EP3610137B1 - Steam turbine and method of operating the same - Google Patents

Steam turbine and method of operating the same Download PDF

Info

Publication number
EP3610137B1
EP3610137B1 EP18708060.1A EP18708060A EP3610137B1 EP 3610137 B1 EP3610137 B1 EP 3610137B1 EP 18708060 A EP18708060 A EP 18708060A EP 3610137 B1 EP3610137 B1 EP 3610137B1
Authority
EP
European Patent Office
Prior art keywords
inner housing
steam
pressure inner
process steam
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18708060.1A
Other languages
German (de)
French (fr)
Other versions
EP3610137A1 (en
Inventor
Bernd Leidinger
Stefan PREIBISCH
Stefanie Ruhsland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Priority to PL18708060T priority Critical patent/PL3610137T3/en
Publication of EP3610137A1 publication Critical patent/EP3610137A1/en
Application granted granted Critical
Publication of EP3610137B1 publication Critical patent/EP3610137B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/14Casings or housings protecting or supporting assemblies within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Definitions

  • the present invention relates to a steam turbine and a method for operating the steam turbine.
  • steam is used as the working medium to operate steam turbines.
  • the steam is heated in a steam boiler and flows into the steam turbine as process steam via pipes.
  • the energy previously absorbed by the working medium is converted into kinetic energy.
  • a generator is operated by means of the kinetic energy, which converts the generated mechanical power into electrical power.
  • the relaxed and cooled process steam then flows into a condenser, where it condenses through heat transfer in a heat exchanger and is fed back to the steam boiler as liquid water for heating.
  • Steam turbines are for example from the documents DE 18 72 434 U , EP 1 559 872 A1 , WO 2007/006754 A1 , JP S60 195304 A and DE 690 00 984 T2 known.
  • Usual steam turbines have at least one high-pressure part and at least one low-pressure part.
  • the temperature of the process steam drops sharply, which can lead to partial condensation of the process steam.
  • the low-pressure part is very sensitive to the moisture content of the process steam. If the process steam in the low-pressure part of the steam turbine reaches a moisture content of approx. 8 to 10 percent, measures must be taken to reduce the moisture content of the process steam to a permissible level before it enters the low-pressure part.
  • the process steam is fed to reheating before it enters the low-pressure section.
  • the process steam is heated so that the moisture content is reduced.
  • the entire steam mass flow is taken from the steam turbine after the high-pressure part, fed to the reheating and approximately on the temperature of the live steam increased.
  • the process steam is then fed to the low-pressure section. Without such reheating, the steam turbine would have to be stopped, since condensed water droplets could hit the rotating turbine blades and thereby cause damage to the turbine.
  • the material of the outer wall is highly stressed, especially between the individual turbine stages.
  • the colder water vapor is removed from the first turbine stage, fed to the reheater and the heated process steam is fed to the second turbine stage.
  • high temperature differences occur in the outer wall in the transition between the first turbine stage and the second turbine stage. Since the end of the first turbine stage, from which the colder process steam is taken, and the beginning of the second turbine stage, in which the hot process steam is supplied from the reheater, are close together, high thermal stresses occur in the outer wall. This can lead to leaks or cracks in the outer wall.
  • the invention is based on the object of providing a compact, safe and efficient steam turbine and a method for operating the steam turbine accordingly.
  • a steam turbine is provided.
  • the steam turbine has an outer casing of the steam turbine.
  • the steam turbine has a high-pressure inner housing with a first process steam inlet section and a first process steam outlet section for guiding process steam through the high-pressure inner housing from the first process steam inlet section to the first process steam outlet section in a first process steam expansion direction.
  • the steam turbine has a low-pressure inner housing with a second process steam inlet section and a second process steam outlet section for guiding process steam through the low-pressure inner housing from the second process steam inlet section to the second process steam outlet section in a second process steam expansion direction.
  • the steam turbine has a reheater which is arranged downstream of the high-pressure inner casing and upstream of the low-pressure inner casing, the high-pressure inner casing and the low-pressure inner casing being arranged within the steam turbine outer casing.
  • the high-pressure inner housing and the low-pressure inner housing are arranged in such a way that the first steam inlet section of the high-pressure inner housing faces the second steam inlet section of the low-pressure inner housing.
  • first steam inlet section of the high-pressure inner housing faces the second steam inlet section of the low-pressure inner housing
  • first steam inlet section of the high-pressure inner housing faces in the opposite direction or essentially in the opposite direction to the second steam inlet section of the low-pressure inner housing shows or is aligned.
  • first process steam expansion direction runs in the opposite direction or essentially opposite to the second process steam expansion direction.
  • the high-pressure inner housing and the low-pressure inner housing are arranged in such a way that a process steam flow direction through the high-pressure inner housing runs opposite, in particular 180 ° opposite, to a process steam flow direction through the low-pressure inner housing.
  • the arrangement according to the invention of the high-pressure inner housing and the low-pressure inner housing fundamentally turns away from the conventional design. Tests carried out within the scope of the present invention have shown that the arrangement according to the invention not only allows the bearing spacing to be shortened, but that the steam turbine can also be operated in a particularly safe manner. Due to the shortened bearing distance, the steam turbine can be built correspondingly compact. This in turn results in a particularly favorable design with regard to the rotor dynamics of the steam turbine.
  • superheated process steam in the form of live steam can be fed into the high-pressure inner housing, which is rotated counter to steam direction, and expanded down to the pressure and temperature level of what is known as cold reheating.
  • the process steam can be fed to the reheater.
  • Reheater Process steam from the reheater can now be directed into the low-pressure inner casing facing in a main flow direction and relax there except for condensation in the steam turbine.
  • the low-pressure inner housing is to be understood as an inner housing in which at least on average a lower pressure than in the high-pressure inner housing prevails or arises.
  • the low-pressure inner housing can also in particular also be understood to mean a medium-pressure inner housing.
  • the low-pressure inner housing is therefore to be understood as a medium-pressure inner housing.
  • the process steam is to be understood as meaning steam, in particular water steam, which flows through components of the steam turbine during operation of the steam turbine.
  • the inventive arrangement of the high-pressure inner housing and the low-pressure inner housing can minimize exciting forces in the low-pressure inner housing, since only the pressure difference from the reheating acts.
  • Process steam can be conducted directly into the next component, for example another low-pressure inner housing, for further expansion and does not have to be diverted first.
  • a sealing shell can also be saved.
  • the process steam can namely be conducted from the low-pressure inner housing or a medium-pressure inner housing directly into a low-pressure inner housing or another low-pressure inner housing, since the process steam expansion direction of the low-pressure or medium-pressure inner housing has the same direction as the process steam expansion direction of the further low-pressure inner housing.
  • a relaxation direction is to be understood as a direction in which the process steam is essentially moved or directed.
  • a process steam moves in a steam turbine section, for example from left to right in a spiral or helical shape, this is to be understood in simplified terms as a linear expansion direction to the right.
  • a relaxation direction is to be understood as a pressure direction from a high pressure area into a low pressure area or into a pressure area with a lower pressure than in the high pressure area.
  • an upstream steam turbine section is to be understood as a section which is arranged opposite to the expansion direction.
  • a process steam deflection section for deflecting process steam from the first steam outlet section in a direction opposite to the first steam expansion direction into a cooling line of the steam turbine is configured downstream of the high-pressure inner casing, the cooling line in an area adjacent to the high-pressure Inner housing is designed.
  • cool process steam can be used in a simple and space-saving manner for cooling the steam turbine outer housing and thus for cooling the steam turbine. This in turn results in the steam turbine being protected from overheating and thus being able to be operated particularly safely.
  • the process steam is deflected from the high-pressure inner housing in a main flow direction and guided around the high-pressure inner housing on the outside.
  • the cooling line is arranged or configured along an inner wall of the steam turbine outer casing and / or along an outer wall of the high-pressure inner casing.
  • the cooling line in a steam turbine according to the invention, it is also possible for the cooling line to be arranged at least in sections between, in particular directly between, an inner wall of the steam turbine outer housing and an outer wall of the high-pressure inner housing.
  • the process steam can at least in sections around the high-pressure inner housing or along the high-pressure inner housing and then directly or indirectly be discharged through the steam turbine outer casing to the reheater.
  • an advantageous cooling effect for the steam turbine outer casing can be achieved.
  • the cooling line is additionally or alternatively arranged at least in sections between, in particular directly between, an inner wall of the steam turbine outer housing and an outer wall of the low-pressure inner housing. That is to say, the process steam can also be guided around the low-pressure inner housing or along the low-pressure inner housing, at least in sections, and then discharged through the steam turbine outer housing to the reheater. As a result, the cooling effect for the steam turbine outer casing can be further increased. Viewed overall, this creates a particularly space-saving, efficiently and reliably functioning cooling system for the steam turbine.
  • a steam turbine it is possible that at an upstream end section of the high pressure inner housing, on which the first process steam inlet section is configured, a high pressure sealing shell for sealing the upstream end section of the high pressure inner housing and at an upstream end section of the low pressure -Interior housing on which the second process steam inlet section is configured, a low-pressure sealing shell for sealing the upstream end section of the low-pressure inner housing are arranged, the high-pressure sealing shell and the low-pressure sealing shell being arranged adjacent to one another. Tests carried out within the scope of the present invention have shown that a steam turbine with the two sealing shells in this area is easy to assemble, disassemble, maintain and to be repaired. At the same time, a relatively compact design can be achieved.
  • an adjacent arrangement is to be understood as an arrangement next to one another, ie not necessarily directly next to one another. That is, further components can be arranged between the sealing shells or the two sealing shells are preferably arranged with a small distance next to one another but not directly next to one another.
  • a common sealing shell is arranged for sealing the two end sections.
  • the steam turbine can be made available in a particularly compact manner.
  • the use of a further sealing switch can be dispensed with. This leads to a weight saving in the steam turbine and to a reduction in the logistical outlay in the manufacture of the steam turbine.
  • a sealing web for sealing off a steam turbine area between the downstream end portion of the low-pressure inner housing and the steam turbine outer housing can be configured at a downstream end section of the low-pressure inner housing.
  • process steam flows around the low-pressure inner housing during operation, while the high-pressure inner housing is separated from the low-pressure inner housing by the sealing web, which is preferably designed as an integrated sealing web on the downstream end section of the low-pressure inner housing.
  • the sealing web which is preferably designed as an integrated sealing web on the downstream end section of the low-pressure inner housing.
  • an inner sealing shell on the downstream end portion of the low-pressure inner housing can be omitted.
  • the sealing ridge has a significantly less complex structure than a sealing shell.
  • the reheater is arranged outside the steam turbine outer casing. This is particularly advantageous with regard to the assembly, disassembly, maintenance and repair of the steam turbine.
  • the high-pressure inner housing and the low-pressure inner housing are provided as separate components.
  • the present invention here preferably relates to the expansion of a process steam in a single steam turbine outer casing from a high pressure to a pressure below a reheating pressure.
  • a low-pressure expansion can take place in a separate section of the same steam turbine or in a separate low-pressure steam turbine.
  • the steam turbine can be cooled in a simple and compact manner. Reliable cooling of the steam turbine means that it can also be operated safely. A method for reliably cooling a steam turbine is therefore provided.
  • FIG. 1 shows a steam turbine 1a according to a first embodiment.
  • the steam turbine 1 a has a steam turbine outer casing 20 in which a high-pressure inner casing 30, a low-pressure inner casing 40 in the form of a medium-pressure inner casing and a further low-pressure inner casing 90 are located.
  • a live steam or process steam source 10 for supplying process steam to the high-pressure inner housing 30 is arranged upstream of the high-pressure inner housing 30.
  • the high-pressure inner housing 30 has a first process steam inlet section 31 and a first process steam outlet section 32 for guiding process steam through the high-pressure inner housing 30 from the first process steam inlet section 31 to the first process steam outlet section 32 in a first process steam expansion direction 33.
  • the low-pressure inner housing 40 has a second process steam inlet section 41 and a second process steam outlet section 42 for guiding process steam through the low-pressure inner housing 40 from the second process steam inlet section 41 to the second process steam outlet section 42 in a second process steam expansion direction 43.
  • the steam turbine 1 a also has a reheater 50 which is arranged downstream of the high-pressure inner casing 30 and upstream of the low-pressure inner casing 40.
  • the high-pressure inner housing 30 and the low-pressure inner housing 40 are arranged in such a way that the first steam inlet section 31 of the high-pressure inner housing 30 faces the second steam inlet section 41 of the low-pressure inner housing 40.
  • the steam turbine 1a Downstream of the high-pressure inner casing 30, the steam turbine 1a has a process steam deflection section 60 for deflecting process steam from the first steam outlet section 32 in a direction opposite to the first steam expansion direction 33 into a cooling line 70 of the steam turbine 1a.
  • the cooling line 70 is inside the steam turbine outer casing 20 in an area adjacent to the high-pressure inner casing 30 designed.
  • the cooling line 70 is also arranged in sections between an inner wall of the steam turbine outer casing 20 and an outer wall of the high-pressure inner casing 30.
  • the cooling line 70 is arranged in sections between an inner wall of the steam turbine outer housing 20 and an outer wall of the low-pressure inner housing 40.
  • a high-pressure sealing shell 34 for at least partially sealing the upstream end section of the high-pressure inner housing 30 is arranged on an upstream end section of the high-pressure inner housing 30 on which the first process steam inlet section 31 is configured.
  • a low-pressure sealing shell 44 for at least partially sealing the upstream end portion of the low-pressure inner housing 40 is arranged on an upstream end section of the low-pressure inner housing 40, on which the second process steam inlet section 41 is configured.
  • the high-pressure sealing shell 34 and the low-pressure sealing shell 44 are arranged adjacent to one another.
  • a further high-pressure sealing shell 35 for at least partially sealing the downstream end portion of the high-pressure inner housing 30 is arranged on a downstream end section of the high-pressure inner housing 30, on which the first process steam outlet section 32 is configured.
  • a sealing web 80 for sealing off a steam turbine region between the downstream end portion of the low-pressure inner casing 40 and the steam turbine outer casing 20 is configured on a downstream end section of the low-pressure inner casing 40.
  • the reheater is arranged outside of the steam turbine outer casing 20.
  • the high-pressure inner casing 30 and the low-pressure inner casing 40 are provided as separate components in a common steam turbine outer casing 20.
  • a steam turbine 1b according to a second embodiment is described.
  • the steam turbine 1b according to the second embodiment corresponds essentially to the steam turbine 1a according to the first embodiment.
  • a single sealing shell 100 is arranged between the high-pressure inner housing 30 and the low-pressure inner housing 40.
  • process steam is first fed from the process steam source 10 through the first process steam inlet section 31 into the high-pressure inner housing 30.
  • the process steam is then passed from the first process steam inlet section 31 to the first process steam outlet section 32 and then through the first process steam outlet section 32 from the high-pressure inner housing 30 via the process steam deflection section 60 and the cooling line 70 to the reheater 50 passed through the cooling line 70 for cooling the steam turbine outer housing 20 or the steam turbine 1 a along the high-pressure inner housing 30 and along the low-pressure inner housing 40.
  • the heated or superheated process steam is passed from the reheater 50 through the second process steam inlet section 41 into the low-pressure or medium-pressure inner housing. From there, the process steam is directed into the further low-pressure inner housing while the expansion direction remains the same. There the process steam can further relax and condense.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die vorliegende Erfindung betrifft eine Dampfturbine sowie ein Verfahren zum Betreiben der Dampfturbine.The present invention relates to a steam turbine and a method for operating the steam turbine.

In Dampfkraftwerken wird zum Betrieb von Dampfturbinen als Arbeitsmedium Dampf verwendet. Der Wasserdampf wird in einem Dampfkessel erwärmt und strömt als Prozessdampf über Rohrleitungen in die Dampfturbine. In der Dampfturbine wird die zuvor aufgenommene Energie des Arbeitsmediums in Bewegungsenergie umgewandelt. Mittels der Bewegungsenergie wird ein Generator betrieben, welcher die erzeugte mechanische Leistung in elektrische Leistung umwandelt. Danach strömt der entspannte und abgekühlte Prozessdampf in einen Kondensator, wo er durch Wärmeübertragung in einem Wärmetauscher kondensiert und als flüssiges Wasser erneut dem Dampfkessel zum Erhitzen zugeführt wird.In steam power plants, steam is used as the working medium to operate steam turbines. The steam is heated in a steam boiler and flows into the steam turbine as process steam via pipes. In the steam turbine, the energy previously absorbed by the working medium is converted into kinetic energy. A generator is operated by means of the kinetic energy, which converts the generated mechanical power into electrical power. The relaxed and cooled process steam then flows into a condenser, where it condenses through heat transfer in a heat exchanger and is fed back to the steam boiler as liquid water for heating.

Dampfturbinen sind zum Beispiel aus den Dokumenten DE 18 72 434 U , EP 1 559 872 A1 , WO 2007/006754 A1 , JP S60 195304 A und DE 690 00 984 T2 bekannt.Steam turbines are for example from the documents DE 18 72 434 U , EP 1 559 872 A1 , WO 2007/006754 A1 , JP S60 195304 A and DE 690 00 984 T2 known.

Übliche Dampfturbinen weisen wenigstens einen Hochdruckteil und wenigstens einen Niederdruckteil auf. Beim Niederdruckteil sinkt die Temperatur des Prozessdampfes stark ab, wodurch es zur teilweisen Kondensation des Prozessdampfes kommen kann. Der Niederdruckteil ist dabei sehr empfindlich hinsichtlich eines Nässegehalts des Prozessdampfes. Erreicht der Prozessdampf im Niederdruckteil der Dampfturbine einen Nässegehalt von ca. 8 bis 10 Prozent, sind Maßnahmen zu ergreifen, die den Nässegehalt des Prozessdampfes vor dem Eintritt in den Niederdruckteil auf ein zulässiges Maß reduzieren.Usual steam turbines have at least one high-pressure part and at least one low-pressure part. In the low-pressure part, the temperature of the process steam drops sharply, which can lead to partial condensation of the process steam. The low-pressure part is very sensitive to the moisture content of the process steam. If the process steam in the low-pressure part of the steam turbine reaches a moisture content of approx. 8 to 10 percent, measures must be taken to reduce the moisture content of the process steam to a permissible level before it enters the low-pressure part.

Um die Effizienz eines Dampfkraftwerks zu erhöhen, wird der Prozessdampf hierzu vor dem Eintritt in den Niederdruckteil einer Zwischenüberhitzung zugeführt. In der Zwischenüberhitzung wird der Prozessdampf erhitzt, sodass der Nässegehalt sinkt. Bei dieser Zwischenüberhitzung wird der gesamte Dampfmassenstrom nach dem Hochdruckteil aus der Dampfturbine entnommen, der Zwischenüberhitzung zugeführt und annähernd auf die Temperatur des Frischdampfs angehoben. Anschließend wird der Prozessdampf dem Niederdruckteil zugeführt. Ohne eine solche Zwischenüberhitzung müsste die Dampfturbine angehalten werden, da auskondensierte Wassertropfen auf die sich drehenden Turbinenschaufeln auftreffen könnten und dadurch Schaden an der Turbine verursachen würden.In order to increase the efficiency of a steam power plant, the process steam is fed to reheating before it enters the low-pressure section. In the reheating process, the process steam is heated so that the moisture content is reduced. With this reheating, the entire steam mass flow is taken from the steam turbine after the high-pressure part, fed to the reheating and approximately on the temperature of the live steam increased. The process steam is then fed to the low-pressure section. Without such reheating, the steam turbine would have to be stopped, since condensed water droplets could hit the rotating turbine blades and thereby cause damage to the turbine.

Bei mehrstufigen Dampfturbinen wird zwischen den einzelnen Turbinenstufen eine solche Zwischenüberhitzung des Prozessdampfes durchgeführt. Dies führt zu einer höheren Effizienz, da mittels des überhitzten Wasserdampfs effizienter mechanische Energie in den Turbinenstufen erzeugbar ist.In the case of multi-stage steam turbines, such intermediate superheating of the process steam is carried out between the individual turbine stages. This leads to a higher efficiency, since mechanical energy can be generated more efficiently in the turbine stages by means of the superheated water vapor.

Bei der Implementierung von Zwischenüberhitzungssystemen in Dampfturbinen wird das Material der Außenwand insbesondere zwischen den einzelnen Turbinenstufen hoch beansprucht. An der ersten Turbinenstufe wird der kältere Wasserdampf entnommen, dem Zwischenüberhitzer zugeführt und der aufgeheizte Prozessdampf der zweiten Turbinenstufe zugeführt. Dabei treten in der Außenwand im Übergang zwischen der ersten Turbinenstufe und der zweiten Turbinenstufe hohe Temperaturdifferenzen auf. Da das Ende der ersten Turbinenstufe, aus der der kältere Prozessdampf entnommen wird, und der Beginn der zweiten Turbinenstufe, in welchem der heiße Prozessdampf aus dem Zwischenüberhitzer zugeführt wird, eng beieinander liegen, treten hohe thermische Spannungen in der Außenwand auf. Dies kann zu Undichtigkeiten oder zu Rissen in der Außenwand führen. Ferner besteht die Gefahr, dass bei Entnahme des kalten Prozessdampfes aus der ersten Turbinenstufe Nassdampfparameter herrschen und dadurch an der Innenwand des Außengehäuses Kondensat beaufschlagt wird. Das Kondensat kühlt die Innenseite der Außenwand zusätzlich ab. Somit wird die thermische Spannung an der Außenwand erhöht. Damit der überhitzte Prozessdampf keine schädlichen thermischen Spannungen verursacht, wird der überhitzte Prozessdampf zur Reduktion der thermischen Spannungen abgekühlt. Dies wird üblicherweise in vorgeschalteten Einströmgehäusen durchgeführt. Diese zusätzlichen Einströmgehäuse können allerdings zu Energieverlusten führen.When reheating systems are implemented in steam turbines, the material of the outer wall is highly stressed, especially between the individual turbine stages. The colder water vapor is removed from the first turbine stage, fed to the reheater and the heated process steam is fed to the second turbine stage. In this case, high temperature differences occur in the outer wall in the transition between the first turbine stage and the second turbine stage. Since the end of the first turbine stage, from which the colder process steam is taken, and the beginning of the second turbine stage, in which the hot process steam is supplied from the reheater, are close together, high thermal stresses occur in the outer wall. This can lead to leaks or cracks in the outer wall. Furthermore, there is the risk that when the cold process steam is withdrawn from the first turbine stage, wet steam parameters will prevail and that condensate will be applied to the inner wall of the outer housing as a result. The condensate also cools the inside of the outer wall. This increases the thermal stress on the outer wall. So that the overheated process steam does not cause harmful thermal stresses, the overheated process steam is cooled down to reduce the thermal stresses. This is usually carried out in upstream inlet housings. These additional Inflow housing can, however, lead to energy losses.

Bei einer einschaligen bzw. eingehäusigen Dampfturbine mit Zwischenüberhitzung wird an zwei Stellen stark überhitzter Prozessdampf in die Turbine geleitet. Dabei wird insbesondere das Dampfturbinen-Außengehäuse durch die auftretenden Temperaturen und Drücke thermisch stark belastet.In the case of a single-shell or single-casing steam turbine with reheating, highly superheated process steam is fed into the turbine at two points. In particular, the outer casing of the steam turbine is subjected to high thermal loads due to the temperatures and pressures that occur.

Dampfturbinen mit Zwischenüberhitzung wurden bisher entweder als zweischalige Turbinengehäuse ausgeführt oder es wurden geringere Dampfparameter verwendet, so dass ein einschaliges Dampfturbinen-Außengehäuse nicht überlastet wurde.Steam turbines with reheating have hitherto either been designed as a two-shell turbine casing or lower steam parameters have been used so that a single-shell steam turbine outer casing was not overloaded.

Die auftretenden, erforderlichen Parameter liegen jedoch häufig über den möglichen Parametern einschaliger Turbinengehäuse. Aus dem europäischen Patent EP 2 997 236 B1 geht eine Dampfturbine hervor, die der voranstehenden Problematik zumindest teilweise Rechnung trägt.However, the required parameters that occur are often above the possible parameters of a single-shell turbine housing. From the European patent EP 2 997 236 B1 a steam turbine emerges which at least partially takes account of the above problem.

Der Erfindung liegt die Aufgabe zugrunde, eine kompakte, sichere und effiziente Dampfturbine sowie ein Verfahren zum entsprechenden Betreiben der Dampfturbine zur Verfügung zu stellen.The invention is based on the object of providing a compact, safe and efficient steam turbine and a method for operating the steam turbine accordingly.

Die voranstehende Aufgabe wird durch die Patentansprüche gelöst. Insbesondere wird die voranstehende Aufgabe durch die Dampfturbine gemäß Anspruch 1 sowie das Verfahren gemäß Anspruch 9 gelöst. Weitere Vorteile der Erfindung ergeben sich aus den Unteransprüchen, der Beschreibung und den Zeichnungen. Dabei gelten Merkmale und Details, die im Zusammenhang mit der Dampfturbine beschrieben sind, selbstverständlich auch im Zusammenhang mit dem erfindungsgemäßen Verfahren und jeweils umgekehrt, sodass bezüglich der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen wird bzw. werden kann.The above object is achieved by the claims. In particular, the above object is achieved by the steam turbine according to claim 1 and the method according to claim 9. Further advantages of the invention emerge from the subclaims, the description and the drawings. Features and details that are described in connection with the steam turbine naturally also apply in connection with the method according to the invention and vice versa, so that with regard to the disclosure of the individual aspects of the invention, reference is or can always be made to each other.

Gemäß einem ersten Aspekt der Erfindung wird eine Dampfturbine zur Verfügung gestellt. Die Dampfturbine weist ein Dampfturbinen-Außengehäuse auf. Ferner weist die Dampfturbine ein Hochdruck-Innengehäuse mit einem ersten Prozessdampf-Eintrittsabschnitt und einem ersten Prozessdampf-Austrittsabschnitt zum Leiten von Prozessdampf durch das Hochdruck-Innengehäuse vom ersten Prozessdampf-Eintrittsabschnitt zum ersten Prozessdampf-Austrittsabschnitt in einer ersten Prozessdampf-Entspannungsrichtung auf. Weiterhin weist die Dampfturbine ein Niederdruck-Innengehäuse mit einem zweiten Prozessdampf-Eintrittsabschnitt und einem zweiten Prozessdampf-Austrittsabschnitt zum Leiten von Prozessdampf durch das Niederdruck-Innengehäuse vom zweiten Prozessdampf-Eintrittsabschnitt zum zweiten Prozessdampf-Austrittsabschnitt in einer zweiten Prozessdampf-Entspannungsrichtung auf. Außerdem weist die Dampfturbine einen Zwischenüberhitzer auf, der stromabwärts des Hochdruck-Innengehäuses und stromaufwärts des Niederdruck-Innengehäuses angeordnet ist, wobei das Hochdruck-Innengehäuse und das Niederdruck-Innengehäuse innerhalb des Dampfturbinen-Außengehäuses angeordnet sind. Das Hochdruck-Innengehäuse und das Niederdruck-Innengehäuse sind derart angeordnet, dass der erste Dampfeintrittsabschnitt des Hochdruck-Innengehäuses dem zweiten Dampfeintrittsabschnitt des Niederdruck-Innengehäuses zugewandt ist.According to a first aspect of the invention, a steam turbine is provided. The steam turbine has an outer casing of the steam turbine. Furthermore, the steam turbine has a high-pressure inner housing with a first process steam inlet section and a first process steam outlet section for guiding process steam through the high-pressure inner housing from the first process steam inlet section to the first process steam outlet section in a first process steam expansion direction. Furthermore, the steam turbine has a low-pressure inner housing with a second process steam inlet section and a second process steam outlet section for guiding process steam through the low-pressure inner housing from the second process steam inlet section to the second process steam outlet section in a second process steam expansion direction. In addition, the steam turbine has a reheater which is arranged downstream of the high-pressure inner casing and upstream of the low-pressure inner casing, the high-pressure inner casing and the low-pressure inner casing being arranged within the steam turbine outer casing. The high-pressure inner housing and the low-pressure inner housing are arranged in such a way that the first steam inlet section of the high-pressure inner housing faces the second steam inlet section of the low-pressure inner housing.

Darunter, dass der erste Dampfeintrittsabschnitt des Hochdruck-Innengehäuses dem zweiten Dampfeintrittsabschnitt des Niederdruck-Innengehäuses zugewandt ist kann verstanden werden, dass der erste Dampfeintrittsabschnitt des Hochdruck-Innengehäuses in die entgegengesetzte Richtung oder im Wesentlichen in die entgegengesetzte Richtung wie der zweite Dampfeintrittsabschnitt des Niederdruck-Innengehäuses zeigt bzw. ausgerichtet ist. Entsprechend verläuft die erste Prozessdampf-Entspannungsrichtung entgegengesetzt oder im Wesentlichen entgegengesetzt zur zweiten Prozessdampf-Entspannungsrichtung.The fact that the first steam inlet section of the high-pressure inner housing faces the second steam inlet section of the low-pressure inner housing can be understood to mean that the first steam inlet section of the high-pressure inner housing faces in the opposite direction or essentially in the opposite direction to the second steam inlet section of the low-pressure inner housing shows or is aligned. Correspondingly, the first process steam expansion direction runs in the opposite direction or essentially opposite to the second process steam expansion direction.

D.h., das Hochdruck-Innengehäuse und das Niederdruck-Innengehäuse sind derart angeordnet, dass eine Prozessdampf-Flutrichtung durch das Hochdruck-Innengehäuse entgegengesetzt, insbesondere um 180° entgegengesetzt, zu einer Prozessdampf-Flutrichtung durch das Niederdruck-Innengehäuse verläuft.That is, the high-pressure inner housing and the low-pressure inner housing are arranged in such a way that a process steam flow direction through the high-pressure inner housing runs opposite, in particular 180 ° opposite, to a process steam flow direction through the low-pressure inner housing.

Mit der erfindungsgemäßen Anordnung des Hochdruck-Innengehäuses und des Niederdruck-Innengehäuses wird sich grundlegend von der herkömmlichen Bauweise abgewandt. Bei Versuchen, die im Rahmen der vorliegenden Erfindung durchgeführt wurden, hat sich herausgestellt, dass durch die erfindungsgemäße Anordnung der Lagerabstand nicht nur verkürzt werden kann, sondern die Dampfturbine auch noch auf besonders sichere Weise betrieben werden kann. Aufgrund des verkürzten Lagerabstands kann die Dampfturbine entsprechend kompakt gebaut werden. Daraus resultiert wiederum eine besonders günstige Bauweise hinsichtlich der Rotordynamik der Dampfturbine.The arrangement according to the invention of the high-pressure inner housing and the low-pressure inner housing fundamentally turns away from the conventional design. Tests carried out within the scope of the present invention have shown that the arrangement according to the invention not only allows the bearing spacing to be shortened, but that the steam turbine can also be operated in a particularly safe manner. Due to the shortened bearing distance, the steam turbine can be built correspondingly compact. This in turn results in a particularly favorable design with regard to the rotor dynamics of the steam turbine.

Unter Verwendung der vorliegenden Dampfturbine kann überhitzter Prozessdampf in Form von Frischdampf in das entgegen einer Dampfrichtung gedrehte Hochdruck-Innengehäuse zugeführt werden und bis auf Druck- und Temperaturniveau einer sogenannten kalten Zwischenüberhitzung entspannt werden. Nachdem der Prozessdampf aus dem Hochdruck-Innengehäuse ausgetreten ist, kann der Prozessdampf zum Zwischenüberhitzer geführt werden. Zwischenüberhitzer Prozessdampf aus dem Zwischenüberhitzer kann nun in das in eine Hauptströmungsrichtung gewandte Niederdruck-Innengehäuse geleitet und dort bis auf Kondensation in der Dampfturbine entspannen.Using the present steam turbine, superheated process steam in the form of live steam can be fed into the high-pressure inner housing, which is rotated counter to steam direction, and expanded down to the pressure and temperature level of what is known as cold reheating. After the process steam has emerged from the high-pressure inner housing, the process steam can be fed to the reheater. Reheater Process steam from the reheater can now be directed into the low-pressure inner casing facing in a main flow direction and relax there except for condensation in the steam turbine.

Unter dem Niederdruck-Innengehäuse ist vorliegend ein Innengehäuse zu verstehen, in welchem zumindest im Mittel ein niedrigerer Druck als im Hochdruck-Innengehäuse herrscht bzw. entsteht. D.h., unter dem Niederdruck-Innengehäuse kann auch insbesondere auch ein Mitteldruck-Innengehäuse verstanden werden. Bei einer bevorzugten Ausgestaltungsvariante ist unter dem Niederdruck-Innengehäuse deshalb ein Mitteldruck-Innengehäuse zu verstehen.In the present case, the low-pressure inner housing is to be understood as an inner housing in which at least on average a lower pressure than in the high-pressure inner housing prevails or arises. In other words, the low-pressure inner housing can also in particular also be understood to mean a medium-pressure inner housing. In a preferred embodiment variant, the low-pressure inner housing is therefore to be understood as a medium-pressure inner housing.

Unter dem Prozessdampf ist Dampf, insbesondere Wasserdampf, zu verstehen, der während des Betriebs der Dampfturbine durch Bauteile der Dampfturbine strömt.The process steam is to be understood as meaning steam, in particular water steam, which flows through components of the steam turbine during operation of the steam turbine.

Durch die erfindungsgemäße Anordnung des Hochdruck-Innengehäuses und des Niederdruck-Innengehäuses können erregende Kräfte im Niederdruck-Innengehäuse minimiert werden, da lediglich die Druckdifferenz aus der Zwischenüberhitzung wirkt. Prozessdampf kann zur weiteren Entspannung direkt in das nächste Bauteil, beispielsweise ein weiteres Niederdruck-Innengehäuse, geleitet werden und muss nicht erst umgeleitet werden. Bei der vorgeschlagenen Anordnung kann außerdem eine Dichtschale eingespart werden. An einem zweiten Prozessdampf-Austrittsabschnitt kann der Prozessdampf nämlich aus dem Niederdruck-Innengehäuse bzw. einem Mitteldruck-Innengehäuse direkt in ein Niederdruck-Innengehäuse bzw. ein weiteres Niederdruck-Innengehäuse geleitet werden, da die Prozessdampf-Entspannungsrichtung des Niederdruck- bzw. Mitteldruck-Innengehäuses die gleiche Richtung wie die Prozessdampf-Entspannungsrichtung des weiteren Niederdruck-Innengehäuses aufweist.The inventive arrangement of the high-pressure inner housing and the low-pressure inner housing can minimize exciting forces in the low-pressure inner housing, since only the pressure difference from the reheating acts. Process steam can be conducted directly into the next component, for example another low-pressure inner housing, for further expansion and does not have to be diverted first. In the proposed arrangement, a sealing shell can also be saved. At a second process steam outlet section, the process steam can namely be conducted from the low-pressure inner housing or a medium-pressure inner housing directly into a low-pressure inner housing or another low-pressure inner housing, since the process steam expansion direction of the low-pressure or medium-pressure inner housing has the same direction as the process steam expansion direction of the further low-pressure inner housing.

Unter einer Entspannungsrichtung ist vorliegend eine Richtung zu verstehen, in welche sich der Prozessdampf im Wesentlichen bewegt bzw. geleitet wird. D.h., wenn sich der Prozessdampf in einem Dampfturbinenabschnitt beispielsweise von links nach rechts spiral- bzw. helixförmig bewegt, ist darunter vereinfacht betrachtet eine lineare Entspannungsrichtung nach rechts zu verstehen. Ferner ist vorliegend unter einer Entspannungsrichtung eine Druckrichtung von einem Hochdruckbereich in einen Niederdruckbereich bzw. in einen Druckbereich mit einem niedrigeren Druck als im Hochdruckbereich, zu verstehen. Entsprechend ist unter einem stromaufwärtigen Dampfturbinenabschnitt ein Abschnitt zu verstehen, der entgegen der Entspannungsrichtung angeordnet ist.In the present case, a relaxation direction is to be understood as a direction in which the process steam is essentially moved or directed. In other words, if the process steam moves in a steam turbine section, for example from left to right in a spiral or helical shape, this is to be understood in simplified terms as a linear expansion direction to the right. Furthermore, in the present case, a relaxation direction is to be understood as a pressure direction from a high pressure area into a low pressure area or into a pressure area with a lower pressure than in the high pressure area. Correspondingly, an upstream steam turbine section is to be understood as a section which is arranged opposite to the expansion direction.

Erfindungsgemäß ist bei einer Dampfturbine stromabwärts des Hochdruck-Innengehäuses ein Prozessdampf-Umlenkabschnitt zum Umlenken von Prozessdampf aus dem ersten Dampf-Austrittsabschnitt in eine Richtung entgegen der ersten Dampf-Entspannungsrichtung in eine Kühlleitung der Dampfturbine ausgestaltet, wobei die Kühlleitung in einem Bereich benachbart zum Hochdruck-Innengehäuse ausgestaltet ist. Dadurch kann kühler Prozessdampf auf einfache und platzsparende Weise zum Kühlen des Dampfturbinen-Außengehäuses und somit zum Kühlen der Dampfturbine verwendet werden. Dies resultiert wiederum darin, dass die Dampfturbine vor Überhitzung geschützt und dadurch besonders sicher betrieben werden kann. Hierzu wird der Prozessdampf aus dem Hochdruck-Innengehäuse in eine Hauptströmungsrichtung umgelenkt und außen um das Hochdruck-Innengehäuse geführt. Für den gewünschten Kühleffekt ist die Kühlleitung entlang einer Innenwandung des Dampfturbinen-Außengehäuses und/oder entlang einer Außenwandung des Hochdruck-Innengehäuses angeordnet oder ausgestaltet.According to the invention, a process steam deflection section for deflecting process steam from the first steam outlet section in a direction opposite to the first steam expansion direction into a cooling line of the steam turbine is configured downstream of the high-pressure inner casing, the cooling line in an area adjacent to the high-pressure Inner housing is designed. As a result, cool process steam can be used in a simple and space-saving manner for cooling the steam turbine outer housing and thus for cooling the steam turbine. This in turn results in the steam turbine being protected from overheating and thus being able to be operated particularly safely. For this purpose, the process steam is deflected from the high-pressure inner housing in a main flow direction and guided around the high-pressure inner housing on the outside. For the desired cooling effect, the cooling line is arranged or configured along an inner wall of the steam turbine outer casing and / or along an outer wall of the high-pressure inner casing.

Ferner ist es möglich, dass bei einer erfindungsgemäßen Dampfturbine die Kühlleitung zumindest abschnittsweise zwischen, insbesondere direkt zwischen, einer Innenwandung des Dampfturbinen-Außengehäuses und einer Außenwandung des Hochdruck-Innengehäuses angeordnet ist. D.h., der Prozessdampf kann zumindest abschnittsweise um das Hochdruck-Innengehäuse bzw. entlang des Hochdruck-Innengehäuses geführt und anschließend direkt oder indirekt durch das Dampfturbinen-Außengehäuse zum Zwischenüberhitzer abgeführt werden. Dadurch kann ein vorteilhafter Kühleffekt für das Dampfturbinen-Außengehäuse erzielt werden.In a steam turbine according to the invention, it is also possible for the cooling line to be arranged at least in sections between, in particular directly between, an inner wall of the steam turbine outer housing and an outer wall of the high-pressure inner housing. In other words, the process steam can at least in sections around the high-pressure inner housing or along the high-pressure inner housing and then directly or indirectly be discharged through the steam turbine outer casing to the reheater. As a result, an advantageous cooling effect for the steam turbine outer casing can be achieved.

Weiterhin ist es möglich, dass bei einer erfindungsgemäßen Dampfturbine die Kühlleitung zusätzlich oder alternativ zumindest abschnittsweise zwischen, insbesondere direkt zwischen, einer Innenwandung des Dampfturbinen-Außengehäuses und einer Außenwandung des Niederdruck-Innengehäuses angeordnet ist. D.h., der Prozessdampf kann ferner zumindest abschnittsweise um das Niederdruck-Innengehäuse bzw. entlang des Niederdruck-Innengehäuses geführt und anschließend durch das Dampfturbinen-Außengehäuse zum Zwischenüberhitzer abgeführt werden. Dadurch kann der Kühleffekt für das Dampfturbinen-Außengehäuse weiter verstärkt werden. Insgesamt betrachtet wird dadurch ein besonders platzsparendes, effizient und zuverlässig funktionierendes Kühlsystem für die Dampfturbine geschaffen.Furthermore, in a steam turbine according to the invention, the cooling line is additionally or alternatively arranged at least in sections between, in particular directly between, an inner wall of the steam turbine outer housing and an outer wall of the low-pressure inner housing. That is to say, the process steam can also be guided around the low-pressure inner housing or along the low-pressure inner housing, at least in sections, and then discharged through the steam turbine outer housing to the reheater. As a result, the cooling effect for the steam turbine outer casing can be further increased. Viewed overall, this creates a particularly space-saving, efficiently and reliably functioning cooling system for the steam turbine.

Darüber hinaus ist es bei einer erfindungsgemäßen Dampfturbine möglich, dass an einem stromaufwärtigen Endabschnitt des Hochdruck-Innengehäuses, an welchem der erste Prozessdampf-Eintrittsabschnitt ausgestaltet ist, eine Hochdruck-Dichtschale zum Abdichten des stromaufwärtigen Endabschnitts des Hochdruck-Innengehäuses und an einem stromaufwärtigen Endabschnitt des Niederdruck-Innengehäuses, an welchem der zweite Prozessdampf-Eintrittsabschnitt ausgestaltet ist, eine Niederdruck-Dichtschale zum Abdichten des stromaufwärtigen Endabschnitts des Niederdruck-Innengehäuses angeordnet sind, wobei die Hochdruck-Dichtschale und die Niederdruck-Dichtschale benachbart zueinander angeordnet sind. Bei Versuchen, die im Rahmen der vorliegenden Erfindung durchgeführt wurden hat sich herausgestellt, dass eine Dampfturbine mit den beiden Dichtschalen in diesem Bereich einfach zu montieren, zu demontieren, zu warten und zu reparieren ist. Gleichwohl kann eine relativ kompakte Bauweise erzielt werden. Unter einer benachbarten Anordnung ist vorliegend eine Anordnung nebeneinander, d.h., nicht zwangsweise direkt nebeneinander, zu verstehen. D.h., zwischen den Dichtschalen können noch weiter Bauteile angeordnet sein bzw. die beiden Dichtschalen sind vorzugsweise mit geringem Abstand nebeneinander aber nicht direkt aneinander angeordnet.In addition, with a steam turbine according to the invention, it is possible that at an upstream end section of the high pressure inner housing, on which the first process steam inlet section is configured, a high pressure sealing shell for sealing the upstream end section of the high pressure inner housing and at an upstream end section of the low pressure -Interior housing on which the second process steam inlet section is configured, a low-pressure sealing shell for sealing the upstream end section of the low-pressure inner housing are arranged, the high-pressure sealing shell and the low-pressure sealing shell being arranged adjacent to one another. Tests carried out within the scope of the present invention have shown that a steam turbine with the two sealing shells in this area is easy to assemble, disassemble, maintain and to be repaired. At the same time, a relatively compact design can be achieved. In the present case, an adjacent arrangement is to be understood as an arrangement next to one another, ie not necessarily directly next to one another. That is, further components can be arranged between the sealing shells or the two sealing shells are preferably arranged with a small distance next to one another but not directly next to one another.

Alternativ ist es möglich, dass bei einer erfindungsgemäßen Dampfturbine an einem stromaufwärtigen Endabschnitt des Hochdruck-Innengehäuses, an welchem der erste Prozessdampf-Eintrittsabschnitt ausgestaltet ist, und an einem stromaufwärtigen Endabschnitt des Niederdruck-Innengehäuses, an welchem der zweite Prozessdampf-Eintrittsabschnitt ausgestaltet ist, eine gemeinsame Dichtschale zum Abdichten der beiden Endabschnitte angeordnet ist. Durch diese Bauweise bzw. Maßnahme kann die Dampfturbine besonders kompakt bereitgestellt werden. Darüber hinaus kann auf die Verwendung einer weiteren Dichtschalte verzichtet werden. Dies führt zu einer Gewichtsersparnis bei der Dampfturbine sowie zu einer Reduzierung des logistischen Aufwands bei der Herstellung der Dampfturbine.Alternatively, it is possible in a steam turbine according to the invention that at an upstream end section of the high-pressure inner housing, on which the first process steam inlet section is designed, and at an upstream end section of the low-pressure inner housing, at which the second process steam inlet section is designed, a common sealing shell is arranged for sealing the two end sections. With this construction or measure, the steam turbine can be made available in a particularly compact manner. In addition, the use of a further sealing switch can be dispensed with. This leads to a weight saving in the steam turbine and to a reduction in the logistical outlay in the manufacture of the steam turbine.

Außerdem kann bei einer erfindungsgemäßen Dampfturbine an einem stromabwärtigen Endabschnitt des Niederdruck-Innengehäuses ein Dichtsteg zum Abdichten eines Dampfturbinenbereichs zwischen dem stromabwärtigen Endabschnitt des Niederdruck-Innengehäuses und dem Dampfturbinen-Außengehäuse ausgestaltet sein. Bei der vorliegenden Dampfturbine wird das Niederdruck-Innengehäuse während eines Betriebs mit Prozessdampf umströmt, während das Hochdruck-Innengehäuse zum Niederdruck-Innengehäuse durch den Dichtsteg getrennt ist, der vorzugsweise als integrierter Dichtsteg am stromabwärtigen Endabschnitt des Niederdruck-Innengehäuses ausgestaltet ist. Unter Verwendung des Dichtstegs kann auf eine innere Dichtschale am stromabwärtigen Endabschnitt des Niederdruck-Innengehäuses verzichtet werden. Der Dichtsteg weist einen deutlich weniger komplexen Aufbau wie eine Dichtschale auf. An dieser Stelle sei erwähnt, dass vorliegend unter einer Dichtschale eine im Stand der Technik übliche Dichtschale zu verstehen ist, welche vorliegend deshalb nicht im Detail beschrieben wird.In addition, in a steam turbine according to the invention, a sealing web for sealing off a steam turbine area between the downstream end portion of the low-pressure inner housing and the steam turbine outer housing can be configured at a downstream end section of the low-pressure inner housing. In the present steam turbine, process steam flows around the low-pressure inner housing during operation, while the high-pressure inner housing is separated from the low-pressure inner housing by the sealing web, which is preferably designed as an integrated sealing web on the downstream end section of the low-pressure inner housing. Using the sealing bar, an inner sealing shell on the downstream end portion of the low-pressure inner housing can be omitted. The sealing ridge has a significantly less complex structure than a sealing shell. At this point it should be mentioned that in the present case a sealing shell is to be understood as a sealing shell that is customary in the prior art, which is therefore not described in detail here.

Von weiterem Vorteil kann es sein, wenn der Zwischenüberhitzer außerhalb des Dampfturbinen-Außengehäuses angeordnet ist. Dies ist insbesondere mit Blick auf die Montage, Demontage, Wartung und Reparatur der Dampfturbine von Vorteil.It can be of further advantage if the reheater is arranged outside the steam turbine outer casing. This is particularly advantageous with regard to the assembly, disassembly, maintenance and repair of the steam turbine.

Bei einer erfindungsgemäßen Dampfturbine ist es weiterhin möglich, dass das Hochdruck-Innengehäuse und das Niederdruck-Innengehäuse als separate Bauteile bereitgestellt sind. Dies hat den Vorteil, dass die Dampfturbine nach dem Baukastenprinzip einfach und kostengünstig aufgebaut werden kann. Die vorliegende Erfindung bezieht sich hierbei vorzugsweise auf die Entspannung eines Prozessdampfes in einem einzigen Dampfturbinen-Außengehäuse von einem Hochdruck bis zu einem Druck unterhalb eines Zwischenüberhitzungsdrucks. Eine Niederdruck-Entspannung kann in einem separaten Abschnitt derselben Dampfturbine oder in einer separaten Niederdruck-Dampfturbine erfolgen.In the case of a steam turbine according to the invention, it is also possible for the high-pressure inner housing and the low-pressure inner housing to be provided as separate components. This has the advantage that the steam turbine can be constructed simply and inexpensively according to the modular principle. The present invention here preferably relates to the expansion of a process steam in a single steam turbine outer casing from a high pressure to a pressure below a reheating pressure. A low-pressure expansion can take place in a separate section of the same steam turbine or in a separate low-pressure steam turbine.

Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zum Betreiben einer wie vorstehend im Detail dargestellten Dampfturbine zur Verfügung gestellt. Damit bringt ein erfindungsgemäßes Verfahren die gleichen Vorteile mit sich, wie sie ausführlich mit Bezug auf die erfindungsgemäße Dampfturbine beschrieben worden sind. Das Verfahren weist die folgenden Schritte auf:

  • Leiten von Prozessdampf von einer Prozessdampfquelle durch den ersten Prozessdampf-Eintrittsabschnitt in das Hochdruck-Innengehäuse,
  • Leiten des Prozessdampfes vom ersten Prozessdampf-Eintrittsabschnitt zum ersten Prozessdampf-Austrittsabschnitt, und
  • Leiten des Prozessdampfes durch den ersten Prozessdampf-Austrittsabschnitt aus dem Hochdruck-Innengehäuse über den Prozessdampf-Umlenkabschnitt und die Kühlleitung zum Zwischenüberhitzer.
According to a further aspect of the present invention, a method for operating a steam turbine as described in detail above is provided. A method according to the invention thus has the same advantages as have been described in detail with reference to the steam turbine according to the invention. The procedure consists of the following steps:
  • Conducting process steam from a process steam source through the first process steam inlet section into the high-pressure inner housing,
  • Conducting the process steam from the first process steam inlet section to the first process steam outlet section, and
  • Directing the process steam through the first process steam outlet section from the high-pressure inner housing via the process steam deflection section and the cooling line to the reheater.

Durch das vorstehend dargestellte Verfahren kann die Dampfturbine auf einfache und kompakte Weise gekühlt werden. Durch eine zuverlässige Kühlung der Dampfturbine kann diese auch auf sichere Weise betrieben werden. Mithin wird ein Verfahren zum zuverlässigen Kühlen einer Dampfturbine zur Verfügung gestellt.With the method presented above, the steam turbine can be cooled in a simple and compact manner. Reliable cooling of the steam turbine means that it can also be operated safely. A method for reliably cooling a steam turbine is therefore provided.

Weitere, die Erfindung verbessernde Maßnahmen ergeben sich aus der nachfolgenden Beschreibung zu verschiedenen Ausführungsbeispielen der Erfindung, welche in den Figuren schematisch dargestellt sind. Sämtliche aus den Ansprüchen, der Beschreibung oder der Zeichnung hervorgehende Merkmale und/oder Vorteile, einschließlich konstruktiver Einzelheiten und räumlicher Anordnungen können sowohl für sich als auch in den verschiedenen Kombinationen erfindungswesentlich sein.Further measures improving the invention emerge from the following description of various exemplary embodiments of the invention, which are shown schematically in the figures. All of the features and / or advantages arising from the claims, the description or the drawing, including structural details and spatial arrangements, can be essential to the invention both individually and in the various combinations.

Es zeigen jeweils schematisch:

Figur 1
ein Blockdiagramm zum Darstellen einer Dampfturbine gemäß einer ersten Ausführungsform der vorliegenden Erfindung, und
Figur 2
ein Blockdiagramm zum Darstellen einer Dampfturbine gemäß einer zweiten Ausführungsform der vorliegenden Erfindung.
They each show schematically:
Figure 1
a block diagram to show a steam turbine according to a first embodiment of the present invention, and
Figure 2
a block diagram to show a steam turbine according to a second embodiment of the present invention.

Elemente mit gleicher Funktion und Wirkungsweise sind in den Figuren 1 und 2 jeweils mit denselben Bezugszeichen versehen.Elements with the same function and mode of operation are in the Figures 1 and 2 each provided with the same reference numerals.

In Fig. 1 ist eine Dampfturbine 1a gemäß einer ersten Ausführungsform dargestellt. Die Dampfturbine 1a weist ein Dampfturbinen-Außengehäuse 20 auf, in welchem sich ein Hochdruck-Innengehäuse 30, ein Niederdruck-Innengehäuse 40 in Form eines Mitteldruck-Innengehäuses sowie ein weiteres Niederdruck-Innengehäuse 90 befinden. Stromaufwärts zum Hochdruck-Innengehäuse 30 ist eine Frischdampf- bzw. Prozessdampfquelle 10 zum Zuführen von Prozessdampf zum Hochdruck-Innengehäuse 30 angeordnet. Das Hochdruck-Innengehäuse 30 weist einen ersten Prozessdampf-Eintrittsabschnitt 31 und einen ersten Prozessdampf-Austrittsabschnitt 32 zum Leiten von Prozessdampf durch das Hochdruck-Innengehäuse 30 vom ersten Prozessdampf-Eintrittsabschnitt 31 zum ersten Prozessdampf-Austrittsabschnitt 32 in einer ersten Prozessdampf-Entspannungsrichtung 33 auf. Das Niederdruck-Innengehäuse 40 weist einen zweiten Prozessdampf-Eintrittsabschnitt 41 und einen zweiten Prozessdampf-Austrittsabschnitt 42 zum Leiten von Prozessdampf durch das Niederdruck-Innengehäuse 40 vom zweiten Prozessdampf-Eintrittsabschnitt 41 zum zweiten Prozessdampf-Austrittsabschnitt 42 in einer zweiten Prozessdampf-Entspannungsrichtung 43 auf. Die Dampfturbine 1a weist ferner einen Zwischenüberhitzer 50 auf, der stromabwärts des Hochdruck-Innengehäuses 30 und stromaufwärts des Niederdruck-Innengehäuses 40 angeordnet ist.In Fig. 1 shows a steam turbine 1a according to a first embodiment. The steam turbine 1 a has a steam turbine outer casing 20 in which a high-pressure inner casing 30, a low-pressure inner casing 40 in the form of a medium-pressure inner casing and a further low-pressure inner casing 90 are located. A live steam or process steam source 10 for supplying process steam to the high-pressure inner housing 30 is arranged upstream of the high-pressure inner housing 30. The high-pressure inner housing 30 has a first process steam inlet section 31 and a first process steam outlet section 32 for guiding process steam through the high-pressure inner housing 30 from the first process steam inlet section 31 to the first process steam outlet section 32 in a first process steam expansion direction 33. The low-pressure inner housing 40 has a second process steam inlet section 41 and a second process steam outlet section 42 for guiding process steam through the low-pressure inner housing 40 from the second process steam inlet section 41 to the second process steam outlet section 42 in a second process steam expansion direction 43. The steam turbine 1 a also has a reheater 50 which is arranged downstream of the high-pressure inner casing 30 and upstream of the low-pressure inner casing 40.

Wie in Fig. 1 dargestellt, sind das Hochdruck-Innengehäuse 30 und das Niederdruck-Innengehäuse 40 derart angeordnet, dass der erste Dampfeintrittsabschnitt 31 des Hochdruck-Innengehäuses 30 dem zweiten Dampfeintrittsabschnitt 41 des Niederdruck-Innengehäuses 40 zugewandt ist.As in Fig. 1 As shown, the high-pressure inner housing 30 and the low-pressure inner housing 40 are arranged in such a way that the first steam inlet section 31 of the high-pressure inner housing 30 faces the second steam inlet section 41 of the low-pressure inner housing 40.

Stromabwärts des Hochdruck-Innengehäuses 30 weist die Dampfturbine 1a einen Prozessdampf-Umlenkabschnitt 60 zum Umlenken von Prozessdampf aus dem ersten Dampf-Austrittsabschnitt 32 in eine Richtung entgegen der ersten Dampf-Entspannungsrichtung 33 in eine Kühlleitung 70 der Dampfturbine 1a auf. Die Kühlleitung 70 ist innerhalb des Dampfturbinen-Außengehäuses 20 in einem Bereich benachbart zum Hochdruck-Innengehäuse 30 ausgestaltet. Die Kühlleitung 70 ist außerdem abschnittsweise zwischen einer Innenwandung des Dampfturbinen-Außengehäuses 20 und einer Außenwandung des Hochdruck-Innengehäuses 30 angeordnet. Darüber hinaus ist die Kühlleitung 70 abschnittsweise zwischen einer Innenwandung des Dampfturbinen-Außengehäuses 20 und einer Außenwandung des Niederdruck-Innengehäuses 40 angeordnet.Downstream of the high-pressure inner casing 30, the steam turbine 1a has a process steam deflection section 60 for deflecting process steam from the first steam outlet section 32 in a direction opposite to the first steam expansion direction 33 into a cooling line 70 of the steam turbine 1a. The cooling line 70 is inside the steam turbine outer casing 20 in an area adjacent to the high-pressure inner casing 30 designed. The cooling line 70 is also arranged in sections between an inner wall of the steam turbine outer casing 20 and an outer wall of the high-pressure inner casing 30. In addition, the cooling line 70 is arranged in sections between an inner wall of the steam turbine outer housing 20 and an outer wall of the low-pressure inner housing 40.

Gemäß der ersten Ausführungsform ist an einem stromaufwärtigen Endabschnitt des Hochdruck-Innengehäuses 30, an welchem der erste Prozessdampf-Eintrittsabschnitt 31 ausgestaltet ist, eine Hochdruck-Dichtschale 34 zum zumindest teilweisen Abdichten des stromaufwärtigen Endabschnitts des Hochdruck-Innengehäuses 30 angeordnet. Außerdem ist an einem stromaufwärtigen Endabschnitt des Niederdruck-Innengehäuses 40, an welchem der zweite Prozessdampf-Eintrittsabschnitt 41 ausgestaltet ist, eine Niederdruck-Dichtschale 44 zum zumindest teilweisen Abdichten des stromaufwärtigen Endabschnitts des Niederdruck-Innengehäuses 40 angeordnet. Die Hochdruck-Dichtschale 34 und die Niederdruck-Dichtschale 44 sind benachbart zueinander angeordnet. An einem stromabwärtigen Endabschnitt des Hochdruck-Innengehäuses 30, an welchem der erste Prozessdampf-Austrittsabschnitt 32 ausgestaltet ist, ist eine weitere Hochdruck-Dichtschale 35 zum zumindest teilweisen Abdichten des stromabwärtigen Endabschnitts des Hochdruck-Innengehäuses 30 angeordnet.According to the first embodiment, a high-pressure sealing shell 34 for at least partially sealing the upstream end section of the high-pressure inner housing 30 is arranged on an upstream end section of the high-pressure inner housing 30 on which the first process steam inlet section 31 is configured. In addition, a low-pressure sealing shell 44 for at least partially sealing the upstream end portion of the low-pressure inner housing 40 is arranged on an upstream end section of the low-pressure inner housing 40, on which the second process steam inlet section 41 is configured. The high-pressure sealing shell 34 and the low-pressure sealing shell 44 are arranged adjacent to one another. A further high-pressure sealing shell 35 for at least partially sealing the downstream end portion of the high-pressure inner housing 30 is arranged on a downstream end section of the high-pressure inner housing 30, on which the first process steam outlet section 32 is configured.

An einem stromabwärtigen Endabschnitt des Niederdruck-Innengehäuses 40 ist ein Dichtsteg 80 zum Abdichten eines Dampfturbinenbereichs zwischen dem stromabwärtigen Endabschnitt des Niederdruck-Innengehäuses 40 und dem Dampfturbinen-Außengehäuse 20 ausgestaltet. Der Zwischenüberhitzer ist außerhalb des Dampfturbinen-Außengehäuses 20 angeordnet. Das Hochdruck-Innengehäuse 30 und das Niederdruck-Innengehäuse 40 sind als separate Bauteile in einem gemeinsamen Dampfturbinen-Außengehäuse 20 bereitgestellt.A sealing web 80 for sealing off a steam turbine region between the downstream end portion of the low-pressure inner casing 40 and the steam turbine outer casing 20 is configured on a downstream end section of the low-pressure inner casing 40. The reheater is arranged outside of the steam turbine outer casing 20. The high-pressure inner casing 30 and the low-pressure inner casing 40 are provided as separate components in a common steam turbine outer casing 20.

Mit Bezug auf Fig. 2 wird eine Dampfturbine 1b gemäß einer zweiten Ausführungsform beschrieben. Die Dampfturbine 1b gemäß der zweiten Ausführungsform entspricht im Wesentlichen der Dampfturbine 1a gemäß der ersten Ausführungsform. An Stelle der beiden separaten Dichtschalen bzw. der Hochdruck-Dichtschale 34 und der Niederdruck-Dichtschale 44 ist nur eine einzige Dichtschale 100 zwischen dem Hochdruck-Innengehäuse 30 und dem Niederdruck-Innengehäuse 40 angeordnet.Regarding Fig. 2 a steam turbine 1b according to a second embodiment is described. The steam turbine 1b according to the second embodiment corresponds essentially to the steam turbine 1a according to the first embodiment. Instead of the two separate sealing shells or the high-pressure sealing shell 34 and the low-pressure sealing shell 44, only a single sealing shell 100 is arranged between the high-pressure inner housing 30 and the low-pressure inner housing 40.

Mit Bezug auf Fig. 1 wird anschließend noch ein Verfahren gemäß einer Ausführungsform beschrieben. Im Rahmen des Verfahrens wird zunächst Prozessdampf von der Prozessdampfquelle 10 durch den ersten Prozessdampf-Eintrittsabschnitt 31 in das Hochdruck-Innengehäuse 30 geleitet. Anschließend wird der Prozessdampfes vom ersten Prozessdampf-Eintrittsabschnitt 31 zum ersten Prozessdampf-Austrittsabschnitt 32 geleitet und danach durch den ersten Prozessdampf-Austrittsabschnitt 32 aus dem Hochdruck-Innengehäuse 30 über den Prozessdampf-Umlenkabschnitt 60 und die Kühlleitung 70 zum Zwischenüberhitzer 50. Hierbei wird der Prozessdampf durch die Kühlleitung 70 zum Kühlen des Dampfturbinen-Außengehäuses 20 bzw. der Dampfturbine 1a entlang des Hochdruck-Innengehäuses 30 sowie entlang des Niederdruck-Innengehäuses 40 geleitet. Nachdem der Prozessdampf im Zwischenüberhitzer 50 bei gleichem Druck auf eine vordefinierte Temperatur erhitzt wurde, wird der erhitzte bzw. überhitzte Prozessdampf aus dem Zwischenüberhitzer 50 durch den zweiten Prozessdampf-Eintrittsabschnitt 41 in das Niederdruck- bzw. Mitteldruck-Innengehäuse geleitet. Von dort wird der Prozessdampf bei gleichbleibender Entspannungsrichtung in das weitere Niederdruck-Innengehäuse geleitet. Dort kann der Prozessdampf weiter entspannen und kondensieren.Regarding Fig. 1 a method according to an embodiment is described below. As part of the method, process steam is first fed from the process steam source 10 through the first process steam inlet section 31 into the high-pressure inner housing 30. The process steam is then passed from the first process steam inlet section 31 to the first process steam outlet section 32 and then through the first process steam outlet section 32 from the high-pressure inner housing 30 via the process steam deflection section 60 and the cooling line 70 to the reheater 50 passed through the cooling line 70 for cooling the steam turbine outer housing 20 or the steam turbine 1 a along the high-pressure inner housing 30 and along the low-pressure inner housing 40. After the process steam in the reheater 50 has been heated to a predefined temperature at the same pressure, the heated or superheated process steam is passed from the reheater 50 through the second process steam inlet section 41 into the low-pressure or medium-pressure inner housing. From there, the process steam is directed into the further low-pressure inner housing while the expansion direction remains the same. There the process steam can further relax and condense.

BezugszeichenlisteList of reference symbols

11
DampfturbineSteam turbine
1010
ProzessdampfquelleProcess steam source
2020th
Turbinen-AußengehäuseTurbine outer casing
3030th
Hochdruck-InnengehäuseHigh pressure inner housing
3131
erster Prozessdampf-Eintrittsabschnittfirst process steam entry section
3232
erster Prozessdampf-Austrittsabschnittfirst process steam outlet section
3333
erste Prozessdampf-Entspannungsrichtungfirst process steam expansion direction
3434
Hochdruck-DichtschaleHigh pressure sealing shell
3535
Hochdruck-DichtschaleHigh pressure sealing shell
4040
Niederdruck-InnengehäuseLow pressure inner housing
4141
zweiter Prozessdampf-Eintrittsabschnittsecond process steam entry section
4242
zweiter Prozessdampf-Austrittsabschnittsecond process steam outlet section
4343
zweite Prozessdampf-Entspannungsrichtungsecond process steam expansion direction
4444
Niederdruck-DichtschaleLow pressure sealing shell
5050
ZwischenüberhitzerReheater
6060
Prozessdampf-UmlenkabschnittProcess steam deflection section
7070
KühlleitungCooling pipe
8080
DichtstegSealing bar
9090
Niederdruck-InnengehäuseLow pressure inner housing
100100
DichtschaleSealing shell

Claims (9)

  1. Steam turbine (1a; 1b), having a steam turbine outer housing (20), a high-pressure inner housing (30) with a first process steam inlet portion (31) and a first process steam outlet portion (32) for conducting process steam through the high-pressure inner housing (30) from the first process steam inlet portion (31) to the first process steam outlet portion (32) in a first process steam expansion direction (33), a low-pressure inner housing (40) with a second process steam inlet portion (41) and a second process steam outlet portion (42) for conducting process steam through the low-pressure inner housing (40) from the second process steam inlet portion (41) to the second process steam outlet portion (42) in a second process steam expansion direction (43), and an intermediate superheater (50) which is arranged downstream of the high-pressure inner housing (30) and upstream of the low-pressure inner housing (40), wherein the high-pressure inner housing (30) and the low-pressure inner housing (40) are arranged within the steam turbine outer housing (20),
    and wherein
    the high-pressure inner housing (30) and the low-pressure inner housing (40) are arranged such that the first steam inlet portion (31) of the high-pressure inner housing (30) faces toward the second steam inlet portion (41) of the low-pressure inner housing (40),
    characterized in that,
    downstream of the high-pressure inner housing (30), there is formed a process steam diverting portion (60) for diverting process steam from the first steam outlet portion (32) in a direction counter to the first steam expansion direction (33) into a cooling line (70) of the steam turbine (1a; 1b), such that the process steam can be conducted around the outside of the high-pressure inner housing, and wherein the cooling line (70) is formed in a region adjacent to the high-pressure inner housing (30).
  2. Steam turbine (1a; 1b) according to Claim 1,
    characterized in that
    the cooling line (70) is arranged at least in certain portions between, in particular directly between, an inner wall of the steam turbine outer housing (20) and an outer wall of the high-pressure inner housing (30).
  3. Steam turbine (1a; 1b) according to either of Claims 1 and 2,
    characterized in that
    the cooling line (70) is arranged at least in certain portions between, in particular directly between, an inner wall of the steam turbine outer housing (20) and an outer wall of the low-pressure inner housing (40).
  4. Steam turbine (1a) according to any one of the preceding claims,
    characterized in that,
    at an upstream end portion of the high-pressure inner housing (30), at which the first process steam inlet portion (31) is formed, there is arranged a high-pressure sealing shell (34) for at least partially sealing the upstream end portion of the high-pressure inner housing (30) and, at an upstream end portion of the low-pressure inner housing (40), at which the second process steam inlet portion (41) is formed, there is arranged a low-pressure sealing shell (44) for at least partially sealing the upstream end portion of the low-pressure inner housing (40), wherein the high-pressure sealing shell (34) and the low-pressure sealing shell (44) are arranged adjacent to one another.
  5. Steam turbine (1b) according to any one of Claims 1 to 4, characterized in that,
    at an upstream end portion of the high-pressure inner housing (30), at which the first process steam inlet portion (31) is formed, and at an upstream end portion of the low-pressure inner housing (40), at which the second process steam inlet portion (41) is formed, there is arranged a common sealing shell (100) for at least partially sealing the two end portions.
  6. Steam turbine (1a; 1b) according to any one of the preceding claims,
    characterized in that,
    at a downstream end portion of the low-pressure inner housing (40), there is formed a sealing web (80) for sealing a steam turbine region between the downstream end portion of the low-pressure inner housing (40) and the steam turbine outer housing (20).
  7. Steam turbine (1a; 1b) according to any one of the preceding claims,
    characterized in that
    the intermediate superheater is arranged outside the steam turbine outer housing (20).
  8. Steam turbine (1a; 1b) according to any one of the preceding claims,
    characterized in that
    the high-pressure inner housing (30) and the low-pressure inner housing (40) are provided as separate components in a single steam turbine outer housing (20).
  9. Method for operating a steam turbine (1a; 1b) according to any one of the preceding claims, having the steps:
    - conducting process steam from a process steam source (10) through the first process steam inlet portion (31) into the high-pressure inner housing (30),
    - conducting the process steam from the first process steam inlet portion (31) to the first process steam outlet portion (32), and
    - conducting the process steam through the first process steam outlet portion (32) from the high-pressure inner housing (30) via the process steam diverting portion and the cooling line (70) to the intermediate superheater (50).
EP18708060.1A 2017-07-03 2018-02-14 Steam turbine and method of operating the same Active EP3610137B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18708060T PL3610137T3 (en) 2017-07-03 2018-02-14 Steam turbine and method of operating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017211295.6A DE102017211295A1 (en) 2017-07-03 2017-07-03 Steam turbine and method of operating the same
PCT/EP2018/053634 WO2019007557A1 (en) 2017-07-03 2018-02-14 Steam turbine and method for operating same

Publications (2)

Publication Number Publication Date
EP3610137A1 EP3610137A1 (en) 2020-02-19
EP3610137B1 true EP3610137B1 (en) 2021-09-01

Family

ID=61526776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18708060.1A Active EP3610137B1 (en) 2017-07-03 2018-02-14 Steam turbine and method of operating the same

Country Status (8)

Country Link
US (1) US11352910B2 (en)
EP (1) EP3610137B1 (en)
JP (1) JP6980043B2 (en)
CN (1) CN110832169B (en)
DE (1) DE102017211295A1 (en)
PL (1) PL3610137T3 (en)
RU (1) RU2735461C1 (en)
WO (1) WO2019007557A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215795A1 (en) * 2016-08-23 2018-03-01 Siemens Aktiengesellschaft Steam turbine with flow shield
DE102018219374A1 (en) 2018-11-13 2020-05-14 Siemens Aktiengesellschaft Steam turbine and method of operating the same
DE102020213034A1 (en) 2020-10-15 2022-04-21 HSI Brainovation GmbH Steam turbine with several turbine stages through which steam can flow, method for operating a steam turbine and energy conversion device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1872434U (en) * 1961-04-28 1963-05-22 Siemens Ag STEAM TURBINE OF THE DOUBLE HOUSING DESIGN WITH TURBINE PARTS LOCATING WITHIN ONE AND THE SAME HOUSING IN FRONT OF AND BEHIND AN INTERHEATER.
CH524758A (en) * 1970-12-08 1972-06-30 Bbc Brown Boveri & Cie Multi-shell turbine housing for high pressures and high temperatures
US4362464A (en) * 1980-08-22 1982-12-07 Westinghouse Electric Corp. Turbine cylinder-seal system
JPS60195304A (en) 1984-03-19 1985-10-03 Hitachi Ltd Thermal stress controller for steam turbine casing
JPS6164604U (en) 1984-09-28 1986-05-02
FR2646466B1 (en) * 1989-04-26 1991-07-05 Alsthom Gec INTERNAL STATOR HP-MP SINGLE STEAM TURBINE WITH CONTROLLED AIR CONDITIONING
JPH0749002A (en) * 1993-08-04 1995-02-21 Mitsubishi Heavy Ind Ltd Steam turbine high pressure casing
DE19700899A1 (en) * 1997-01-14 1998-07-23 Siemens Ag Steam turbine
DE19701020A1 (en) * 1997-01-14 1998-07-23 Siemens Ag Steam turbine
EP1473442B1 (en) 2003-04-30 2014-04-23 Kabushiki Kaisha Toshiba Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
EP1559872A1 (en) 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Turbomachine
EP1577494A1 (en) * 2004-03-17 2005-09-21 Siemens Aktiengesellschaft Welded steam turbine shaft and its method of manufacture
EP1624155A1 (en) 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Steam turbine and method of operating a steam turbine
EP1744017A1 (en) 2005-07-14 2007-01-17 Siemens Aktiengesellschaft Combined steam turbine and method for operating a combined steam turbine
JP4542491B2 (en) * 2005-09-29 2010-09-15 株式会社日立製作所 High-strength heat-resistant cast steel, method for producing the same, and uses using the same
EP1780376A1 (en) 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Steam turbine
US8197182B2 (en) * 2008-12-23 2012-06-12 General Electric Company Opposed flow high pressure-low pressure steam turbine
EP2565377A1 (en) 2011-08-31 2013-03-06 Siemens Aktiengesellschaft Double flow steam turbine
JP6253904B2 (en) * 2013-06-28 2017-12-27 三菱重工業株式会社 Steam turbine
DE102013219771B4 (en) 2013-09-30 2016-03-31 Siemens Aktiengesellschaft steam turbine
JP6614503B2 (en) 2016-10-21 2019-12-04 三菱重工業株式会社 Steam turbine and control method of steam turbine

Also Published As

Publication number Publication date
US20210156283A1 (en) 2021-05-27
RU2735461C1 (en) 2020-11-02
DE102017211295A1 (en) 2019-01-03
JP6980043B2 (en) 2021-12-15
PL3610137T3 (en) 2022-01-17
JP2020525704A (en) 2020-08-27
EP3610137A1 (en) 2020-02-19
US11352910B2 (en) 2022-06-07
WO2019007557A1 (en) 2019-01-10
BR112019026024A2 (en) 2020-06-23
CN110832169B (en) 2022-07-05
BR112019026024A8 (en) 2023-05-02
CN110832169A (en) 2020-02-21

Similar Documents

Publication Publication Date Title
EP1774140B1 (en) Steam turbine, and method for the operation of a steam turbine
EP3610137B1 (en) Steam turbine and method of operating the same
DE102008037410B4 (en) Combined cycle and method using supercritical steam
DE102007030764B4 (en) Steam turbine with heating steam extraction
EP2100010B1 (en) Method for increasing the steam mass flow in a power plant high pressure steam turbine during a starting phase of the power plant
EP2187051A1 (en) Method and device for intermediate heating in a solar thermal power plant with indirect steam
EP2199547A1 (en) Heat steam producer and method for improved operation of same
WO1997044568A1 (en) Turbine shaft and process for cooling a turbine shaft
EP0918151B1 (en) Device and method to preheat fuel for a combustor
EP2997236B1 (en) Steam turbine
WO2001086121A1 (en) Method for cooling a shaft in a high-pressure expansion section of a steam turbine
EP3850194B1 (en) Steam turbine and method for operating same
WO2007144285A2 (en) Steam power plant
EP2585684B1 (en) Single-casing steam turbine with reheating
WO2001002702A1 (en) Component and method for guiding a hot pressurized medium
EP1788191B1 (en) Steam turbine and method of cooling a steam turbine
DE102004040730B3 (en) Method and apparatus for utilizing waste heat
EP3810907B1 (en) Exhaust gas recirculation in gas and steam turbines plants
EP3728800B1 (en) Power plant
WO2016188671A1 (en) Water/steam circuit of a gas and steam turbine system
EP2877699B1 (en) Low pressure turbine
EP2138677B1 (en) Gas and steam turbine array
WO2016058855A1 (en) Controlled cooling of turbine shafts
WO2018036697A1 (en) Outflow housing of a steam turbine
EP1215368B1 (en) Steam turbines arrangement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201008

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1426462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006830

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006830

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

26N No opposition filed

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230206

Year of fee payment: 6

Ref country code: IT

Payment date: 20230221

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1426462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 7

Ref country code: CZ

Payment date: 20240126

Year of fee payment: 7