EP3645183B1 - Bridge tool for producing extruded profiled elements of varying cross-section - Google Patents

Bridge tool for producing extruded profiled elements of varying cross-section Download PDF

Info

Publication number
EP3645183B1
EP3645183B1 EP18745490.5A EP18745490A EP3645183B1 EP 3645183 B1 EP3645183 B1 EP 3645183B1 EP 18745490 A EP18745490 A EP 18745490A EP 3645183 B1 EP3645183 B1 EP 3645183B1
Authority
EP
European Patent Office
Prior art keywords
mandrel
bridge
wedge
inner displacement
shaped element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18745490.5A
Other languages
German (de)
French (fr)
Other versions
EP3645183A1 (en
Inventor
Sören Müller
Maik NEGENDANK
Vidal SANABRIA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Berlin
Original Assignee
Technische Universitaet Berlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Berlin filed Critical Technische Universitaet Berlin
Publication of EP3645183A1 publication Critical patent/EP3645183A1/en
Application granted granted Critical
Publication of EP3645183B1 publication Critical patent/EP3645183B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/08Dies or mandrels with section variable during extruding, e.g. for making tapered work; Controlling variation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/085Making tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • B21C23/217Tube extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/04Mandrels

Definitions

  • the present invention relates to a bridge tool for producing extruded profiles with varying cross-sections.
  • Extrusion is a forming process for producing different geometries, especially bars, tubes and profiles.
  • a compact (block) heated to forming temperature is pressed through a die using a punch.
  • the block is enclosed by a recipient.
  • the external shape of the pressed strand is determined by the die.
  • the punch pushes the block along the inner surface of the container towards the die.
  • the container is closed on one side and the die, which is located on the head of a hollow punch, is pressed onto the block from the other side.
  • the strand passes through the punch hole. Its diameter thus limits the circumscribing circle of the profile cross-section.
  • the pressing force is not applied directly to the block by the punch, but via an active medium (water or oil).
  • Complex hollow profiles made of light metal can be produced using direct extrusion processes using chamber or bridge tools, whereby the bridge tools have a die part and a mandrel part include. As already explained, the outer contour is determined by the die and the inner shape by the mandrel.
  • the mandrel itself is not connected directly to the extrusion press, but rather to the mandrel part of the tool via support arms or bridges.
  • the block itself is first split into partial strands by the inlet chambers built into the mandrel part and then reconnected in the welding chamber of the die under high pressure and temperature.
  • JP-S57 130719 A which forms the basis for the preamble of claim 1, describes a bridge tool for a device for the direct extrusion of hollow profiles with variable wall thickness, comprising a die and a mandrel element with an axially movable inner sliding mandrel, wherein the end region of the sliding mandrel has different cross sections.
  • EN 10 02 18 81 A1 a device for extrusion, in which a mandrel is designed to be variable in the axial pressing direction and which has different cross-sections in its end region.
  • an annular gap with a different diameter is formed to form different profile cross-sections.
  • a mandrel according to EN 10 02 18 81 A1 is reduced.
  • Such a mandrel is subject to high thermo-mechanical stresses during use, which depend in particular on the pressing forces and forming temperatures that occur.
  • the long mandrel support arm in particular is exposed to changing tensile and bending forces, which can be superimposed by local thermal stresses.
  • the object of the present invention report is now to overcome the disadvantages of the prior art, and in particular to provide a device for producing profiles with a variable profile cross-section with high precision, since only with such high precision can over-dimensioning of the profiles be effectively avoided , whereby the device is designed and set up to optimally withstand the thermomechanical stresses.
  • the invention is based on the surprising finding that hollow profiles with varying inner diameters can be produced if the mandrel is constructed in several parts, wherein a movable inner sliding mandrel with different cross sections is included at its end regions, the axial movement of which results in a change in the inner cross section of the hollow profile.
  • the inner displacement mandrel has the smallest cross section at its first end, so that an axial displacement of the inner displacement mandrel in the direction of the die or into the die leads to a smaller wall thickness of the hollow profile, since the shaping gap between inner displacement mandrel and die reduced.
  • the disadvantages of the prior art are overcome by dividing the mandrel into at least two parts.
  • the inner sliding mandrel can be brought into operative connection with drive elements via short lever arms using connecting elements in order to enable axial displacement of the same, so that vibrations of the mandrel are minimized. It can also be provided that vibrations of the inner sliding mandrel can be almost completely prevented by special guide elements.
  • the inner displacement mandrel enables the creation of hollow profiles with varying cross-sections with high precision.
  • An axial displacement basically describes a displacement in the pressing direction or parallel to the pressing direction, a radial displacement a radial displacement relative to the pressing direction.
  • the mandrel element comprises at least one second axial recess which extends in the axial direction along the second end region of the inner displacement mandrel opposite the first end region of the inner displacement mandrel, wherein a transverse slide arranged perpendicular to the at least one mandrel element is included, which into which at least one second recess is inserted at least in sections, and wherein the cross slide is in operative connection with the inner displacement mandrel, in particular is firmly connected to the inner displacement mandrel.
  • Such a cross slide can be used to transmit a force from a drive device to the inner displacement mandrel, in which case the drive device can preferably be arranged outside the actual bridge tool, for example on the outer wall of the receiver or the holder of the bridge tool.
  • the cross slide can be brought into operative connection with at least one drive device directly or by means of at least one cross member, wherein the drive device is designed and configured to move the cross slide and the inner sliding mandrel in the axial direction.
  • a first cross member is arranged at a first radial end of the cross slide and a second cross member is arranged at a second radial end of the cross slide opposite the first radial end, wherein the first cross member can be or is operatively connected to a first drive device and/or the second cross member is operatively connected to a second drive device.
  • both cross beams can be connected or are connected to a single drive device.
  • first and/or the second drive device is designed in the form of a linear drive, in particular in the form of a hydraulic cylinder.
  • hydraulic cylinders in particular have proven to be particularly suitable for generating a linear force in order to enable an axial displacement of the inner displacement mandrel.
  • the inner sliding mandrel may also be advantageous for the inner sliding mandrel to have a trapezoidal or triangular cross-section in sections in the axial direction in the region of its first end.
  • the present invention is not limited to the trapezoidal or triangular cross-sections given as examples. Much more Their cross section is determined depending on the number of movable displacement elements.
  • the interior angle or pitch angle ⁇ of the trapezoidal or triangular cross-section has a value in the range from 5 to 25°, preferably from 8 to 15°, particularly preferably 10°.
  • the optimal angle can be adapted/selected according to the invention, even outside the preferred ranges, according to the drive or the available installation space to minimize the force requirement (small angle, long displacement path) or to minimize the installation space (large angle, short displacement path).
  • the further pitch angle of the side of the at least one wedge-shaped element facing the inner displacement mandrel is less than or equal to the pitch angle ⁇ of the cross section in the region of the first end in the axial direction of the inner displacement mandrel, so that an axial displacement of the inner Displacement mandrel is converted into a corresponding radial displacement of the at least one wedge-shaped element.
  • At least one wedge-shaped element can be used to change the inner cross section of a hollow profile, the radial displacement of which relative to the inner displacement mandrel directly influences the wall thickness of the hollow profile.
  • the inner cross section and the wall thickness of the hollow profile can be varied independently of the geometry of the inner sliding mandrel.
  • the wedge-shaped element can have different base areas and the acute angle of the wedge can be formed from two or more sides.
  • At least one second wedge-shaped element is arranged mirror-symmetrically to the first wedge-shaped element on the side of the inner sliding mandrel opposite the first wedge-shaped element.
  • the at least one wedge-shaped element is advantageously connected to the mandrel element by means of a first dovetail guide, wherein the at least one first dovetail guide enables a movement of the at least one wedge-shaped element exclusively in the radial direction, wherein the dovetail guide is formed in particular by the mandrel element and the at least one wedge-shaped element.
  • a first dovetail guide advantageously makes it possible for the at least one wedge-shaped element to be movable exclusively in the radial direction, but not in the axial direction. This leads in particular to the fact that an axial movement of the inner displacement mandrel with its cross section varying in the axial direction leads exclusively to a radial movement of the at least one wedge-shaped element. Furthermore, the tilting of the Wedge-shaped element is prevented and reproducibility of the implementation of the axial movement of the inner displacement mandrel in the radial movement of the at least one wedge-shaped element is ensured.
  • the inner displacement mandrel and the at least one wedge-shaped element are connected by means of a second dovetail guide designed in the axial direction, so that an axial movement of the inner displacement mandrel results in a radial movement of the at least a wedge-shaped element is transferred.
  • the second dovetail guide offers the particular advantage that a secure connection is provided between the inner sliding mandrel and the at least one wedge-shaped element. Furthermore, the second dovetail guide is particularly advantageous because it not only ensures that when the inner sliding mandrel moves towards or into the die, a radial movement of the at least one wedge-shaped element occurs outwards, but also that when the inner sliding mandrel moves in the opposite direction, tensile forces act on the at least one wedge-shaped element in order to reduce the radial spreading of the wedge-shaped element.
  • first recess of the mandrel element and the at least one inner displacement mandrel form a third dovetail guide in the axial direction, so that the inner displacement mandrel and the mandrel element are connected to one another by means of a dovetail guide.
  • the invention also provides a device for direct extrusion comprising a bridge tool according to the invention.
  • the invention provides a use of a bridge tool according to the invention for producing one or more extruded profiles with cross-sections that can be changed in the direction of extrusion in a device for direct extrusion.
  • the invention is therefore based on the surprising discovery that a change in the profile wall thickness during extrusion can be achieved while avoiding the disadvantages of the prior art by axially displacing an inner sliding mandrel by means of a cross slide, which in turn is connected to linear drives by means of two opposing cross beams. If the cross slide is moved axially, the inner sliding mandrel is thus displaced in the axial extrusion direction.
  • the wedge-shaped elements that are operatively connected to the inner sliding mandrel convert this axial movement, preferably by means of a second dovetail guide, into a radial movement arranged perpendicular to the axial movement. This leads to a spreading of the wedge-shaped element or elements, and this wedge movement reduces the shaping gap between the wedge-shaped element and the die and consequently reduces the wall thickness of the hollow profile.
  • the linear drives are moved back to the starting position, i.e. against the extrusion direction. This movement also causes the cross members including the cross slide to be retracted. As a result of this backward movement of the inner displacement mandrel, this displacement is transmitted to the wedge-shaped element or elements via the optional second dovetail guide, so that they move radially in the direction of the inner displacement mandrel. This increases the shaping gap again.
  • FIG. 1 a perspective view of an embodiment of a bridge tool according to the invention is shown.
  • This comprises a receiver 1, on the outside of which two linear drives 2 in the form of hydraulic cylinders are arranged.
  • Each of the linear drives 2 is connected to a cross member 3, which ends on two opposite sides of a cross slide 4 and is positively connected to it.
  • the gap between a mandrel element 5 and the die 6 defines the wall thickness of the hollow profiles to be produced.
  • the die 6 is attached to a pressure plate 7.
  • the mandrel element 5 also comprises wedge-shaped elements 8 and an inner sliding mandrel 9.
  • FIG 2 is the bridge tool according to Figure 1 shown in a sectional view. Together with the side view in section Figure 3 The operating principle of a bridge tool according to the invention is clearly visible.
  • the inner displacement mandrel 9 is arranged in a first recess 10, which extends in the axial direction and is followed by a second recess 11 for the cross slide 4.
  • a movement of the linear drives 2 leads to a displacement of the cross members 3 and the cross slide 4 and thus of the inner displacement mandrel 9 in the axial direction.
  • This axial displacement of the inner displacement mandrel 9 leads to a radial movement of the wedge-shaped elements 8 and thus to a change in the gap between the mandrel element 5 and the die 6. This change in the gap changes the cross section of the hollow profile to be produced.
  • first dovetail guides 13 for the wedge-shaped elements 8 and two second dovetail guides 14 are shown. These first dovetail guides 13 ensure that the wedge-shaped elements 8 can only move in the radial direction, while the second dovetail guides 14 make it possible for tensile forces to be transmitted from the inner sliding mandrel 9 to the wedge-shaped elements 8 in addition to compressive forces acting radially outward when the inner sliding mandrel 9 is moved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)

Description

Die vorliegende Erfindung betrifft ein Brückenwerkzeug zur Erzeugung von Strangpressprofilen mit variierendem Querschnitt.The present invention relates to a bridge tool for producing extruded profiles with varying cross-sections.

Strangpressen ist ein Umformverfahren zum Herstellen von unterschiedlichen Geometrien, insbesondere von Stäben, Rohren und Profilen. Beim Strangpressen wird ein auf Umformtemperatur erwärmter Pressling (Block) mit einem Stempel durch eine Matrize gedrückt. Dabei wird der Block durch einen Rezipienten umschlossen. Die äußere Form des Pressstrangs wird dabei durch die Matrize bestimmt.Extrusion is a forming process for producing different geometries, especially bars, tubes and profiles. During extrusion, a compact (block) heated to forming temperature is pressed through a die using a punch. The block is enclosed by a recipient. The external shape of the pressed strand is determined by the die.

Es wird im Stand der Technik zwischen direktem Strangpressen, indirektem Strangpressen und hydrostatischem Strangpressen unterschieden.The state of the art distinguishes between direct extrusion, indirect extrusion and hydrostatic extrusion.

Beim direkten Strangpressen schiebt der Stempel den Block entlang der Innenoberfläche des Rezipienten in Richtung der Matrize. Beim indirekten Strangpressen ist der Rezipient an einer Seite verschlossen, und von der anderen Seite wird auf den Block die Matrize gepresst, die sich am Kopf eines Hohlstempels befindet. Der Strang tritt durch die Stempelbohrung hindurch. Deren Durchmesser begrenzt somit den umschreibenden Kreiß des Profilquerschnitts. Beim hydrostatischen Strangpressen wird die Presskraft vom Stempel nicht unmittelbar, sondern über ein Wirkmedium (Wasser oder Öl) auf den Block aufgebracht.In direct extrusion, the punch pushes the block along the inner surface of the container towards the die. In indirect extrusion, the container is closed on one side and the die, which is located on the head of a hollow punch, is pressed onto the block from the other side. The strand passes through the punch hole. Its diameter thus limits the circumscribing circle of the profile cross-section. In hydrostatic extrusion, the pressing force is not applied directly to the block by the punch, but via an active medium (water or oil).

Die Vorteile des Strangpressens sind dabei im Allgemeinen die geringen Werkzeugkosten und die Vielfalt der erzeugbaren Geometrien.The advantages of extrusion are generally the low tool costs and the variety of geometries that can be produced.

Komplexe Hohlprofile aus Leichtmetall können mittels direkten Strangpressverfahren über Kammer- bzw. Brückenwerkzeuge erzeugt werden, wobei die Brückenwerkzeuge ein Matrizen- und ein Dornteil umfassen. Dabei wird die äußere Kontur, wie bereits ausgeführt, durch die Matrize und die innere Formgebung durch den Dorn bestimmt.Complex hollow profiles made of light metal can be produced using direct extrusion processes using chamber or bridge tools, whereby the bridge tools have a die part and a mandrel part include. As already explained, the outer contour is determined by the die and the inner shape by the mandrel.

Der Dorn selbst ist dabei nicht direkt mit der Strangpresse, sondern über Tragarme bzw. Brücken mit dem Dornteil des Werkzeugs verbunden. Dabei wird der Block selbst zunächst durch die in das Dornteil eingebrachten Einlaufkammern in Teilstränge gespalten und anschließend in der Schweißkammer der Matrize unter hohem Druck und Temperatur wieder verbunden.The mandrel itself is not connected directly to the extrusion press, but rather to the mandrel part of the tool via support arms or bridges. The block itself is first split into partial strands by the inlet chambers built into the mandrel part and then reconnected in the welding chamber of the die under high pressure and temperature.

Bei Brückenwerkzeugen treten dabei extreme mechanische und thermische Beanspruchungen auf, die insbesondere an den Dorntragarmen problematisch sind. Auch kann durch Kerbspannungen an den Wurzeln des Dorns eine Rissbildung entstehen.With bridge tools, extreme mechanical and thermal stresses occur, which are particularly problematic on the mandrel support arms. Notch stresses can also cause cracks to form at the roots of the mandrel.

Nachteilig an den aus dem Stand der Technik bekannten Strangpressverfahren ist, dass nur Profile mit einem konstanten Profilquerschnitt erzeugt werden können. Dies führt dazu, dass die Profile an vielen Stellen überdimensioniert ausgebildet werden, da die Profile immer gemäß den Anforderungen an der Stelle der höchsten Belastung über ihre gesamte Länge ausgebildet werden müssen.The disadvantage of the extrusion processes known from the state of the art is that only profiles with a constant profile cross-section can be produced. This means that the profiles are oversized in many places, since the profiles always have to be designed according to the requirements at the point of highest load over their entire length.

JP S57 130719 A , welche die Basis für den Oberbegriff des Anspruchs 1 bildet, beschreibt ein Brückenwerkzeug für eine Vorrichtung zum direkten Strangpressen von Hohlprofilen mit variabler Wanddicke, umfassend eine Matrize sowie ein Dornelement mit axial beweglichem inneren Verschiebedorn, wobei der Endbereich des Verschiebedorns unterschiedliche Querschnitte aufweist. JP-S57 130719 A , which forms the basis for the preamble of claim 1, describes a bridge tool for a device for the direct extrusion of hollow profiles with variable wall thickness, comprising a die and a mandrel element with an axially movable inner sliding mandrel, wherein the end region of the sliding mandrel has different cross sections.

Zur Erzeugung von variierenden Querschnitten in einer Strangpresse lehrt außerdem DE 10 02 18 81 A1 eine Vorrichtung zum Strangpressen, bei dem ein Dorn in axialer Pressrichtung veränderbar ausgebildet und der in seinem Endbereich unterschiedliche Querschnitte aufweist. Je nach Anordnung der Endbereiche des dort beschriebenen Dorns relativ zu der Matrize wird ein Ringspalt mit unterschiedlichem Durchmesser zur Ausbildung verschiedener Profilquerschnitte ausgebildet.To produce varying cross-sections in an extrusion press, EN 10 02 18 81 A1 a device for extrusion, in which a mandrel is designed to be variable in the axial pressing direction and which has different cross-sections in its end region. Depending on the arrangement of the end regions of the mandrel described therein relative to the die, an annular gap with a different diameter is formed to form different profile cross-sections.

Nachteilig an einer Lösung gemäß DE 10 02 18 81 A2 ist jedoch, dass zwar eine Vorrichtung umfassend ein Kammerwerkzeug offenbart ist, die einen variierenden Querschnitt des Strangpressprofils ermöglichen soll, jedoch der gesamte Dorn, der technisch bedingt eine große Länge aufweist, axial bewegt werden muss. Durch die daraus resultierenden langen Hebelarme entstehen relativ große Schwingungen des Dorns. Solche Schwingungen verhindern jedoch eine Herstellung von Profilen mit hoher Präzision und engen Toleranzanforderungen.Disadvantageous to a solution according to DE 10 02 18 81 A2 However, although a device comprising a chamber tool is disclosed, which is intended to enable a varying cross section of the extruded profile, the entire mandrel, which has a large length for technical reasons, must be moved axially. The resulting long lever arms cause relatively large oscillations in the mandrel. However, such vibrations prevent the production of profiles with high precision and tight tolerance requirements.

Des Weiteren ist es nachteilig, dass die Haltbarkeit eines Dorns gemäß DE 10 02 18 81 A1 reduziert ist. Ein solcher Dorn unterliegt im Einsatz hohen thermomechanischen Beanspruchungen, die insbesondere von den auftretenden Presskräften und Umformtemperaturen abhängen. Vor allem der lange Dorntragarm ist dabei wechselnden Zug- und Biegekräften ausgesetzt, denen sich lokale Wärmespannungen überlagern können.Furthermore, it is disadvantageous that the durability of a mandrel according to EN 10 02 18 81 A1 is reduced. Such a mandrel is subject to high thermo-mechanical stresses during use, which depend in particular on the pressing forces and forming temperatures that occur. The long mandrel support arm in particular is exposed to changing tensile and bending forces, which can be superimposed by local thermal stresses.

Die Aufgabe der vorliegenden Erfindungsmeldung liegt nunmehr darin, die Nachteile des Stands der Technik zu überwinden, und insbesondere eine Vorrichtung bereitzustellen, um mit hoher Präzision Profile mit einem variablen Profilquerschnitt herzustellen, da nur mit einer solch hohen Präzision eine Überdimensionierung der Profile wirksam vermieden werden kann, wobei die Vorrichtung gleichsam ausgelegt und eingerichtet ist, um den thermomechanischen Beanspruchungen optimal zu widerstehen.The object of the present invention report is now to overcome the disadvantages of the prior art, and in particular to provide a device for producing profiles with a variable profile cross-section with high precision, since only with such high precision can over-dimensioning of the profiles be effectively avoided , whereby the device is designed and set up to optimally withstand the thermomechanical stresses.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Brückenwerkzeug mit den Merkmalen des unabhängigen Anspruchs 1.This object is achieved according to the invention by a bridge tool with the features of independent claim 1.

Der Erfindung liegt dabei die überraschende Erkenntnis zugrunde, dass eine Erzeugung von Hohlprofilen mit variierendem Innendurchmesser realisiert werden kann, wenn der Dorn mehrteilig aufbaut ist, wobei ein beweglicher innerer Verschiebedorn mit unterschiedlichen Querschnitten an seinen Endbereichen umfasst ist, dessen axiale Bewegung in einer Änderung des inneren Querschnitts des Hohlprofils resultiert.The invention is based on the surprising finding that hollow profiles with varying inner diameters can be produced if the mandrel is constructed in several parts, wherein a movable inner sliding mandrel with different cross sections is included at its end regions, the axial movement of which results in a change in the inner cross section of the hollow profile.

Dabei kann es insbesondere vorteilhaft sein, dass der innere Verschiebedorn an seinem ersten Ende den geringsten Querschnitt aufweist, so dass eine axiale Verschiebung des inneren Verschiebedorns in Richtung der Matrize bzw. in die Matrize zu einer geringeren Wandstärke des Hohlprofils führt, da sich der formgebende Spalt zwischen innerem Verschiebedorn und Matrize verringert.It can be particularly advantageous that the inner displacement mandrel has the smallest cross section at its first end, so that an axial displacement of the inner displacement mandrel in the direction of the die or into the die leads to a smaller wall thickness of the hollow profile, since the shaping gap between inner displacement mandrel and die reduced.

Dabei werden durch die mindestens Zweiteilung des Dorns die Nachteile des Stands der Technik überwunden. Der innere Verschiebedorn kann mittels Verbindungselementen über kurze Hebelarme mit Antriebselementen in Wirkverbindung gebracht werden, um die axiale Verschiebung desselben zu ermöglichen, so dass Schwingungen des Dorns minimiert werden. Auch kann es vorgesehen sein, dass durch spezielle Führungselemente Schwingungen des inneren Verschiebedorns nahezu vollständig verhindert werden können.The disadvantages of the prior art are overcome by dividing the mandrel into at least two parts. The inner sliding mandrel can be brought into operative connection with drive elements via short lever arms using connecting elements in order to enable axial displacement of the same, so that vibrations of the mandrel are minimized. It can also be provided that vibrations of the inner sliding mandrel can be almost completely prevented by special guide elements.

Der innere Verschiebedorn ermöglicht somit eine Erzeugung von Hohlprofilen mit variierendem Querschnitt mit hoher Präzision.The inner displacement mandrel enables the creation of hollow profiles with varying cross-sections with high precision.

Bewegungen des inneren Verschiebedorns und weiterer Elemente des erfindungsgemäßen Brückenwerkzeugs werden dabei relativ zur Pressrichtung bezeichnet. Eine axiale Verschiebung beschreibt dabei grundsätzlich eine Verschiebung in Pressrichtung oder parallel zu der Pressrichtung, eine radiale Verschiebung eine radiale Verschiebung relativ zu der Pressrichtung.Movements of the inner displacement mandrel and other elements of the bridge tool according to the invention are referred to relative to the pressing direction. An axial displacement basically describes a displacement in the pressing direction or parallel to the pressing direction, a radial displacement a radial displacement relative to the pressing direction.

Es kann vorteilhaft sein, dass das Dornelement mindestens eine zweite axiale Aussparung umfasst, die sich in axialer Richtung entlang des dem ersten Endbereich des inneren Verschiebedorns gegenüberliegenden zweiten Endbereichs des inneren Verschiebedorns erstreckt, wobei ein senkrecht zu dem mindestens einen Dornelement angeordneter Querschieber umfasst ist, der in die mindestens eine zweite Aussparung mindestens abschnittsweise eingeführt ist, und wobei der Querschieber mit dem inneren Verschiebdorn in Wirkverbindung steht, insbesondere fest mit dem inneren Verschiebedorn verbunden ist.It can be advantageous that the mandrel element comprises at least one second axial recess which extends in the axial direction along the second end region of the inner displacement mandrel opposite the first end region of the inner displacement mandrel, wherein a transverse slide arranged perpendicular to the at least one mandrel element is included, which into which at least one second recess is inserted at least in sections, and wherein the cross slide is in operative connection with the inner displacement mandrel, in particular is firmly connected to the inner displacement mandrel.

Ein solcher Querschieber kann zur Übertragung einer Kraft von einer Antriebsvorrichtung an den inneren Verschiebedorn zum Einsatz kommen, wobei dabei die Antriebsvorrichtung bevorzugt außerhalb des eigentlichen Brückenwerkzeugs, beispielsweise an der Außenwand des Aufnehmers oder des Halters des Brückenwerkzeugs, angeordnet sein kann.Such a cross slide can be used to transmit a force from a drive device to the inner displacement mandrel, in which case the drive device can preferably be arranged outside the actual bridge tool, for example on the outer wall of the receiver or the holder of the bridge tool.

Dabei kann es insbesondere vorteilhaft sein, dass der Querschieber direkt oder mittels mindestens einem Querträger mit mindestens einer Antriebsvorrichtung in Wirkverbindung bringbar ist oder steht, wobei die Antriebsvorrichtung ausgelegt und eingerichtet ist, den Querschieber und den inneren Verschiebedorn in axialer Richtung zu bewegen.In this case, it may be particularly advantageous that the cross slide can be brought into operative connection with at least one drive device directly or by means of at least one cross member, wherein the drive device is designed and configured to move the cross slide and the inner sliding mandrel in the axial direction.

Es kann dabei ebenfalls vorteilhaft sein, wenn eine Kraftübertragung von der Antriebsvorrichtung auf den inneren Verschiebedorn nicht nur unter Zwischenschaltung des Querschiebers erfolgt, sondern wenn zusätzlich zwischen der Antriebseinrichtung und dem Querschieber ein Querträger angeordnet ist.It can also be advantageous if force is transmitted from the drive device to the inner displacement mandrel not only with the interposition of the cross slide, but also if additionally A cross member is arranged between the drive device and the cross slide.

Des Weiteren kann es dabei bevorzugt sein, dass ein erster Querträger an einem ersten radialen Ende des Querschiebers angeordnet ist und ein zweiter Querträger an einem zweiten, dem ersten radialen Ende gegenüberliegenden, radialen Ende des Querschiebers angeordnet ist, wobei der erste Querträger mit einer ersten Antriebsvorrichtung und/oder der zweite Querträger mit einer zweiter Antriebsvorrichtung in Wirkverbindung bringbar ist oder steht.Furthermore, it may be preferred that a first cross member is arranged at a first radial end of the cross slide and a second cross member is arranged at a second radial end of the cross slide opposite the first radial end, wherein the first cross member can be or is operatively connected to a first drive device and/or the second cross member is operatively connected to a second drive device.

Durch einen Einsatz von zwei an gegenüberliegenden Ende des Querschiebers angeordneten Querträgern kann eine gleichmäßige, parallele Kraftübertragung von den Antriebsvorrichtungen auf den inneren Verschiebedorn erfolgen und gleichzeitig ein Verkanten desselben verhindert werden. Es kann alternativ auch vorgesehen sein, dass anstelle einer zweiten Antriebsvorrichtung beide Querträger mit einer einzigen Antriebsvorrichtung verbindbar oder verbunden sind.By using two cross beams arranged at opposite ends of the cross slide, a uniform, parallel transfer of force from the drive devices to the inner sliding mandrel can take place and at the same time, tilting of the latter can be prevented. Alternatively, it can also be provided that instead of a second drive device, both cross beams can be connected or are connected to a single drive device.

Es hat sich dabei als vorteilhaft erwiesen, dass die erste und/oder die zweite Antriebsvorrichtung in Form eines Linearantriebs ausgebildet ist, insbesondere in Form eines Hydraulikzylinders.It has proven to be advantageous that the first and/or the second drive device is designed in the form of a linear drive, in particular in the form of a hydraulic cylinder.

Es hat sich gezeigt, dass sich insbesondere Hydraulikzylinder für eine Erzeugung einer linearen Kraft als besonders geeignet erwiesen haben, um eine axiale Verschiebung des inneren Verschiebedorns zu ermöglichen.It has been shown that hydraulic cylinders in particular have proven to be particularly suitable for generating a linear force in order to enable an axial displacement of the inner displacement mandrel.

Auch kann es gemäß einer Ausführungsform der Erfindung vorteilhaft sein, dass der innere Verschiebedorn im Bereich seines ersten Endes in axialer Richtung abschnittsweise einen trapezförmigen oder dreieckförmigen Querschnitt aufweist.According to an embodiment of the invention, it may also be advantageous for the inner sliding mandrel to have a trapezoidal or triangular cross-section in sections in the axial direction in the region of its first end.

Die vorliegende Erfindung ist dabei nicht auf die beispielhaft angeführten trapezförmigen oder dreieckförmigen Querschnitte beschränkt. Vielmehr bestimmt sich deren Querschnitt in Abhängigkeit der Anzahl der beweglichen Verschiebeelemente.The present invention is not limited to the trapezoidal or triangular cross-sections given as examples. Much more Their cross section is determined depending on the number of movable displacement elements.

Dabei kann es gemäß einer Ausführungsform vorgesehen sein, dass der Innenwinkel bzw. Steigungswinkel β des trapezförmigen oder dreieckförmigen Querschnitts einen Wert im Bereich von 5 bis 25°, vorzugsweise von 8 bis 15°, besonders bevorzugt von 10° aufweist. Der optimale Winkel kann dabei, auch außerhalb der bevorzugten Bereiche, erfindungsgemäß entsprechend des Antriebs bzw. des zur Verfügung stehenden Bauraums zur Minimierung des Kraftbedarfs (kleiner Winkel, langer Verschiebeweg) oder zur Minimierung des Bauraums (großer Winkel, kurzer Verschiebeweg) angepasst/gewählt werden.According to one embodiment, it can be provided that the interior angle or pitch angle β of the trapezoidal or triangular cross-section has a value in the range from 5 to 25°, preferably from 8 to 15°, particularly preferably 10°. The optimal angle can be adapted/selected according to the invention, even outside the preferred ranges, according to the drive or the available installation space to minimize the force requirement (small angle, long displacement path) or to minimize the installation space (large angle, short displacement path).

Dabei kann ebenfalls vorteilhafterweise vorgesehen sein, dass der weitere Steigungswinkel der dem inneren Verschiebedorn zugewandten Seite des mindestens einen keilförmigen Elements kleiner oder gleich dem Steigungswinkel β des Querschnitts im Bereich des ersten Endes in axialer Richtung des inneren Verschiebedorns ist, so dass eine axiale Verschiebung des inneren Verschiebedorns in eine korrespondierende radiale Verschiebung des mindestens einen keilförmigen Elements überführt ist.It can also advantageously be provided that the further pitch angle of the side of the at least one wedge-shaped element facing the inner displacement mandrel is less than or equal to the pitch angle β of the cross section in the region of the first end in the axial direction of the inner displacement mandrel, so that an axial displacement of the inner Displacement mandrel is converted into a corresponding radial displacement of the at least one wedge-shaped element.

Erfindungsgemäß kann zusätzlich zu dem axial beweglichen inneren Verschiebedorn zur Änderung des inneren Querschnitts eines Hohlprofils auf mindestens ein keilförmiges Element zurückgegriffen werden, dessen radiale Verschiebung relativ zum inneren Verschiebedorn die Wandstärke des Hohlprofils direkt beeinflusst.According to the invention, in addition to the axially movable inner displacement mandrel, at least one wedge-shaped element can be used to change the inner cross section of a hollow profile, the radial displacement of which relative to the inner displacement mandrel directly influences the wall thickness of the hollow profile.

Dabei hat es sich als vorteilhaft erwiesen, dass eine axiale Bewegung des inneren Verschiebedorns in Richtung oder weiter in die Matrize zu einer Spreizbewegung des mindestens einen keilförmigen Elements in radialer Richtung führt, da der kleinste Querschnitt des inneren Verschiebedorns an seinem ersten Ende angeordnet ist.It has proven to be advantageous that an axial movement of the inner sliding mandrel in the direction of or further into the die leads to a spreading movement of the at least one wedge-shaped element in the radial direction, since the smallest cross-section of the inner sliding mandrel is arranged at its first end.

Dies hat insbesondere den Vorteil, dass die auftretenden hohen Kräfte nicht ausschließlich vom inneren Verschiebedorn aufgenommen werden müssen, sondern auch von dem mindestens einen keilförmigen Element.This has the particular advantage that the high forces that occur do not have to be absorbed exclusively by the inner displacement mandrel, but also by the at least one wedge-shaped element.

Des Weiteren kann durch eine nahezu freie Gestaltbarkeit des mindestens einen keilförmigen Elements auch unabhängig von der Geometrie des inneren Verschiebedorns der innere Querschnitt und die Wanddicke des Hohlprofils variiert werden.Furthermore, due to the almost free design of the at least one wedge-shaped element, the inner cross section and the wall thickness of the hollow profile can be varied independently of the geometry of the inner sliding mandrel.

Das keilförmige Element kann erfindungsgemäß verschiedene Grundflächen aufweisen und der spitze Winkel des Keils kann dabei von zwei oder mehr Seiten ausgebildet werden.According to the invention, the wedge-shaped element can have different base areas and the acute angle of the wedge can be formed from two or more sides.

Es hat sich als vorteilhaft erwiesen, dass mindestens ein zweites keilförmiges Element spiegelsymmetrisch zu dem ersten keilförmigen Element auf der dem ersten keilförmigen Element gegenüberliegenden Seite des inneren Verschiebedorns angeordnet ist.It has proven to be advantageous that at least one second wedge-shaped element is arranged mirror-symmetrically to the first wedge-shaped element on the side of the inner sliding mandrel opposite the first wedge-shaped element.

Ein Einsatz zweier spiegelsymmetrisch angeordneter keilförmiger Elemente ermöglicht dabei eine gleichzeitige Änderung der Wandstärke an zwei Seiten eines Hohlprofils. Es ist dabei offensichtlich, dass auch mehr als 2 keilförmige Elemente zum Einsatz kommen können, die radial um den inneren Verschiebedorn gruppiert werden können.The use of two wedge-shaped elements arranged in a mirror-symmetrical manner enables the wall thickness on two sides of a hollow profile to be changed simultaneously. It is obvious that more than two wedge-shaped elements can also be used, which can be grouped radially around the inner sliding mandrel.

Auch hat es sich gezeigt, dass vorteilhafterweise das mindestens eine keilförmige Element mittels einer ersten Schwalbenschwanzführung mit dem Dornelement verbunden ist, wobei die mindestens eine erste Schwalbenschwanzführung eine Bewegung des mindestens einen keilförmigen Elements ausschließlich in radialer Richtung ermöglicht, wobei die Schwalbenschwanzführung insbesondere von dem Dornelement und dem mindestens einen keilförmigen Element ausgebildet ist.It has also been shown that the at least one wedge-shaped element is advantageously connected to the mandrel element by means of a first dovetail guide, wherein the at least one first dovetail guide enables a movement of the at least one wedge-shaped element exclusively in the radial direction, wherein the dovetail guide is formed in particular by the mandrel element and the at least one wedge-shaped element.

Durch eine erste Schwalbenschwanzführung wird vorteilhafterweise ermöglicht, dass das mindestens eine keilförmige Element ausschließlich in radialer Richtung beweglich ist, nicht jedoch in axialer Richtung. Dies führt insbesondere dazu, dass eine axiale Bewegung des inneren Verschiebedorns mit seinem in axialer Richtung variierenden Querschnitt ausschließlich zu einer radialen Bewegung des mindestens einen keilförmigen Elements führt. Des Weiteren wird ein Verkanten des keilförmigen Elements verhindert und eine Reproduzierbarkeit der Umsetzung der axialen Bewegung des inneren Verschiebedorns in die radiale Bewegung des mindestens einen keilförmigen Elements sichergestellt.A first dovetail guide advantageously makes it possible for the at least one wedge-shaped element to be movable exclusively in the radial direction, but not in the axial direction. This leads in particular to the fact that an axial movement of the inner displacement mandrel with its cross section varying in the axial direction leads exclusively to a radial movement of the at least one wedge-shaped element. Furthermore, the tilting of the Wedge-shaped element is prevented and reproducibility of the implementation of the axial movement of the inner displacement mandrel in the radial movement of the at least one wedge-shaped element is ensured.

Gemäß einer Ausführungsform der vorliegenden Erfindung hat es sich zudem als besonders vorteilhaft erwiesen, dass der innere Verschiebedorn und das mindestens eine keilförmige Element mittels einer in axialer Richtung ausgebildeten zweiten Schwalbenschwanzführung verbunden sind, so dass eine axiale Bewegung des inneren Verschiebedorns in eine radiale Bewegung des mindestens einen keilförmigen Elements überführt ist.According to one embodiment of the present invention, it has also proven to be particularly advantageous that the inner displacement mandrel and the at least one wedge-shaped element are connected by means of a second dovetail guide designed in the axial direction, so that an axial movement of the inner displacement mandrel results in a radial movement of the at least a wedge-shaped element is transferred.

Die zweite Schwalbenschwanzführung bietet insbesondere den Vorteil, dass eine sichere Verbindung zwischen dem inneren Verschiebedorn und dem mindestens einen keilförmigen Element bereitgestellt ist. Des Weiteren ist die zweite Schwalbenschwanzführung besonders vorteilhaft, da durch diese nicht nur sichergestellt wird, dass bei einer Bewegung des inneren Verschiebedorns in Richtung bzw. in die Matrize eine radiale Bewegung des mindestens einen keilförmigen Elements nach außen erfolgt, sondern auch, dass bei einer umgekehrten Bewegung des inneren Verschiebedorns Zugkräfte auf das mindestens eine keilförmige Element wirken, um die radiale Spreizung des keilförmigen Elements zu reduzieren.The second dovetail guide offers the particular advantage that a secure connection is provided between the inner sliding mandrel and the at least one wedge-shaped element. Furthermore, the second dovetail guide is particularly advantageous because it not only ensures that when the inner sliding mandrel moves towards or into the die, a radial movement of the at least one wedge-shaped element occurs outwards, but also that when the inner sliding mandrel moves in the opposite direction, tensile forces act on the at least one wedge-shaped element in order to reduce the radial spreading of the wedge-shaped element.

Des Weiteren kann vorgesehen sein, dass die erste Aussparung des Dornelements und der mindestens eine innere Verschiebedorn eine dritte Schwalbenschwanzführung in axialer Richtung ausbilden, so dass der innere Verschiebedorn und das Dornelement mittels einer Schwalbenschwanzführung miteinander verbunden sind.Furthermore, it can be provided that the first recess of the mandrel element and the at least one inner displacement mandrel form a third dovetail guide in the axial direction, so that the inner displacement mandrel and the mandrel element are connected to one another by means of a dovetail guide.

Dies hat insbesondere den Vorteil, dass ein Verkanten des inneren Verschiebedorns selbst bei einem Anliegen hoher Kräfte verhindert wird.This has the particular advantage that tilting of the inner sliding mandrel is prevented even when high forces are applied.

Auch liefert die Erfindung eine Vorrichtung zum direkten Strangpressen umfassend ein erfindungsgemäßes Brückenwerkzeug.The invention also provides a device for direct extrusion comprising a bridge tool according to the invention.

Schließlich liefert die Erfindung eine Verwendung eines erfindungsgemäßen Brückenwerkzeugs zum Herstellen von einem oder mehreren Strangpressprofilen mit in Pressrichtung veränderlichen Querschnitten in einer Vorrichtung zum direkten Strangpressen. Der Erfindung liegt somit die überraschende Erkenntnis zugrunde, dass eine Veränderung der Profilwanddicken während des Strangpressens unter Vermeidung der Nachteile des Stands der Technik dadurch erreicht werden kann, dass ein innerer Verschiebedorn mittels eines Querschiebers, der wiederum mittels zwei gegenüberliegend Querträgern mit Linearantrieben verbunden ist, axial verschoben werden kann. Wird der Querschieber axial bewegt, wird somit gleichsam der innere Verschiebedorn in axialer Strangpressrichtung verschoben. Die mit dem inneren Verschiebedorn in Wirkverbindung stehenden keilförmigen Elemente lenken dabei diese axiale Bewegung, bevorzugt mittels einer zweiten Schwalbenschwanzführung, in eine senkrecht zu der axialen Bewegung angeordnete radiale Bewegung um. Dies führt zu einem Aufspreizen des oder der keilförmigen Elemente und durch diese Keilbewegung wird der formgebende Spalt zwischen keilförmigen Element und Matrize verringert und folglich die Wandstärke des Hohlprofils reduziert.Finally, the invention provides a use of a bridge tool according to the invention for producing one or more extruded profiles with cross-sections that can be changed in the direction of extrusion in a device for direct extrusion. The invention is therefore based on the surprising discovery that a change in the profile wall thickness during extrusion can be achieved while avoiding the disadvantages of the prior art by axially displacing an inner sliding mandrel by means of a cross slide, which in turn is connected to linear drives by means of two opposing cross beams. If the cross slide is moved axially, the inner sliding mandrel is thus displaced in the axial extrusion direction. The wedge-shaped elements that are operatively connected to the inner sliding mandrel convert this axial movement, preferably by means of a second dovetail guide, into a radial movement arranged perpendicular to the axial movement. This leads to a spreading of the wedge-shaped element or elements, and this wedge movement reduces the shaping gap between the wedge-shaped element and the die and consequently reduces the wall thickness of the hollow profile.

Für eine nachträgliche Wanddickenerhöhung werden die Linearantriebe wieder in Ausgangsposition verfahren, also entgegen der Strangpressrichtung. Durch diese Bewegung werden auch die Querträger inklusive dem Querschieber zurückgezogen. In Folge dieser rückwärtigen Bewegung des inneren Verschiebedorns wird diese Verschiebung über die optionale zweite Schwalbenschwanzführung auf das oder die keilförmigen Elemente übertragen, so dass diese sich radial in Richtung des inneren Verschiebedorns bewegen. Hierdurch wird der formgebende Spalt wieder vergrößert.To subsequently increase the wall thickness, the linear drives are moved back to the starting position, i.e. against the extrusion direction. This movement also causes the cross members including the cross slide to be retracted. As a result of this backward movement of the inner displacement mandrel, this displacement is transmitted to the wedge-shaped element or elements via the optional second dovetail guide, so that they move radially in the direction of the inner displacement mandrel. This increases the shaping gap again.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der Ausführungsbeispiele der Erfindung anhand von schematischen Zeichnungen beispielhaft erläutert wird, ohne dadurch die Erfindung zu beschränken.Further features and advantages of the invention will become apparent from the following description, in which embodiments of the invention is explained by way of example using schematic drawings, without thereby limiting the invention.

Dabei zeigt:

Fig. 1:
Eine perspektivische Ansicht einer Ausführungsform eines erfindungsgemäßen Brückenwerkzeugs;
Fig. 2
Eine schematische Aufsicht auf das Brückenwerkzeug gemäß Figur 1;
Fig. 3
Eine schematische seitliche Schnittansicht auf das Brückenwerkzeug gemäß Figur 1; und
Fig. 4
Eine perspektive Ansicht einer Ausführungsform eines Dornelements eines erfindungsgemäßes Brückenwerkzeugs.
This shows:
Fig. 1:
A perspective view of an embodiment of a bridge tool according to the invention;
Fig. 2
A schematic view of the bridge tool according to Figure 1 ;
Fig. 3
A schematic side sectional view of the bridge tool according to Figure 1 ; and
Fig. 4
A perspective view of an embodiment of a mandrel element of a bridge tool according to the invention.

In Figur 1 ist eine perspektivische Ansicht einer Ausführungsform eines erfindungsgemäßen Brückenwerkzeugs dargestellt. Dieses umfasst einen Aufnehmer 1, an dessen Außenseiten zwei Linearantriebe 2 in Form von Hydraulikzylindern angeordnet sind. Jeder der Linearantriebe 2 ist dabei mit einem Querträger 3 verbunden, die an zwei gegenüberliegenden Seiten eines Querschiebers 4 enden und mit diesem formschlüssig verbunden sind. Der Spalt zwischen einem Dornelement 5 und der Matrize 6 definiert dabei die Wandstärke der zu erzeugenden Hohlprofile. Die Matrize 6 ist dabei an einer Druckplatte 7 befestigt. Das Dornelement 5 umfasst dabei zusätzlich keilförmige Elemente 8 sowie einen inneren Verschiebedorn 9.In Figure 1 a perspective view of an embodiment of a bridge tool according to the invention is shown. This comprises a receiver 1, on the outside of which two linear drives 2 in the form of hydraulic cylinders are arranged. Each of the linear drives 2 is connected to a cross member 3, which ends on two opposite sides of a cross slide 4 and is positively connected to it. The gap between a mandrel element 5 and the die 6 defines the wall thickness of the hollow profiles to be produced. The die 6 is attached to a pressure plate 7. The mandrel element 5 also comprises wedge-shaped elements 8 and an inner sliding mandrel 9.

In Figur 2 ist das Brückenwerkzeug gemäß Figur 1 in einer Aufsicht im Schnitt dargestellt. Gemeinsam mit der Seitenansicht im Schnitt in Figur 3 ist das Wirkprinzip eines erfindungsgemäßen Brückenwerkzeugs gut erkennbar. Der innere Verschiebedorn 9 ist dabei in einer ersten Aussparung 10 angeordnet, die sich in axialer Richtung erstreckt und an die sich eine zweite Aussparung 11 für den Querschieber 4 anschließt. Eine Bewegung der Linearantriebe 2 führt zu einer Verschiebung der Querträger 3 und des Querschiebers 4 und somit des innneren Verschiebedorns 9 in axialer Richtung. Diese axiale Verschiebung des inneren Verschiebedorns 9 führt dabei zu einer radialen Bewegung der keilförmigen Elemente 8 und somit zu einer Änderung des Spalts zwischen dem Dornelement 5 und der Matrize 6. Durch diese Veränderung des Spalts ändert sich der Querschnitt des zu erzeugenden Hohlprofils.In Figure 2 is the bridge tool according to Figure 1 shown in a sectional view. Together with the side view in section Figure 3 The operating principle of a bridge tool according to the invention is clearly visible. The inner displacement mandrel 9 is arranged in a first recess 10, which extends in the axial direction and is followed by a second recess 11 for the cross slide 4. A movement of the linear drives 2 leads to a displacement of the cross members 3 and the cross slide 4 and thus of the inner displacement mandrel 9 in the axial direction. This axial displacement of the inner displacement mandrel 9 leads to a radial movement of the wedge-shaped elements 8 and thus to a change in the gap between the mandrel element 5 and the die 6. This change in the gap changes the cross section of the hollow profile to be produced.

In Figur 4 sind zusätzlich zwei erste Schwalbenschwanzführungen 13 für die keilförmigen Elemente 8 sowie zwei zweite Schwalbenschwanzführungen 14 gezeigt. Diese ersten Schwalbenschwanzführungen 13 stellen sicher, dass sich die keilförmigen Elemente 8 ausschließlich in radialer Richtung bewegen können, während die zweiten Schwalbenschwanzführungen 14 ermöglichen, dass neben radial nach außen wirkenden Druckkräften bei einer Verschiebung des inneren Verschiebedorns 9 auch Zugkräfte von dem inneren Verschiebedorn 9 auf die keilförmigen Elemente 8 übertragen werden können.In Figure 4 Additionally, two first dovetail guides 13 for the wedge-shaped elements 8 and two second dovetail guides 14 are shown. These first dovetail guides 13 ensure that the wedge-shaped elements 8 can only move in the radial direction, while the second dovetail guides 14 make it possible for tensile forces to be transmitted from the inner sliding mandrel 9 to the wedge-shaped elements 8 in addition to compressive forces acting radially outward when the inner sliding mandrel 9 is moved.

Claims (13)

  1. Bridge-die tool for an apparatus for the direct extrusion of hollow profiles with variable wall thicknesses, comprising a bridge die (6) and at least one mandrel element (5) having a first end, which is directed toward the bridge-die opening, and a second end, which is located opposite the first end, wherein the outer profile contour of a hollow profile is defined by the geometry of the die opening and the inner cross-section of a hollow profile is defined by the at least one mandrel element, wherein
    the at least one mandrel element has at least one recess (10) in which an inner displacement mandrel (9) is mounted in an axially movable manner, wherein the inner displacement mandrel has different cross sections in its first end region facing the first end of the mandrel element,
    characterized in that
    the inner displacement mandrel is operatively connected to at least one wedge-shaped element (8) on or in the region of its first end, wherein an axial displacement of the inner displacement mandrel (9) leads to a radial movement of the at least one wedge-shaped element (8) and thus to a change of the gap between the mandrel element (5) and the bridge die (6).
  2. Bridge-die tool according to claim 1, wherein the pitch angle of the side facing the inner displacement mandrel of the at least one wedge-shaped element is smaller than, or equal to, the pitch angle β of the cross section in the region of the first end in the axial direction of the inner displacement mandrel.
  3. Bridge-die tool according to claim 1 or 2, characterized in that the mandrel element comprises at least one second axial recess (11), which extends axially along the second end region of the inner displacement mandrel, said second end region being located opposite the first end region of the inner displacement mandrel, wherein a transverse slide (4) which is arranged, in particular more or less, perpendicularly to the at least one mandrel element is included and is introduced, at least in part, into the at least one second recess, and wherein the transverse slide is in operative connection with the inner displacement mandrel, in particular, is fixed to the inner displacement mandrel.
  4. Bridge-die tool according to claim 3, characterized in that the transverse slide can be brought into, or is in, operative connection with at least one drive device (2) directly or by means of at least one crossmember (3), wherein the drive device is designed, and intended, to move the transverse slide and the inner displacement mandrel in the axial direction.
  5. Bridge-die tool according to claim 4, characterized in that a first crossmember is arranged at a first radial end of the transverse slide and a second crossmember is arranged at a second radial end of the transverse slide, said second radial end being located opposite the first radial end, wherein the first crossmember can be brought into, or is in, operative connection with a first drive device and/or the second crossmember can be brought into, or is in, operative connection with a second drive device.
  6. Bridge-die tool according to any one of claims 4 or 5, characterized in that the first and/or the second drive device are/is designed in the form of a linear drive, in particular in the form of a hydraulic cylinder.
  7. Bridge-die tool according to any one of the preceding claims, characterized in that
    the inner displacement mandrel has a trapezoidal or triangular cross section, in part, the region of its first end, as seen in the axial direction.
  8. Bridge-die tool according to any one of the preceding claims, characterized in that
    at least one second wedge-shaped element is arranged in mirror-symmetrical fashion in relation to the first wedge-shaped element on that side of the inner displacement mandrel which is located opposite the first wedge-shaped element.
  9. Bridge-die tool according to any one of the preceding claims, characterized in that
    the at least one wedge-shaped element is connected to the mandrel element by means of a first dovetail guide (13), wherein the at least one dovetail guide provides for movement of the at least one wedge-shaped element exclusively in the radial direction, and wherein the dovetail guide is formed in particular by the mandrel element and the at least one wedge-shaped element.
  10. Bridge-die tool according to any one of the preceding claims, characterized in that
    the inner displacement mandrel and the at least one wedge-shaped element are connected by means of an axially formed second dovetail guide (14), and therefore an axial movement of the inner displacement mandrel is converted into a radial movement of the at least one wedge-shaped element.
  11. Bridge-die tool according to any one of the preceding claims, characterized in that
    the first recess of the mandrel element and the inner displacement mandrel form a third dovetail guide in the axial direction, and therefore the inner displacement mandrel and the mandrel element are connected to one another by means of a dovetail guide.
  12. A direct-extrusion apparatus comprising a bridge-die tool as claimed in one of the preceding claims
  13. The use of a bridge-die tool as claimed in one of claims 1 to 11 so that one or more extruded profiles of cross sections which vary in the extruding direction are produced in a direct-extrusion apparatus.
EP18745490.5A 2017-06-28 2018-06-26 Bridge tool for producing extruded profiled elements of varying cross-section Active EP3645183B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017114371.8A DE102017114371A1 (en) 2017-06-28 2017-06-28 BRIDGE TOOL FOR THE PRODUCTION OF STRING PRESSING PROFILES WITH A VARIOUS CROSS SECTION
PCT/DE2018/100586 WO2019001635A1 (en) 2017-06-28 2018-06-26 Bridge tool for producing extruded profiled elements of varying cross-section

Publications (2)

Publication Number Publication Date
EP3645183A1 EP3645183A1 (en) 2020-05-06
EP3645183B1 true EP3645183B1 (en) 2024-04-03

Family

ID=63012772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18745490.5A Active EP3645183B1 (en) 2017-06-28 2018-06-26 Bridge tool for producing extruded profiled elements of varying cross-section

Country Status (5)

Country Link
US (1) US20200147661A1 (en)
EP (1) EP3645183B1 (en)
CN (1) CN110891704B (en)
DE (1) DE102017114371A1 (en)
WO (1) WO2019001635A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113020309B (en) * 2021-04-14 2023-01-20 烟台大学 Gradient hot extrusion device with continuously variable extrusion rate, extrusion temperature and extrusion ratio

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053274A (en) * 1975-01-28 1977-10-11 Lemelson Jerome H Tube wall forming apparatus
US3997176A (en) * 1975-09-19 1976-12-14 Borg-Warner Corporation Expansible mandrel
JPS57130719A (en) * 1981-02-02 1982-08-13 Sumitomo Metal Ind Ltd Hot extrusion forming method for inside stepped tube
JPH0531525A (en) * 1991-07-26 1993-02-09 Sumitomo Light Metal Ind Ltd Extrusion manufacture of hollow aluminium alloy for wear resistance
JP3328409B2 (en) * 1994-01-14 2002-09-24 新日本製鐵株式会社 Variable cross section extrusion dies or core
US5836197A (en) * 1996-12-16 1998-11-17 Mckee Machine Tool Corp. Integral machine tool assemblies
DE10021881A1 (en) 2000-05-05 2001-11-15 Honsel Profilprodukte Gmbh Device for producing one or more extruded profiles with variable cross-sections in press direction comprises holed press bar with axially displaceable mandrel
JP4386322B2 (en) * 2001-01-31 2009-12-16 本田技研工業株式会社 Method for extruding tube material having irregular cross-section and die for extruding tube material
JP4285053B2 (en) * 2003-04-11 2009-06-24 Jfeスチール株式会社 High dimensional accuracy tube and manufacturing method thereof
CN102500632B (en) * 2011-09-30 2014-11-05 南京理工大学 Method for realizing high-pressure shearing of pipes according to wedge principle and device utilizing method

Also Published As

Publication number Publication date
WO2019001635A1 (en) 2019-01-03
CN110891704A (en) 2020-03-17
DE102017114371A1 (en) 2019-01-03
US20200147661A1 (en) 2020-05-14
CN110891704B (en) 2022-04-22
EP3645183A1 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
EP1829626B1 (en) Straightener
EP3414086B1 (en) Radial press
DE102010004426B4 (en) Device for expanding hollow bodies
DE19614656A1 (en) Manufacture of increased wall thickness on hollow profile, for IC engine exhaust pipe
EP1954420B1 (en) Method and device for the coreless forming of hollow profiles
DE4301124A1 (en) Method of assembling a cylinder liner in a base body and hydraulic machine
DE102005049369B4 (en) Process for the production of fine-grained, polycrystalline materials or workpieces and extrusion presses
CH704438B1 (en) A process for producing a cam for a camshaft.
EP3645183B1 (en) Bridge tool for producing extruded profiled elements of varying cross-section
DE202015008252U1 (en) tensioning device
DE19817882A1 (en) Radial press with two yokes and cheek plates for work-bench or automatic industrial tool
WO2014015849A1 (en) Direct or indirect metal pipe extrusion process, mandrel for extruding metal pipes, metal pipe extruder and extruded metal pipe
DE4410146A1 (en) Method and device for producing press fittings
DE3320759C1 (en) Hydraulically actuated cylinder, for an expansion frame and method for its manufacture
DE2851944A1 (en) DEVICE FOR PRODUCING TUBE BODIES WITH AXIAL SUCCESSIVE CROSS SHAFTS
DE1806665C3 (en) Method and device for fastening metal sleeves to ribbed reinforcing bars and butt joint produced by the method
DE2919615A1 (en) Multiwalled tubes mfr. by cold drawing - using die to reduce outside dia., or mandrel to expand bore
EP0791132B1 (en) Process and device producing a honeycomb body, especially a catalyst substrate, with a housing
AT518648A4 (en) Stretch bending machine and method for deforming a workpiece
DE3304467A1 (en) Apparatus for the stepwise expansion of large tubes
DE102015223237B3 (en) tensioning device
EP3838434B1 (en) Extruder
EP3525951B1 (en) Shaping press comprising a bending sword
DE102020104529B4 (en) Device and method for the mechanical joining of hollow profiles
DE102009030600A1 (en) Production process of pipe material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018014382

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240617

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240621

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240403