EP3649334A1 - Isolation anti-flamme pour moteurs à combustion interne - Google Patents
Isolation anti-flamme pour moteurs à combustion interneInfo
- Publication number
- EP3649334A1 EP3649334A1 EP18736877.4A EP18736877A EP3649334A1 EP 3649334 A1 EP3649334 A1 EP 3649334A1 EP 18736877 A EP18736877 A EP 18736877A EP 3649334 A1 EP3649334 A1 EP 3649334A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- weight
- range
- polyurethane foam
- polyol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 55
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 19
- 239000003063 flame retardant Substances 0.000 title claims description 27
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title description 13
- 229920005862 polyol Polymers 0.000 claims abstract description 102
- 150000003077 polyols Chemical class 0.000 claims abstract description 100
- 229920005830 Polyurethane Foam Polymers 0.000 claims abstract description 76
- 239000011496 polyurethane foam Substances 0.000 claims abstract description 76
- 239000000945 filler Substances 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 47
- 150000001875 compounds Chemical class 0.000 claims abstract description 34
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 34
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 239000004604 Blowing Agent Substances 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims description 57
- 239000000654 additive Substances 0.000 claims description 19
- 239000006185 dispersion Substances 0.000 claims description 18
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 15
- 229920002396 Polyurea Polymers 0.000 claims description 14
- 239000012948 isocyanate Substances 0.000 claims description 13
- 150000002513 isocyanates Chemical class 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 229920000638 styrene acrylonitrile Polymers 0.000 claims description 8
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 claims description 7
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 6
- LFSYUSUFCBOHGU-UHFFFAOYSA-N 1-isocyanato-2-[(4-isocyanatophenyl)methyl]benzene Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=CC=C1N=C=O LFSYUSUFCBOHGU-UHFFFAOYSA-N 0.000 claims description 5
- 150000002429 hydrazines Chemical class 0.000 claims description 5
- 229920000768 polyamine Polymers 0.000 claims description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 5
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 5
- 229920000877 Melamine resin Polymers 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 11
- 239000007795 chemical reaction product Substances 0.000 abstract description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 28
- 239000006260 foam Substances 0.000 description 20
- 229920000570 polyether Polymers 0.000 description 18
- -1 SAN polyols Chemical class 0.000 description 17
- 239000004721 Polyphenylene oxide Substances 0.000 description 15
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 235000011187 glycerol Nutrition 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 229920001451 polypropylene glycol Polymers 0.000 description 7
- 229920002635 polyurethane Polymers 0.000 description 7
- 239000004814 polyurethane Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 235000013877 carbamide Nutrition 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 239000000022 bacteriostatic agent Substances 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- NLUNLVTVUDIHFE-UHFFFAOYSA-N cyclooctylcyclooctane Chemical compound C1CCCCCCC1C1CCCCCCC1 NLUNLVTVUDIHFE-UHFFFAOYSA-N 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 230000001408 fungistatic effect Effects 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- IUTCEZPPWBHGIX-UHFFFAOYSA-N tin(2+) Chemical class [Sn+2] IUTCEZPPWBHGIX-UHFFFAOYSA-N 0.000 description 3
- AATNZNJRDOVKDD-UHFFFAOYSA-N 1-[ethoxy(ethyl)phosphoryl]oxyethane Chemical compound CCOP(=O)(CC)OCC AATNZNJRDOVKDD-UHFFFAOYSA-N 0.000 description 2
- YWDFOLFVOVCBIU-UHFFFAOYSA-N 1-dimethoxyphosphorylpropane Chemical compound CCCP(=O)(OC)OC YWDFOLFVOVCBIU-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- GTRSAMFYSUBAGN-UHFFFAOYSA-N tris(2-chloropropyl) phosphate Chemical compound CC(Cl)COP(=O)(OCC(C)Cl)OCC(C)Cl GTRSAMFYSUBAGN-UHFFFAOYSA-N 0.000 description 2
- XMNDMAQKWSQVOV-UHFFFAOYSA-N (2-methylphenyl) diphenyl phosphate Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C=CC=CC=1)OC1=CC=CC=C1 XMNDMAQKWSQVOV-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- ZBBLRPRYYSJUCZ-GRHBHMESSA-L (z)-but-2-enedioate;dibutyltin(2+) Chemical compound [O-]C(=O)\C=C/C([O-])=O.CCCC[Sn+2]CCCC ZBBLRPRYYSJUCZ-GRHBHMESSA-L 0.000 description 1
- QVCUKHQDEZNNOC-UHFFFAOYSA-N 1,2-diazabicyclo[2.2.2]octane Chemical compound C1CC2CCN1NC2 QVCUKHQDEZNNOC-UHFFFAOYSA-N 0.000 description 1
- ZNEMGFATAVGQSF-UHFFFAOYSA-N 1-(2-amino-6,7-dihydro-4H-[1,3]thiazolo[4,5-c]pyridin-5-yl)-2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound NC=1SC2=C(CN(CC2)C(CC=2OC(=NN=2)C=2C=NC(=NC=2)NC2CC3=CC=CC=C3C2)=O)N=1 ZNEMGFATAVGQSF-UHFFFAOYSA-N 0.000 description 1
- AXFVIWBTKYFOCY-UHFFFAOYSA-N 1-n,1-n,3-n,3-n-tetramethylbutane-1,3-diamine Chemical compound CN(C)C(C)CCN(C)C AXFVIWBTKYFOCY-UHFFFAOYSA-N 0.000 description 1
- AQZABFSNDJQNDC-UHFFFAOYSA-N 2-[2,2-bis(dimethylamino)ethoxy]-1-n,1-n,1-n',1-n'-tetramethylethane-1,1-diamine Chemical compound CN(C)C(N(C)C)COCC(N(C)C)N(C)C AQZABFSNDJQNDC-UHFFFAOYSA-N 0.000 description 1
- YSAANLSYLSUVHB-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]ethanol Chemical compound CN(C)CCOCCO YSAANLSYLSUVHB-UHFFFAOYSA-N 0.000 description 1
- CJWBPEYRTPGWPF-UHFFFAOYSA-N 2-[bis(2-chloroethoxy)phosphoryloxy]ethyl bis(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCOP(=O)(OCCCl)OCCCl CJWBPEYRTPGWPF-UHFFFAOYSA-N 0.000 description 1
- OARDBPIZDHVTCK-UHFFFAOYSA-N 2-butyloctanoic acid Chemical compound CCCCCCC(C(O)=O)CCCC OARDBPIZDHVTCK-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- XIRDTMSOGDWMOX-UHFFFAOYSA-N 3,4,5,6-tetrabromophthalic acid Chemical compound OC(=O)C1=C(Br)C(Br)=C(Br)C(Br)=C1C(O)=O XIRDTMSOGDWMOX-UHFFFAOYSA-N 0.000 description 1
- QEJPOEGPNIVDMK-UHFFFAOYSA-N 3-bromo-2,2-bis(bromomethyl)propan-1-ol Chemical compound OCC(CBr)(CBr)CBr QEJPOEGPNIVDMK-UHFFFAOYSA-N 0.000 description 1
- 229940105325 3-dimethylaminopropylamine Drugs 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- HOSGXJWQVBHGLT-UHFFFAOYSA-N 6-hydroxy-3,4-dihydro-1h-quinolin-2-one Chemical group N1C(=O)CCC2=CC(O)=CC=C21 HOSGXJWQVBHGLT-UHFFFAOYSA-N 0.000 description 1
- YPIFGDQKSSMYHQ-UHFFFAOYSA-N 7,7-dimethyloctanoic acid Chemical compound CC(C)(C)CCCCCC(O)=O YPIFGDQKSSMYHQ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 1
- 241000276489 Merlangius merlangus Species 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 241001425800 Pipa Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- PQYJRMFWJJONBO-UHFFFAOYSA-N Tris(2,3-dibromopropyl) phosphate Chemical compound BrCC(Br)COP(=O)(OCC(Br)CBr)OCC(Br)CBr PQYJRMFWJJONBO-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- ATLPLEZDTSBZQG-UHFFFAOYSA-L dioxido-oxo-propan-2-yl-$l^{5}-phosphane Chemical compound CC(C)P([O-])([O-])=O ATLPLEZDTSBZQG-UHFFFAOYSA-L 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- PYBNTRWJKQJDRE-UHFFFAOYSA-L dodecanoate;tin(2+) Chemical compound [Sn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O PYBNTRWJKQJDRE-UHFFFAOYSA-L 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000004872 foam stabilizing agent Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- DYDNPESBYVVLBO-UHFFFAOYSA-N formanilide Chemical compound O=CNC1=CC=CC=C1 DYDNPESBYVVLBO-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- JMOLZNNXZPAGBH-UHFFFAOYSA-N hexyldecanoic acid Chemical compound CCCCCCCCC(C(O)=O)CCCCCC JMOLZNNXZPAGBH-UHFFFAOYSA-N 0.000 description 1
- 229950004531 hexyldecanoic acid Drugs 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- 239000008258 liquid foam Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- JWIXXKMOAUUTIQ-UHFFFAOYSA-N n',n'-dimethylpropane-1,3-diamine;urea Chemical compound NC(N)=O.CN(C)CCCN JWIXXKMOAUUTIQ-UHFFFAOYSA-N 0.000 description 1
- SBOJXQVPLKSXOG-UHFFFAOYSA-N o-amino-hydroxylamine Chemical class NON SBOJXQVPLKSXOG-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011145 styrene acrylonitrile resin Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 125000004149 thio group Chemical group *S* 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- SYRHIZPPCHMRIT-UHFFFAOYSA-N tin(4+) Chemical class [Sn+4] SYRHIZPPCHMRIT-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- DHNUXDYAOVSGII-UHFFFAOYSA-N tris(1,3-dichloropropyl) phosphate Chemical compound ClCCC(Cl)OP(=O)(OC(Cl)CCCl)OC(Cl)CCCl DHNUXDYAOVSGII-UHFFFAOYSA-N 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical group NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/11—Thermal or acoustic insulation
- F02B77/13—Acoustic insulation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1841—Catalysts containing secondary or tertiary amines or salts thereof having carbonyl groups which may be linked to one or more nitrogen or oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/20—Heterocyclic amines; Salts thereof
- C08G18/2081—Heterocyclic amines; Salts thereof containing at least two non-condensed heterocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3271—Hydroxyamines
- C08G18/3278—Hydroxyamines containing at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/409—Dispersions of polymers of C08G in organic compounds having active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4804—Two or more polyethers of different physical or chemical nature
- C08G18/4816—Two or more polyethers of different physical or chemical nature mixtures of two or more polyetherpolyols having at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
- C08G18/4837—Polyethers containing oxyethylene units and other oxyalkylene units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
- C08G18/4837—Polyethers containing oxyethylene units and other oxyalkylene units
- C08G18/4845—Polyethers containing oxyethylene units and other oxyalkylene units containing oxypropylene or higher oxyalkylene end groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/667—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6681—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
- C08G18/6688—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/11—Thermal or acoustic insulation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0025—Foam properties rigid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/0058—≥50 and <150kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/0066—≥ 150kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0083—Foam properties prepared using water as the sole blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2350/00—Acoustic or vibration damping material
Definitions
- the invention relates to a process for the production of polyurethane foam for thermal and acoustic insulation of engines, wherein the polyurethane foam is obtainable or obtained by reacting di- and / or polyisocyanates with filler-containing polyols, wherein the filler is preferably a reaction product of di - And or polyisocyanates with isocyanate-reactive hydrogen atoms having compounds, in the presence of water and / or physical blowing agents, Furthermore, the invention relates to the use of the polyurethane foam for thermal and acoustic insulation for
- Thermal insulations of internal combustion engines reduce the warm-up phase of the still-cold engine after take-off, thus helping to reduce the wear on the engine as well as the increased engine
- Insulations of combustion engines can - at the same time - also serve the acoustic insulation.
- complete encapsulations of the motor housing are proposed in the prior art.
- Paper Cushioning Test investigates the flame retardant properties of furniture and upholstery materials. Materials that must be used in vehicle construction
- Flame retardants or additives used can alter the mechanical properties of a polyurethane foam or lead to undesirable emissions.
- each addition is associated with additional costs.
- flame-retardant materials in particular polyurethane foams for the thermal and acoustic insulation of engines.
- flame retardant polyurethane foams that do not contain flame retardants or flame retardant additives.
- polyurethane foams which do not exceed the fire speed of Omm min and do not reach the mark of 25mm when stored horizontally during burning, and do not form burning drops when burned, which fall down.
- WO 2014/195153 relates to a thermal-insulated internal combustion engine, wherein the insulation consists of a polyurethane foam.
- the insulation consists of a polyurethane foam.
- DE 19962911 relates to flame-resistant high-resistance polyurethane cold-formed foams with reduced flue gas intensity and toxicity.
- the document discloses polyurethane foams obtained by reacting filled polyols, the resulting polyurethane foams having apparent densities of 55 kg / m 3 .
- the document refers primarily to
- Polyurethane foams for upholstery, interior trim and furniture are Polyurethane foams for upholstery, interior trim and furniture.
- WO 2011/003590 discloses a process for the preparation of flame-retarded polyurethane flexible foams.
- the polyurethane flexible foam contains filled polyols and red phosphorus as a flame retardant.
- the open-roasted flexible polyurethane foams of this document have a bulk density in the range of 35-38 kg / m 3 .
- US 2016/0145377 relates to flame-retarded polyurethane foams that can be used in the engine compartment of a car.
- the polyurethane foams of this document each contain two different filled polyols, namely a styrene-acrylonitrile-filled polyol and a polyol which is filled with polyurea dispersion.
- the polyurethane foams have a density of 112-123 kg / m 3 .
- the object of the present invention was therefore to provide a method for
- the object was to provide a method for producing a polyurethane foam available, which in a horizontal position in the
- Burning off do not exceed a fire speed of Omm / min and do not reach a mark of 25mm, and when burning do not form burning drops that fall down.
- the flame retardant properties should be achieved without the addition of flame retardants or flame retardant additives.
- This object has been achieved by a method for the production of polyurethane foam for thermal and acoustic insulation of motors, wherein the polyurethane foam is obtained or obtainable by reacting a composition containing or consisting of
- a component Al comprising or consisting of at least one filled polyol
- component A2 comprising or consisting of compounds which are reactive towards isocyanates and have a number-average molecular weight of 400 to 18000 g / mol,
- component A3 containing or consisting of compounds which are isocyanate-reactive and have a number average molecular weight of 62 to 399 g / mol,
- components A2 and A3 contain no filled polyols
- a component A4 comprising water and / or at least one physical blowing agent
- a component B comprising or consisting of di- and / or polyisocyanates
- a preferred subject of the invention is a process for producing polyurethane foam for the thermal and acoustic insulation of engines, wherein the polyurethane foam is obtained or obtainable by reacting a composition containing or consisting of
- a component A1 comprising or consisting of at least one filled polyol containing a filler structure
- Polyurea dispersions by reaction of di- and / or polyisocyanates with primary and / or secondary amino groups containing di- and / or polyamines and / or
- Hydrazines are available in a polyol component, and / or
- Urethane group-containing dispersions obtainable by reacting alkanolamines with di- and / or polyisocyanates in a polyol component, a component A2 comprising or consisting of compounds which are reactive toward isocyanates and have a number-average molecular weight of 400-18,000 g / mol, preferably from 3500 to 5000 g / mol,
- component A3 containing or consisting of compounds which are isocyanate-reactive and have a number average molecular weight of 62 to 399 g / mol,
- components A2 and A3 contain no filled polyols
- a component A4 comprising water and / or at least one physical blowing agent
- a component B comprising or consisting of di- and / or polyisocyanates
- the conversion is carried out at a ratio of 90 to 110.
- Another preferred object is a method for producing a thermal and acoustic insulation for internal combustion engines using polyurethane foams, wherein the polyurethane foams are obtainable by reacting
- Ala filler-containing polyols wherein the filler is a reaction product of di- and / or polyisocyanates with compounds having isocyanate-reactive hydrogen atoms,
- A2 optionally having isocyanate-reactive hydrogen atoms
- A3 optionally having isocyanate-reactive hydrogen atoms
- A4b optionally flame retardant
- auxiliaries and additives such as
- additives selected from the group consisting of reaction retardants, cell regulators, pigments, dyes, stabilizers against aging and weathering, plasticizers, fungistatic and bacteriostatic substances, fillers and release agents,
- B di- or polyisocyanates wherein the filler-containing polyols according to components Ala and Alb are used in amounts such that the filler content resulting from the components Ala and Alb based on the total amount of the components Ala and Alb, A2 and A3 is 2 to 30 wt.
- Another preferred object relates to the process described in the previous paragraph, wherein the polyurethane foams are obtainable by reacting
- Ala filler-containing polyols wherein the filler is a reaction product of di- and / or polyisocyanates with compounds having isocyanate-reactive hydrogen atoms,
- A2 optionally having isocyanate-reactive hydrogen atoms
- Components AI to A3) compared to isocyanates reactive hydrogen atoms having compounds having a molecular weight of 62 - 399 g / mol, which do not fall under the definition of the component Ala or Alb,
- A4a 0.1 to 10 parts by weight (based on 100 parts by weight of the sum of parts by weight of
- Components AI to A3) water and / or physical blowing agents
- A4b 0 to 20 parts by weight (based on 100 parts by weight of the sum of parts by weight of
- Components AI to A3) flame retardants are Components AI to A3) flame retardants
- Components AI to A3) auxiliaries and additives such as
- additives selected from the group consisting of reaction retardants, cell regulators, pigments, dyes, stabilizers against aging and weathering, plasticizers, fungistatic and bacteriostatic substances, fillers and release agents,
- filler-containing polyols according to components Ala and Alb are used in amounts such that the filler content resulting from the components Ala and Alb based on the total amount of the components Ala and Alb, A2 and A3 is 2 to 30% by weight of filler and the reaction takes place at a ratio of 90 to 110.
- Polyurethane rigid foam is a highly crosslinked, thermosetting plastic that has been foamed to form a cellular structure of low bulk density.
- the thermoset nature manifests itself in the fact that the foam is not meltable, has a high softening point and good resistance to chemicals and solvents.
- Components Al, Ala and Alb are filler-containing polyols, where the filler is a reaction product of di- and / or polyisocyanates with compounds having isocyanate-reactive hydrogen atoms.
- Filler-containing polyols contain finely divided solid particles in the form of a dispersed phase in a base polyol.
- Filler-containing polyols can be prepared by polymerization of styrene and acrylonitrile or by reacting diisocyanate with diamines or amino alcohols in active or inactive base polyols.
- Another technically important group of filler-containing polyethers are the polyurea or polyhydrazodicarbonamide polyols. They are generated by reactions of other components in the polyol in situ.
- Reaction components serve the isocyanates and diamines or hydrazine, which combine by polyaddition to polyureas or polyhydrazodicarbonamines. In some cases a linkage with the hydroxyl groups of the polyether chain takes place.
- the stable dispersions thus obtained are referred to as PHD polyethers.
- Filler-containing polyols of component Ala and Alb are preferably polyols with a filler of polyurea dispersions, so-called.
- PIPA polyols are preferably polyols with a filler of polyurea dispersions.
- the invention relates to a method wherein it is to component AI or Ala to
- filler-containing polyols having a filler structure or consisting of a component Al. l containing or consisting of polyurea dispersions, which by reaction of di- and / or Polyisocyanates having di- and / or polyamines having primary and / or secondary amino groups and / or hydrazines in a polyol component are available (PHD polyols), and / or
- filler-containing polyols having a filler structure comprising or consisting of a component AI.2 containing or consisting of dispersions containing urethane groups, which are obtainable by reacting alkanolamines with di- and / or polyisocyanates in a polyol component.
- the components Al. l and A 1.2 used as a mixture
- the components Al. l and A 1.2 in a weight ratio of Al. 1: A 1.2 corresponding to> 30: 70 to ⁇ 70: 30 is used and in a further preferred embodiment, component AI or Ala of the composition for the production of polyurethane foam exclusively component Al.l or exclusively component AI.2 is used.
- the composition for carrying out the process according to the invention comprises filler-containing polyols having a filler structure of polyurea dispersions, which
- composition for carrying out the process according to the invention preferably comprises filler-containing polyols having a filler structure of urethane group-containing dispersions obtainable by reacting alkanolamines with di- and / or polyisocyanates in a polyol component, more preferably in a 1 to 8 primary and / or secondary hydroxyl groups having polyol molecular weight of 400 to 18000 g / mol.
- Hydroxyl-containing compounds are 2 to 8 hydroxyl groups
- Polyether carbonate and polyester amide polyols as they are known per se for the preparation of homogeneous and cellular polyurethanes and as described for example in EP-A 007 502, pages 8 to 15, are described.
- the Polyether polyols prepared by addition of alkylene oxides (such as ethylene oxide, propylene oxide and butylene oxide or mixtures thereof) to initiators such as ethylene glycol,
- component AI or Ala of the composition for the production of polyurethane foam filler-containing polyols are used, by reacting a diisocyanate mixture of 75 to 85 parts by weight of 2,4-tolylene diisocyanate (2,4-TDI) and 15 to 25 Wt. 2,6-toluene diisocyanate (2,6-TDI) with a diamine and / or hydrazine in a polyol component, preferably a polyether polyol prepared by alkoxylation of a trifunctional initiator (such as glycerol and / or trimethylolpropane).
- a diisocyanate mixture 75 to 85 parts by weight of 2,4-tolylene diisocyanate (2,4-TDI) and 15 to 25 Wt. 2,6-toluene diisocyanate (2,6-TDI)
- a diamine and / or hydrazine in a polyol component, preferably a polyether polyol prepared by alk
- Component AI preferably contains 5 to 35% by weight, preferably 8 to 25% by weight, more preferably 9 to 22% by weight, in each case based on the component AI, of a filler structure, in particular of a filler structure of polyurea dispersions.
- the at least one filled polyol of component AI preferably has a number-average molecular weight in the range from 3000 to 5000 g / mol, preferably in the range from 3500 to 4500 g / mol, more preferably in the range from 3800 to 4100 g / mol.
- the at least one filled polyol of component AI preferably has an OH number according to DIN 53240 in the range from 10 to 40, preferably in the range from 15 to 35, more preferably in the range from 20 to 30.
- the filled polyols according to component Ala are used in amounts such that the filler content resulting from the component Al or al based on the total amount of the components Al and A2 preferably 2 to 30 parts by weight, particularly preferably 4 to 25 parts by weight, most preferably 7 to 22 wt.
- component Ala PHD polyols having a PHD filler fraction of 2 to 25% by weight, most preferably 8 to 22% by weight, based in each case on the PHD polyol.
- a PHD filler content of 20% by weight based on the PHD polyol and a ratio of 75 parts by weight of PHD polyol and 25 parts by weight of component A2 in each case based on the sum of the components Ala to A2 is a filler content of 15% by weight, based on the total amount of components Ala and A2.
- One of the filled polyols described under component Al or Ala is preferably used as component Alb.
- the filled polyols according to component Alb are used in amounts such that the filler content resulting from the component Alb, based on the total amount of the components Ala, Alb, A2 and A3 ⁇ 10% by weight, preferably ⁇ 5% by weight, more preferably ⁇ 2 Wt. Filler is.
- composition for carrying out the process according to the invention contains no SAN polyols.
- Component A2 contains or consists of compounds having at least two isocyanate-reactive hydrogen atoms. These are compounds which are amino groups, thio groups or carboxyl groups, preferably hydroxyl groups, in particular 2 to 8
- Hydroxyl groups have.
- Component A2 contains or consists of compounds which have a number average molecular weight of 400-18,000 g / mol, preferably 1,000 to 6,000, more preferably 2,000 to 6,000, even more preferably from 3,000 to 5,000 g / mol.
- Component Aa preferably contains or consists of polyethers, polyesters, polycarbonates or polyesteramides which have at least 2, as a rule 2 to 8, but preferably 2 to 6, hydroxyl groups.
- the polyether polyols containing at least two hydroxyl groups are preferred according to the invention.
- the polyether polyols are prepared by addition of alkylene oxides (such as ethylene oxide, propylene oxide and butylene oxide or mixtures thereof) to initiators such as ethylene glycol, propylene glycol, glycerol, trimethylolpropane, pentaerythritol, sorbitol, mannitol and / or sucrose, so that a functionality between 2 and 8 , preferably between 2.5 and 6, more preferably between 2.5 and 4 can be adjusted.
- Component A2 preferably contains or consists of polyether polyols which are prepared from polyethylene oxide, polypropylene oxide and glycerol, if appropriate in the presence of a catalyst.
- component A2 preferably have an OH number according to DIN 53240 in the range from 10 to 40, preferably from 15 to 35, more preferably from 25 to 30.
- component A2 contains or consists of a glycerine-based polyethylene oxide-polypropylene oxide polyether having a number average
- the composition according to the invention for producing a polyurethane foam contains a component A3 comprising or consisting of compounds which are isocyanate-reactive and has a number average molecular weight of 62 to 399 g / mol, preferably 80 to 200 g / mol, more preferably 100 to 180 g / mol.
- the compounds preferably have hydroxyl groups and / or amino groups and / or thiol groups and / or carboxyl groups, preferably hydroxyl groups and / or amino groups.
- these compounds serve as chain extenders or crosslinkers.
- These compounds generally have from 2 to 8, preferably from 2 to 4, isocyanate-reactive hydrogen atoms.
- component A3 has an OH number of from 500 to 2000, more preferably from 800 to 1500, even more preferably from 1000 to 1300.
- component A3 contains or consists of ethanolamine, diethanolamine, triethanolamine, sorbitol and / or glycerol, more preferably
- Component A4 or A4a Component A4 or A4a
- Component A4 or A4a contains water and / or at least one physical blowing agent.
- Physical blowing agents are preferably carbon dioxide and / or volatile organic
- component A5 As component A5, if necessary, auxiliaries and additives are used as
- reaction retarders eg acidic substances such as hydrochloric acid or organic acid halides
- cell regulators such as paraffins or fatty alcohols or dimethylpolysiloxanes
- pigments Dyes, stabilizers against aging and weathering, plasticizers, fungistatic and bacteriostatic substances
- fillers such as barium sulfate, diatomaceous earth, soot or whiting
- auxiliaries and additives examples include Kunststoff-Handbuch, Volume VII, edited by G. Oertel, Carl Hanser Verlag, Kunststoff, 3rd edition, 1993, for example pages 104-127.
- the catalysts used are preferably: aliphatic tertiary amines (for example
- Trimethylamine tetramethylbutanediamine, 3-dimethylaminopropylamine, N, N-bis (3-dimethylaminopropyl) -N-isopropanolamine), cycloaliphatic tertiary amines (e.g. 1,4-diaza (2,2,2) bicyclooctane), aliphatic aminoethers (e.g.
- cycloaliphatic amidines, urea and derivatives of urea such as
- Aminoalkyl ureas in particular (3-dimethylaminopropylamine) urea).
- a particularly preferred catalyst is 1,4-diaza (2,2,2) bicyclooctane.
- Tin (II) salts of carboxylic acids can also be used as catalysts, it being preferable for the respective underlying carboxylic acid to have from 2 to 20 carbon atoms. Particularly preferred are the tin (II) salt of 2-ethylhexanoic acid (ie stannous (2-ethylhexanoate)), the stannous salt of 2-butyloctanoic acid, the tin (II) salt of 2-ethylhexanoate. Hexyl decanoic acid, the stannous salt of neodecanoic acid, the stannous salt of oleic acid, the stannous salt of ricinoleic acid and
- Tin (II) laurate may also contain tin (IV) compounds, e.g. dibutyl tin oxide,
- Dioctylzinndiacetat be used as catalysts.
- Component A5 preferably contains urea, 1,4-diaza (2,2,2) bicyclooctane, a mixture of modified polyethersiloxanes and a polyol / carbon black mixture with about 15% by weight of carbon black.
- Component B contains di- and / or polyisocyanates.
- component B contains aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates, e.g. by W. Siefken in Justus Liebigs Annalen der Chemie, 562, pages 75 to 136, for example those of the formula (I)
- n 2 - 4, preferably 2 -3, and
- Q is an aliphatic hydrocarbon radical having 2 to 18, preferably 6 to 10 C atoms, one
- cycloaliphatic hydrocarbon radical having 4-15, preferably 6-13 C atoms or an araliphatic hydrocarbon radical having 8-15, preferably 8-13 C atoms
- polyisocyanates e.g. the 2,4- and 2,6-toluene diisocyanate, and any mixtures of these isomers ("TDI");
- Urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret polyisocanates ("modified polyisocyanates"), in particular those modified polyisocyanates derived from 2,4- and / or 2,6-toluene diisocyanate or from 4,4'- and / or 2 Derive '4'-diphenylmethane diisocyanate.
- component B contains or contains at least one compound selected from the group consisting of 4,4'-
- component B particular preference is given to using a diphenylmethane diisocyanate mixture consisting of
- Multinuclear MDI and / or 2,2'-, 2,4'-, 4,4'-diphenylmethane diisocyanate- and / or pMDI-based carbodiimides, uretdiones or uretdionimines.
- component B a diphenylmethane diisocyanate mixture consisting of
- composition for producing polyurethane foam for the thermal and acoustic insulation of engines preferably contains no flame retardants, in particular no phosphorus-containing or halogen-containing flame retardants or melamine.
- the composition preferably contains no flame retardants such as, for example, phosphates or phosphonates, such as diethylethanephosphonate (DEEP), triethylphosphate (TEP) and dimethylpropylphosphonate (DMPP), brominated esters, brominated ethers (xxol) or brominated alcohols such as dibromoneopentyl alcohol, tribromoneopentyl alcohol, tetrabromophthalate diol (DP 54 ) and PHT-4-diol, as well as chlorinated
- DEEP diethylethanephosphonate
- TEP triethylphosphate
- DMPP dimethylpropylphosphonate
- brominated esters brominated ethers (xxol) or brominated alcohols
- dibromoneopentyl alcohol tribromoneopentyl alcohol
- DP 54 tetrabromophthalate diol
- PHT-4-diol as well as chlor
- Phosphates such as tris (2-chloroethyl) phosphate, tris (2-chloropropyl) phosphate (TCPP), tris (1,3-dichloropropyl) phosphate, tricresyl phosphate, diphenyl cresyl phosphate (DPK), tris (2,3-dibromopropyl) phosphate, Tetrakis- (2-chloroethyl) ethylenediphosphate, dimethylmethanephosphonate, Diethanolaminomethylphosphonklathylester and commercially available halogen-containing
- Flame retardants according to the invention are not the filler-containing polyols according to
- composition for producing polyurethane foam is reacted at a ratio of 90 to 110, preferably 95 to 105, more preferably at a ratio of 100.
- index isocyanate index
- composition contains or consists of
- component A3 optionally 0 to 5% by weight, preferably 0.2 to 2.0% by weight of component A3,
- component A4 0.1 to 10.0% by weight, preferably 0.5 to 2.0% by weight of component A4,
- component A5 optionally 0 to 20.0% by weight, preferably 1.0 to 4.0% by weight of component A5,
- the reaction components are preferably reacted by the per se known one-step process, the prepolymer process or the semi-prepolymer process, preferably using mechanical equipment.
- Polyurethane foam a one-shot or one-shot process in which the components of the composition are dosed and mixed true to form and then into a Shaping device can be entered.
- the shaping device has a temperature of 45 to 70 ° C.
- the blended composition in the mold cures after 5 to 10 minutes, more preferably 6 to 8 minutes, and the resulting polyurethane foam can be demoulded from the mold.
- a prepolymer is first formed from the polyol component A2 and the isocyanate component B, which is then reacted with the other reactants.
- the polyurethane foam obtained by the process according to the invention preferably has a bulk density according to DIN EN ISO 845 in the range from 100 to 250 kg / m 3 , preferably in the range from 130 to 200 kg / m 3 , more preferably in the range from 140 to 170 kg / m 3 up.
- the polyurethane foam obtained by the process according to the invention preferably has a compression hardness, CV40 [kPa] according to DIN EN ISO 3386-1-98, of 30 to 80 kPa, more preferably 40 to 60 kPa.
- One embodiment relates to the use of a polyurethane foam obtained by the process according to the invention for the thermal and acoustic insulation of engines.
- a further embodiment relates to an insulation of motors comprising a polyurethane foam which was obtained by the process according to the invention, in particular as a shaped body, wherein the shaped body is in particular a self-supporting molded body, in particular the molded body largely encloses the outer surface of a motor.
- the outer surface of the internal combustion engine preferably comprises the engine block, the
- Valve cover the crankshaft housing, the camshaft housing, and / or the
- Intake air supply includes.
- the polyurethane foams are used according to the invention for thermal and acoustic insulation of internal combustion engines, optionally including the ancillary components. It is possible to isolate the motor in whole or in part, and only the engine or the engine together with the ancillaries.
- the outer surface of the internal combustion engine preferably the engine block, the valve cover, the crankcase, the camshaft housing, and / or the intake air supply described.
- the thermal and acoustic insulation according to the invention may be materially connected to the engine block. This can be done for example by direct foaming of the rigid polyurethane foam to the engine block. In this case, either only the motor housing or else the motor housing and the additional units can be foamed.
- the advantage of this embodiment lies in a complete sealing of the motor housing, which leads to a very good thermal and in particular sound insulation.
- this method is very easy to carry out, since only the liquid foam components must be applied to the engine surface and no separate shaping and adjustment of the insulation must be made.
- the disadvantage is that when working on the engine, the insulation must be removed, which is in any case associated with their destruction.
- Another way of cohesive insulation of the motors may consist in that the insulation is produced in one piece or in several parts, preferably as a shaped body, and then glued to the motor housing. Also, a complete sealing of the motor housing can be achieved with the above-mentioned advantages.
- the disadvantage is that initially the moldings produced and these must then be connected in a separate step with the motor housing. Compared to direct foaming, this method has the advantage that when working on the engine, the insulation may be removed by loosening the bond and then reapplied.
- the insulation can be designed as a self-supporting unit.
- molded parts made of polyurethane foam and this can be attached to the engine.
- the insulation can be designed as a part or in the form of several parts.
- the engine can be completely or partially or the engine including the ancillaries wrapped.
- the advantage of this embodiment lies in the simple disassembly of the insulation during maintenance or repair work on the engine and the possible reuse of the insulation.
- a disadvantage compared to the direct foaming of the engine is the higher cost in the production and Attachment of insulation.
- it may cause the operation of the engine to a relaxation of the insulation and thus to a possible deterioration of the heat and noise insulation of the engine.
- Particularly advantageous here is the design of the insulation of several items to simplify repair and maintenance of the engine.
- the insulation, or the individual parts of the insulation instead of a molded body can also be prepared as a block foam, which is then cut into the appropriate shape.
- the self-supporting units can also be designed as composite elements.
- plastics for the production of this shell for example, polyolefins, polystyrene, polyamide or polycarbonates can be used.
- plastics used to make the shell can also contain reinforcing agents, for example glass fibers.
- the side facing the engine may contain a layer of at least one temperature-stable material.
- Inorganic substances for example mineral fibers
- organic materials for example foams, for example melamine-formaldehyde foam.
- foams for example melamine-formaldehyde foam.
- composite elements of a plurality of polyurethane foams wherein the polyurethane foam used for the side facing away from the engine should be characterized by particular thermal stability and by the particular use of mechanical strength and the polyurethane foam used for the motor side facing.
- the composite elements may also contain at least one layer which serves the ⁇ 0 ⁇ 8 ⁇ 3 ⁇ 1 ⁇ 3 ⁇ .
- these are polyurethanes with special fillers, for example barite. If possible, these layers are mounted in the middle or on the side facing away from the motor of the composite element, since they are usually not temperature resistant.
- the outer plastic shell has a thickness of 0.5 to 5.0 mm
- the thermal insulation layer has an average thickness of 5.0 to 70 mm
- the layer has the thickness of
- the inside of the insulation may also be surrounded by a metal layer, for example with a thin layer of aluminum. This also leads to an additional reflection of heat radiation.
- the outer surface of metal can still be designed decorative.
- the invention relates to a process for the preparation of
- a polyurethane foam for thermal and acoustic insulation of engines wherein the polyurethane foam is obtained or obtainable by reacting a composition containing or consisting of
- a component Al containing or consisting of at least one filled polyol a component A2 containing or consisting of compounds which are isocyanate-reactive and have a number average molecular weight of 400 to 18000 g / mol, optionally a component A3 containing or consisting of compounds to isocyanates are reactive and have a number average molecular weight of 62 to 399 g / mol,
- components A2 and A3 contain no filled polyols
- a component A4 containing water and / or at least one physical blowing agent optionally a component A5 containing auxiliaries and additives, and
- component B containing or consisting of di- and / or polyisocyanates
- the invention relates to a method according to embodiment 1, wherein the at least one filled polyol of the component AI contains a filler structure
- Polyurea dispersions which are obtainable by reacting di- and / or polyisocyanates with di- and / or polyamines having primary and / or secondary amino groups and / or hydrazines in a polyol component, and / or
- Urethane-containing dispersions obtainable by reacting alkanolamines with di- and / or polyisocyanates in a polyol component.
- the invention relates to a process according to embodiment 1 or 2, wherein the component AI 5 to 35 parts by weight, preferably 8 to 25 parts by weight, based in each case Component AI contains a Grestoff essentials, in particular a filler structure of polyurea dispersions.
- the invention relates to a process according to one of embodiments 1 to 3, wherein the at least one filled polyol of component AI has a number-average molecular weight in the range from 3000 to 5000 g / mol, preferably in the range from 3500 to 4500 g / mol, more preferably in the range of 3800 to 4100 g / mol.
- the invention relates to a method according to one of
- Embodiments 1 to 4 wherein the at least one filled polyol of component AI has an OH number according to DIN 53240 in the range of 10 to 40, preferably in the range of 15 to 35, more preferably in the range of 20 to 30.
- the invention relates to a method according to one of
- the invention relates to a method according to one of
- component B comprises at least one compound selected from the group consisting of 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate and polyphenylpolymethylene polyisocyanate ("multicore MDI") or mixtures thereof contains or consists of.
- the invention relates to a method according to one of
- the invention relates to a method according to one of
- Embodiments 1 to 8 wherein the composition contains or consists of
- component AI 10.0 to 98.9% by weight, preferably 20.0 to 55.0% by weight, of component AI,
- component A3 optionally 0 to 5% by weight, preferably 0.2 to 2.0% by weight of component A3,
- component A4 0.1 to 10.0% by weight, preferably 0.5 to 2.0% by weight of component A4,
- component A5 optionally 0 to 20.0% by weight, preferably 1.0 to 4.0% by weight of component A5,
- the invention relates to a polyurethane foam for thermal and acoustic insulation of engines obtained by or obtainable by a
- the invention relates to a polyurethane foam after
- Embodiment 10 wherein the polyurethane foam has a bulk density according to DIN EN ISO 845 in the range of 100 to 250 kg / m 3 , preferably in the range of 130 to 200 kg / m 3 , more preferably in the range of 140 to 170 kg / m 3 ,
- the invention relates to the use of a polyurethane foam according to embodiment 10 or 11 for the thermal and acoustic insulation of engines.
- the invention relates to an insulation of motors comprising a polyurethane foam according to embodiment 10 or 11, in particular as a shaped body, wherein the shaped body is in particular a self-supporting molded body, in particular the shaped body largely encloses the outer surface of a motor.
- the invention relates to a method for producing an insulation according to embodiment 13, comprising the following steps
- the invention relates to a method according to embodiment 14, wherein the outer surface of the internal combustion engine, the engine block, the valve cover, the
- Crankshaft housing, the camshaft housing, and / or the intake air supply includes.
- Polyurethane foams were prepared with the following components:
- AI Desmophen 7619W a filler-containing polyol having 21.6% polyurea dispersion (PHD) as a filler and 78.4% of a glycerine-based polyethylene oxide-polypropylene oxide polyether having a number average molecular weight of 4007 g / mol and an OH number of 28 Hyperlite Polyol 1650, a filler-containing polyol containing 43% styrene-acrylonitrile (SAN) as a filler and 57% of a glycerine-based polyethylene oxide-polypropylene oxide polyether having a number average molecular weight of 8332 g / mol and an OH number of 20
- PLD polyurea dispersion
- SAN styrene-acrylonitrile
- A2 Desmophen 10 WF 22 consisting of a glycerine-based polyethylene oxide-polypropylene oxide polyether having a number-average molecular weight of 4500 g / mol and an OH number of 28
- Desmophen 41 WB01 consisting of a polyethylene oxide-polypropylene oxide polyether on the
- Glycerine base with more than 70% ethylene oxide content and with a number average
- A2 Desmophen 10 WF 15 consisting of a glycerol-based polyethylene oxide-polypropylene oxide polyether having a number-average molecular weight of 4007 g / mol and an OH number of 35
- A3 triethanolamine having a number average molecular weight of 149 g / mol and an OH number of 1128
- A5 Dabco 33 LV consisting of 33% l, 4-diazabicyclo [2.2.2] octane dissolved in 67% dipropylene glycol
- A5 Tegostab B 8715 LF 2 consisting of a mixture of modified polyethersiloxanes
- A5 Isopur Black Paste consisting of a polyol-soot mixture with about 15% soot
- the isocyanates of component B are composed as follows:
- Polyurethane foams were prepared by the following procedure:
- Components AI to A6 were weighed into a 1.85 L volume beaker and mixed for 15 seconds at 4200 rpm with a stirrer. The isocyanate of component B was weighed and the mixture stirred for a further 5s at the same rate.
- the mixture was transferred to a heated aluminum mold (about 50 ° C., volume: example 1-3 and 6-11: 5 L, example 4: 2.8 L) and demolded again after a curing time of 7.5 min.
- the density was determined according to DIN EN ISO 845 on a test specimen from the core of the molded part.
- the compression hardness CV 40 was determined according to DIN EN ISO 3386-1-98.
- the experimental setup will be a fire chamber with the dimensions 70 x 66 x 40 cm and
- Ventilation possibility equipped with a Bunsen burner on a movable rail A sample holder for a horizontally inserted specimen with the dimensions 150x90x13mm is inserted into the chamber so that a 38mm long flame of the Bunsen burner can reach exactly to one edge of the specimen.
- the sample or sample holder is marked at 25mm and 125mm. After igniting the Bunsen burner, it is brought on the rail to the edge of the test specimen and left there for 15 seconds. Then the Bunsen burner is returned to the starting position at which there is no contact of the flame to the test specimen.
- the requirement for the engine compartment is met if the fire speed does not exceed ⁇ mm / min. For this, the first measuring mark at 25mm must not be reached by the flame. Non-burning dripping is another desirable criterion.
- composition of the polyurethane foams is shown in the following Tables 2 and 3.
- the weights are in each case in parts by weight.
- the experimental data of Inventive Examples 1 to 4 and 11 and 12 show that the polyurethane foams of the invention meet the flame retardant requirements that are necessary for use in the engine compartment, or on the engine. For none of these foams the fire speed exceeded the threshold of 0 mm / min and none of these foams reached the first measuring mark at 25 mm. In addition, the fire tests showed that none of the foams according to the invention formed burning droplets on burning. The foams according to the invention of Examples 2, to 4 and 12 even formed no drops when burned. By comparison, when burning the foam of Comparative Example 5, burning drops appeared. This foam did not meet the requirements for the fire speed. in the
- Comparative Example 5 was used as a filled polyol, a styrene-acrylonitrile-filled polyol, while in the examples of the invention as a filled polyol, a polyurea-dispersed polyol was used.
- the comparison of the inventive examples with Comparative Example 5 clearly shows that the use of a polyol filled with polyurea dispersion leads to improved fire protection properties compared to the use of a styrene-acrylonitrile-filled polyol.
- Example 3 of the invention with Comparative Example 5 shows that the technical effect is clearly due to the nature of the filled polyol used. These two examples differ only in the type of filled polyol that was used.
- Comparative Examples 6, 7 and 10 contained both a polyurea-dispersed polyol and a styrene-acrylonitrile-filled polyol, and both formed burning drops on burning.
- Comparative Examples 8 and 9 show that even the index at which the polyurethane foams are made has an effect on the fire behavior of the foams.
- the foam of Comparative Example 8 was synthesized at an index of 70 and the foam of Comparative Example 9 at an index of 120. Both foams contained a polyurea-dispersed polyol as the filled polyol and formed burning drops on burning.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Dispersion Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17180191.3A EP3425187A1 (fr) | 2017-07-07 | 2017-07-07 | Isolation retardatrice de flamme pour des moteurs à combustion interne |
EP18179609 | 2018-06-25 | ||
PCT/EP2018/067788 WO2019007896A1 (fr) | 2017-07-07 | 2018-07-02 | Isolation anti-flamme pour moteurs à combustion interne |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3649334A1 true EP3649334A1 (fr) | 2020-05-13 |
Family
ID=62815045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18736877.4A Withdrawn EP3649334A1 (fr) | 2017-07-07 | 2018-07-02 | Isolation anti-flamme pour moteurs à combustion interne |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200173359A1 (fr) |
EP (1) | EP3649334A1 (fr) |
JP (1) | JP2020526613A (fr) |
CN (1) | CN110809666A (fr) |
WO (1) | WO2019007896A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10926062B2 (en) | 2015-07-20 | 2021-02-23 | Strataca Systems Limited | Ureteral and bladder catheters and methods of inducing negative pressure to increase renal perfusion |
MA42500A (fr) | 2015-07-20 | 2018-05-30 | Strataca Systems Llc | Dispositif de sonde et procédé d'induction d'une pression négative dans la vessie d'un patient |
US12064567B2 (en) | 2015-07-20 | 2024-08-20 | Roivios Limited | Percutaneous urinary catheter |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2832253A1 (de) | 1978-07-22 | 1980-01-31 | Bayer Ag | Verfahren zur herstellung von formschaumstoffen |
DE4024669A1 (de) * | 1990-08-03 | 1992-02-06 | Bayer Ag | Verfahren zur herstellung von hochelastischen polyurethan-weichschaumstoffen und deren verwendung als polstermaterial |
US5039713A (en) * | 1991-02-07 | 1991-08-13 | Air Products And Chemicals, Inc. | Blowing reaction catalyst composition that provides cell opening of the resulting polyurethane foam |
DE19962911C2 (de) * | 1999-12-23 | 2002-11-21 | Bayer Ag | Flammwidriger HR-Kaltformschaum mit reduzierter Rauchgasintensität und -toxizität |
US6559196B2 (en) * | 2000-06-28 | 2003-05-06 | World Properties, Inc. | Tough, fire resistant polyurethane foam and method of manufacture thereof |
JP3905350B2 (ja) * | 2001-05-31 | 2007-04-18 | 東海ゴム工業株式会社 | 防音カバーの製造方法 |
JP4485979B2 (ja) * | 2004-08-04 | 2010-06-23 | 東海ゴム工業株式会社 | 車両用難燃性防音・防振材及びその製造方法 |
US20080269365A1 (en) * | 2007-04-25 | 2008-10-30 | Gary Dale Andrew | Additives for Improving Surface Cure and Dimensional Stability of Polyurethane Foams |
WO2011003590A2 (fr) | 2009-07-09 | 2011-01-13 | Bayer Materialscience Ag | Procédé de fabrication de mousses de polyuréthane ignifugées et aptes à une longue durée d'utilisation |
GB201301867D0 (en) * | 2013-02-01 | 2013-03-20 | Design Blue Ltd | Energy absorbent pads for attachment to textiles |
EP2811137A1 (fr) * | 2013-06-04 | 2014-12-10 | Basf Se | Isolation thermique d'un moteur à combustion |
CN105392814B (zh) | 2013-07-25 | 2019-05-31 | 陶氏环球技术有限责任公司 | 阻燃的柔性聚氨酯泡沫 |
CN116529280A (zh) * | 2020-08-25 | 2023-08-01 | 豪瑞科技有限公司 | 用于制备用于建筑围护结构的隔热、消音和气密的低密度喷雾聚氨酯泡沫的方法 |
-
2018
- 2018-07-02 US US16/628,362 patent/US20200173359A1/en not_active Abandoned
- 2018-07-02 CN CN201880045536.1A patent/CN110809666A/zh active Pending
- 2018-07-02 WO PCT/EP2018/067788 patent/WO2019007896A1/fr unknown
- 2018-07-02 JP JP2020500075A patent/JP2020526613A/ja active Pending
- 2018-07-02 EP EP18736877.4A patent/EP3649334A1/fr not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
CN110809666A (zh) | 2020-02-18 |
WO2019007896A1 (fr) | 2019-01-10 |
US20200173359A1 (en) | 2020-06-04 |
JP2020526613A (ja) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2800770B1 (fr) | Mousses de polyuréthane ignifuges | |
EP3083785B1 (fr) | Composition, appropriée à la fabrication de mousses polyuréthane, contenant au moins un agent de nucléation | |
EP2118163B1 (fr) | Mousse dure gonflée à l'eau pour l'isolation de cuves pour gaz naturel liquéfié | |
EP2451856B1 (fr) | Procédé de fabrication de mousses de polyuréthane ignifugées et aptes à une longue durée d'utilisation | |
EP2138520B1 (fr) | Procédé de réduction d'émissions d'une mousse de polyuréthane | |
EP2376554B1 (fr) | Mousses rigides gonflées à l'eau, présentant des propriétés mécaniques améliorées à basse température | |
EP2922921B1 (fr) | Mousse de polymère à base d'isocyanate ayant des propriétés ignifuges améliorées | |
DE102004048728A1 (de) | Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen | |
DE19961417C1 (de) | Verfahren zur Herstellung von Verbundmaterialien | |
EP3649334A1 (fr) | Isolation anti-flamme pour moteurs à combustion interne | |
EP0472080B1 (fr) | Procédé de préparation de mousses rigides de polyuréthane | |
EP0078478B1 (fr) | Mousses de polyuréthane soudables par chauffage à haute fréquence et procédé pour en préparer | |
EP1510543B1 (fr) | Mousse rigide de polyuréthanne résistante au feu comprenant des agents tensioactifs exempts de silicones | |
EP1967535B1 (fr) | Polyisocyanate compact à traitement amélioré et polyisocyanate compact à caractéristiques de traitement et de production améliorées et son procédé de fabrication | |
EP1246858A1 (fr) | Mousse hr moulee a froid ininflammable a intensite et toxicite de fumees reduites | |
DE19649279A1 (de) | Flammschutzmittel für Polyurethane, ein Verfahren zur Herstellung flammgeschützter Polyurethan-Kunststoffe, sowie deren Verwendung im Schienenfahrzeugbau | |
EP3425187A1 (fr) | Isolation retardatrice de flamme pour des moteurs à combustion interne | |
DE19954739A1 (de) | Flammwidriger HR-Kaltformschaum mit reduzierter Rauchgasdichte und -toxizität | |
EP4175991B1 (fr) | Mousses de polyuréthane à des propriétés acoustiques améliorées | |
EP0803523B1 (fr) | Procédé pour la préparation de mousses de polyuréthane rigides à faible retrait et à cellules fermées et ayant une densité réduite | |
EP3608347A1 (fr) | Mousse souple contenant un agent ignifuge sans halogène | |
DE3615561A1 (de) | Flammwidrige, borax enthaltende polyharnstoffschaumstoffe, verfahren zu deren herstellung und deren verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200207 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COVESTRO DEUTSCHLAND AG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COVESTRO INTELLECTUAL PROPERTY GMBH & CO. KG |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20211013 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20231025 |