EP3610230A1 - Spectromètre - Google Patents

Spectromètre

Info

Publication number
EP3610230A1
EP3610230A1 EP18718122.7A EP18718122A EP3610230A1 EP 3610230 A1 EP3610230 A1 EP 3610230A1 EP 18718122 A EP18718122 A EP 18718122A EP 3610230 A1 EP3610230 A1 EP 3610230A1
Authority
EP
European Patent Office
Prior art keywords
aperture
optical grating
electromagnetic radiation
spectrometer
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18718122.7A
Other languages
German (de)
English (en)
Inventor
Stefan Fraedrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANVAJO GMBH
Original Assignee
Anvajo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anvajo GmbH filed Critical Anvajo GmbH
Publication of EP3610230A1 publication Critical patent/EP3610230A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0272Handheld
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1804Plane gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates to a spectrometer.
  • the present invention is therefore based on the object to propose a spectrometer, which avoids the disadvantages mentioned, so with the as small as possible optical elements a miniaturized design with high sensitivity can be achieved.
  • a spectrometer has a housing in which a planar optical grating arranged opposite an aperture of the housing, an objective arrangement and a sensor element are arranged.
  • the optical grating is oriented at an angle less than 45 ° to a normal of the aperture.
  • the aperture is dimensioned such that, in the case of electromagnetic radiation incident parallel to the normal of the aperture, the surface of the optical grating is completely irradiated.
  • the objective arrangement is arranged for focusing the incident electromagnetic radiation on the sensor element between the optical grating and the sensor element, so that only a first diffraction order or higher diffraction orders of the electromagnetic radiation diffracted by the optical grating is directed onto the objective arrangement and the sensor element.
  • the component can be easily constructed and installed. Due to the comparatively large aperture, the dimensions of which are chosen so that there is no point source, the entire spectrometer is very sensitive, since much electromagnetic radiation is incident on the optical grating. This is supported by an acute angle, which also supports a compact design of the entire spectrometer.
  • a complete irradiation of the optical grating should be understood in particular to mean that the entire surface of the optical grating facing the aperture is irradiated by the incident electromagnetic radiation. In this case, the angle can be understood as being directed from a surface of the planar optical grating to the normal of the aperture as a second angle leg as well as from the normal of the aperture to the surface of the planar optical grating.
  • the incident electromagnetic radiation passes from Aperture directly on the optical grating.
  • the entire construction is simple and compact, and little stray light is generated.
  • the aperture may have a diameter or a width of at least between 0.5 mm and 2.5 mm. Preferably, the diameter or the width is 1 mm.
  • the aperture itself may be formed as a rectangular, in particular square, or round opening in the housing. This makes it possible to capture as much electromagnetic radiation as possible with a comparatively large aperture.
  • the angle at which the optical grating is aligned with respect to the normal can be between 5 ° and 15 °, preferably between 7 ° and 10 °, particularly preferably 7.5 °, in order to allow a flat design and the space required low hold.
  • a distance between the aperture and the optical grating is typically between 1 mm and 40 mm, preferably between 10 mm and 30 mm, particularly preferably 20 mm, so that the spectrometer has a correspondingly compact dimensioning.
  • the optical grating is provided with a coating which reflects at least 90 percent, preferably at least 95 percent, particularly preferably at least 99 percent, of the incident electromagnetic radiation in order to achieve a sufficiently high intensity on the sensor element.
  • the coating comprises aluminum or is formed of aluminum.
  • the objective arrangement may have at least two focusing lenses to ensure a reliable focus adjustment.
  • a focal length of the lens assembly is between 1 mm and 4 mm, preferably 2 mm.
  • the sensor element can be used as a photodiode array or as CCD Line array (charge-coupled device) or as an image sensor, for example, as a CMOS sensor (complementary metal-oxide-semiconductor) or CCD sensor, be formed.
  • the sensor element is typically sensitive to electromagnetic radiation in the visible wavelength range between 380 nm and 780 nm.
  • the sensor element can also be used for electromagnetic radiation in the infrared wavelength range, in particular for wavelengths between 780 nm and 1700 nm, or in the ultraviolet wavelength range, in particular for wavelengths between 200 nm and 380 nm, be sensitive.
  • a mobile telephone preferably has the described spectrometer.
  • the mobile phone may have the spectrometer described both integrated into a housing of the mobile phone and the spectrometer mounted on the mobile phone.
  • Embodiments of the spectrometer are shown in the drawings and will be described below with reference to Figures 1 and 2.
  • Fig. 2 shows a mobile phone in a side view with the spectrometer.
  • FIG. 1 shows a schematic side view of a spectrometer.
  • an existing plastic or metal housing 11 of the spectrometer falls through an aperture 1, a beam 5 electromagnetic radiation in the visible wavelength range in an interior space 3 of the housing eleventh
  • the aperture 1 is round in the illustrated embodiment and has a diameter of 1 mm, so that through the aperture 1 no point source on Input of the spectrometer is generated. Due to the size of the aperture 1, the spectrometer is thus very sensitive, since there is a quadratic relationship between the size of the area of the aperture 1 and the incident radiation intensity or light intensity.
  • the electromagnetic radiation is incident on an optical grating 2 with a lattice constant between 200 nm and 1200 nm, preferably between 400 nm and 700 nm, which is attached to the housing 11 by a holder. Since no further optical elements are arranged in the beam path of the electromagnetic radiation, stray light formation is minimized and no further apertures are necessary.
  • the optical grating 2 is tilted in the illustrated embodiment at a shallow angle 4 of 7.5 ° to the propagation direction of the electromagnetic radiation, which is directed parallel to a normal of the aperture 1.
  • the distance between the aperture 1 and the optical grating 2 is 20 mm.
  • the aperture 1 is dimensioned such that, in the case of incident electromagnetic radiation parallel to the normal of the aperture 1, the surface of the optical grating 2 facing the aperture 1 is completely irradiated.
  • the optical grating 2 can thus have at least a size of a diameter of the incident radiation beam 5 which passes through the aperture 1, but a surface of the optical grating 2 can also be smaller than the radiation beam 5.
  • the optical grating 2 is provided as a reflection diffraction grating with a highly reflective aluminum coating that reflects at least 90 percent of an incident intensity.
  • the tilt angle 4 of the optical grating 2 is determined by the Bragg condition and depends on the grating period of the optical grating 2 and the wavelength range of the incident electromagnetic radiation. This incident electromagnetic radiation is reflected in an angular range differentiated from the optical grating 2, so that the first diffraction order 9 falls on a lens assembly 6 of two plano-convex lenses.
  • This objective arrangement 6 is arranged at an angle of 90 ° to the propagation direction of the electromagnetic radiation.
  • the zeroth diffraction order A focal point 10 of the objective arrangement 6 lies on one side of the objective arrangement 6 on the surface of the optical grating 2 and on the other side on an image sensor 7.
  • the objective arrangement 6 is provided with a second aperture 12 in order to prevent stray light from reaching the image sensor 7.
  • the second aperture has a diameter or a width between 1 mm and 10 mm.
  • the focal length of the lens assembly 6 is 2 mm in the illustrated embodiment. This can lead to image distortion, which, however, can be corrected by an evaluation unit with which the image sensor 7 is electrically connected.
  • Focal length should be chosen so that the zeroth diffraction order 8 falls on the lens assembly 6 on no account.
  • the objective arrangement 6 is matched to the size of the image sensor 7, so that the entire spectrum to be analyzed can be imaged over the complete extent of the image sensor 7.
  • a pixel size is typically 1.5 ⁇ m in the case of the image sensor 7 (but in other embodiments can also be up to 6 ⁇ m), if instead of the image sensor 7 a photodiode array is used, the pixel size can be 5.5 ⁇ m. To meet the Nyquist condition, a correspondingly high number of pixels must be provided.
  • FIG. 2 shows, in a schematic side view, a mobile telephone 13, more precisely a smartphone, which has the described spectrometer. Recurring features are designated in this figure with identical reference numerals as in the preceding figure.
  • the objective arrangement 6 and the image sensor 7 can be realized by a camera which is already installed in the mobile telephone 13.
  • the evaluation unit is typically arranged in the mobile telephone 13 and a display of the mobile telephone serves as output unit of the spectrometer, on which the data determined by the evaluation unit are reproduced.
  • the spectrometer is placed with its housing 12 on the mobile phone 13, but it may also be provided to integrate the spectrometer in the mobile phone 13, so that a housing of the
  • Mobile phones 13 also encloses the spectrometer.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

La présente invention concerne un spectromètre comprenant un boîtier (11), dans lequel sont disposés une grille optique plane (2), laquelle se trouve à l'opposée d'une ouverture (1) du boîtier (11) et est orientée sous un angle inférieur à 45° par rapport à une normale de l'ouverture (1), un arrangement d'objectifs (6) et un élément capteur (7). L'ouverture (1) est dimensionnée de telle sorte qu'en présence d'un rayonnement électromagnétique incident qui est parallèle à la normale de l'ouverture (1), la surface de la grille optique (2) est entièrement exposée aux rayons. L'arrangement d'objectifs (6) est disposé entre la grille optique (2) et l'élément capteur (7) en vue de focaliser le rayonnement électromagnétique sur l'élément capteur (7), de telle sorte que seuls un premier ordre de diffraction ou des ordres de diffraction supérieurs du rayonnement électromagnétique diffracté par la grille optique (2) soient dirigés sur l'arrangement d'objectifs (6) et l'élément capteur (7).
EP18718122.7A 2017-04-10 2018-04-09 Spectromètre Pending EP3610230A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017206066.2A DE102017206066A1 (de) 2017-04-10 2017-04-10 Spektrometer
PCT/EP2018/058995 WO2018189087A1 (fr) 2017-04-10 2018-04-09 Spectromètre

Publications (1)

Publication Number Publication Date
EP3610230A1 true EP3610230A1 (fr) 2020-02-19

Family

ID=62002119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18718122.7A Pending EP3610230A1 (fr) 2017-04-10 2018-04-09 Spectromètre

Country Status (8)

Country Link
US (1) US10983002B2 (fr)
EP (1) EP3610230A1 (fr)
JP (1) JP2020516916A (fr)
KR (1) KR102628596B1 (fr)
CN (1) CN110753834A (fr)
DE (1) DE102017206066A1 (fr)
IL (1) IL269776B2 (fr)
WO (1) WO2018189087A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203840A1 (de) * 2018-03-14 2019-09-19 Robert Bosch Gmbh Fourier-Transform-Spektrometer, Verfahren zum Herstellen eines Fourier-Transform-Spektrometers und Verfahren zur Darstellung eines elektromagnetischen Spektrums
US20240302212A1 (en) * 2023-03-08 2024-09-12 Newport Corporation High-Resolution Defocus Compensating Spectrograph

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2924125C2 (de) * 1979-06-15 1982-10-28 Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen Einrichtung zur Unterdrückung von Streulicht bei Gittermonochromatoren
GB2186708B (en) * 1985-11-26 1990-07-11 Sharp Kk A variable interferometric device and a process for the production of the same
JP2738860B2 (ja) * 1989-04-27 1998-04-08 大塚電子株式会社 スペクトルの合成方法およびそれに用いるスペクトル合成装置
JPH05231938A (ja) * 1991-02-07 1993-09-07 Res Dev Corp Of Japan 高感度多波長分光装置
US5373359A (en) * 1992-09-18 1994-12-13 J. A. Woollam Co. Ellipsometer
JPH07140004A (ja) * 1993-11-18 1995-06-02 Shimadzu Corp 分光分析装置
US6424416B1 (en) * 1999-10-25 2002-07-23 Textron Systems Corporation Integrated optics probe for spectral analysis
FI109149B (fi) 1999-09-29 2002-05-31 Valtion Teknillinen Spektrometri ja menetelmä optisen spektrin mittaamiseksi
JP4372314B2 (ja) * 2000-06-21 2009-11-25 大塚電子株式会社 スペクトル測定装置
DE10212691A1 (de) * 2002-03-21 2003-10-02 Zeiss Carl Semiconductor Mfg Gitterelement zum Filtern von Wellenlängen 100 nm
US20050180013A1 (en) * 2002-03-21 2005-08-18 Carl Zeiss Smt Ag Grating element for filtering wavelengths < 100 nm
FR2852694B1 (fr) 2003-03-19 2006-05-26 Bernard Pierre Andre Genot Appareil de mesure optoelectronique a composition modulaire multiple
US7268871B2 (en) * 2004-08-12 2007-09-11 Datacolor Holding Ag Measuring head for planar measurement of a sample
JP2006126065A (ja) * 2004-10-29 2006-05-18 Shimadzu Corp 発光分析装置
JP4453525B2 (ja) * 2004-11-12 2010-04-21 株式会社Ihi 分光分析方法
WO2007118655A1 (fr) * 2006-04-12 2007-10-25 Giesecke & Devrient Gmbh Dispositif et procédé d'examen optique de documents de valeur
US7812949B2 (en) * 2007-10-17 2010-10-12 Horiba Jobin Yvon Inc. Spectrometer with cylindrical lens for astigmatism correction and demagnification
US8345226B2 (en) * 2007-11-30 2013-01-01 Jingyun Zhang Spectrometers miniaturized for working with cellular phones and other portable electronic devices
JP5308213B2 (ja) 2009-03-31 2013-10-09 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 半導体装置の製造方法
WO2011120234A1 (fr) * 2010-04-02 2011-10-06 晶兆科技股份有限公司 Micro-spectromètre pouvant recevoir des composantes spectrales d'ordre zéro et du premier ordre
WO2011137584A1 (fr) * 2010-05-05 2011-11-10 台湾超微光学股份有限公司 Structure optique d'un micro spectromètre
US8553225B2 (en) * 2010-07-29 2013-10-08 Raytheon Company Bandwidth tunable spectroscopic device
US8786855B2 (en) 2011-01-25 2014-07-22 Ocean Optics, Inc. Shaped input apertures to improve resolution in grating spectrometers
US8797529B2 (en) * 2011-01-25 2014-08-05 Ocean Optics, Inc. Spectrometer design for aberration correction, simplified manufacture, and compact footprint
JP5948558B2 (ja) * 2012-04-06 2016-07-06 国立研究開発法人日本原子力研究開発機構 分光装置
DE102012210954B4 (de) * 2012-06-27 2022-10-20 Nico Correns Spektrometeranordnung
RU2509718C1 (ru) * 2012-08-07 2014-03-20 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Оптическая измерительная система и способ измерения критического размера
US9435689B2 (en) * 2012-10-31 2016-09-06 Corning Incorporated Hyperspectral imaging system, monolithic spectrometer and methods for manufacturing the monolithic spectrometer
KR102381930B1 (ko) * 2014-03-13 2022-04-04 내셔널 유니버시티 오브 싱가포르 광학 간섭 장치
CN104062007B (zh) * 2014-06-05 2016-02-17 深圳先进技术研究院 手机光谱仪模块及具有该手机光谱仪模块的手机光谱仪
TW201602528A (zh) * 2014-07-07 2016-01-16 群燿科技股份有限公司 光度測量裝置
US9863809B2 (en) * 2015-08-31 2018-01-09 Mettler-Toledo Gmbh Spectrograph
DE202015006402U1 (de) * 2015-09-11 2015-10-05 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Spektroskop, Bausatz zu dessen Herstellung und Kombination des Spektroskops mit einer Kameraeinrichtung

Also Published As

Publication number Publication date
DE102017206066A1 (de) 2018-10-11
CN110753834A (zh) 2020-02-04
IL269776B2 (en) 2024-01-01
BR112019021099A2 (pt) 2020-05-12
US10983002B2 (en) 2021-04-20
WO2018189087A1 (fr) 2018-10-18
US20200041339A1 (en) 2020-02-06
KR20200002894A (ko) 2020-01-08
KR102628596B1 (ko) 2024-01-25
IL269776A (en) 2019-11-28
JP2020516916A (ja) 2020-06-11
IL269776B1 (en) 2023-09-01

Similar Documents

Publication Publication Date Title
DE102011008994A1 (de) Optisches System
WO2007101651A1 (fr) Ensemble caméra pour véhicule à moteur
DE102013215627A1 (de) Lichtdetektionsvorrichtung und Steuerverfahren
WO2018042056A1 (fr) Procédé permettant d&#39;ajuster un microscope à fluorescence à balayage laser et microscope à fluorescence à balayage laser comprenant un dispositif d&#39;ajustement automatique
EP3610230A1 (fr) Spectromètre
DE4004942C2 (fr)
WO2005001377A2 (fr) Inclinometre optique
DE602004012747T2 (de) Digitalkamerasystem
DE102015108818B4 (de) Anordnung zur Spektroskopie und Verfahren zur Herstellung der Anordnung
WO2003098917A1 (fr) Dispositif et procédé pour échantillonner une maquette
EP3963876A1 (fr) Arrangement d&#39;acquisition comprenant un dispositif d&#39;acquisition d&#39;images et un milieu porteur ainsi que système d&#39;acquisition comprenant un tel arrangement d&#39;acquisition et un appareil pourvu d&#39;un écran d&#39;affichage
DE102018202777A1 (de) Farbsensor mit Mikrolinsen umfassenden winkelselektiven Strukturen
DE102005059948A1 (de) Detektor
DE102006030273A1 (de) Abbilden optischer Bilder auf einen Bildsensor mittels einer faseroptischen Platte bzw. eines Faserkeils
DE102013103522A1 (de) Bildaufnahmesystem zur Bildaufnahme eines Merkmals eines Identifikationsdokumentes
DE102015003392A1 (de) Optische Triangulations-Sensoranordnung und Linsenanordnung hierfür
DE102012101019B4 (de) Spektrometer-Anordnung für UV-VIS
EP3963375A1 (fr) Système de caméra destiné à générer une image d&#39;un environnement
DE102012107046A1 (de) Abbildungsvorrichtung
DE102019206383B3 (de) Deckfolie für einen Bildschirm eines Geräts sowie Anzeigesystem mit einer derartigen Deckfolie sowie dem Gerät mit dem Bildschirm
WO2001004681A1 (fr) Systeme de formation d&#39;image
DE202020104658U1 (de) Infrarot-Spektrometer
DE102019206357A1 (de) Kameravorrichtung
DE202004007140U1 (de) Temperaturmessvorrichtung
AT15290U1 (de) Hyperspektrales Bildgebungssystem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANVAJO GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210730