EP3626956B1 - Unité de moteur - Google Patents

Unité de moteur Download PDF

Info

Publication number
EP3626956B1
EP3626956B1 EP18802296.6A EP18802296A EP3626956B1 EP 3626956 B1 EP3626956 B1 EP 3626956B1 EP 18802296 A EP18802296 A EP 18802296A EP 3626956 B1 EP3626956 B1 EP 3626956B1
Authority
EP
European Patent Office
Prior art keywords
engine
temperature
rotation speed
fuel
crank shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18802296.6A
Other languages
German (de)
English (en)
Other versions
EP3626956A1 (fr
EP3626956A4 (fr
Inventor
Yoshihito Ito
Daiki Ito
Minoru Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Publication of EP3626956A1 publication Critical patent/EP3626956A1/fr
Publication of EP3626956A4 publication Critical patent/EP3626956A4/fr
Application granted granted Critical
Publication of EP3626956B1 publication Critical patent/EP3626956B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/004Aiding engine start by using decompression means or variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/023Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/102Control of the starter motor speed; Control of the engine speed during cranking

Definitions

  • the present teaching relates to an engine unit that includes a high-load region and a low-load region in four strokes and starts by cranking a crankshaft with a starter motor.
  • a known engine of a vehicle is a four-stroke engine (e.g., a single-cylinder engine) that includes, in four strokes, a high-load region where a load for rotating a crankshaft of the engine is high and a low-load region where the load for rotating the crankshaft of the engine is small.
  • a four-stroke engine e.g., a single-cylinder engine
  • Patent Document 1 Japanese Patent Application Publication No. 2003-343404 discloses an engine starting apparatus that starts an engine by temporarily rotating a crankshaft in a reverse direction to stop the crankshaft and then rotating the crankshaft in a normal direction.
  • a motor causes the crankshaft to rotate in the reverse direction to a position at which the load increases in the reverse rotation, that is, halfway in an expansion stroke. Thereafter, the engine starting apparatus rotates the motor in the normal direction from the halfway position in the expansion stroke to thereby rotate the crankshaft in the normal direction.
  • the crankshaft is rotated in the reverse direction to the position at which the load increases, that is, the halfway position in the expansion stroke so that the crankshaft rotates in a low-load region from halfway of the expansion stroke to a compression stroke in starting the engine. Subsequently, the engine reaches a first high-load region. Thus, before the engine reaches the first high-load region, the rotation speed of the crankshaft can be increased. By using both of a large inertial force with the high rotation speed and an output torque of a starter motor, the engine can pass over the first high-load region.
  • Patent Document 2 International Patent Publication No. WO2015/093576 discloses an engine unit in which while the crankshaft rotates in the normal direction after a combustion operation of a four-stroke engine body has stopped, a resistance is applied to the normal rotation of the crankshaft with a three-phase brushless motor.
  • the engine unit stops the crankshaft at a position of a compression stroke in the four-stroke engine body. Then, in accordance with an input of a start instruction in stopping the crankshaft, the three-phase brushless motor rotates the crankshaft in the normal direction from the stop position of the compression stroke.
  • the rotation speed of the crankshaft gradually increases from the stopped state.
  • the rotation speed of the crankshaft is low in the compression stroke.
  • the crankshaft is not affected by a compression reaction force by a gas in a combustion chamber. Consequently, the crankshaft can rotate quickly over a load in the high-load region of the compression stroke.
  • the inventors of the present teaching evaluated startability of the engine in which the high-load region and the low-load region are present in four strokes as described in Patent Documents 1 and 2. Consequently, the inventors of the present teaching found that in some specific phases, a load varies largely so that startability of the engine degrades.
  • the inventors of the present teaching evaluated startability of a previously presented engine in which a high-load region and a low-load region are present in four strokes.
  • the rotation speed of the crankshaft increases in the low-load region.
  • the load of the engine further increases, and thus, control of increasing an inertial force by increasing the rotation speed of the crankshaft in the low-load region is considered to be preferable.
  • a torque can be increased as the rotation speed decreases.
  • the inventors of the present teaching found that in the engine in which the high-load region and the low-load region are present in four strokes, such a characteristic of a permanent magnet starter motor can be used for sufficiently increasing the energy obtained by the first combustion even when an increase in the rotation speed of the crankshaft is suppressed in the low-load region after the rotation of the crankshaft from the stopped state and before the first combustion with an extremely low engine temperature.
  • the increase in the rotation speed of the crankshaft can be promoted in the low-load region after the rotation of the crankshaft from the stopped state and before the first combustion, and startability as the same level as before can be obtained.
  • the object of the present invention to provide an engine unit and a method for controlling an engine unit as indicated above that improves startability of the engine.
  • said object is solved by an engine unit according to the independent claim 1.
  • said object is solved by a method for controlling an engine unit according to the independent claim 9.
  • the present teaching employs the following configuration in order to solve the problem described above.
  • Cranking herein refers to rotation of a crankshaft by applying an external force from outside an engine without using combustion in cylinders of an engine.
  • cranking refers to the rotation of the crankshaft by using a motor for starting the engine in starting the engine.
  • cranking includes application of an external force to the crankshaft while combustion occurs in cylinders of the engine.
  • the high-load region of the engine herein refers to a region where a torque necessary for compressing an in-cylinder gas is high in a compression stroke in an operation range of the engine.
  • the high-load region of the engine includes the compression stroke.
  • the low-load region of the engine herein refers to a region where the in-cylinder gas is not compressed in the operation range of the engine.
  • the temperature of the four-stroke engine body herein refers to a temperature in a combustion chamber of the engine or a temperature detected by an engine temperature detector for detecting a temperature concerning a temperature in the combustion chamber.
  • the temperature concerning the temperature in the combustion chamber refers to a temperature that varies depending on the temperature in the combustion chamber, such as a temperature of a coolant, temperatures of a cylinder and a crankcase body of the four-stroke engine body, a fuel temperature, an injector temperature, and an intake port temperature.
  • This temperature may be a temperature of oil in an oil passage in the case of an air cooling engine, for example.
  • An engine unit according to one embodiment of the present teaching can enhance startability of an engine.
  • FIG. 1 is a view schematically illustrating a configuration of the engine unit 100.
  • the following description will be directed to a case where the engine unit 100 includes a single-cylinder four-stroke engine body 10 (hereinafter referred to simply as an engine 10).
  • the components of the engine unit 100 are simplified.
  • the engine unit 100 according to this embodiment is an engine unit including a four-stroke engine 10 in which an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke are included in one cycle.
  • the engine unit 100 includes the engine 10, an air cleaner 12, an intake pipe 14a, an intake pipe 14b, an exhaust pipe 16, a throttle device 20, a throttle position sensor (hereinafter referred to as a TPS) 22, a pressure sensor 24, a crank angle sensor 26 (crank angle detector), an engine temperature sensor 28 (engine temperature detector), a permanent magnet starter motor 30, an engine control device (control unit, hereinafter referred to as an ECU) 32, an inverter 62, a battery 64, and a start switch 66.
  • the air cleaner 12 takes air in the atmosphere (air outside the vehicle including the engine 10) and purifies the intake air.
  • An end of the intake pipe 14a is connected to the air cleaner 12.
  • the other end of the intake pipe 14a is connected to a throttle body 20c described later of the throttle device 20.
  • An end of the intake pipe 14b is connected to the throttle body 20c of the throttle device 20.
  • the other end of the intake pipe 14b is connected to a passage 34a formed in a cylinder head 34 described later.
  • An end of the exhaust pipe 16 is connected to the passage 34b formed in the cylinder head 34 described later.
  • an intake passage 33a is formed by, for example, a space inside the intake pipe 14a, a space inside the throttle body 20c, a space inside the intake pipe 14b, and the passage 34a.
  • an exhaust passage 33b is formed by, for example, the passage 34b and a space inside the exhaust pipe 16.
  • the intake passage 33a guides air in the atmosphere purified by the air cleaner 12 into a combustion chamber 36 described later of the engine 10 through an intake port 35a described later.
  • the exhaust passage 33b exhausts air in the combustion chamber 36 to the atmosphere (outside the vehicle) through an exhaust port 35b described later.
  • the configuration of the intake passage 33a is not limited to the configuration illustrated in FIG. 1 , and only needs to guide air in the atmosphere to the combustion chamber 36 described later.
  • the configuration of the exhaust passage 33b is not limited to the configuration illustrated in FIG. 1 , and only needs to discharge a gas in the combustion chamber 36 to the atmosphere.
  • upstream and downstream refer to “upstream” and “downstream” with respect to an airflow direction from the air cleaner 12 to the exhaust passage 33b through the intake passage 33a and the engine 10.
  • the throttle device 20 includes a throttle valve 20a, a driving device 20b for driving the throttle valve 20a, and a throttle body 20c.
  • the throttle valve 20a and the driving device 20b are disposed in the throttle body 20c.
  • an electric motor may be used, for example.
  • the throttle valve 20a is driven by the driving device 20b to thereby adjust an opening area of the intake passage 33a. That is, in this embodiment, the throttle valve 20a serves as a regulating valve that adjusts the opening area of the intake passage 33a. As will be described later, the driving device 20b is controlled by an ECU 32.
  • the TPS 22 detects a position of the throttle valve 20a as a throttle opening angle.
  • the TPS 22 outputs a signal indicating the detected throttle opening angle to the ECU 32.
  • the pressure sensor 24 detects a pressure (intake pressure) of a space downstream of the throttle valve 20a in the intake passage 33a. That is, the pressure sensor 24 detects a pressure of a space between the throttle valve 20a and the combustion chamber 36 described later in the intake passage 33a.
  • the intake pressure refers to a pressure of a space between the throttle valve 20a and the combustion chamber 36 in the intake passage 33a.
  • the pressure sensor 24 outputs a signal concerning the detected pressure to the ECU 32.
  • the pressure sensor 24 is a pressure detector.
  • the crank angle sensor 26 detects a rotation position (hereinafter referred to as a crank angle) of a crankshaft 46 described later of the engine 10.
  • the crank angle sensor 26 outputs a signal indicating the detected crank angle (crank pulse signal) to the ECU 32.
  • the ECU 32 Based on the signal output from the crank angle sensor 26, the ECU 32 ignites an air mixture in the combustion chamber 36 by an ignition plug 56 described later of the engine 10.
  • the ECU 32 performs operation control in starting the engine. Specifically, the ECU 32 includes a rotation speed calculator 70, a crank angle determiner 71, a fuel injection time determiner 72, a motor controller 73, a fuel injection controller 74, an ignition controller 75, and a memory 76.
  • the rotation speed calculator 70 calculates a rotation speed of the engine 10, that is, a rotation speed of the crankshaft 46, based on the crank pulse signal output from the crank angle sensor 26.
  • the rotation speed of the crankshaft 46 calculated by the rotation speed calculator 70 is input to the motor controller 73 and is used for feedback control of the permanent magnet starter motor 30.
  • the crank angle determiner 71 determines whether the crank angle obtained based on the crank pulse signal output from the crank angle sensor 26 is larger than a predetermined angle or not, and determines whether the crank angle is larger than a specified angle at which fuel injection starts or not.
  • the determination result by the crank angle determiner 71 is input to the motor controller 73 and used for driving control of the permanent magnet starter motor 30.
  • the determination result by the crank angle determiner 71 is input to the fuel injection controller 74, and used for driving control of a fuel injection device 54 described later of the engine 10.
  • the predetermined angle is an angle smaller than the specified angle.
  • the fuel injection time determiner 72 Based on engine temperature information output from the engine temperature sensor 28, the fuel injection time determiner 72 obtains a fuel injection time in accordance with an engine temperature from injection time data previously stored in the memory 76. In injecting fuel from the fuel injection device 54, the fuel injection time determiner 72 calculates a cumulative time of fuel injection (cumulative fuel injection time), and determines whether the calculated cumulative fuel injection time is longer than a default value (predetermined time) or not.
  • the engine temperature sensor 28 is, for example, a sensor for measuring a temperature of a coolant of the engine 10.
  • the engine temperature sensor 28 may directly measure a temperature in the combustion chamber 36 or may measure a temperature in a cylinder 40 or a crankcase 44, for example, of the engine 10. That is, the engine temperature sensor 28 may be disposed at any position as long as the engine temperature sensor 28 can measure a temperature concerning the combustion chamber 36 of the engine 10.
  • the motor controller 73 controls driving of the permanent magnet starter motor 30 in starting the engine, based on the rotation speed of the crankshaft 46 output from the rotation speed calculator 70 and the determination result output from the crank angle determiner 71. Specifically, the motor controller 73 performs rotation speed control of the permanent magnet starter motor 30 in accordance with the determination result output from the crank angle determiner 71, and performs feedback control of the permanent magnet starter motor 30 by using the rotation speed of the crankshaft 46.
  • the fuel injection controller 74 causes the fuel injection device 54 to inject fuel. On the other hand, if the fuel injection time determiner 72 determines that the cumulative fuel injection time is longer than the default value, the fuel injection controller 74 stops fuel injection by the fuel injection device 54.
  • the ignition controller 75 ignites the ignition plug 56 at the time when the crank angle obtained based on the crank pulse signal output from the crank angle sensor 26 reaches an ignition timing of the ignition plug 56.
  • the permanent magnet starter motor 30 is a motor that cranks the crankshaft 46 to start the engine 10.
  • the permanent magnet starter motor 30 is a DC brushless motor.
  • the permanent magnet starter motor 30 has a characteristic that the torque increases as the rotation speed decreases.
  • a DC brushless motor of a type that detects an electrical angle by using a Hall sensor or a DC brushless motor of a type that detects a mechanical angle by using a crank pulse can be used.
  • An output shaft of the permanent magnet starter motor 30 is connected to the crankshaft 46 of the engine 10 to rotate the crankshaft 46.
  • the output shaft of the permanent magnet starter motor 30 is connected to the crankshaft 46 through no power transmission mechanism (e.g. a belt, a chain, a gear, a speed reducer, or a speed-up gear).
  • the permanent magnet starter motor 30 only needs to be connected to the crankshaft 46 of the engine 10 such that the crankshaft 46 can rotate in the normal direction.
  • the permanent magnet starter motor 30 may be connected to the crankshaft 46 through the power transmission mechanism.
  • the rotation axis of the permanent magnet starter motor 30 may substantially coincide with a rotation axis of the crankshaft 46.
  • the inverter 62 controls a current to be supplied from the battery 64 to the permanent magnet starter motor 30 to thereby control the rotation speed of the permanent magnet starter motor 30.
  • the inverter 62 is controlled by the motor controller 73 of the ECU 32.
  • the battery 64 supplies electric power to the permanent magnet starter motor 30 through the inverter 62.
  • the start switch 66 outputs an ON signal in accordance with an operation of a driver or in the case where conditions for engine start are satisfied in an idling stop system described later.
  • the ON signal is output from the start switch 66, the ECU 32 starts rotation speed control of the permanent magnet starter motor 30 in order to start the engine 10.
  • the engine 10 includes the cylinder head 34, the cylinder 40, a piston 42, the crankcase 44, the crankshaft 46, a connecting rod 48, an intake valve 50, an exhaust valve 52, the fuel injection device 54, and the ignition plug 56 (ignition device).
  • the piston 42 is movable to and fro in the cylinder 40.
  • the crankshaft 46 is rotatable in the crankcase 44.
  • the piston 42 and the crankshaft 46 are coupled to each other by the connecting rod 48.
  • the to-and-fro movement of the piston 42 is transferred to the crankshaft 46 through the connecting rod 48. Accordingly, the crankshaft 46 rotates.
  • the combustion chamber 36 is formed by the cylinder head 34, the cylinder 40, and the piston 42.
  • the combustion chamber 36 includes the intake port 35a and the exhaust port 35b.
  • the cylinder head 34 includes the passage 34a to be connected to the intake port 35a and the passage 34b to be connected to the exhaust port 35b.
  • the passage 34a connects the intake pipe 14b and the combustion chamber 36 to each other.
  • the passage 34b connects the combustion chamber 36 and the exhaust pipe 16 to each other.
  • the intake valve 50 opens and closes the intake port 35a.
  • the exhaust valve 52 opens and closes the exhaust port 35b.
  • the intake valve 50 is driven by an unillustrated known valve mechanism.
  • the exhaust valve 52 is driven by an unillustrated valve mechanism.
  • the intake valve 50 is opened before the exhaust valve 52 is closed, and the intake valve 50 is closed before the exhaust valve 52 is opened. In other words, at least in the low-load operation range, the intake stroke is started before the exhaust stroke is finished.
  • the intake valve 50 is open at a crank angle of, for example, 344 degrees to 576 degrees.
  • the crank angle while the intake valve 50 is open is not limited to the range described above, and the intake valve 50 may be open with a crank angle of 360 degrees to 540 degrees at minimum and 326 degrees to 610 degrees at maximum.
  • the exhaust valve 52 is open at least in the exhaust stroke. Specifically, the exhaust valve 52 is open at a crank angle of, for example, 64 degrees to 378 degrees. The crank angle while the exhaust valve 52 is open is not limited to the range described above, and the exhaust valve 52 may be open with a crank angle of 180 degrees to 360 degrees at minimum and 70 degrees to 390 degrees at maximum.
  • the fuel injection device 54 injects fuel into the intake passage 33a.
  • the fuel injection device 54 injects fuel toward the intake valve 50.
  • Fuel supplied into the intake passage 33a is sent to the combustion chamber 36 as an air-fuel mixture together with air.
  • the ignition plug 56 ignites the air-fuel mixture in the combustion chamber 36.
  • the fuel injection device 54 and the ignition plug 56 perform fuel injection and ignition by control of the ECU 32 at appropriate timings in accordance with the strokes in one cycle of the engine 10.
  • a decompression mechanism 58 is provided near an unillustrated camshaft for driving the exhaust valve 52.
  • the decompression mechanism 58 reduces an increase in resistance to the rotation of the crankshaft 46 caused by compression of air in the cylinder in the compression stroke of the engine. That is, the decompression mechanism 58 is a mechanism that opens the exhaust valve 52 at a predetermined timing in order to reduce the pressure in the cylinder in the compression stroke in starting the engine.
  • FIG. 2 is an illustration showing a relationship between a crank angle and a torque necessary for cranking in starting the engine.
  • the engine 10 of the engine unit 100 includes, in four strokes, a high-load region TH where a load for rotating the crankshaft 46 is high and a low-load region TL where the load for rotating the crankshaft 46 is lower than the load in the high-load region TH.
  • the low-load region TL is equal to or wider than the high-load region TH. More specifically, the low-load region TL is wider than the high-load region TH. In other words, a rotation angle region corresponding to the low-load region TL is wider than a rotation angle region corresponding to the high-load region TH.
  • the engine 10 repeats four strokes of the intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke.
  • the compression stroke is included in the high-load region TH but is not included in the low-load region TL.
  • the high-load region TH is a region substantially overlapping the compression stroke
  • the low-load region TL is a region substantially overlapping the intake stroke, the expansion stroke, and the exhaust stroke. It should be noted that the edge of each of the high-load region TH and the low-load region TL does not need to coincide with the edge of each of the strokes.
  • the decompression mechanism 58 operates to open the exhaust valve 52 with a crank angle of around 630 degrees.
  • a period in which the exhaust valve 52 is opened by the decompression mechanism 58 is a short period in the compression stroke.
  • the timing at which the exhaust valve 52 is opened by the decompression mechanism 58 is immediately before the intake valve 50 is closed or after the intake valve 50 is closed.
  • the timing when the exhaust valve 52 is opened by the decompression mechanism 58 is adjustable within the compression stroke.
  • the valve lift amount of the exhaust valve 52 in an actuation period of the decompression mechanism 58 is smaller than the valve lift amount of the intake valve 50.
  • the valve lift amount is a distance in which the valve moves away from the valve seat in an axial direction.
  • cranking is performed by the starter motor 30.
  • the start of the engine 10 includes a case where the engine 10 starts from a state where the engine temperature is lower than a temperature in operation of the engine 10 and a case where the engine 10 starts again from an engine stopped state in an idling stop system.
  • the idling stop system has a configuration similar to a known configuration, and thus, detailed description and illustration of the idling stop system will be omitted.
  • FIG. 3 is a flowchart depicting an operation of rotation speed control of the permanent magnet starter motor 30 by the ECU 32 in starting the engine unit 100.
  • FIG. 4 is a graph showing a relationship between an engine speed and a crank angle in starting the engine unit 100.
  • FIG. 5 is a view illustrating an example of a motion of the crankshaft 46 in starting the engine unit 100.
  • step S1 when the start switch 66 turns on and a startup request flag is set (step S1), the motor controller 73 of the ECU 32 drives and rotates the permanent magnet starter motor 30.
  • the engine 10 stops combustion by a combustion stop instruction by the ECU 32.
  • the crankshaft 46 rotates with an inertial force after stopping of combustion in the engine 10.
  • the crankshaft 46 rotates in the reverse direction by the compression reaction force and stops.
  • the stop position of the crankshaft 46 is often at a crank angle P0 of the intake stroke that is a stroke before the compression stroke.
  • the ECU 32 Based on a signal output from the crank angle sensor 26, the ECU 32 acquires information on the crank angle and the rotation speed of the engine 10. In the case where the crank angle of the crankshaft 46 is not at a specified position, the motor controller 73 of the ECU 32 rotates the permanent magnet starter motor 30 in the reverse direction, as indicated by broken lines in FIGS. 4 and 5 . The reverse rotation of the permanent magnet starter motor 30 continues until the crank angle reaches the specified position PI in the expansion stroke.
  • the crank angle determiner 71 of the ECU 32 determines whether the crank angle of the crankshaft 46 is larger than a predetermined angle or not (step S2).
  • the predetermined angle is an angle smaller than a crank angle (specified angle) at which fuel injection occurs.
  • step S3 the motor controller 73 of the ECU 32 controls driving of the permanent magnet starter motor 30 such that the rotation speed of the crankshaft 46 is a target rotation speed A (step S3).
  • Control of the rotation speed of the permanent magnet starter motor 30 may be torque control using a duty ratio, or speed control in which feedback control is performed by detecting the rotation speed of the permanent magnet starter motor 30.
  • the upper limit of the target rotation speed A is a speed at which a fuel injection time obtained from the engine temperature measured by the engine temperature sensor 28 as described later can be obtained, and the lower limit of the target rotation speed A is a speed at which the engine can pass over a maximum load in the high-load region TH.
  • the target rotation speed A of the crankshaft 46 is determined within the range between the upper and lower limits in consideration of the phenomenon as described above.
  • the target rotation speed A is obtained based on the temperature of the engine 10, which will be described later.
  • crank angle determiner 71 repeats the determination of step S2 until the crank angle of the crankshaft 46 exceeds the predetermined angle.
  • the crank angle determiner 71 determines whether the crank angle of the crankshaft 46 is larger than a specified angle at which fuel injection starts (step S4). If the crank angle of the crankshaft 46 is larger than the specified angle for fuel injection start (YES in step S4), the fuel injection controller 74 of the ECU 32 causes the fuel injection device 54 to inject fuel (step S5). On the other hand, if the crank angle of the crankshaft 46 is less than or equal to the specified angle for fuel injection start (NO in step S4), the determination of step S4 is repeated until the crank angle of the crankshaft 46 exceeds the specified angle for fuel injection start.
  • the specified angle for fuel injection start by fuel injection device 54 is, for example, 300°.
  • the specified angle for fuel injection start may be an angle other than 300°.
  • the fuel injection time is determined by the fuel injection time determiner 72 based on injection time data previously determined based on an engine temperature.
  • the injection time data is stored in the memory 76 of the ECU 32. Fuel injection needs to be finished within a period from when fuel injection starts to when the intake valve 50 is closed (within a period FI shown in FIG. 4 ) at the latest.
  • the fuel injection time determiner 72 of the ECU 32 determines whether the cumulative fuel injection time as a cumulative time of fuel injection is larger than a default value (predetermined time) of the fuel injection time or not (step S6). If the cumulative fuel injection time is determined to be larger than the default value (YES in step S6), fuel injection by the fuel injection device 54 is stopped (step S7). Thereafter, rotation speed control in which the target rotation speed has been set at A in step S3 is canceled (step S8), and a flow of the rotation speed control in starting the engine is finished (end).
  • the default value is determined depending on the engine temperature by using injection time data.
  • step S6 fuel injection by the fuel injection device 54 continues until the cumulative fuel injection time exceeds the default value.
  • the crankshaft 46 After the rotation speed control of the permanent magnet starter motor 30 by the ECU 32 described above, when the intake valve 50 is closed, in the following compression stroke, the compressed pressure in the combustion chamber 36 serves as a rotation load of the crankshaft 46. Thus, as shown in FIG. 4 , the rotation speed of the crankshaft 46 decreases. After the crankshaft 46 has passed through a position corresponding to a compression top dead point in the compression stroke, the ignition controller 75 of the ECU 32 causes the ignition plug 56 to ignite an air-fuel mixture in the combustion chamber 36 so that initial combustion occurs. In this embodiment, the crank angle at ignition of the ignition plug 56 is 715 degrees, but is not limited to this example.
  • the fuel injection time determiner 72 of the ECU 32 refers to injection time data previously stored in the memory 76 of the ECU 32, and determines a fuel injection time for the first combustion in starting the engine 10.
  • the injection time data is, for example, a table in which an engine temperature is associated with the fuel injection time.
  • the injection time data is set such that the fuel injection time increases as the engine temperature decreases.
  • the injection time may be calculated such that the injection time increases with a decrease in temperature in accordance with a predetermined relational expression, or may be set such that the injection time is constant within a predetermined range and decreases when the engine temperature increases across the predetermined range.
  • An example of the injection time is indicated by solid arrow in FIG. 2 . As shown in FIG. 2 , the injection time at an engine temperature of -5°C is longer than the injection time at an engine temperature of 80°C.
  • FIG. 2 shows only a first stroke for the injection time and does not show the subsequent strokes.
  • the injection time data varies depending on the position to which the fuel injection device 54 injects fuel, the injection direction, and the size of liquid droplets of the injected fuel. This is performed in order to obtain an appropriate air-fuel ratio at ignition by sufficiently evaporating the injected fuel even at low temperatures of the engine 10.
  • the injection time data is set such that the fuel injection time is long at a low engine temperature.
  • the injection time decreases as the size of liquid droplets of the injected fuel decreases and the expansion angle of spraying increases.
  • the fuel injection by the fuel injection device 54 starts at a predetermined crank angle (e.g., 300 degrees), and finishes until the intake valve 50 is closed in the intake stroke of the engine 10.
  • a predetermined crank angle e.g. 300 degrees
  • the rotation speed of the crankshaft 46 needs to be determined such that the fuel injection finishes before the intake valve 50 is closed.
  • the timing of fuel injection start is fixed at a crank angle of 300 degrees, independently of the engine temperature.
  • the target rotation speed A of the crankshaft 46 needs to be set depending on the time from the fuel injection start to closing of the intake valve 50.
  • the target rotation speed A is set lower.
  • the fuel injection time needs to be increased as the engine temperature decreases.
  • a target rotation speed A' at a low engine temperature is lower than the target rotation speed A at a high engine temperature.
  • FIG. 8A shows an example of a relationship between an engine temperature and a rotation speed of the crankshaft 46 in starting the engine.
  • the target rotation speed A of the crankshaft 46 decreases as the temperature of the engine 10 decreases.
  • the ECU 32 controls the rotation speed of the permanent magnet starter motor 30 such that the rotation speed of the crankshaft 46 at the relatively low first temperature is lower than the rotation speed at the second temperature higher than the first temperature.
  • the rotation speed of the crankshaft 46 does not continuously change in accordance with the temperature of the engine 10 as described above, but as shown in FIG. 8B , control may be performed such that the temperature of the engine 10 is constant to a predetermined temperature and when the temperature of the engine 10 decreases below the predetermined temperature, the rotation speed is reduced.
  • the fuel injection only needs to be finished within a period from when the fuel injection starts to when the intake valve 50 is closed (fuel injection time FI).
  • the fuel injection time of the injection time data may be shorter than the fuel injection time FI.
  • the target rotation speed of the crankshaft 46 When the target rotation speed of the crankshaft 46 is increased in accordance with the fuel injection time, power consumption of the permanent magnet starter motor 30 increases, and accordingly, power consumption of the battery 64 increases.
  • the target rotation speed A of the crankshaft 46 may be reduced to a rotation speed at which a necessary fuel injection time can be obtained in accordance with the engine temperature. This can reduce power consumption of the permanent magnet starter motor 30 so that an increase in power consumption of the battery 64 can be suppressed.
  • the permanent magnet starter motor 30 that can obtain a higher output torque at a lower rotation speed is used as a starter motor.
  • the target rotation speed A of the crankshaft 46 is set in accordance with the engine temperature.
  • the decompression mechanism 58 is actuated in the compression stroke in starting the engine so that the pressure in the combustion chamber 36 can be reduced.
  • the actuation of the decompression mechanism 58 in the compression stroke might cause the possibility that sufficient energy cannot be obtained in the first compression in starting the engine so that the rotation speed of the crankshaft 46 cannot be increased.
  • the target rotation speed A of the crankshaft 46 is set in accordance with the engine temperature so that the time for vaporization of fuel supplied into the intake passage 33a can be obtained.
  • FIG. 10 is a schematic view illustrating a configuration of an engine unit 101 according to the second embodiment.
  • the engine unit 101 according to this embodiment is different from the engine unit 100 according to the first embodiment in that an ECU 80 sets a rotation speed of the crankshaft 46 in accordance with the temperature of the engine 10 by using rotation speed data as map data of the engine temperature and a target rotation speed A.
  • the ECU 80 includes a rotation speed calculator 70, a crank angle determiner 71, a motor controller 73, a fuel injection controller 74, an ignition controller 75, a memory 76, and a rotation speed determiner 81.
  • the memory 76 stores rotation speed data as map data in which the temperature of the engine 10 and the target rotation speed A of the crankshaft 46 in starting the engine are associated with each other beforehand, in addition to injection time data similar to that in the first embodiment.
  • the rotation speed determiner 81 determines, by using the rotation speed data stored in the memory 76, the target rotation speed A of the crankshaft 46 in starting the engine in accordance with an engine temperature measured by the engine temperature sensor 28.
  • the motor controller 73 controls an inverter 62 by using the target rotation speed A determined by the rotation speed determiner 81 to thereby drive a permanent magnet starter motor 30 such that the crankshaft 46 reaches the target rotation speed A.
  • the fuel injection controller 74 determines, by using the rotation speed data stored in the memory 76, a fuel injection time in accordance with the engine temperature measured by the engine temperature sensor 28.
  • the method for determining the fuel injection time is similar to that in the first embodiment.
  • the fuel injection time may be determined in accordance with the rotation speed of the crankshaft 46.
  • Part of the configuration of the ECU 80 except for the configuration described above is similar to that of the ECU 32 of the first embodiment, and detailed description of the ECU 80 will be omitted.
  • the configuration of this embodiment can also obtain the time for vaporization of fuel supplied into an intake passage 33a. As a result, energy obtained by the first combustion can be sufficiently increased so that startability of the engine 10 can be enhanced.
  • the embodiments described above have been directed to the engine units using single-cylinder four-stroke engines.
  • the engines may be parallel-twin cylinder or a V-twin cylinder four-stroke engine.
  • crankshaft 46 rotates in the reverse direction in starting the engine.
  • present teaching is not limited to these embodiments, and the crankshaft 46 may not rotate in the reverse direction and may rotate in the normal direction in starting the engine.
  • the permanent magnet starter motor 30 used in each embodiment may be a motor with a brush or a brushless motor.
  • the starter motor may be a starter motor generator also serving as an electric generator.
  • the fuel injection device 54 injects fuel toward the intake valve 50, but may inject fuel toward another position in the intake passage 33a.
  • the fuel injection device 54 may inject fuel toward a position upstream of the intake valve 50 and located on an inner surface of the wall constituting the intake passage 33a.
  • the injection time data can be set such that the injection time is longer than that in the case of injecting fuel toward the intake valve 50. That is, as shown in FIG. 11 , a target rotation speed A of the crankshaft 46 in the case of injecting fuel toward the inner surface of the wall constituting the intake passage 33a is lower than that in the case of injecting fuel toward the intake valve 50.
  • the embodiments described above are directed to the configurations in which the engine units 100 and 101 are applied to motorcycles.
  • the engine units 100 and 101 may be applied to other vehicles such as tricycles or four-wheel vehicles.
  • the temperature of an engine coolant is measured as the temperature of the engine 10.
  • the temperature of oil in an oil passage in which lubricating oil flows may be measured as the temperature of the engine.
  • the engine 10 uses the TPS 22 in the above embodiments, the engine 10 may use an accelerator position sensor instead of the TPS 22.
  • the engine unit 100 includes the decompression mechanism 58.
  • the engine unit 101 in the second embodiment may also include a decompression mechanism.
  • the engine unit 100 may not include a decompression mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Claims (13)

  1. Groupe moteur (100, 101) comprenant :
    un corps de moteur à quatre temps (10) comportant
    une chambre de combustion (36) ayant un orifice d'admission (35a) et un orifice d'échappement (35b),
    une soupape d'admission (50) configurée pour ouvrir et fermer l'orifice d'admission (35a),
    une soupape d'échappement (52) configurée pour ouvrir et fermer l'orifice d'échappement (35b),
    un passage d'admission (33a) relié à l'orifice d'admission (35a) et configuré pour guider l'air dans l'atmosphère dans la chambre de combustion (36) à travers l'orifice d'admission (35a),
    un passage d'échappement (33b) relié à l'orifice d'échappement (35b),
    un dispositif d'injection de carburant (54) configuré pour injecter du carburant dans le passage d'admission (33a),
    un dispositif d'allumage (56) configuré pour allumer un mélange air-carburant comportant du carburant et de l'air dans la chambre de combustion (36),
    un piston (42) configuré pour se déplacer en va-et-vient dans la chambre de combustion (36), et
    un vilebrequin (46) relié au piston (42) pour tourner conformément au mouvement de va-et-vient du piston (42), où
    une région à charge élevée (TH) où une charge pour faire tourner le vilebrequin (46) est élevée et une région à faible charge (TL) où une charge pour faire tourner le vilebrequin (46) est inférieure à la charge dans la région à charge élevée (TH) étant présentes en quatre temps ;
    un démarreur à aimant permanent (30) qui comporte un aimant permanent et est configuré pour faire tourner le vilebrequin (46) ;
    un dispositif de commande (32) qui est configuré pour commander le démarreur à aimant permanent (30), le dispositif d'injection de carburant (54) et le dispositif d'allumage (56) ;
    un détecteur de température de moteur (28) qui est configuré pour détecter une température du corps de moteur à quatre temps (10) ; et
    un détecteur d'angle de vilebrequin (26) qui est configuré pour détecter un angle de vilebrequin, l'angle de vilebrequin étant une position d'un angle de rotation du vilebrequin (46), où
    le dispositif de commande (32) est configuré pour
    entraîner le démarreur à aimant permanent (30) pour faire tourner le vilebrequin (46) à partir d'un état suspendu,
    commander le dispositif d'injection de carburant (54) tandis qu'un angle de vilebrequin du vilebrequin (46) se trouve dans la région à faible charge (TL), injectant ainsi du carburant dans le passage d'admission (33a),
    commander une vitesse de rotation du démarreur à aimant permanent (30) de sorte qu'une augmentation de la vitesse de rotation du vilebrequin (46) soit supprimée et le temps de vaporisation du carburant soit obtenu, sur la base de la température du corps de moteur à quatre temps (10) détectée par le détecteur de température de moteur (28) tandis que l'angle de vilebrequin du vilebrequin (46) se trouve dans la région à faible charge (TL) et à partir du moment où le dispositif d'injection de carburant (54) injecte du carburant dans le passage d'admission (33a) jusqu'au moment où la soupape d'admission (50) est fermée, et
    démarrer le corps de moteur à quatre temps (10) en allumant le mélange air-carburant dans la chambre de combustion (36) en utilisant le dispositif d'allumage (56) tandis que l'angle de vilebrequin du vilebrequin (46) se trouve dans la région à charge élevée (TH).
  2. Groupe moteur (100, 101) selon la revendication 1, dans lequel le dispositif de commande (32) est configuré pour commander la vitesse de rotation du démarreur à aimant permanent (30) de sorte qu'une vitesse de rotation du vilebrequin (46) obtenue lorsque la température du corps de moteur à quatre temps (10) détectée par le détecteur de température de moteur (28) est une première température soit inférieure à une vitesse de rotation du vilebrequin (46) obtenue lorsque la température du corps de moteur à quatre temps (10) détectée par le détecteur de température de moteur (28) est une deuxième température supérieure à la première température.
  3. Groupe moteur (100, 101) selon la revendication 1 ou 2, dans lequel le dispositif d'injection de carburant (54) est configuré pour injecter du carburant vers la soupape d'admission (50).
  4. Groupe moteur (100, 101) selon l'une quelconque des revendications 1 à 3, dans lequel le dispositif de commande (32) est configuré pour déterminer une vitesse de rotation du vilebrequin (46) conformément à un temps d'injection de carburant déterminé sur la base de la température du corps de moteur à quatre temps (10) détectée par le détecteur de température de moteur (28).
  5. Groupe moteur (100, 101) selon l'une quelconque des revendications 1 à 4, dans lequel le détecteur de température de moteur est un capteur (28) qui est configuré pour détecter une température d'un fluide de refroidissement du corps de moteur à quatre temps (10) ou une température d'huile dans un passage d'huile.
  6. Groupe moteur (100, 101) selon l'une quelconque des revendications 1 à 5, dans lequel le dispositif de commande (32) est configuré pour amener le dispositif d'injection de carburant (54) à injecter du carburant jusqu'à ce que le temps d'injection de carburant dépasse un temps prédéterminé pendant lequel le carburant nécessaire au démarrage du moteur peut être fourni.
  7. Groupe moteur (100, 101) selon l'une quelconque des revendications 1 à 6, dans lequel le dispositif de commande (32) est configuré pour commander la vitesse de rotation du moteur de sorte que, à mesure que la température du corps de moteur à quatre temps (10) détectée par le détecteur de température de moteur (28) diminue, la vitesse de rotation du vilebrequin (46), pendant le temps d'injection de carburant, diminue.
  8. Groupe moteur (100, 101) selon l'une quelconque des revendications 1 à 7, dans lequel le corps de moteur à quatre temps (10) comporte en outre un mécanisme de décompression (58) qui est configuré pour ouvrir temporairement la soupape d'échappement (52) afin d'éjecter le mélange air-carburant dans la chambre de combustion (36) pendant que l'angle de vilebrequin du vilebrequin (46) se trouve dans la région à charge élevée (TH).
  9. Procédé de commande d'un groupe moteur (100, 101) ayant un corps de moteur à quatre temps (10) avec une chambre de combustion (36) ayant un orifice d'admission (35a) et un orifice d'échappement (35b), une soupape d'admission (50) configurée pour ouvrir et fermer l'orifice d'admission (35a), une soupape d'échappement (52) configurée pour ouvrir et fermer l'orifice d'échappement (35b), un passage d'admission (33a) relié à l'orifice d'admission (35a) et configuré pour guider l'air dans l'atmosphère dans la chambre de combustion (36) à travers l'orifice d'admission (35a), un passage d'échappement (33b) relié à l'orifice d'échappement (35b), un dispositif d'injection de carburant (54) configuré pour injecter du carburant dans le passage d'admission (33a), un dispositif d'allumage (56) configuré pour allumer un mélange air-carburant comportant du carburant et de l'air dans la chambre de combustion (36), un piston (42) configuré pour se déplacer en va-et-vient dans la chambre de combustion (36), et un vilebrequin (46) relié au piston (42) pour tourner conformément au mouvement de va-et-vient du piston (42), où une région à charge élevée (TH) où une charge pour faire tourner le vilebrequin (46) est élevée et une région à faible charge (TL) où une charge pour faire tourner le vilebrequin (46) est inférieure à la charge dans la région à charge élevée (TH) étant présentes en quatre temps, un démarreur à aimant permanent (30) qui comporte un aimant permanent et est configuré pour faire tourner le vilebrequin (46), le procédé comprend :
    détecter une température du corps de moteur à quatre temps (10) par un détecteur de température de moteur (28) ; et
    détecter un angle de vilebrequin par un détecteur d'angle de vilebrequin (26), l'angle de vilebrequin étant une position d'un angle de rotation du vilebrequin (46),
    entraîner le démarreur à aimant permanent (30) pour faire tourner le vilebrequin (46) à partir d'un état suspendu,
    commander le dispositif d'injection de carburant (54) tandis qu'un angle de vilebrequin du vilebrequin (46) se trouve dans la région à faible charge (TL), injectant ainsi du carburant dans le passage d'admission (33a),
    commander une vitesse de rotation du démarreur à aimant permanent (30) de sorte qu'une augmentation de la vitesse de rotation du vilebrequin (46) soit supprimée et le temps de vaporisation du carburant soit obtenu, sur la base de la température du corps de moteur à quatre temps (10) détectée par le détecteur de température de moteur (28) tandis que l'angle de vilebrequin du vilebrequin (46) se trouve dans la région à faible charge (TL) et à partir du moment où le dispositif d'injection de carburant (54) injecte du carburant dans le passage d'admission (33a) jusqu'au moment où la soupape d'admission (50) est fermée, et
    démarrer le corps de moteur à quatre temps (10) en allumant le mélange air-carburant dans la chambre de combustion (36) en utilisant le dispositif d'allumage (56) tandis que l'angle de vilebrequin du vilebrequin (46) se trouve dans la région à charge élevée (TH).
  10. Procédé de commande d'un groupe moteur (100, 101) selon la revendication 9, comprenant en outre :
    commander la vitesse de rotation du démarreur à aimant permanent (30) de sorte qu'une vitesse de rotation du vilebrequin (46) obtenue lorsque la température du corps du moteur à quatre temps (10) détectée par le détecteur de température de moteur (28) est une première température soit inférieure à une vitesse de rotation du vilebrequin (46) obtenue lorsque la température du corps de moteur à quatre temps (10) détectée par le détecteur de température de moteur (28) est une deuxième température supérieure à la première température.
  11. Procédé de commande d'un groupe moteur (100, 101) selon la revendication 9 ou 10, comprenant en outre :
    déterminer une vitesse de rotation du vilebrequin (46) conformément à un temps d'injection de carburant déterminé sur la base de la température du corps de moteur à quatre temps (10) détectée par le détecteur de température de moteur (28).
  12. Procédé de commande d'un groupe moteur (100, 101) selon l'une quelconque des revendications 9 à 11, comprenant en outre : amener le dispositif d'injection de carburant (54) à injecter du carburant jusqu'à ce que le temps d'injection de carburant dépasse un temps prédéterminé pendant lequel le carburant nécessaire au démarrage du moteur peut être fourni fourni.
  13. Procédé de commande d'un groupe moteur (100, 101) selon l'une quelconque des revendications 9 à 12, comprenant en outre :
    commander la vitesse de rotation du moteur de sorte que, à mesure que la température du corps de moteur à quatre temps (10) détectée par le détecteur de température de moteur (28) diminue, la vitesse de rotation du vilebrequin (46), pendant le temps d'injection de carburant, diminue.
EP18802296.6A 2017-05-15 2018-05-11 Unité de moteur Active EP3626956B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017096369 2017-05-15
PCT/JP2018/018340 WO2018212093A1 (fr) 2017-05-15 2018-05-11 Unité de moteur

Publications (3)

Publication Number Publication Date
EP3626956A1 EP3626956A1 (fr) 2020-03-25
EP3626956A4 EP3626956A4 (fr) 2020-05-20
EP3626956B1 true EP3626956B1 (fr) 2021-08-04

Family

ID=64274501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18802296.6A Active EP3626956B1 (fr) 2017-05-15 2018-05-11 Unité de moteur

Country Status (4)

Country Link
EP (1) EP3626956B1 (fr)
JP (1) JPWO2018212093A1 (fr)
BR (1) BR112019023949B1 (fr)
WO (1) WO2018212093A1 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379439B2 (ja) * 1997-09-17 2003-02-24 トヨタ自動車株式会社 内燃機関の始動制御装置
JP4062812B2 (ja) * 1999-03-26 2008-03-19 株式会社エクォス・リサーチ ハイブリッド型車両
JP3454249B2 (ja) * 2000-11-27 2003-10-06 トヨタ自動車株式会社 エンジンクランキング時制振装置
JP3969641B2 (ja) 2002-05-22 2007-09-05 本田技研工業株式会社 エンジン始動装置
DE102004037167A1 (de) * 2004-07-30 2006-03-23 Robert Bosch Gmbh Vorrichtung und Verfahren zur Steuerung einer Brennkraftmaschine
JP4670644B2 (ja) * 2006-01-10 2011-04-13 トヨタ自動車株式会社 内燃機関の制御装置
US9631595B2 (en) * 2013-09-26 2017-04-25 Ford Global Technologies, Llc Methods and systems for selective engine starting
AP2016009307A0 (en) 2013-12-20 2016-07-31 Yamaha Motor Co Ltd Engine unit and vehicle
JP2017031808A (ja) * 2013-12-20 2017-02-09 ヤマハ発動機株式会社 エンジンユニット、及び車両
JP5959583B2 (ja) * 2014-08-22 2016-08-02 三菱電機株式会社 スタータ

Also Published As

Publication number Publication date
BR112019023949A2 (pt) 2020-06-09
EP3626956A1 (fr) 2020-03-25
WO2018212093A1 (fr) 2018-11-22
JPWO2018212093A1 (ja) 2019-06-27
EP3626956A4 (fr) 2020-05-20
BR112019023949B1 (pt) 2022-06-28

Similar Documents

Publication Publication Date Title
JP5919697B2 (ja) ディーゼルエンジンの始動制御装置
JP5741352B2 (ja) 圧縮自己着火式エンジンの始動制御装置
US8109092B2 (en) Methods and systems for engine control
US8439002B2 (en) Methods and systems for engine control
RU2569119C2 (ru) Способ работы двигателя (варианты)
US7380620B2 (en) Control device of internal combustion engine and control method of internal combustion engine
JP5056770B2 (ja) 内燃機関の制御装置
JP6094599B2 (ja) 内燃機関の制御装置および制御方法
JP2004197745A (ja) 可変圧縮比を有する多シリンダ式の内燃機関を運転するための方法
JP2004036429A (ja) 内燃機関の制御装置
JP2010203414A (ja) 内燃機関の制御装置
US9890722B2 (en) Fuel injection control method for internal combustion engine
JP6424882B2 (ja) 可変圧縮比内燃機関
JP4992757B2 (ja) 内燃機関の制御方法
EP3626956B1 (fr) Unité de moteur
JP2004346770A (ja) 内燃機関の始動装置及び方法並びに動力システム
JP5935275B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP5790558B2 (ja) 内燃機関の燃料噴射制御装置
JP2008095519A (ja) エンジンの停止制御装置
JP6213486B2 (ja) エンジン始動装置
US11002163B2 (en) Valve timing controller and valve timing control method
WO2016104733A1 (fr) Dispositif de commande pour moteur à combustion interne
JP4998323B2 (ja) 内燃機関システムおよび内燃機関の制御方法
WO2013150655A1 (fr) Dispositif de commande de démarrage de moteur de véhicule
JP5849648B2 (ja) 圧縮自己着火式エンジンの始動制御装置

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20200420

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/34 20060101ALN20200414BHEP

Ipc: F02D 45/00 20060101ALI20200414BHEP

Ipc: F02D 41/06 20060101ALI20200414BHEP

Ipc: F02N 19/00 20100101ALN20200414BHEP

Ipc: F02D 13/02 20060101ALI20200414BHEP

Ipc: F02N 11/08 20060101ALI20200414BHEP

Ipc: F02D 43/00 20060101AFI20200414BHEP

Ipc: F02D 41/04 20060101ALN20200414BHEP

Ipc: F02D 29/02 20060101ALI20200414BHEP

Ipc: F02D 13/08 20060101ALI20200414BHEP

Ipc: F02P 5/15 20060101ALI20200414BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210326

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1417209

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018021367

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210804

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1417209

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018021367

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220511

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220511

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240527

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240524

Year of fee payment: 7