sanofi-Aventis).
La libération in vitro de l'oxaliplatine d'émulsions lipiodolées (4 types : sans nanoparticules ratio 3/1 , avec nanoparticules à 15 mg/mL à des ratios 3/1 ; 3/2 ; 1 /1 ) a été évaluée. 0,8 ml d'émulsion (correspondant à 1 mg, 1 ,33 mg et 2 mg d'oxaliplatine pour les émulsions 3/1 ; 3/2 et 1 /1 respectivement). Ces tubes ont été immergés dans 40 mL de solution salée tamponnée (acétate 25 mM, pH 6,8) et mis dans un incubateur à 37°C à une vitesse de 150 tpm. A des temps prédéterminés, des aliquots (0,1 mL) ont été collectés.
Les quantités libérées de platine ont été quantifiées par spectrométrie de masse ICP (Figures 1 1 et 12).
Exemple 13 : Emulsions eau-dans-huile stabilisées par des nanoparticules formulées à partir de différentes huiles
Les émulsions ont été formulées à un ratio 3/1 selon le même protocole que l'exemple 2. La phase aqueuse est composée soit de sérum physiologique soit de doxorubicine à une concentration de 20 mg/mL. La phase huile est composée soit d'huile d'olive, d'huile de sésame, d'huile de ricin, d'huile d'œillette ou de miglyol. Toutes les émulsions sont formulées avec des nanoparticules à une concentration de 15 mg/ml.
Les émulsions sont de type eau-dans-huile d'après le test colorimétrique et stables sur plus d'une semaine. Exemple 14 : Préparation des nanoparticules biodégradables de PLGA-
Fer
Les nanoparticules PLGA-Fer ont été préparées selon le même procédé décrit dans l'exemple 1 . 500 μΙ_ de solution de nanoparticules Fe304 décorées d'acide oléique (25 mg ml_"1 , taille 10 nm, Océan, USA) ont été ajoutés à 100 mg de PLGA préalablement dissous dans 5 ml_ de dichlorométhane et émulsifiés par sonication (sonicateur VibraCell, Fisher Scientific, France) à une puissance de 40% pendant 1 minute avec 20 ml_ d'une solution aqueuse contenant 2,5 mg / ml_ de PVA. Le solvant organique a ensuite été évaporé à température ambiante sous agitation magnétique pendant 2 h. Après évaporation, la suspension a été centrifugée à 3 000 tpm pendant 5 min, le surnageant a été éliminé, et le culot a été rincé avec de l'eau désionisée. Le processus de centrifugation a été répété deux fois. Ensuite, les NP ont été purifiées par ultracentrifugation (LE-80K Ultracentrifuge Beckman Coulter OptimaTM) à 4°C, 37 000 g pendant 1 h. Après l'élimination du surnageant, les NP ont été remises en suspension dans une solution aqueuse contenant 50 mg / mL de tréhalose (cryoprotecteur). Puis, la suspension des NP a été lyophilisée. Avant utilisation, les NP lyophilisées ont été redispersées dans de l'eau MilliQ à la concentration désirée.
Exemple 15 : Obtention d'une émulsion lipiodolée eau-dans-huile de sérum physiologique stabilisée par différentes concentrations de nanoparticules de PLGA-Fer
Les émulsions ont été formulées selon le même protocole que l'exemple 2 à différentes concentrations de nanoparticules de PLGA-Fer (20, 15 ou 10 mg/mL). Les émulsions sont de type eau-dans-huile d'après le test colorimétrique.
Exemple 16 : Obtention d'une émulsion lipiodolée eau-dans-huile de doxorubicine stabilisée par des nanoparticules de PLGA-Fer
L'émulsion a été formulée selon le même protocole que l'exemple 2 à une concentration de 20 mg/mL en doxorubicine et 15 g/mL en nanoparticules de PLGA- Fer. Une émulsion eau-dans-huile a été obtenue.
Exemple 17 : Microstructure des émulsions
La structure microscopique des émulsions a été observée à l'aide d'un microscope confocal à balayage laser (Leica TCS SP8 - STED, Allemagne) équipé d'un laser WLL (488 et 563 nm d'ondes d'excitation) et d'un objectif d'immersion CS2 63x / 1 ,40. Pour empêcher la déformation des gouttelettes d'émulsion, l'échantillon a été placé sur une lame en verre incurvée. Les nanoparticules de PLGA-Fer ont été utilisées pour formuler les émulsions afin de pouvoir les visualiser en transmission (évite les interférences avec le spectre d'émission de la doxorubicine). La fluorescence de la doxorubicine a été observée avec un filtre de 600-710 nm sous une illumination au laser à 590 nm. Les émissions de fluorescence rouge ont été collectées sous un mode séquentiel.
Exemple 18 : Evaluation de la quantification par IRM de l'émulsion
Les émulsions ont été évaluées en IRM pour confirmer que cette modalité d'imagerie permettait de quantifier le ratio d'huile contenu dans un fantôme tumoral.
Pour cela, 9 fantômes tumoraux ont été confectionnés, chacun rempli avec une émulsion contenant des pourcentages variables de Lipiodol. Puis nous avons réalisé des IRM 3T pour chaque fantôme en présence d'un tube de Lipiodol (acquisition IP-OP et Idéal IQ). Enfin, nous avons calculé le pourcentage de graisse dans chacun des fantômes en prenant pour référence : Lipiodol = 100% (cf. Tableau 2 ci-dessous).
Tableau 2 : Quantification par IRM du pourcentage de Lipiodol dans des émulsions possédant des taux décroissants de Lipiodol.
Exemple 19 : Obtention d'émulsions lipiodolées eau-dans-huile chargées en principe actif
Les émulsions ont été formulées selon le même protocole que l'exemple 2. La phase aqueuse est composée de principe actif préalablement reconstituée à une concentration thérapeutique recommandée par le fournisseur ou directement d'un principe actif en solution aqueuse à la concentration de la forme commerciale. Les émulsions ont été réalisées à un ratio Lipiodol/principe actif en solution de 3/1 avec une concentration de 15 mg/mL en nanoparticules. La phase aqueuse est composée soit de gemcitabine (40 mg/mL), de fludarabine (25 mg/mL), de clamoxyl (200 mg/mL), de céfazoline (330 mg/mL), de sunitinib (0,5 mg/mL), de méthylprédnisolone (10 mg/mL) ou de kétoprofène (25 mg/mL).
Les émulsions thérapeutiques obtenues étaient toutes dans le sens eau-dans- huile d'après le test colorimétrique.
Exemple 20 : Taille des gouttes :
La mesure de taille de gouttes a été réalisée avec un compteur de particules par technique d'analyse d'images (Flowcell FC200S+HR, Occhio, Belgique). L'émulsion est d'abord diluée 20 fois dans l'huile puis 0,5 mL de l'émulsion diluée sont introduits au travers une entretoise de 400 μηι pour analyse. Chaque échantillon a été mesuré au moins 4 fois à J7 et à des jours différents (J0, J7, J35) pour les échantillons contenant le sérum physiologique et l'Ipilimumab. Les calculs ont été faits sur au moins 500 gouttes.
Tableau 3 : Taille de gouttes des émulsions Lipiodol/principe actif en solution avec 15 mg/mL de nanoparticules Exemple 21 : Etude de la libération in vitro de l'ipilimumab des émulsions lipiodolées stabilisées par des nanoparticules
Les émulsions ont été formulées selon le même protocole que l'exemple 9. La libération in vitro de l'ipilimumab d'une émulsion lipiodolée (ratio 3/1 , concentration en nanoparticules 15 mg/mL) a été évaluée. 0,8 mL d'émulsion correspondant à 1 mg d'ipilimumab ont été déposés dans des tubes contenant 20 mL de solution salée tamponnée (PBS, pH 7,4) et mis dans un incubateur à 37°C à une vitesse de 150 tpm. A des temps prédéterminés, des aliquots (300 μί) ont été collectés et remplacés par des volumes équivalents de PBS. Les quantités libérées d'ipilimumab ont été quantifiées par la méthode BCA : dosage colorimétrique des protéines basé sur l'acide bicinchonique (Figure 13).
Exemple 22 : Etude in vivo : Chimioembolisation du foie à partir d'une émulsion lipiodolée eau-dans-huile chargée en oxaliplatine
Les émulsions pour cette étude ont été formulées selon le même protocole que l'exemple 12.
Le protocole expérimental de cette étude a été validé par le comité d'éthique en expérimentation animale. Des tumeurs VX2 du foie ont été implantées par voie percutanée sur des lapins blancs néo-zélandais sous anesthésie générale (injections intramusculaires de Kétamine 20-40mg/kg et de xylazine 3-5 mg/kg, isoflurane 3-5 % pour l'induction et 1 ,5-3 % en mélange avec 02 à 1 L/min pour la procédure).
Deux semaines après implantation des cellules tumorales VX2, les injections intra-artérielles hépatiques ont été effectuées par un radiologue interventionnel. Cela a été réalisé sous anesthésie générale et sous guidage fluoroscopique dans une salle équipée d'une table d'angiographie à rayons X. Tout d'abord, l'artère fémorale a été exposée chirurgicalement et cathéterisée avec un cathéter d'angiographie vasculaire 4F. Ensuite, un micro-cathéter 2.4F a été utilisé pour le cathétérisme sélectif de la branche gauche de l'artère hépatique et pour injecter 0,5 mL d'émulsion (soit 0,625 mg d'oxaliplatine).
Des prélèvements de sang (2 mL) veineux ont été effectués à 5, 10, 20, 30 et 60 minutes après injection afin de déterminer la concentration plasmatique d'oxaliplatine. 4 groupes de lapins ont été réalisés :
Groupe 1 : Lapins recevant une émulsion conventionnelle d'oxaliplatine non stabilisée par des nanoparticules. Ce groupe a été sacrifié 1 h après l'injection (n=4)
Groupe 2 : Lapins recevant une émulsion d'oxaliplatine stabilisée par des nanoparticules. Ce groupe a été sacrifié 1 h après l'injection (n=5)
Groupe 3 : Lapins recevant une émulsion conventionnelle d'oxaliplatine non stabilisée par des nanoparticules. Ce groupe a été sacrifié 24h après l'injection (n=4)
Groupe 4 : Lapins recevant une émulsion d'oxaliplatine stabilisée par des nanoparticules. Ce groupe a été sacrifié 24h après l'injection (n=5).
Immédiatement après le sacrifice, une IRM a été réalisée pour mesurer et compter les tumeurs. Le foie a été prélevé et des échantillons de tissus des lobes de foie droits et gauches, ainsi que les tumeurs ont été disséqués séparément et homogénéisés avec un mélangeur pour la quantification du platine. Le platine a été dosé par une méthode de spectrométrie de masse à plasma (ICP-MS).
Pharmacocinétique de l'oxaliplatine :
Les pharmacocinétiques de l'oxaliplatine après injection des deux types d'émulsion sont résumées dans le tableau 4 et la figure 14. Le pic plasmatique de l'oxaliplatine (Cmax) est significativement inférieur après injection de l'émulsion de Pickering comparé à l'émulsion conventionnelle (0,49 ± 0,14 ng/mL vs 1 ,08 ± 0,41 ng/mL, p<0,01 ). L'AUC à 1 h est significativement inférieure pour l'émulsion de Pickering (19,8 ± 5,9 vs 31 ,8 ±14,9, p=0,03).
Emulsions:
Conventionnelle Pickerina
Pharmacocinétiaue n= 8 lapins n= 10 lapins
C max (nG/mL) 1,08 ±0,41 0,49 ±0,14 p<0,01* AUC 31,8 ±14,9 19,8 ±5,9 p=0,03*
Sacrifice : H+1 n= 4 lapins (groupe 1) n= 5 lapins (groupe 2)
lobe
Platine (nG/mG) 2,3 ±1,4 0,6 ±0,2 p<0,01* gauche
lobe droit 1,3 ±0,9 0,5 ±0,2 p<0,01*
Ratio G/D 1,8 ±0,7 1,1 ±0,2 p=0,07
Sacrifice : H+24 n= 4 lapins (groupe 3) n= 5 lapins (groupe 4)
Platine (nG/mG) lobe gauche 0,4 ±0,1 0,3 ±0,1 p=0,04* lobe droit 0,2 ±0,4 0,2 ±0,03 P=0,5 Ratio G/D 1,7 ±0,4 1,4 ±1,0 P=0,2
*Différence significative
Tableau 4 : Concentration moyenne d'oxaliplatine (ng/mg) dans les tissus du foie selon le type d'émulsion injectée et selon le temps de sacrifice.
Concentration d'oxaliplatine dans le foie et les tissus :
Les concentrations d'oxaliplatine dans les tissus sont présentées dans les tableaux 4 & 5. A 24h, le ratio tumeur/lobe gauche est significativement supérieur avec l'émulsion de Pickering comparé à l'émulsion conventionnelle (43,4 ± 42,9 vs 14,5 ± 6,6, p = 0,04). Emulsions:
Conventionnelle Pickerina
Sacrifice: H+1 n= 6 tumeurs (groupe 1 ) n= 9 tumeurs (groupe 2)
Diamètre Max tumeur (mM) 14,1 ± 1 1 ,1 16,0 ± 5,9 P=0,6
Platine : Tumeurs (nG/mG) 32,1 ± 21 ,2 17,6 ± 6,7 p=0,02* ratio tumeur/lobe gauche 18,0 ± 10,8 33,2 ± 14,9 p=0,07 ratio tumeur/lobe droit 29,1 ± 1 1 ,4 40,3 ± 19,3 P=0,3
Sacrifice: H+24 n= 9 tumeurs (groupe 3) n= 9 tumeurs (groupe 4)
Diamètre Max tumeur (mM) 15,0 ± 2,9 14,5 ± 5,0 P=0,4
Platine : Tumeurs (nG/mG) 4,4 ± 3,8 10,4 ± 9,8 p=0,08 ratio tumeur/lobe gauche 1 1 ,8 ± 8,5 44,1 ± 43,3 p=0,02* ratio tumeur/lobe droit 18,6 ± 17,5 45,6 ± 38,5 p=0,06
*Différence significative
Tableau 5 : Concentration moyenne d'oxaliplatine (ng/mg) dans les tumeurs du foie selon le type d'émulsion injectée et selon le temps de sacrifice.
La concentration significativement supérieure d'oxaliplatine dans les tumeurs et les lobes gauches avec l'émulsion conventionnelle à 1 h est cohérente avec une faible stabilité de l'émulsion qui induit une libération rapide d'oxaliplatine. A l'inverse, la libération lente d'oxaliplatine à partir des émulsions de Pickering conduit à une exposition systémique moindre des organes non ciblés (lobe droit) à 1 h et une tendance pour une exposition des tumeurs supérieure à 24h.

Claims

REVENDICATIONS
1. Emulsion eau-dans-huile comprenant une phase huileuse continue et une phase aqueuse dispersée sous forme de gouttes, ladite phase aqueuse comprenant des nanoparticules à base de polyester, et au moins un agent thérapeutique.
2. Emulsion selon la revendication 1 , dans laquelle la phase huileuse comprend au moins une huile, notamment choisie parmi les acides gras, les esters d'acide gras et les huiles minérales.
3. Emulsion selon la revendication 1 ou 2, dans laquelle la phase huileuse comprend au moins une huile végétale, en particulier l'huile de ricin, l'huile de sésame, l'huile d'œillette, l'huile d'olive, l'huile de soja, l'huile de noix de coco, la trioléine et leurs mélanges.
4. Emulsion selon l'une quelconque des revendications 1 à 3, dans laquelle la phase huileuse comprend des esters éthyliques d'acides gras iodés de l'huile d'œillette, des triglycérides de longueurs de chaîne moyennes comprenant entre 8 et 12 atomes de carbone, ou une huile minérale composée principalement de squalène.
5. Emulsion selon l'une quelconque des revendications 1 à 4, dans laquelle la taille des gouttes de la phase aqueuse est comprise entre 10 μηι et 100 μηι.
6. Emulsion selon l'une quelconque des revendications 1 à 5, dans laquelle les nanoparticules à base de polyester sont choisies dans le groupe constitué des nanoparticules à base de poly acide lactique, poly acide glycolique, de copolymères de lactide-glycolide, de copolymères de lactide-glycolide-co-polyéthylène glycol, de polyorthoesters, de polyanhydrides, de polybutylacétone, de polyvalérolactone, de poly acide malique, de polylactones et de leurs mélanges.
7. Emulsion selon l'une quelconque des revendications 1 à 6, dans laquelle l'agent thérapeutique est choisi parmi les immunomodulateurs, les médicaments anticancéreux, les médicaments anti-angiogéniques, les médicaments anti- infectieux, les médicaments anti-inflammatoires, les agents de contraste d'imagerie, les agents radioactifs et les agents infectieux.
8. Emulsion selon la revendication 7, dans laquelle le médicament anticancéreux est choisi dans le groupe constitué des agents alkylants, des dérivés du platine, des agents antibiotiques cytotoxiques, des agents antimicrotubules, des anthracyclines, des inhibiteurs de topoisomérases des groupes I et II, des fluoropyrimidines, des analogues de cytidine, des analogues d'adénosine, du méthotrexate, de l'acide folinique, des enzymes, des agents antivasculaires, des agents anti-angiogéniques, des agents antimitotiques, des inhibiteurs de kinases, des hormones, des anticorps monoclonaux, des radioéléments, des virus oncolytiques et de leurs mélanges.
9. Emulsion selon l'une quelconque des revendications 1 à 8, dans laquelle l'agent thérapeutique est un médicament anticancéreux choisi dans le groupe constitué de la doxorubicine, de l'irinotécan, de l'oxaliplatine et de leurs mélanges.
10. Emulsion selon la revendication 7, dans laquelle l'agent thérapeutique est choisi dans le groupe constitué des anticorps monoclonaux anti-angiogéniques, des anticorps monoclonaux anti-CTLA4, des anticorps monoclonaux anti-PD-1 , des anticorps monoclonaux anti-PD-L1 , et de leurs mélanges.
11. Emulsion selon l'une quelconque des revendications 1 à 10, dans laquelle les nanoparticules à base de polyester comprennent en outre des particules d'oxyde de fer.
12. Médicament, caractérisé en ce qu'il comprend une émulsion selon l'une quelconque des revendications 1 à 1 1 .
13. Composition pharmaceutique comprenant une émulsion selon l'une quelconque des revendications 1 à 1 1 , ainsi qu'au moins un excipient pharmaceutiquement acceptable.
14. Emulsion selon l'une quelconque des revendications 8 à 10 pour son utilisation pour le traitement du cancer.
EP18740230.0A 2017-07-17 2018-07-16 Emulsions eau-dans-huile injectables et leurs utilisations Pending EP3654937A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1756773 2017-07-17
PCT/EP2018/069272 WO2019016138A1 (fr) 2017-07-17 2018-07-16 Emulsions eau-dans-huile injectables et leurs utilisations

Publications (1)

Publication Number Publication Date
EP3654937A1 true EP3654937A1 (fr) 2020-05-27

Family

ID=60020073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18740230.0A Pending EP3654937A1 (fr) 2017-07-17 2018-07-16 Emulsions eau-dans-huile injectables et leurs utilisations

Country Status (9)

Country Link
US (1) US20210113463A1 (fr)
EP (1) EP3654937A1 (fr)
JP (1) JP7247164B2 (fr)
KR (1) KR20200032092A (fr)
CN (1) CN111263632A (fr)
AU (1) AU2018304530B2 (fr)
CA (1) CA3068905A1 (fr)
IL (1) IL271898A (fr)
WO (1) WO2019016138A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021005104A2 (pt) 2018-10-16 2021-06-08 US Nano Food & Drug INC formulação de injeção intratumoral
IL297015A (en) * 2020-04-13 2022-12-01 US Nano Food & Drug INC Basic formulation of intratumoral chemotherapy injection
CN112336873B (zh) 2020-08-04 2022-04-19 华南理工大学 用于多特异性抗体递送的蛋白型纳米颗粒及其应用、制备方法
CN114028605B (zh) * 2021-10-29 2022-11-11 厦门大学 一种血管栓塞可注射明胶-碘油均相制剂的制备方法与应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4113990B2 (ja) * 1996-07-05 2008-07-09 宮崎県 抗癌剤含有乳化製剤及びその製造方法
WO2000076525A1 (fr) * 1999-06-14 2000-12-21 Meiji Milk Products Co., Ltd. Emulsions anticancereuses contenant des composes d'anthracycline
DE19939139A1 (de) * 1999-08-18 2001-02-22 Beiersdorf Ag Emulgatorfreie feindisperse Systeme vom Typ Wasser-in-Öl
CN100544713C (zh) * 2001-09-13 2009-09-30 大化制药株式会社 化疗栓塞用紫杉醇的混合组合物、该组合物的油包水型乳剂及它们的制造方法
JP5477883B2 (ja) * 2007-02-23 2014-04-23 株式会社 資生堂 油中水型乳化組成物
CN103462892A (zh) * 2007-11-28 2013-12-25 联邦科学和工业研究组织 纳米乳剂
AU2009296458A1 (en) * 2008-09-26 2010-04-01 Nanobio Corporation Nanoemulsion therapeutic compositions and methods of using the same
FR2955776A1 (fr) 2010-02-01 2011-08-05 Seppic Sa Utilisation d'une huile minerale specifique pour la fabrication d'un nouveau adjuvant
FR2992863B1 (fr) * 2012-07-06 2014-08-29 Chu De Dijon Composition pharmaceutique pour le traitement du cancer
CA2909221A1 (fr) * 2013-04-18 2014-10-23 Immune Design Corp. Monotherapie par gla pour une utilisation dans le traitement du cancer
FR3017295B1 (fr) * 2014-02-07 2018-01-12 Guerbet Composition destinee a vectoriser un agent anticancereux
CN104013955B (zh) * 2014-06-18 2016-02-24 中国科学院过程工程研究所 一种不含表面活性剂的水包油乳液及其用途
CN107405304B (zh) * 2015-02-04 2021-05-04 财团法人卫生研究院 用于稳定油包水乳液及控制释放生物活性物质的山梨醇酐聚酯复合体
CN108472204A (zh) * 2015-11-19 2018-08-31 路博润先进材料公司 自组装的皮肤护理乳液
CN105817152A (zh) * 2016-03-18 2016-08-03 东华大学 一种具有生物相容性和生物可降解性的Pickering乳液及其制备方法

Also Published As

Publication number Publication date
US20210113463A1 (en) 2021-04-22
WO2019016138A1 (fr) 2019-01-24
IL271898A (en) 2022-01-01
JP2020527161A (ja) 2020-09-03
KR20200032092A (ko) 2020-03-25
JP7247164B2 (ja) 2023-03-28
CN111263632A (zh) 2020-06-09
CA3068905A1 (fr) 2019-01-24
AU2018304530A1 (en) 2020-01-30
AU2018304530B2 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
Kaur et al. Niosomes: present scenario and future aspects
JP6741655B2 (ja) アプレピタントのエマルジョン製剤
EP3654937A1 (fr) Emulsions eau-dans-huile injectables et leurs utilisations
JP5405527B2 (ja) 薬理薬物の新規製剤、その製造法及びその使用法
WO2009012718A1 (fr) Émulsifiant composite, émulsion préparée à partir de celui-ci et procédé de préparation de celle-ci
US20080102127A1 (en) Hybrid lipid-polymer nanoparticulate delivery composition
MX2011000795A (es) Nanoemulsion estable inyectable de docetaxel de aceite en agua.
US10064888B2 (en) Pectin based nanoparticles
EP3102214B1 (fr) Composition destinée à vectoriser un agent anticancéreux
Akhlaghi et al. Green formulation of curcumin loaded lipid-based nanoparticles as a novel carrier for inhibition of post-angioplasty restenosis
WO2018064350A1 (fr) Nanoparticules lipidiques modifiées par apo-e pour administrer des médicaments à des tissus ciblés et méthodes thérapeutiques
EP2480219A1 (fr) Nanocapsules lipidiques, procede de preparation et utilisation comme medicament
FR2956320A1 (fr) Nanoemulsion pour la delivrance d&#39;au moins deux agents d&#39;interet
EP3033110A1 (fr) Nouveau systeme solide instantane auto-emulsionnant a base de cyclodextrines et d&#39;huile (s) pour l&#39;administration orale
CA2748761C (fr) Microemulsion pharmaceutique pour la prevention d&#39;une agregation supramoleculaire de molecules amphiphiles
US10864280B2 (en) Nanodroplet compositions for the efficient delivery of anti-cancer agents
FR2842734A1 (fr) Procede pour diminuer la variabilite de la biodisponibilite d&#39;un medicament a administration orale et compositions pharmaceutiques a administration orale
Mainuddin et al. Physical characterization and bioavailability assessment of 5-fluorouracil-based nanostructured lipid carrier (NLC): In vitro drug release, Hemolysis, and permeability modulation
EP4157222B1 (fr) Emulsions pour liberation controlee de medicaments
KR20230166337A (ko) 서방성 약물 전달체 및 이의 제조방법
JP2023544355A (ja) タンパク質結合カンナビノイド製剤及びその使用
Gaber et al. Formulation, Optimization, and Invitro Characterization of Lipid-Based Nanoparticles for Effective Delivery to the Liver

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITE PARIS-SACLAY

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Owner name: INSTITUT GUSTAVE ROUSSY

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220811