EP3610137B1 - Turbine à vapeur et son procédé de fonctionnement - Google Patents

Turbine à vapeur et son procédé de fonctionnement Download PDF

Info

Publication number
EP3610137B1
EP3610137B1 EP18708060.1A EP18708060A EP3610137B1 EP 3610137 B1 EP3610137 B1 EP 3610137B1 EP 18708060 A EP18708060 A EP 18708060A EP 3610137 B1 EP3610137 B1 EP 3610137B1
Authority
EP
European Patent Office
Prior art keywords
inner housing
steam
pressure inner
process steam
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18708060.1A
Other languages
German (de)
English (en)
Other versions
EP3610137A1 (fr
Inventor
Bernd Leidinger
Stefan PREIBISCH
Stefanie Ruhsland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Priority to PL18708060T priority Critical patent/PL3610137T3/pl
Publication of EP3610137A1 publication Critical patent/EP3610137A1/fr
Application granted granted Critical
Publication of EP3610137B1 publication Critical patent/EP3610137B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/14Casings or housings protecting or supporting assemblies within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Definitions

  • the present invention relates to a steam turbine and a method for operating the steam turbine.
  • steam is used as the working medium to operate steam turbines.
  • the steam is heated in a steam boiler and flows into the steam turbine as process steam via pipes.
  • the energy previously absorbed by the working medium is converted into kinetic energy.
  • a generator is operated by means of the kinetic energy, which converts the generated mechanical power into electrical power.
  • the relaxed and cooled process steam then flows into a condenser, where it condenses through heat transfer in a heat exchanger and is fed back to the steam boiler as liquid water for heating.
  • Steam turbines are for example from the documents DE 18 72 434 U , EP 1 559 872 A1 , WO 2007/006754 A1 , JP S60 195304 A and DE 690 00 984 T2 known.
  • Usual steam turbines have at least one high-pressure part and at least one low-pressure part.
  • the temperature of the process steam drops sharply, which can lead to partial condensation of the process steam.
  • the low-pressure part is very sensitive to the moisture content of the process steam. If the process steam in the low-pressure part of the steam turbine reaches a moisture content of approx. 8 to 10 percent, measures must be taken to reduce the moisture content of the process steam to a permissible level before it enters the low-pressure part.
  • the process steam is fed to reheating before it enters the low-pressure section.
  • the process steam is heated so that the moisture content is reduced.
  • the entire steam mass flow is taken from the steam turbine after the high-pressure part, fed to the reheating and approximately on the temperature of the live steam increased.
  • the process steam is then fed to the low-pressure section. Without such reheating, the steam turbine would have to be stopped, since condensed water droplets could hit the rotating turbine blades and thereby cause damage to the turbine.
  • the material of the outer wall is highly stressed, especially between the individual turbine stages.
  • the colder water vapor is removed from the first turbine stage, fed to the reheater and the heated process steam is fed to the second turbine stage.
  • high temperature differences occur in the outer wall in the transition between the first turbine stage and the second turbine stage. Since the end of the first turbine stage, from which the colder process steam is taken, and the beginning of the second turbine stage, in which the hot process steam is supplied from the reheater, are close together, high thermal stresses occur in the outer wall. This can lead to leaks or cracks in the outer wall.
  • the invention is based on the object of providing a compact, safe and efficient steam turbine and a method for operating the steam turbine accordingly.
  • a steam turbine is provided.
  • the steam turbine has an outer casing of the steam turbine.
  • the steam turbine has a high-pressure inner housing with a first process steam inlet section and a first process steam outlet section for guiding process steam through the high-pressure inner housing from the first process steam inlet section to the first process steam outlet section in a first process steam expansion direction.
  • the steam turbine has a low-pressure inner housing with a second process steam inlet section and a second process steam outlet section for guiding process steam through the low-pressure inner housing from the second process steam inlet section to the second process steam outlet section in a second process steam expansion direction.
  • the steam turbine has a reheater which is arranged downstream of the high-pressure inner casing and upstream of the low-pressure inner casing, the high-pressure inner casing and the low-pressure inner casing being arranged within the steam turbine outer casing.
  • the high-pressure inner housing and the low-pressure inner housing are arranged in such a way that the first steam inlet section of the high-pressure inner housing faces the second steam inlet section of the low-pressure inner housing.
  • first steam inlet section of the high-pressure inner housing faces the second steam inlet section of the low-pressure inner housing
  • first steam inlet section of the high-pressure inner housing faces in the opposite direction or essentially in the opposite direction to the second steam inlet section of the low-pressure inner housing shows or is aligned.
  • first process steam expansion direction runs in the opposite direction or essentially opposite to the second process steam expansion direction.
  • the high-pressure inner housing and the low-pressure inner housing are arranged in such a way that a process steam flow direction through the high-pressure inner housing runs opposite, in particular 180 ° opposite, to a process steam flow direction through the low-pressure inner housing.
  • the arrangement according to the invention of the high-pressure inner housing and the low-pressure inner housing fundamentally turns away from the conventional design. Tests carried out within the scope of the present invention have shown that the arrangement according to the invention not only allows the bearing spacing to be shortened, but that the steam turbine can also be operated in a particularly safe manner. Due to the shortened bearing distance, the steam turbine can be built correspondingly compact. This in turn results in a particularly favorable design with regard to the rotor dynamics of the steam turbine.
  • superheated process steam in the form of live steam can be fed into the high-pressure inner housing, which is rotated counter to steam direction, and expanded down to the pressure and temperature level of what is known as cold reheating.
  • the process steam can be fed to the reheater.
  • Reheater Process steam from the reheater can now be directed into the low-pressure inner casing facing in a main flow direction and relax there except for condensation in the steam turbine.
  • the low-pressure inner housing is to be understood as an inner housing in which at least on average a lower pressure than in the high-pressure inner housing prevails or arises.
  • the low-pressure inner housing can also in particular also be understood to mean a medium-pressure inner housing.
  • the low-pressure inner housing is therefore to be understood as a medium-pressure inner housing.
  • the process steam is to be understood as meaning steam, in particular water steam, which flows through components of the steam turbine during operation of the steam turbine.
  • the inventive arrangement of the high-pressure inner housing and the low-pressure inner housing can minimize exciting forces in the low-pressure inner housing, since only the pressure difference from the reheating acts.
  • Process steam can be conducted directly into the next component, for example another low-pressure inner housing, for further expansion and does not have to be diverted first.
  • a sealing shell can also be saved.
  • the process steam can namely be conducted from the low-pressure inner housing or a medium-pressure inner housing directly into a low-pressure inner housing or another low-pressure inner housing, since the process steam expansion direction of the low-pressure or medium-pressure inner housing has the same direction as the process steam expansion direction of the further low-pressure inner housing.
  • a relaxation direction is to be understood as a direction in which the process steam is essentially moved or directed.
  • a process steam moves in a steam turbine section, for example from left to right in a spiral or helical shape, this is to be understood in simplified terms as a linear expansion direction to the right.
  • a relaxation direction is to be understood as a pressure direction from a high pressure area into a low pressure area or into a pressure area with a lower pressure than in the high pressure area.
  • an upstream steam turbine section is to be understood as a section which is arranged opposite to the expansion direction.
  • a process steam deflection section for deflecting process steam from the first steam outlet section in a direction opposite to the first steam expansion direction into a cooling line of the steam turbine is configured downstream of the high-pressure inner casing, the cooling line in an area adjacent to the high-pressure Inner housing is designed.
  • cool process steam can be used in a simple and space-saving manner for cooling the steam turbine outer housing and thus for cooling the steam turbine. This in turn results in the steam turbine being protected from overheating and thus being able to be operated particularly safely.
  • the process steam is deflected from the high-pressure inner housing in a main flow direction and guided around the high-pressure inner housing on the outside.
  • the cooling line is arranged or configured along an inner wall of the steam turbine outer casing and / or along an outer wall of the high-pressure inner casing.
  • the cooling line in a steam turbine according to the invention, it is also possible for the cooling line to be arranged at least in sections between, in particular directly between, an inner wall of the steam turbine outer housing and an outer wall of the high-pressure inner housing.
  • the process steam can at least in sections around the high-pressure inner housing or along the high-pressure inner housing and then directly or indirectly be discharged through the steam turbine outer casing to the reheater.
  • an advantageous cooling effect for the steam turbine outer casing can be achieved.
  • the cooling line is additionally or alternatively arranged at least in sections between, in particular directly between, an inner wall of the steam turbine outer housing and an outer wall of the low-pressure inner housing. That is to say, the process steam can also be guided around the low-pressure inner housing or along the low-pressure inner housing, at least in sections, and then discharged through the steam turbine outer housing to the reheater. As a result, the cooling effect for the steam turbine outer casing can be further increased. Viewed overall, this creates a particularly space-saving, efficiently and reliably functioning cooling system for the steam turbine.
  • a steam turbine it is possible that at an upstream end section of the high pressure inner housing, on which the first process steam inlet section is configured, a high pressure sealing shell for sealing the upstream end section of the high pressure inner housing and at an upstream end section of the low pressure -Interior housing on which the second process steam inlet section is configured, a low-pressure sealing shell for sealing the upstream end section of the low-pressure inner housing are arranged, the high-pressure sealing shell and the low-pressure sealing shell being arranged adjacent to one another. Tests carried out within the scope of the present invention have shown that a steam turbine with the two sealing shells in this area is easy to assemble, disassemble, maintain and to be repaired. At the same time, a relatively compact design can be achieved.
  • an adjacent arrangement is to be understood as an arrangement next to one another, ie not necessarily directly next to one another. That is, further components can be arranged between the sealing shells or the two sealing shells are preferably arranged with a small distance next to one another but not directly next to one another.
  • a common sealing shell is arranged for sealing the two end sections.
  • the steam turbine can be made available in a particularly compact manner.
  • the use of a further sealing switch can be dispensed with. This leads to a weight saving in the steam turbine and to a reduction in the logistical outlay in the manufacture of the steam turbine.
  • a sealing web for sealing off a steam turbine area between the downstream end portion of the low-pressure inner housing and the steam turbine outer housing can be configured at a downstream end section of the low-pressure inner housing.
  • process steam flows around the low-pressure inner housing during operation, while the high-pressure inner housing is separated from the low-pressure inner housing by the sealing web, which is preferably designed as an integrated sealing web on the downstream end section of the low-pressure inner housing.
  • the sealing web which is preferably designed as an integrated sealing web on the downstream end section of the low-pressure inner housing.
  • an inner sealing shell on the downstream end portion of the low-pressure inner housing can be omitted.
  • the sealing ridge has a significantly less complex structure than a sealing shell.
  • the reheater is arranged outside the steam turbine outer casing. This is particularly advantageous with regard to the assembly, disassembly, maintenance and repair of the steam turbine.
  • the high-pressure inner housing and the low-pressure inner housing are provided as separate components.
  • the present invention here preferably relates to the expansion of a process steam in a single steam turbine outer casing from a high pressure to a pressure below a reheating pressure.
  • a low-pressure expansion can take place in a separate section of the same steam turbine or in a separate low-pressure steam turbine.
  • the steam turbine can be cooled in a simple and compact manner. Reliable cooling of the steam turbine means that it can also be operated safely. A method for reliably cooling a steam turbine is therefore provided.
  • FIG. 1 shows a steam turbine 1a according to a first embodiment.
  • the steam turbine 1 a has a steam turbine outer casing 20 in which a high-pressure inner casing 30, a low-pressure inner casing 40 in the form of a medium-pressure inner casing and a further low-pressure inner casing 90 are located.
  • a live steam or process steam source 10 for supplying process steam to the high-pressure inner housing 30 is arranged upstream of the high-pressure inner housing 30.
  • the high-pressure inner housing 30 has a first process steam inlet section 31 and a first process steam outlet section 32 for guiding process steam through the high-pressure inner housing 30 from the first process steam inlet section 31 to the first process steam outlet section 32 in a first process steam expansion direction 33.
  • the low-pressure inner housing 40 has a second process steam inlet section 41 and a second process steam outlet section 42 for guiding process steam through the low-pressure inner housing 40 from the second process steam inlet section 41 to the second process steam outlet section 42 in a second process steam expansion direction 43.
  • the steam turbine 1 a also has a reheater 50 which is arranged downstream of the high-pressure inner casing 30 and upstream of the low-pressure inner casing 40.
  • the high-pressure inner housing 30 and the low-pressure inner housing 40 are arranged in such a way that the first steam inlet section 31 of the high-pressure inner housing 30 faces the second steam inlet section 41 of the low-pressure inner housing 40.
  • the steam turbine 1a Downstream of the high-pressure inner casing 30, the steam turbine 1a has a process steam deflection section 60 for deflecting process steam from the first steam outlet section 32 in a direction opposite to the first steam expansion direction 33 into a cooling line 70 of the steam turbine 1a.
  • the cooling line 70 is inside the steam turbine outer casing 20 in an area adjacent to the high-pressure inner casing 30 designed.
  • the cooling line 70 is also arranged in sections between an inner wall of the steam turbine outer casing 20 and an outer wall of the high-pressure inner casing 30.
  • the cooling line 70 is arranged in sections between an inner wall of the steam turbine outer housing 20 and an outer wall of the low-pressure inner housing 40.
  • a high-pressure sealing shell 34 for at least partially sealing the upstream end section of the high-pressure inner housing 30 is arranged on an upstream end section of the high-pressure inner housing 30 on which the first process steam inlet section 31 is configured.
  • a low-pressure sealing shell 44 for at least partially sealing the upstream end portion of the low-pressure inner housing 40 is arranged on an upstream end section of the low-pressure inner housing 40, on which the second process steam inlet section 41 is configured.
  • the high-pressure sealing shell 34 and the low-pressure sealing shell 44 are arranged adjacent to one another.
  • a further high-pressure sealing shell 35 for at least partially sealing the downstream end portion of the high-pressure inner housing 30 is arranged on a downstream end section of the high-pressure inner housing 30, on which the first process steam outlet section 32 is configured.
  • a sealing web 80 for sealing off a steam turbine region between the downstream end portion of the low-pressure inner casing 40 and the steam turbine outer casing 20 is configured on a downstream end section of the low-pressure inner casing 40.
  • the reheater is arranged outside of the steam turbine outer casing 20.
  • the high-pressure inner casing 30 and the low-pressure inner casing 40 are provided as separate components in a common steam turbine outer casing 20.
  • a steam turbine 1b according to a second embodiment is described.
  • the steam turbine 1b according to the second embodiment corresponds essentially to the steam turbine 1a according to the first embodiment.
  • a single sealing shell 100 is arranged between the high-pressure inner housing 30 and the low-pressure inner housing 40.
  • process steam is first fed from the process steam source 10 through the first process steam inlet section 31 into the high-pressure inner housing 30.
  • the process steam is then passed from the first process steam inlet section 31 to the first process steam outlet section 32 and then through the first process steam outlet section 32 from the high-pressure inner housing 30 via the process steam deflection section 60 and the cooling line 70 to the reheater 50 passed through the cooling line 70 for cooling the steam turbine outer housing 20 or the steam turbine 1 a along the high-pressure inner housing 30 and along the low-pressure inner housing 40.
  • the heated or superheated process steam is passed from the reheater 50 through the second process steam inlet section 41 into the low-pressure or medium-pressure inner housing. From there, the process steam is directed into the further low-pressure inner housing while the expansion direction remains the same. There the process steam can further relax and condense.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (9)

  1. Turbine à vapeur (1a ; 1b), présentant un carter externe de turbine à vapeur (20), un carter interne à haute pression (30) avec une première section d'entrée de vapeur de traitement (31) et une première section de sortie de vapeur de traitement (32) pour diriger de la vapeur de traitement à travers le carter interne à haute pression (30) de la première section d'entrée de vapeur de traitement (31) vers la première section de sortie de vapeur de traitement (32) dans une première direction de détente de vapeur de traitement (33), un carter interne à basse pression (40) avec une seconde section d'entrée de vapeur de traitement (41) et une seconde section de sortie de vapeur de traitement (42) pour diriger de la vapeur de traitement à travers le carter interne à basse pression (40) de la seconde section d'entrée de vapeur de traitement (41) vers la seconde section de sortie de vapeur de traitement (42) dans une seconde direction de détente de vapeur de traitement (43), et un réchauffeur intermédiaire (50) qui est disposé en aval du carter interne à haute pression (30) et en amont du carter interne à basse pression (40), dans laquelle le carter interne à haute pression (30) et le carter interne à basse pression (40) sont disposés à l'intérieur du carter externe de turbine à vapeur (20), et dans laquelle le carter interne à haute pression (30) et le carter interne à basse pression (40) sont disposés de telle sorte que la première section d'entrée de vapeur (31) du carter interne à haute pression (30) est tournée vers la seconde section d'entrée de vapeur (41) du carter interne à basse pression (40), caractérisée en ce que, en aval du carter interne à haute pression (30) une section de déviation de vapeur de traitement (60) est configurée pour la déviation de vapeur de traitement en provenance de la première section de sortie de vapeur (32) dans une direction à l'encontre de la première direction de détente de vapeur (33) dans une conduite de refroidissement (70) de la turbine à vapeur (1a ; 1b), de sorte que la vapeur de traitement peut être guidée à l'extérieur autour du carter interne à haute pression et dans laquelle la conduite de refroidissement (70) est configurée dans une zone à proximité du carter interne à haute pression (30).
  2. Turbine à vapeur (1a ; 1b) selon la revendication 1, caractérisée en ce que la conduite de refroidissement (70) est disposée au moins par sections entre, en particulier directement entre, une paroi interne du carter externe de turbine à vapeur (20) et une paroi externe du carter interne à haute pression (30).
  3. Turbine à vapeur (1a ; 1b) selon l'une quelconque des revendications 1 à 2, caractérisée en ce que la conduite de refroidissement (70) est disposée au moins par sections entre, en particulier directement entre, une paroi interne du carter externe de turbine à vapeur (20) et une paroi externe du carter interne à basse pression (40).
  4. Turbine à vapeur (1a) selon l'une quelconque des revendications précédentes, caractérisée en ce que, au niveau d'une section d'extrémité côté amont du carter interne à haute pression (30), au niveau duquel la première section d'entrée de vapeur de traitement (31) est configurée, une colonne d'étanchéité à haute pression (34) est disposée pour une étanchéification au moins partielle de la section d'extrémité côté amont du carter interne à haute pression (30) et au niveau d'une section d'extrémité côté amont du carter interne à basse pression (40), au niveau duquel la seconde section d'entrée de vapeur de traitement (41) est configurée, une colonne d'étanchéité à basse pression (44) est disposée pour l'étanchéification au moins partielle de la section d'extrémité côté amont du carter interne à basse pression (40), dans laquelle la colonne d'étanchéité à haute pression (34) et la colonne d'étanchéité à basse pression (44) sont disposées à proximité l'une de l'autre.
  5. Turbine à vapeur (1b) selon l'une quelconque des revendications 1 à 4, caractérisée en ce que, au niveau d'une section d'extrémité côté amont du carter interne à haute pression (30), au niveau duquel la première section d'entrée de vapeur de traitement (31) est configurée, et au niveau d'une section d'extrémité côté amont du carter interne à basse pression (40), au niveau duquel la seconde section d'entrée de vapeur de traitement (41) est configurée, une colonne d'étanchéité commune (100) pour une étanchéification au moins partielle des deux sections d'extrémité est disposée.
  6. Turbine à vapeur (1a ; 1b) selon l'une quelconque des revendications précédentes, caractérisée en ce que, au niveau d'une section d'extrémité côté aval du carter interne à basse pression (40) une barrette d'étanchéité (80) est configurée pour l'étanchéification d'une zone de turbine à vapeur entre la section d'extrémité côté aval du carter interne à basse pression (40) et le carter externe de turbine à vapeur (20).
  7. Turbine à vapeur (1a ; 1b) selon l'une quelconque des revendications précédentes, caractérisée en ce que le réchauffeur intermédiaire est disposé à l'extérieur du carter externe de turbine à vapeur (20).
  8. Turbine à vapeur (1a ; 1b) selon l'une quelconque des revendications précédentes, caractérisée en ce que le carter interne à haute pression (30) et le carter interne à basse pression (40) sont mis à disposition en tant que composants séparés dans un unique carter externe de turbine à vapeur (20).
  9. Procédé pour le fonctionnement d'une turbine à vapeur (1a ; 1b) selon l'une quelconque des revendications précédentes, présentant les étapes de :
    - direction de vapeur de traitement depuis une source de vapeur de traitement (10) à travers la première section d'entrée de vapeur de traitement (31) jusque dans le carter interne à haute pression (30),
    - direction de la vapeur de traitement depuis la première section d'entrée de vapeur de traitement (31) jusqu'à la première section de sortie de vapeur de traitement (32), et
    - direction de la vapeur de traitement à travers la première section de sortie de vapeur de traitement (32) depuis le carter interne à haute pression (30) via la section de déviation de vapeur de traitement et la conduite de refroidissement (70) vers le réchauffeur intermédiaire (50) .
EP18708060.1A 2017-07-03 2018-02-14 Turbine à vapeur et son procédé de fonctionnement Active EP3610137B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18708060T PL3610137T3 (pl) 2017-07-03 2018-02-14 Turbina parowa i sposób jej eksploatacji

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017211295.6A DE102017211295A1 (de) 2017-07-03 2017-07-03 Dampfturbine und Verfahren zum Betreiben derselben
PCT/EP2018/053634 WO2019007557A1 (fr) 2017-07-03 2018-02-14 Turbine à vapeur et procédé pour le fonctionnement de ladite turbine

Publications (2)

Publication Number Publication Date
EP3610137A1 EP3610137A1 (fr) 2020-02-19
EP3610137B1 true EP3610137B1 (fr) 2021-09-01

Family

ID=61526776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18708060.1A Active EP3610137B1 (fr) 2017-07-03 2018-02-14 Turbine à vapeur et son procédé de fonctionnement

Country Status (8)

Country Link
US (1) US11352910B2 (fr)
EP (1) EP3610137B1 (fr)
JP (1) JP6980043B2 (fr)
CN (1) CN110832169B (fr)
DE (1) DE102017211295A1 (fr)
PL (1) PL3610137T3 (fr)
RU (1) RU2735461C1 (fr)
WO (1) WO2019007557A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215795A1 (de) * 2016-08-23 2018-03-01 Siemens Aktiengesellschaft Dampfturbine mit Strömungsabschirmung
DE102018219374A1 (de) 2018-11-13 2020-05-14 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betreiben derselben
DE102020213034A1 (de) 2020-10-15 2022-04-21 HSI Brainovation GmbH Dampfturbine mit mehreren von Dampf durchströmbaren Turbinenstufen, Verfahren zum Betreiben einer Dampfturbine sowie Energieumwandlungseinrichtung

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1872434U (de) * 1961-04-28 1963-05-22 Siemens Ag Dampfturbine der doppelgehaeuse-bauart mit innerhalb ein und desselben gehaeuses angeordneten vor und hinter einem zwischenueberhitzer liegenden turbinenteilen.
CH524758A (de) * 1970-12-08 1972-06-30 Bbc Brown Boveri & Cie Mehrschaliges Turbinengehäuse für hohe Drücke und hohe Temperaturen
US4362464A (en) * 1980-08-22 1982-12-07 Westinghouse Electric Corp. Turbine cylinder-seal system
JPS60195304A (ja) 1984-03-19 1985-10-03 Hitachi Ltd 蒸気タ−ビンケ−シングの熱応力制御装置
JPS6164604U (fr) 1984-09-28 1986-05-02
FR2646466B1 (fr) * 1989-04-26 1991-07-05 Alsthom Gec Stator interne hp-mp unique de turbine a vapeur avec climatisation controlee
JPH0749002A (ja) * 1993-08-04 1995-02-21 Mitsubishi Heavy Ind Ltd 蒸気タービン高圧車室
DE19700899A1 (de) * 1997-01-14 1998-07-23 Siemens Ag Dampfturbine
DE19701020A1 (de) * 1997-01-14 1998-07-23 Siemens Ag Dampfturbine
EP1473442B1 (fr) 2003-04-30 2014-04-23 Kabushiki Kaisha Toshiba Turbine à vapeur, centrale à vapeur et méthode pour opérer une turbine à vapeur dans une centrale à vapeur
EP1559872A1 (fr) 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Turbomachine
EP1577494A1 (fr) * 2004-03-17 2005-09-21 Siemens Aktiengesellschaft Arbre soudé de turbine à vapeur et procédé de fabrication
EP1624155A1 (fr) 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Turbine à vapeur et procédé d'opération d'une turbine à vapeur
EP1744017A1 (fr) 2005-07-14 2007-01-17 Siemens Aktiengesellschaft Turbine combinée à vapeur et procédé de fonctionnement d'une turbine combinée à vapeur
JP4542491B2 (ja) * 2005-09-29 2010-09-15 株式会社日立製作所 高強度耐熱鋳鋼とその製造方法及びそれを用いた用途
EP1780376A1 (fr) 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Turbine à vapeur
US8197182B2 (en) * 2008-12-23 2012-06-12 General Electric Company Opposed flow high pressure-low pressure steam turbine
EP2565377A1 (fr) 2011-08-31 2013-03-06 Siemens Aktiengesellschaft Turbine à vapeur à double flux
JP6253904B2 (ja) * 2013-06-28 2017-12-27 三菱重工業株式会社 蒸気タービン
DE102013219771B4 (de) 2013-09-30 2016-03-31 Siemens Aktiengesellschaft Dampfturbine
JP6614503B2 (ja) 2016-10-21 2019-12-04 三菱重工業株式会社 蒸気タービン及び蒸気タービンの制御方法

Also Published As

Publication number Publication date
US20210156283A1 (en) 2021-05-27
RU2735461C1 (ru) 2020-11-02
DE102017211295A1 (de) 2019-01-03
JP6980043B2 (ja) 2021-12-15
PL3610137T3 (pl) 2022-01-17
JP2020525704A (ja) 2020-08-27
EP3610137A1 (fr) 2020-02-19
US11352910B2 (en) 2022-06-07
WO2019007557A1 (fr) 2019-01-10
BR112019026024A2 (pt) 2020-06-23
CN110832169B (zh) 2022-07-05
BR112019026024A8 (pt) 2023-05-02
CN110832169A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
EP1774140B1 (fr) Turbine a vapeur et procede pour faire fonctionner une turbine a vapeur
EP3610137B1 (fr) Turbine à vapeur et son procédé de fonctionnement
DE102008037410B4 (de) Superkritischen Dampf verwendender kombinierter Kreisprozess und Verfahren
DE102007030764B4 (de) Dampfturbine mit Heizdampfentnahme
EP2100010B1 (fr) Procédé pour accroître le débit de vapeur dans une turbine à vapeur haute pression d'une centrale lors de la mise en route de la centrale
EP2187051A1 (fr) Procédé et dispositif destinés à la surchauffe intermédiaire dans une centrale thermique solaire à l'aide d'une évaporation indirecte
EP2199547A1 (fr) Générateur de vapeur pour récupérer la chaleur et procédé de fonctionnement amélioré d'un générateur de vapeur pour récupérer la chaleur
WO1997044568A1 (fr) Arbre de turbine et procede de refroidissement d'un arbre de turbine
EP0918151B1 (fr) Dispositif et méthode pour préchauffer du carburant pour un dispositif de combustion
EP2997236B1 (fr) Turbine à vapeur
WO2001086121A1 (fr) Procede pour le refroidissement d'un arbre dans un segment d'expansion haute pression d'une turbine a vapeur
EP3850194B1 (fr) Turbine à vapeur et procédé permettant de faire fonctionner celle-ci
WO2007144285A2 (fr) Centrale à vapeur
EP2585684B1 (fr) Turbine à vapeur à une carcasse avec surchauffe intermédiaire
WO2001002702A1 (fr) Element et procede pour conduire un milieu chaud soumis a une pression elevee
EP1788191B1 (fr) Turbine à vapeur et procédé pour le refroidissement d'une turbine à vapeur
DE102004040730B3 (de) Verfahren und Vorrichtung zum Nutzen von Abwärme
EP3810907B1 (fr) Recirculation des gaz d'échappement dans des installations de turbines à gaz et à vapeur
EP3728800B1 (fr) Centrale électrique
WO2016188671A1 (fr) Circuit de vapeur d'eau d'une installation de turbine à gaz et à vapeur
EP2877699B1 (fr) Turbine à basse pression
EP2138677B1 (fr) Installation de turbines à gaz et à vapeur
WO2016058855A1 (fr) Refroidissement contrôlé d'arbre de turbine
WO2018036697A1 (fr) Carter d'éjection d'une turbine à vapeur
EP1215368B1 (fr) Agencement de turbines à vapeur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201008

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1426462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006830

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006830

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

26N No opposition filed

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230206

Year of fee payment: 6

Ref country code: IT

Payment date: 20230221

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1426462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 7

Ref country code: CZ

Payment date: 20240126

Year of fee payment: 7