EP1780376A1 - Steam turbine - Google Patents

Steam turbine Download PDF

Info

Publication number
EP1780376A1
EP1780376A1 EP05023760A EP05023760A EP1780376A1 EP 1780376 A1 EP1780376 A1 EP 1780376A1 EP 05023760 A EP05023760 A EP 05023760A EP 05023760 A EP05023760 A EP 05023760A EP 1780376 A1 EP1780376 A1 EP 1780376A1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
steam turbine
line
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05023760A
Other languages
German (de)
French (fr)
Inventor
Kai Dr. Wieghardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05023760A priority Critical patent/EP1780376A1/en
Priority to RU2008121935/06A priority patent/RU2410545C2/en
Priority to PL06819128T priority patent/PL1945911T3/en
Priority to DE502006005550T priority patent/DE502006005550D1/en
Priority to JP2008537085A priority patent/JP4662570B2/en
Priority to EP06819128A priority patent/EP1945911B1/en
Priority to CN2006800405336A priority patent/CN101300405B/en
Priority to KR1020087012683A priority patent/KR101014151B1/en
Priority to PCT/EP2006/067717 priority patent/WO2007051733A1/en
Priority to AT06819128T priority patent/ATE450693T1/en
Priority to ES06819128T priority patent/ES2336610T3/en
Priority to US12/084,300 priority patent/US8128341B2/en
Publication of EP1780376A1 publication Critical patent/EP1780376A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Definitions

  • the invention relates to a steam turbine having a housing, wherein a turbine shaft having a thrust balance piston rotatably mounted within the housing and directed along a rotation axis, wherein a flow channel between the housing and the turbine shaft is formed, wherein the turbine shaft in its interior a cooling pipe for guiding Has cooling steam in the direction of the axis of rotation and the cooling line is connected to at least one inflow line for the inflow of cooling steam from the flow channel in the cooling line.
  • a steam turbine is understood to mean any turbine or sub-turbine through which a working medium in the form of steam flows.
  • gas turbines are traversed with gas and / or air as the working medium, which, however, is subject to completely different temperature and pressure conditions than the steam in a steam turbine.
  • gas turbines has steam turbines z. As the one part turbine incoming working fluid with the highest temperature at the same time the highest pressure. An open cooling system, as in gas turbines, is therefore not feasible without external supply.
  • a steam turbine typically includes a vaned rotatably mounted rotor disposed within a casing shell. When flowing through the flow space formed by the housing jacket with heated and pressurized steam, the rotor passes through the blades set the steam in rotation.
  • the rotor-mounted blades are also referred to as blades.
  • usually stationary guide vanes are mounted on the housing jacket, which engage in the intermediate spaces of the moving blades.
  • a vane is typically held at a first location along an interior of the steam turbine casing. In this case, it is usually part of a vane ring, which comprises a number of vanes, which are arranged along an inner circumference on the inside of the steam turbine housing. Each vane has its blade radially inward.
  • a vane ring at a location along the axial extent is also referred to as a vane row. Usually, a number of vane rows are arranged one behind the other.
  • the steam turbine shafts which are rotatably mounted in the steam turbines, are subjected to a great deal of thermal stress during operation.
  • the development and production of a steam turbine shaft is both expensive and time consuming.
  • Steam turbine shafts are considered to be the most stressed and expensive components of a steam turbine. This increasingly applies to high steam temperatures.
  • steam turbines in contrast to the gas turbine, have no compressor unit and, moreover, the shafts of the steam turbine are generally accessible only radially.
  • Piston area is to be understood as the area of a thrust balance piston.
  • the thrust balance piston acts in a steam turbine such that caused by the working fluid force the shaft is formed in one direction a counter force in the opposite direction.
  • a cooling of a steam turbine shaft is inter alia in the EP 0 991 850 B1 described.
  • a compact or high-pressure and medium-pressure turbine part is performed by a compound in the shaft through which a cooling medium can flow.
  • a disadvantage here is felt that between two different expansion sections no controllable bypass can be formed.
  • problems in transient operation are possible.
  • the object of the invention is therefore to provide a steam turbine, which can be operated at high steam temperatures.
  • a steam turbine with a housing, wherein a turbine piston having a thrust balance piston rotatably mounted within the housing and directed along a rotation axis, wherein a flow channel between the housing and the turbine shaft is formed, wherein the turbine shaft in its interior a cooling pipe to Having guidance of cooling steam in the direction of the axis of rotation and the cooling line is connected on the one hand with at least one inflow to the inflow of cooling steam from the flow channel in the cooling line, wherein the cooling line on the other hand is connected to at least one outflow line for guiding cooling steam on a thrust balance piston skirt surface.
  • a steam turbine with a steam turbine shaft which is in each case hollow in the hot during operation and is provided with an internal cooling.
  • the invention is based on the aspect that during operation expanded steam through the shaft interior to the balance piston is guided and there cools the thermally stressed balancing piston.
  • the proposed cooling option especially those steam turbine shafts can be cooled, which have a balance piston.
  • a K partial turbine is to be understood as meaning a compact partial turbine which has a high-pressure and medium-pressure region located on a steam turbine shaft.
  • the steam turbine shaft can be formed on the one hand creep stable and on the other hand reacts flexibly to thermal loads. For example, during a load change in which a higher thermal load can occur, the cooling causes the thermal load of the shaft to eventually decrease. This is especially true for the areas that are particularly thermally stressed, such. B. the inflow or the balance piston.
  • a hollow steam turbine shaft has a lower mass compared to a solid shaft and thus also a lower heat capacity compared to a solid shaft and a larger flowed surface. As a result, a rapid warm-up of the steam turbine shaft is possible.
  • Another aspect of the invention is that the creep strength of the material used for the steam turbine shaft is increased by the improved cooling.
  • the creep rupture strength can be increased by a factor greater than 2 compared to a solid shaft, so that the above-described voltage increase is overcompensated. This leads to an extension of the field of application of the steam turbine shaft.
  • the radial clearance can be reduced by the diameter of the hollow shaft is increased by radial centrifugal forces.
  • the radial centrifugal force is proportional to the square of the speed. An increase in the speed thus causes a reduction of radial play, which leads to an increase in the overall efficiency of the steam turbine.
  • Another aspect of the invention is that hollow shafts can be produced inexpensively.
  • the housing comprises an inner housing and an outer housing.
  • High-pressure turbine sections as well as medium-pressure and compact turbine sections are among the most thermally stable steam turbines.
  • high-pressure, medium-pressure and compact turbine sections with an inner housing are arranged on the vanes and formed around the inner housing arranged outer housing.
  • the turbine shaft has at least two regions made of different materials in the axial direction.
  • High-quality material is generally used in the thermally stressed areas.
  • 10% chromium steel can be used in the thermally stressed areas.
  • 1% chromium steel can be used in the areas of low thermal stress 1% chromium steel.
  • the turbine shaft has three regions of different materials in the axial direction.
  • the two outer regions are made of the same material.
  • targeted material can be selected for the respective area of the steam turbine shaft of different thermal load.
  • the areas comprising different materials are welded together.
  • the welding creates a stable turbine shaft.
  • the regions consisting of different materials are connected to one another by means of a Hirth toothing.
  • the main advantage of the Hirth toothing is the particularly high thermal flexibility of the turbine shaft. Another advantage is that this usually leads to the turbine shaft can be made quickly.
  • the turbine shaft can be formed inexpensively.
  • the two outer regions are designed as a solid shaft and the intermediate region lying between them as a hollow shaft. It is equally advantageous if the regions consisting of different materials are connected to one another by means of a flange connection. This can be helpful during revision work because the different areas can be easily separated from each other.
  • the areas comprising different materials are welded together by at least one weld.
  • the inflow line and the outflow line are integrated in the Hirth toothing.
  • the Hirth toothing which may have a trapezoidal, rectangular or triangular toothing, be made with a recess formed as an inflow and / or outflow line.
  • This has a very easy way to form an inflow and / or outflow line.
  • the recess in the trapezoidal, rectangular or triangular teeth depending on the calculated passage volume of the Cooling steam adapted to be formed.
  • the production of such recesses on a Hirth toothing is relatively simple and can also be carried out quickly. This results in cost advantages.
  • the steam turbine with a return line for the return of a mixed vapor, formed from the cooling steam and a compensating piston leakage, formed, the return flows into the flow channel.
  • the invention is based on the aspect that the cooling steam is mixed with a compensation piston leakage steam and this mixed steam is again supplied to the flow channel to continue to work there.
  • the efficiency of the steam turbine thereby increases.
  • the return line is arranged within the outer housing.
  • the return line can also be designed as a bore in the inner housing.
  • FIG. 1 shows a section through a high-pressure turbine part 1 according to the prior art.
  • the high-pressure turbine part 1 as an embodiment of a steam turbine comprises an outer housing 2 and an inner housing 3 arranged therein.
  • a turbine shaft 5 is rotatably mounted about an axis of rotation 6.
  • the turbine shaft 5 comprises blades 7 arranged in grooves on a surface of the turbine shaft 5.
  • the inner casing 3 has guide vanes arranged in grooves on its inner surface 8 on.
  • the guide 8 and blades 7 are arranged such that in a flow direction 13, a flow channel 9 is formed.
  • the high-pressure turbine section 1 has an inflow region 10, through which live steam flows into the high-pressure turbine section 1 during operation.
  • the live steam may have steam parameters above 300 bar and above 620 ° C.
  • the steam loses in this case to internal energy, which is converted into rotational energy of the turbine shaft 5.
  • the rotation of the turbine shaft 5 finally drives a generator, not shown, for power supply.
  • the high pressure turbine part 1 may drive other plant components other than a generator, such as a compressor, a propeller, or the like.
  • the steam flows through the flow channel 9 and flows out of the high-pressure turbine section 1 from the outlet 33.
  • the steam exerts an action force 11 in the flow direction 13.
  • the result is that the turbine shaft 4 would perform a movement in the flow direction 13.
  • An actual movement of the turbine shaft 5 is prevented by the formation of a balance piston 4.
  • FIG. 2 shows a section of a steam turbine 1.
  • the steam turbine has an outer casing 2, an inner casing 3 and a turbine shaft 5.
  • the steam turbine 1 has moving blades 7 and guide vanes 8.
  • Fresh steam passes through the inflow region 10 via a diagonal stage 15 in the flow channel 9.
  • the steam relaxes and cools down.
  • the internal energy of the steam is converted into rotational energy of the turbine shaft 5.
  • the cooling line 17 is in this case formed as a cavity within the turbine shaft 5.
  • Other embodiments are conceivable. So z. Example, instead of a cavity 17 form a line, not shown, within the turbine shaft 5.
  • the turbine shaft 5 is rotatably mounted within the housing 2, 3 and directed along a rotation axis 6. Between the housing 2, 3 and the turbine shaft 5, a flow channel 9 is formed.
  • the cooling line 17 is in this case designed to guide cooling steam in the direction of the axis of rotation 6.
  • the cooling line 17 is on the one hand fluidly connected to at least one inflow line 16.
  • the inflow line 16 is designed for the inflow of cooling steam from the flow channel 9 into the cooling line 17.
  • the inflow line 16 may in this case be aligned radially with respect to the axis of rotation 6.
  • Other embodiments of the inflow line 16 are conceivable.
  • the inflow line 16 can be designed to be inclined perpendicular to the axis of rotation 6.
  • the cooling line 16 could run in a spiral shape from the flow channel 9 to the cooling line 17.
  • the cross section of the cooling line 16 can vary from the flow channel 9 to the cooling line 17.
  • the cooling line 17 is connected to at least one outflow line 18 for guiding the cooling steam onto a thrust balance piston skirt surface 19.
  • the effluent from the discharge line 18 cooling steam is distributed on the thrust balance piston skirt surface 19 and cools this off.
  • the housing 2, 3 comprises an inner housing 3 and an outer housing 2.
  • the cooling steam flowing out of the discharge line 18 flows in two directions. On the one hand in the direction of the main flow direction 13 and the other in one of the main flow 13 opposite direction.
  • a portion of the live steam flows via the inflow region 10 between the inner casing 3 and the turbine shaft 5 in the direction of the thrust balance piston 4.
  • This so-called piston leakage steam 20 mixes with the cooling steam flowing out of the outflow line and is returned to the flow channel 9 by means of a return line 21. It makes sense that this return line 21 begins between inflow 10 and the outlet of the discharge line 18.
  • a partial flow of the cooling steam can be directed in the direction of the main flow 13 and lock the piston leakage 20. In this way, the above-described cooling of the piston surface 18 is ensured.
  • This mixed steam formed from the cooling steam and a compensating piston leakage steam is flowed in at a suitable point in the flow channel 9 in order to perform work there.
  • the return line 21 may be formed as an external line within the outer housing 2.
  • the return line 21 may also be formed as a bore within the inner housing 3.
  • FIG. 3 shows a turbine shaft 5.
  • the turbine shaft 5 is made of a material that takes into account the thermal stresses. The disadvantage here, however, that the thermal stress is not uniformly distributed on the turbine shaft 5, but as shown earlier, in the region of the inflow 10 and the balance piston 4 is particularly strong. For clarity, the blades 7 are not shown.
  • FIG. 4 shows a further turbine shaft 5, wherein this turbine shaft 5 has at least two regions made of different materials in the flow direction 13.
  • the turbine shaft 5 in the axial flow direction 13 may comprise three regions 24, 23, 22 made of different materials.
  • the central region 22 may for example be made of a temperature-resistant 10% chromium steel and the two outer regions 23 and 24 made of the same material such. B. 1% chromium steel.
  • the turbine shaft 5 is connected by means of welded joints 25 and 26 with each other.
  • the turbine shaft 5 can be designed as a hollow shaft in its central region 22 and in its outer regions 23, 24 as a solid shaft.
  • the turbine shaft 5 can be made of different materials existing areas 22, 23, 24 by means of a flange 40 with each other, wherein the inflow line 16 and the discharge line 18 is integrated in the flange connection.
  • FIG. 5 shows an alternative embodiment of the turbine shaft 5.
  • the difference from the turbine shaft shown in FIG. 4 is that the turbine shaft 5 shown in FIG. 5 is assembled by means of a Hirth gear 27, 28.
  • a tie rod 29 must be formed, which is arranged such that the two outer regions 23 and 24 are pressed against the central region 22.
  • the central region 22 comprises one or more sections which are tubular or disk-shaped are and may each contain one or more blade stages.
  • the turbine shaft 5 is connected to each other by means of a Hirth toothing 30, 31, wherein the inflow line 16 and the discharge line 18 in the Hirth toothing 30, 31 is integrated.
  • FIG. 7 shows a further alternative embodiment of the turbine shaft 5.
  • the turbine shaft 5 comprises at least two regions 22 'and 23' formed of different materials.
  • the area 23 ' is flanged to the area 22'.
  • the screwing takes place by means of suitable expansion shank bolts 39.
  • the flange connection 40 is centered according to the prior art.
  • a thread 41 for grasping the screw 39 is formed in the region 22 '.
  • the screwing of the region 23 'with the region 22' preferably takes place from the cooler side.
  • FIG 8 is a sectional view of the screwed connection of Figure 7 can be seen. It can also be seen in this illustration that the discharge line 18 integrates into the connection through recesses. This is shown in a perspective view of a part of the turbine shaft 5 in FIG.
  • FIG. 10 shows a perspective view of a Hirth toothing 30, 31.
  • the middle region 2 in this case has a Hirth toothing 30, 31 shown in FIG.
  • the two outer regions 24 and 23 made of different materials likewise have a Hirth toothing 30, 31.
  • FIG. 11 shows a cross-sectional view of the Hirth toothing 30, 31.
  • the left part is, for example, the left region 24 and the right part of the central region 22 is connected to one another via the Hirth toothing 30.
  • the inflow line 16 is integrated in the Hirth toothing.
  • the cross-sectional illustration shown in FIG. 11 can also represent the discharge line 18. In this case, the left-hand region would be the middle region 22 and the right-hand region 23 connected via the Hirth toothing 31.
  • the outflow line 18 is integrated in the Hirth toothing 30, 31.
  • the embodiment shown in Figure 11 has a triangular toothing.
  • the inflow line 16 or the outflow line 18 is formed via recesses 32 of the Hirth toothing 30, 31.
  • the Hirth toothing 30, 31 has a trapezoidal toothing. Possible embodiments of the Hirth toothing are a trapezoidal, rectangular or triangular toothing. Other embodiments are possible.
  • FIG. 13 shows the relevant strength values for 1% and 10% chromium steels for steam turbine shafts.
  • the temperature is plotted in a linear scale of 400 to 600 ° C.
  • the creep rupture strength R m is 200,000 h in a linear scale of 30 to 530 N mm 2 applied.
  • the upper curve 37 shows the temperature behavior for the material 30 CrMoNiV5-11 and the lower curve 38 shows the temperature behavior for the material X12CrMoWVNbN10-1-1.
  • the invention is not limited to the formation of a high-pressure turbine part as an embodiment of a steam turbine 1, the turbine shaft 5 according to the invention can also be used in a medium-pressure or a compact turbine part (high pressure and medium pressure within a housing). Likewise, the turbine shaft 5 can be used in other types of steam turbine.

Abstract

Steam turbine (1) has a casing (2,3), a turbine shaft (5) having a thrust-compensating piston (4) is arranged in a rotatably mounted manner inside the casing and is directed along a rotation axis (6). The cooling line (17) is connected to one outflow line (18) for directing cooling steam onto a lateral surface (19) of the thrust-compensating piston.

Description

Die Erfindung betrifft eine Dampfturbine mit einem Gehäuse, wobei eine einen Schubausgleichskolben aufweisende Turbinenwelle drehgelagert innerhalb des Gehäuses angeordnet und entlang einer Rotationsachse gerichtet ist, wobei ein Strömungskanal zwischen dem Gehäuse und der Turbinenwelle ausgebildet ist, wobei die Turbinenwelle in ihrem Inneren eine Kühlleitung zur Führung von Kühldampf in Richtung der Rotationsachse aufweist und die Kühlleitung mit zumindest einer Zuströmleitung zur Zuströmung von Kühldampf aus dem Strömungskanal in die Kühlleitung verbunden ist.The invention relates to a steam turbine having a housing, wherein a turbine shaft having a thrust balance piston rotatably mounted within the housing and directed along a rotation axis, wherein a flow channel between the housing and the turbine shaft is formed, wherein the turbine shaft in its interior a cooling pipe for guiding Has cooling steam in the direction of the axis of rotation and the cooling line is connected to at least one inflow line for the inflow of cooling steam from the flow channel in the cooling line.

Zur Steigerung des Wirkungsgrades einer Dampfturbine trägt die Verwendung von Dampf mit höheren Drücken und Temperaturen bei. Die Verwendung von Dampf mit einem solchen Dampfzustand stellt erhöhte Anforderungen an die entsprechende Dampfturbine.To increase the efficiency of a steam turbine, the use of steam at higher pressures and temperatures helps. The use of steam with such a steam condition places increased demands on the corresponding steam turbine.

Unter einer Dampfturbine im Sinne der vorliegenden Anmeldung wird jede Turbine oder Teilturbine verstanden, die von einem Arbeitsmedium in Form von Dampf durchströmt wird. Im Unterschied dazu werden Gasturbinen mit Gas und/oder Luft als Arbeitsmedium durchströmt, das jedoch völlig anderen Temperatur- und Druckbedingungen unterliegt als der Dampf bei einer Dampfturbine. Im Gegensatz zu Gasturbinen weist bei Dampfturbinen z. B. das einer Teilturbine zuströmende Arbeitsmedium mit der höchsten Temperatur gleichzeitig den höchsten Druck auf. Ein offenes Kühlsystem, wie bei Gasturbinen, ist also nicht ohne externe Zuführung realisierbar.For the purposes of the present application, a steam turbine is understood to mean any turbine or sub-turbine through which a working medium in the form of steam flows. In contrast, gas turbines are traversed with gas and / or air as the working medium, which, however, is subject to completely different temperature and pressure conditions than the steam in a steam turbine. In contrast to gas turbines has steam turbines z. As the one part turbine incoming working fluid with the highest temperature at the same time the highest pressure. An open cooling system, as in gas turbines, is therefore not feasible without external supply.

Eine Dampfturbine umfasst üblicherweise einen mit Schaufeln besetzten drehbar gelagerten Rotor, der innerhalb eines Gehäusemantels angeordnet ist. Bei Durchströmung des vom Gehäusemantel gebildeten Strömungsraumes mit erhitztem und unter Druck stehendem Dampf wird der Rotor über die Schaufeln durch den Dampf in Rotation versetzt. Die am Rotor angebrachten Schaufeln werden auch als Laufschaufeln bezeichnet. Am Gehäusemantel sind darüber hinaus üblicherweise stationäre Leitschaufeln angebracht, welche in die Zwischenräume der Laufschaufeln greifen. Eine Leitschaufel ist üblicherweise an einer ersten Stelle entlang einer Innenseite des Dampfturbinengehäuses gehalten. Dabei ist sie üblicherweise Teil eines Leitschaufelkranzes, welcher eine Anzahl von Leitschaufeln umfasst, die entlang eines Innenumfangs an der Innenseite des Dampfturbinengehäuses angeordnet sind. Dabei weist jede Leitschaufel mit ihrem Schaufelblatt radial nach innen. Ein Leitschaufelkranz an einer Stelle entlang der axialen Ausdehnung wird auch als Leitschaufelreihe bezeichnet. Üblicherweise ist eine Anzahl von Leitschaufelreihen hintereinander angeordnet.A steam turbine typically includes a vaned rotatably mounted rotor disposed within a casing shell. When flowing through the flow space formed by the housing jacket with heated and pressurized steam, the rotor passes through the blades set the steam in rotation. The rotor-mounted blades are also referred to as blades. In addition, usually stationary guide vanes are mounted on the housing jacket, which engage in the intermediate spaces of the moving blades. A vane is typically held at a first location along an interior of the steam turbine casing. In this case, it is usually part of a vane ring, which comprises a number of vanes, which are arranged along an inner circumference on the inside of the steam turbine housing. Each vane has its blade radially inward. A vane ring at a location along the axial extent is also referred to as a vane row. Usually, a number of vane rows are arranged one behind the other.

Eine wesentliche Rolle bei der Steigerung des Wirkungsgrades spielt die Kühlung. Bei den bisher bekannten Kühlmittelmethoden zur Kühlung eines Dampfturbinengehäuses, ist zwischen einer aktiven Kühlung und einer passiven Kühlung zu unterscheiden. Bei einer aktiven Kühlung wird eine Kühlung durch ein dem Dampfturbinengehäuse separat, d. h. zusätzlich zum Arbeitsmedium zugeführtes Kühlmedium bewirkt. Dagegen erfolgt eine passive Kühlung lediglich durch eine geeignete Führung oder Verwendung des Arbeitsmediums. Eine übliche Kühlung eines Dampfturbinengehäuses beschränkt sich auf eine passive Kühlung. So ist beispielsweise bekannt, ein Innengehäuse einer Dampfturbine mit kühlem, bereits expandiertem Dampf zu umströmen. Dies hat jedoch den Nachteil, dass eine Temperaturdifferenz über die Innengehäusewandung beschränkt bleiben muss, da sich sonst bei einer zu großen Temperaturdifferenz das Innengehäuse thermisch zu stark verformen würde. Bei einer Umströmung des Innengehäuses findet zwar eine Wärmeabfuhr statt, jedoch erfolgt die Wärmeabfuhr relativ weit entfernt von der Stelle der Wärmezufuhr. Eine Wärmeabfuhr in unmittelbarer Nähe der Wärmezufuhr ist bisher nicht in ausreichendem Maße verwirklicht worden. Eine weitere passive Kühlung kann mittels einer geeigneten Gestaltung der Expansion des Arbeitsmediums in einer so genannten Diagonalstufe erreicht werden. Hierüber lässt sich allerdings nur eine sehr begrenzte Kühlwirkung auf das Gehäuse erzielen.An essential role in increasing the efficiency plays the cooling. In the previously known coolant methods for cooling a steam turbine housing, a distinction must be made between active cooling and passive cooling. In an active cooling cooling by a steam turbine housing separately, ie in addition to the working medium supplied cooling medium is effected. In contrast, a passive cooling is done only by a suitable leadership or use of the working medium. A conventional cooling of a steam turbine housing is limited to a passive cooling. For example, it is known to flow around an inner casing of a steam turbine with cool, already expanded steam. However, this has the disadvantage that a temperature difference over the Innengehäusewandung must remain limited, otherwise the inner housing would thermally deform too much at too large a temperature difference. Although a heat dissipation takes place in a flow around the inner housing, the heat removal takes place relatively far away from the point of heat supply. Heat removal in the immediate vicinity of the heat supply has not been realized sufficiently. Another passive cooling can be achieved by means of a suitable design of the expansion of the working medium in a so-called diagonal stage become. However, this can only achieve a very limited cooling effect on the housing.

Die in den Dampfturbinen drehbar gelagerten Dampfturbinenwellen werden im Betrieb thermisch sehr beansprucht. Die Entwicklung und Herstellung einer Dampfturbinenwelle ist zugleich teuer und zeitaufwändig. Die Dampfturbinenwellen gelten als die am höchsten beanspruchten und teuersten Komponenten einer Dampfturbine. Dies gilt zunehmend für hohe Dampftemperaturen.The steam turbine shafts, which are rotatably mounted in the steam turbines, are subjected to a great deal of thermal stress during operation. The development and production of a steam turbine shaft is both expensive and time consuming. Steam turbine shafts are considered to be the most stressed and expensive components of a steam turbine. This increasingly applies to high steam temperatures.

Mitunter aufgrund der hohen Massen der Dampfturbinenwellen sind diese thermisch träge, was sich negativ bei einem thermischen Lastwechseln eines Turbosatzes auswirkt. Das bedeutet, dass die Reaktion der gesamten Dampfturbine auf einen Lastwechsel im starken Maße von der Schnelligkeit der Dampfturbinenwelle auf thermisch veränderte Bedingungen reagieren zu können, abhängt. Zur Überwachung der Dampfturbinenwelle wird standardmäßig die Temperatur überwacht, was aufwändig und kostspielig ist.Sometimes due to the high masses of the steam turbine shafts these are thermally inert, which has a negative effect on thermal load changes of a turbine set. This means that the response of the entire steam turbine to a load change depends strongly on the speed of the steam turbine shaft to respond to thermally altered conditions depends. To monitor the steam turbine shaft, the temperature is monitored by default, which is complex and costly.

Eine Eigenschaft der Dampfturbinenwellen ist, dass diese über keine wesentliche Wärmesenke verfügen. Daher gestaltet sich die Kühlung der an der Dampfturbinenwelle angeordneten Laufschaufeln als schwierig.One characteristic of steam turbine shafts is that they have no significant heat sink. Therefore, the cooling of the blades arranged on the steam turbine shaft is difficult.

Zur Verbesserung der Anpassung einer Dampfturbinenwelle auf eine thermische Beanspruchung ist es bekannt, diese im Einströmbereich auszuhöhlen oder als Hohlwelle auszubilden. Diese Hohlräume sind in der Regel abgeschlossen und mit Luft gefüllt.To improve the adaptation of a steam turbine shaft to a thermal stress, it is known to hollow out these in the inflow region or to form it as a hollow shaft. These cavities are usually completed and filled with air.

Allerdings wirken sich die im Betrieb auftretenden hohen Spannungen, die zum großen Teil aus Tangentialspannungen aus der Fliehkraft bestehen, nachteilig auf die vorgenannten Dampfturbinen-Hohlwellen aus. Diese Spannungen sind in etwa doppelt so hoch wie die Spannungen, die bei entsprechenden Vollwellen auftreten würden. Dies hat einen starken Einfluss auf die Werkstoffauswahl der Hohlwellen, was dazu führen kann, dass die Hohlwellen für hohe Dampfzustände nicht geeignet bzw. nicht realisierbar sind.However, the high voltages that occur during operation, which largely consist of tangential stresses from the centrifugal force, have an adverse effect on the aforementioned steam turbine hollow shafts. These voltages are about twice as high as the voltages that would occur at corresponding full waves. This has a strong influence on the choice of material of the hollow shafts, which can lead to the fact that the hollow shafts for high steam conditions are not suitable or not feasible.

Im Gasturbinenbau ist es bekannt, luftgekühlte Hohlwellen als dünnwandige Schweißkonstruktionen auszuführen. Es ist unter anderem bekannt, die Gasturbinenwellen über eine so genannte Hirth-Verzahnung mit Scheiben auszubilden. Diese Gasturbinenwellen weisen dafür einen zentralen Zuganker auf.In gas turbine construction, it is known to carry air-cooled hollow shafts as thin-walled welded constructions. It is known, inter alia, to form the gas turbine shafts via a so-called Hirth toothing with discs. These gas turbine shafts have for this purpose a central tie rod.

Allerdings ist eine direkte Übertragung der Kühlprinzipien bei Gasturbinen auf den Dampfturbinenbau in der Regel nicht möglich, da eine Dampfturbine im Gegensatz zur Gasturbine als geschlossenes System betrieben wird. Darunter ist zu verstehen, dass das Arbeitsmedium in einem Kreislauf sich befindet und nicht in die Umgebung abgeführt wird. Das bei einer Gasturbine eingesetzte Arbeitsmedium, das im Grunde genommen aus Luft und Abgas besteht, wird nach dem Durchtritt durch die Turbineneinheit der Gasturbine in die Umgebung abgegeben.However, a direct transfer of cooling principles in gas turbines on the steam turbine construction is usually not possible, since a steam turbine is operated in contrast to the gas turbine as a closed system. By this is meant that the working fluid is in a circuit and is not discharged into the environment. The working medium used in a gas turbine, which basically consists of air and exhaust gas, is released into the environment after passing through the turbine unit of the gas turbine.

Dampfturbinen weisen darüber hinaus im Gegensatz zur Gasturbine keine Verdichtereinheit auf und des Weiteren sind die Wellen der Dampfturbine im Allgemeinen nur radial zugänglich.In addition, steam turbines, in contrast to the gas turbine, have no compressor unit and, moreover, the shafts of the steam turbine are generally accessible only radially.

Dampfturbinen mit einer Dampfeintrittstemperatur von ungefähr 600°C wurden in den 1950er Jahren entwickelt und gebaut. Diese Dampfturbinen wiesen eine radiale Beschaufelung auf. Der heutige Stand der Technik im Dampfturbinenbau umfasst Wellenkühlungen mit radialer Anordnung der ersten Leitschaufelreihe in Form von Diagonal- oder Regelstufen auf. Nachteilig bei dieser Ausführungsform ist jedoch die geringe Kühlwirkung dieser Diagonal- oder Regelstufen.Steam turbines with a steam inlet temperature of about 600 ° C were developed and built in the 1950s. These steam turbines had a radial blading. The current state of the art in steam turbine construction includes shaft cooling with radial arrangement of the first row of vanes in the form of diagonal or control stages. A disadvantage of this embodiment, however, is the low cooling effect of these diagonal or control stages.

Besonders thermisch belastet werden bei den Dampfturbinenwellen die Kolben- und Einströmbereiche. Mit Kolbenbereich ist der Bereich eines Schubausgleichskolbens zu verstehen. Der Schubausgleichskolben wirkt in einer Dampfturbine derart, dass eine durch das Arbeitsmedium hervorgerufene Kraft auf die Welle in einer Richtung eine Gegenkraft in Gegenrichtung ausgebildet wird.The piston and inflow areas are particularly thermally stressed in the steam turbine shafts. Piston area is to be understood as the area of a thrust balance piston. The thrust balance piston acts in a steam turbine such that caused by the working fluid force the shaft is formed in one direction a counter force in the opposite direction.

Eine Kühlung einer Dampfturbinenwelle ist unter anderem in der EP 0 991 850 B1 beschrieben. Dabei wird eine Kompakt- bzw. Hochdruck- und Mitteldruck-Teilturbine durch eine Verbindung in der Welle, durch die ein Kühlmedium strömen kann, ausgeführt. Als nachteilig wird hierbei empfunden, dass zwischen zwei verschiedenen Expansionsabschnitten kein regelbarer Bypass ausgebildet werden kann. Darüber hinaus sind Probleme im instationären Betrieb möglich.A cooling of a steam turbine shaft is inter alia in the EP 0 991 850 B1 described. In this case, a compact or high-pressure and medium-pressure turbine part is performed by a compound in the shaft through which a cooling medium can flow. A disadvantage here is felt that between two different expansion sections no controllable bypass can be formed. In addition, problems in transient operation are possible.

Wünschenswert wäre es, eine Dampfturbine auszubilden, die für hohe Temperaturen geeignet ist.It would be desirable to form a steam turbine that is suitable for high temperatures.

Aufgabe der Erfindung ist es daher, eine Dampfturbine anzugeben, die bei hohen Dampftemperaturen betrieben werden kann.The object of the invention is therefore to provide a steam turbine, which can be operated at high steam temperatures.

Gelöst wird diese Aufgabe durch eine Dampfturbine mit einem Gehäuse, wobei eine einen Schubausgleichskolben aufweisende Turbinenwelle drehgelagert innerhalb des Gehäuses angeordnet und entlang einer Rotationsachse gerichtet ist, wobei ein Strömungskanal zwischen dem Gehäuse und der Turbinenwelle ausgebildet ist, wobei die Turbinenwelle in ihrem Inneren eine Kühlleitung zur Führung von Kühldampf in Richtung der Rotationsachse aufweist und die Kühlleitung einerseits mit zumindest einer Zuströmleitung zur Zuströmung von Kühldampf aus dem Strömungskanal in die Kühlleitung verbunden ist, wobei die Kühlleitung andererseits mit zumindest einer Abströmleitung zur Führung von Kühldampf auf eine Schubausgleichskolbenmanteloberfläche verbunden ist.This object is achieved by a steam turbine with a housing, wherein a turbine piston having a thrust balance piston rotatably mounted within the housing and directed along a rotation axis, wherein a flow channel between the housing and the turbine shaft is formed, wherein the turbine shaft in its interior a cooling pipe to Having guidance of cooling steam in the direction of the axis of rotation and the cooling line is connected on the one hand with at least one inflow to the inflow of cooling steam from the flow channel in the cooling line, wherein the cooling line on the other hand is connected to at least one outflow line for guiding cooling steam on a thrust balance piston skirt surface.

Es wird somit eine Dampfturbine mit einer Dampfturbinenwelle vorgeschlagen, die in den während des Betriebes heißen Bereichen jeweils hohl ist und mit einer internen Kühlung versehen ist. Die Erfindung geht von dem Aspekt aus, dass während des Betriebes expandierter Dampf durch das Welleninnere zum Ausgleichskolben geführt wird und dort den thermisch sehr beanspruchten Ausgleichskolben kühlt. Mit der vorgeschlagenen Kühlmöglichkeit können vor allem diejenigen Dampfturbinenwellen gekühlt werden, die einen Ausgleichskolben aufweisen. Dies wären z. B. Hochdruck-, Mitteldruck- sowie K-Teilturbinen. Wobei unter einer K-Teilturbine eine Kompakt-Teilturbine zu verstehen ist, die einen auf einer Dampfturbinenwelle befindlichen Hochdruck- und Mitteldruckbereich aufweist. Der Vorteil der Erfindung ist unter anderem darin zu sehen, dass die Dampfturbinenwelle zum einen kriechstabil ausgebildet werden kann und zum anderen flexibel auf thermische Belastungen reagiert. Bei einem Lastwechsel beispielsweise, bei dem eine höhere thermische Belastung auftreten kann, führt die Kühlung dazu, dass die thermische Belastung der Welle schließlich abnimmt. Dies gilt insbesondere für die Bereiche, die besonders thermisch belastet sind, wie z. B. der Einströmbereich oder der Ausgleichskolben.It is thus proposed a steam turbine with a steam turbine shaft, which is in each case hollow in the hot during operation and is provided with an internal cooling. The invention is based on the aspect that during operation expanded steam through the shaft interior to the balance piston is guided and there cools the thermally stressed balancing piston. With the proposed cooling option, especially those steam turbine shafts can be cooled, which have a balance piston. This would be z. B. high pressure, medium pressure and K-part turbines. Whereby a K partial turbine is to be understood as meaning a compact partial turbine which has a high-pressure and medium-pressure region located on a steam turbine shaft. The advantage of the invention is to be seen, inter alia, that the steam turbine shaft can be formed on the one hand creep stable and on the other hand reacts flexibly to thermal loads. For example, during a load change in which a higher thermal load can occur, the cooling causes the thermal load of the shaft to eventually decrease. This is especially true for the areas that are particularly thermally stressed, such. B. the inflow or the balance piston.

Dadurch ist ein schnelles Anfahren der Dampfturbine möglich, was für die heutige Zeit einen besonderen Aspekt darstellt, bei dem es darum geht, Energie schnell zur Verfügung zu stellen. Des Weiteren entsteht ein Vorteil durch die erfindungsgemäße Dampfturbine dadurch, dass die Kosten für eine Wellenüberwachung geringer ausfallen können. Eine hohle Dampfturbinenwelle weist eine geringere Masse gegenüber einer Vollwelle auf und dadurch auch eine geringere Wärmekapazität gegenüber einer Vollwelle sowie eine größere beströmte Oberfläche. Dadurch ist ein schnelles Aufwärmen der Dampfturbinenwelle möglich.This allows a quick start-up of the steam turbine, which is a special aspect for the present time, which is about providing energy quickly available. Furthermore, there is an advantage of the steam turbine according to the invention in that the costs for wave monitoring can be lower. A hollow steam turbine shaft has a lower mass compared to a solid shaft and thus also a lower heat capacity compared to a solid shaft and a larger flowed surface. As a result, a rapid warm-up of the steam turbine shaft is possible.

Ein weiterer Aspekt der Erfindung ist, dass die Zeitstandsfestigkeit des für die Dampfturbinenwelle eingesetzten Materials durch die verbesserte Kühlung erhöht wird. Die Zeitstandsfestigkeit kann hierbei um einen Faktor größer als 2 gegenüber einer Vollwelle erhöht werden, sodass die oben beschriebene Spannungserhöhung überkompensiert wird. Dies führt zu einer Erweiterung des Einsatzbereiches der Dampfturbinenwelle.Another aspect of the invention is that the creep strength of the material used for the steam turbine shaft is increased by the improved cooling. The creep rupture strength can be increased by a factor greater than 2 compared to a solid shaft, so that the above-described voltage increase is overcompensated. This leads to an extension of the field of application of the steam turbine shaft.

Ein weiterer Aspekt der Erfindung ist es, dass die Radialspiele verkleinert werden können, indem der Durchmesser der Hohlwelle durch radiale Fliehkräfte vergrößert wird. Die radiale Fliehkraft ist proportional zum Quadrat der Drehzahl. Eine Vergrößerung der Drehzahl bewirkt demnach eine Verkleinerung von Radialspielen, was zu einer Steigerung des Gesamtwirkungsgrades der Dampfturbine führt.Another aspect of the invention is that the radial clearance can be reduced by the diameter of the hollow shaft is increased by radial centrifugal forces. The radial centrifugal force is proportional to the square of the speed. An increase in the speed thus causes a reduction of radial play, which leads to an increase in the overall efficiency of the steam turbine.

Ein weiterer Aspekt der Erfindung ist es, dass Hohlwellen kostengünstig hergestellt werden können.Another aspect of the invention is that hollow shafts can be produced inexpensively.

In einer vorteilhaften Weiterbildung umfasst das Gehäuse ein Innengehäuse und ein Außengehäuse. Hochdruck-Teilturbinen als auch Mitteldruck- und Kompakt-Teilturbinen gehören zu den am thermisch belastbarsten Dampfturbinen. In der Regel werden Hochdruck-, Mitteldruck- sowie Kompakt-Teilturbinen mit einem Innengehäuse, an dem Leitschaufeln angeordnet sind und einem um das Innengehäuse angeordneten Außengehäuse ausgebildet.In an advantageous development, the housing comprises an inner housing and an outer housing. High-pressure turbine sections as well as medium-pressure and compact turbine sections are among the most thermally stable steam turbines. In general, high-pressure, medium-pressure and compact turbine sections with an inner housing, are arranged on the vanes and formed around the inner housing arranged outer housing.

In einer vorteilhaften Weiterbildung weist die Turbinenwelle in axialer Richtung zumindest zwei Bereiche aus verschiedenen Materialien auf.In an advantageous development, the turbine shaft has at least two regions made of different materials in the axial direction.

Dadurch können Kosten eingespart werden. In den thermisch belasteten Bereichen wird in der Regel hochwertiges Material eingesetzt. Beispielsweise kann in den thermisch belasteten Bereichen 10%iger Chromstahl verwendet werden. Wohingegen in den Bereichen niedriger thermischer Belastung 1%iger Chromstahl verwendet werden kann.This can save costs. High-quality material is generally used in the thermally stressed areas. For example, 10% chromium steel can be used in the thermally stressed areas. Whereas in the areas of low thermal stress 1% chromium steel can be used.

Zweckdienlicherweise weist die Turbinenwelle in axialer Richtung drei Bereiche aus verschiedenen Materialien auf. Insbesondere bestehen die beiden äußeren Bereiche aus dem gleichen Material. Dadurch kann zielgerichtet geeignetes Material für den jeweiligen Bereich der Dampfturbinenwelle unterschiedlicher thermischer Belastung ausgewählt werden.Conveniently, the turbine shaft has three regions of different materials in the axial direction. In particular, the two outer regions are made of the same material. As a result, targeted material can be selected for the respective area of the steam turbine shaft of different thermal load.

Vorteilhafterweise werden die aus verschiedenen Materialien umfassenden Bereiche miteinander verscheißt. Durch die Schweißung wird eine stabile Turbinenwelle ausgebildet.Advantageously, the areas comprising different materials are welded together. The welding creates a stable turbine shaft.

In einer weiteren vorteilhaften alternativen Ausführungsform sind die aus verschiedenen Materialien bestehenden Bereiche mittels einer Hirth-Verzahnung miteinander verbunden. Der wesentliche Vorteil der Hirth-Verzahnung ist die besonders hohe thermische Flexibilität der Turbinenwelle. Ein weiterer Vorteil liegt darin, dass diese in der Regel dazu führt, dass die Turbinenwelle schnell gefertigt werden kann. Darüber hinaus kann die Turbinenwelle kostengünstig ausgebildet werden.In a further advantageous alternative embodiment, the regions consisting of different materials are connected to one another by means of a Hirth toothing. The main advantage of the Hirth toothing is the particularly high thermal flexibility of the turbine shaft. Another advantage is that this usually leads to the turbine shaft can be made quickly. In addition, the turbine shaft can be formed inexpensively.

In einer weiteren vorteilhaften Weiterbildung sind die beiden äußeren Bereiche als Vollwelle und der dazwischen liegende mittlere Bereich als Hohlwelle ausgebildet. Ebenso vorteilhaft ist es, wenn die aus verschiedenen Materialien bestehenden Bereiche mittels einer Flanschverbindung miteinander verbunden sind. Dies kann bei Revisionsarbeiten hilfreich sein, da die verschiedenen Bereiche voneinander leicht getrennt werden können.In a further advantageous development, the two outer regions are designed as a solid shaft and the intermediate region lying between them as a hollow shaft. It is equally advantageous if the regions consisting of different materials are connected to one another by means of a flange connection. This can be helpful during revision work because the different areas can be easily separated from each other.

Ebenso ist es vorteilhaft, wenn die Zuströmleitung und die Abströmleitung in der Flanschverbindung integriert sind.It is likewise advantageous if the inflow line and the outflow line are integrated in the flange connection.

Zweckdienlicherweise werden die aus verschiedenen Materialien umfassenden Bereiche durch mindestens eine Schweißnaht miteinander verschweißt.Conveniently, the areas comprising different materials are welded together by at least one weld.

Sehr vorteilhaft ist es, wenn die Zuströmleitung und die Abströmleitung in der Hirth-Verzahnung integriert sind. Dabei kann die Hirth-Verzahnung, die eine Trapez-, rechteckige oder dreieckige Verzahnung aufweisen kann, mit einer als Zuström- und/oder Abströmleitung ausgebildeten Ausnehmung gefertigt sein. Dadurch hat man eine sehr einfache Möglichkeit, eine Zuström- und/oder Abströmleitung auszubilden. Beispielsweise kann die Ausnehmung in der Trapez-, rechteckigen oder dreieckigen Verzahnung je nach berechnetem Durchtrittsvolumen des Kühldampfes angepasst ausgebildet sein. Die Fertigung solcher Ausnehmungen auf einer Hirth-Verzahnung ist vergleichsweise einfach und kann darüber hinaus schnell durchgeführt werden. Dadurch entstehen Kostenvorteile.It is very advantageous if the inflow line and the outflow line are integrated in the Hirth toothing. In this case, the Hirth toothing, which may have a trapezoidal, rectangular or triangular toothing, be made with a recess formed as an inflow and / or outflow line. This has a very easy way to form an inflow and / or outflow line. For example, the recess in the trapezoidal, rectangular or triangular teeth depending on the calculated passage volume of the Cooling steam adapted to be formed. The production of such recesses on a Hirth toothing is relatively simple and can also be carried out quickly. This results in cost advantages.

In einer vorteilhaften Weiterbildung ist die Dampfturbine mit einer Rückführungsleitung zur Rückführung eines Mischdampfes, gebildet aus dem Kühldampf und einem Ausgleichskolbenleckdampf, ausgebildet, wobei die Rückführung in den Strömungskanal mündet.In an advantageous development, the steam turbine with a return line for the return of a mixed vapor, formed from the cooling steam and a compensating piston leakage, formed, the return flows into the flow channel.

Dabei geht die Erfindung von dem Aspekt aus, dass der Kühldampf mit einem Ausgleichskolbenleckdampf vermischt wird und dieser gebildete Mischdampf wieder dem Strömungskanal zugeführt wird um dort weiter Arbeit zu leisten. Der Wirkungsgrad der Dampfturbine erhöht sich dadurch.The invention is based on the aspect that the cooling steam is mixed with a compensation piston leakage steam and this mixed steam is again supplied to the flow channel to continue to work there. The efficiency of the steam turbine thereby increases.

Vorteilhafterweise wird die Rückführungsleitung innerhalb des Außengehäuses angeordnet. Die Rückführungsleitung kann auch als Bohrung im Innengehäuse ausgebildet sein.Advantageously, the return line is arranged within the outer housing. The return line can also be designed as a bore in the inner housing.

Ausführungsbeispiele der Erfindung werden anhand der nachfolgenden Zeichnungen näher erläutert. Dabei haben Komponenten mit den gleichen Bezugszeichen die gleiche Funktionsweise.Embodiments of the invention will be explained in more detail with reference to the following drawings. In this case, components with the same reference numerals have the same functionality.

Es zeigen

Figur 1
eine Querschnittsansicht einer Hochdruck-Teilturbine gemäß dem Stand der Technik,
Figur 2
einen Schnitt durch einen Teil einer Teilturbine,
Figur 3
einen Schnitt durch eine Turbinenwelle,
Figur 4
einen Schnitt durch eine Turbinenwelle in alternativer Ausführungsform,
Figur 5
einen Schnitt durch eine Turbinewelle in alternativer Ausführungsform,
Figur 6
einen Schnitt durch eine Turbinenwelle in alternativer Ausführungsform,
Figur 7
einen Schnitt durch eine Turbinenwelle in alternativer Ausführungsform,
Figur 8
eine vergrößerte Darstellung einer Flanschverbindung,
Figur 9
eine perspektivische Darstellung eines Teiles der Flanschverbindung,
Figur 10
eine perspektivische Darstellung des Prinzips einer Hirth-Verzahnung,
Figur 11
eine Schnittdarstellung einer Hirth-Verzahnung mit Durchlasskanälen in Dreieck-Form,
Figur 12
einen Schnitt durch eine Hirth-Verzahnung in Trapezform mit Durchgangsbohrungen,
Figur 13
Kurve mit Darstellung der relativen Zeitstandsfestigkeit in Abhängigkeit der Temperatur.
Show it
FIG. 1
a cross-sectional view of a high pressure turbine part according to the prior art,
FIG. 2
a section through a part of a sub-turbine,
FIG. 3
a section through a turbine shaft,
FIG. 4
a section through a turbine shaft in an alternative embodiment,
FIG. 5
a section through a turbine shaft in an alternative embodiment,
FIG. 6
a section through a turbine shaft in an alternative embodiment,
FIG. 7
a section through a turbine shaft in an alternative embodiment,
FIG. 8
an enlarged view of a flange connection,
FIG. 9
a perspective view of a part of the flange,
FIG. 10
a perspective view of the principle of a Hirth toothing,
FIG. 11
a sectional view of a Hirth toothing with passage channels in a triangular shape,
FIG. 12
a section through a Hirth toothing in trapezoidal shape with through holes,
FIG. 13
Curve showing relative creep rupture strength as a function of temperature.

In der Figur 1 ist ein Schnitt durch eine Hochdruck-Teilturbine 1 gemäß dem Stand der Technik dargestellt. Die Hochdruck-Teilturbine 1 als Ausführungsform einer Dampfturbine umfasst ein Außengehäuse 2 und ein darin angeordnetes Innengehäuse 3. Innerhalb des Innengehäuses 3 ist eine Turbinenwelle 5 um eine Rotationsachse 6 drehbar gelagert. Die Turbinenwelle 5 umfasst in Nuten auf einer Oberfläche der Turbinenwelle 5 angeordnete Laufschaufeln 7. Das Innengehäuse 3 weist an seiner Innenfläche in Nuten angeordnete Leitschaufeln 8 auf. Die Leit- 8 und Laufschaufeln 7 sind derart angeordnet, dass in einer Strömungsrichtung 13 ein Strömungskanal 9 ausgebildet ist. Die Hochdruck-Teilturbine 1 weist einen Einströmbereich 10 auf, durch den im Betrieb Frischdampf in die Hochdruck-Teilturbine 1 einströmt. Der Frischdampf kann Dampfparameter von über 300 bar und über 620°C aufweisen. Der in die Strömungsrichtung 13 sich entspannende Frischdampf strömt abwechselnd an den Leit- 8 und Laufschaufeln 7 vorbei, entspannt sich und kühlt sich ab. Der Dampf verliert hierbei an innerer Energie, der in Rotationsenergie der Turbinenwelle 5 umgewandelt wird. Die Rotation der Turbinenwelle 5 treibt schließlich einen nicht dargestellten Generator zur Energieversorgung an. Die Hochdruck-Teilturbine 1 kann selbstverständlich andere Anlagenkomponenten außer einem Generator antreiben, beispielsweise einen Verdichter, eine Schiffsschraube oder ähnliches. Der Dampf durchströmt den Strömungskanal 9 und strömt aus der Hochdruck-Teilturbine 1 aus dem Auslass 33 aus. Der Dampf übt hierbei eine Aktionskraft 11 in Strömungsrichtung 13 aus. Die Folge ist, dass die Turbinenwelle 4 eine Bewegung in Strömungsrichtung 13 vollziehen würde. Eine tatsächliche Bewegung der Turbinenwelle 5 wird durch die Ausbildung eines Ausgleichskolbens 4 verhindert. Dies geschieht, indem in einem Ausgleichskolbenvorraum 12 Dampf mit entsprechendem Druck eingeströmt wird, der dazu führt, dass infolge des sich aufbauenden Druckes im Ausgleichskolbenvorraum 12 eine Kraft entgegen der Strömungsrichtung 13 entsteht, die idealerweise genauso groß sein sollte wie die Aktionskraft 11. Der in dem Ausgleichskolbenvorraum 12 eingeströmte Dampf ist in der Regel abgezweigter Frischdampf, der sehr hohe Temperaturparameter aufweist. Demzufolge werden der Einströmbereich 10 und der Ausgleichskolben 4 der Turbinenwelle thermisch stark beansprucht.FIG. 1 shows a section through a high-pressure turbine part 1 according to the prior art. The high-pressure turbine part 1 as an embodiment of a steam turbine comprises an outer housing 2 and an inner housing 3 arranged therein. Within the inner housing 3, a turbine shaft 5 is rotatably mounted about an axis of rotation 6. The turbine shaft 5 comprises blades 7 arranged in grooves on a surface of the turbine shaft 5. The inner casing 3 has guide vanes arranged in grooves on its inner surface 8 on. The guide 8 and blades 7 are arranged such that in a flow direction 13, a flow channel 9 is formed. The high-pressure turbine section 1 has an inflow region 10, through which live steam flows into the high-pressure turbine section 1 during operation. The live steam may have steam parameters above 300 bar and above 620 ° C. The relaxing in the flow direction 13 live steam flows alternately past the guide 8 and blades 7, relaxes and cools down. The steam loses in this case to internal energy, which is converted into rotational energy of the turbine shaft 5. The rotation of the turbine shaft 5 finally drives a generator, not shown, for power supply. Of course, the high pressure turbine part 1 may drive other plant components other than a generator, such as a compressor, a propeller, or the like. The steam flows through the flow channel 9 and flows out of the high-pressure turbine section 1 from the outlet 33. The steam exerts an action force 11 in the flow direction 13. The result is that the turbine shaft 4 would perform a movement in the flow direction 13. An actual movement of the turbine shaft 5 is prevented by the formation of a balance piston 4. This is done by 12 steam is flowed in a Ausgleichskolbenvorraum with a corresponding pressure, which leads to the fact that due to the building up pressure in Ausgleichskolbenvorraum 12 a force against the flow direction 13 is formed, which ideally should be just as large as the action force 11. Der in the Ausgleichskolbenvorraum 12 incoming steam is usually branched live steam, which has very high temperature parameters. As a result, the inflow region 10 and the compensating piston 4 of the turbine shaft are subjected to high thermal stress.

In der Figur 2 ist ein Ausschnitt einer Dampfturbine 1 dargestellt. Die Dampfturbine weist ein Außengehäuse 2, ein Innengehäuse 3 und eine Turbinenwelle 5 auf. Die Dampfturbine 1 weist Laufschaufeln 7 und Leitschaufeln 8 auf. Frischdampf gelangt über den Einströmbereich 10 über eine Diagonalstufe 15 in den Strömungskanal 9. Der Dampf entspannt und kühlt sich dabei ab. Die innere Energie des Dampfes wird in Rotationsenergie der Turbinenwelle 5 umgewandelt.FIG. 2 shows a section of a steam turbine 1. The steam turbine has an outer casing 2, an inner casing 3 and a turbine shaft 5. The steam turbine 1 has moving blades 7 and guide vanes 8. Fresh steam passes through the inflow region 10 via a diagonal stage 15 in the flow channel 9. The steam relaxes and cools down. The internal energy of the steam is converted into rotational energy of the turbine shaft 5.

Der Dampf wird nach einer bestimmten Anzahl von Turbinenstufen, die aus Leit- 8 und Laufschaufeln 7 gebildet werden, über eine Zuströmleitung 16 mit einer Kühlleitung 17 strömungstechnisch verbunden. Die Kühlleitung 17 ist hierbei als Hohlraum innerhalb der Turbinenwelle 5 ausgebildet. Andere Ausführungsformen sind denkbar. So ist z. B. möglich, statt eines Hohlraums 17 eine nicht dargestellte Leitung innerhalb der Turbinenwelle 5 auszubilden.After a certain number of turbine stages, which are formed by guide vanes 8 and rotor blades 7, the steam is fluidly connected to a cooling line 17 via an inflow line 16. The cooling line 17 is in this case formed as a cavity within the turbine shaft 5. Other embodiments are conceivable. So z. Example, instead of a cavity 17 form a line, not shown, within the turbine shaft 5.

Die Turbinenwelle 5 ist drehgelagert innerhalb des Gehäuses 2, 3 angeordnet und entlang einer Rotationsachse 6 gerichtet. Zwischen dem Gehäuse 2, 3 und der Turbinenwelle 5 wird ein Strömungskanal 9 ausgebildet. Die Kühlleitung 17 ist hierbei zur Führung von Kühldampf in Richtung der Rotationsachse 6 ausgebildet. Die Kühlleitung 17 ist einerseits mit zumindest einer Zuströmungsleitung 16 strömungstechnisch verbunden. Die Zuströmleitung 16 ist zur Zuströmung von Kühldampf aus dem Strömungskanal 9 in die Kühlleitung 17 ausgebildet.The turbine shaft 5 is rotatably mounted within the housing 2, 3 and directed along a rotation axis 6. Between the housing 2, 3 and the turbine shaft 5, a flow channel 9 is formed. The cooling line 17 is in this case designed to guide cooling steam in the direction of the axis of rotation 6. The cooling line 17 is on the one hand fluidly connected to at least one inflow line 16. The inflow line 16 is designed for the inflow of cooling steam from the flow channel 9 into the cooling line 17.

Die Zuströmleitung 16 kann hierbei radial zur Rotationsachse 6 ausgerichtet sein. Andere Ausführungsformen der Zuströmleitung 16 sind denkbar. So kann beispielsweise die Zuströmleitung 16 senkrecht zur Rotationsachse 6 geneigt ausgebildet sein. Die Kühlleitung 16 könnte spiralförmig von dem Strömungskanal 9 zur Kühlleitung 17 verlaufen. Der Querschnitt der Kühlleitung 16 kann von dem Strömungskanal 9 zur Kühlleitung 17 variieren.The inflow line 16 may in this case be aligned radially with respect to the axis of rotation 6. Other embodiments of the inflow line 16 are conceivable. Thus, for example, the inflow line 16 can be designed to be inclined perpendicular to the axis of rotation 6. The cooling line 16 could run in a spiral shape from the flow channel 9 to the cooling line 17. The cross section of the cooling line 16 can vary from the flow channel 9 to the cooling line 17.

Die Kühlleitung 17 ist andererseits mit zumindest einer Abströmleitung 18 zur Führung des Kühldampfes auf eine Schubausgleichskolbenmanteloberfläche 19 verbunden.On the other hand, the cooling line 17 is connected to at least one outflow line 18 for guiding the cooling steam onto a thrust balance piston skirt surface 19.

Der aus der Abströmleitung 18 ausströmende Kühldampf verteilt sich auf der Schubausgleichskolbenmanteloberfläche 19 und kühlt hierbei diese ab.The effluent from the discharge line 18 cooling steam is distributed on the thrust balance piston skirt surface 19 and cools this off.

Das Gehäuse 2, 3 umfasst ein Innengehäuse 3 und ein Außengehäuse 2. Der aus der Abströmleitung 18 ausströmende Kühldampf strömt in zwei Richtungen. Zum einen in Richtung der Hauptströmungsrichtung 13 und zum anderen in einer der Hauptströmung 13 entgegen gesetzten Richtung. Über den Einströmbereich 10 strömt ein Teil des Frischdampfes zwischen dem Innengehäuse 3 und der Turbinenwelle 5 in Richtung des Schubausgleichskolbens 4. Dieser so genannte Kolbenleckdampf 20 vermischt sich mit dem aus der Abströmleitung ausströmenden Kühldampf und wird mittels einer Rückführungsleitung 21 in den Strömungskanal 9 zurückgeführt. Sinnvollerweise beginnt diese Rückführungsleitung 21 zwischen Einströmung 10 und dem Austritt der Abströmleitung 18. Somit kann ein Teilstrom des Kühldampfes in Richtung der Hauptströmung 13 geleitet werden und den Kolbenleckdampf 20 sperren. Auf diese Weise wird die oben beschriebene Kühlung der Kolbenoberfläche 18 sichergestellt. Dieser aus dem Kühldampf und einem Ausgleichskolbenleckdampf gebildete Mischdampf wird an geeigneter Stelle im Strömungskanal 9 eingeströmt um dort Arbeit zu leisten.The housing 2, 3 comprises an inner housing 3 and an outer housing 2. The cooling steam flowing out of the discharge line 18 flows in two directions. On the one hand in the direction of the main flow direction 13 and the other in one of the main flow 13 opposite direction. A portion of the live steam flows via the inflow region 10 between the inner casing 3 and the turbine shaft 5 in the direction of the thrust balance piston 4. This so-called piston leakage steam 20 mixes with the cooling steam flowing out of the outflow line and is returned to the flow channel 9 by means of a return line 21. It makes sense that this return line 21 begins between inflow 10 and the outlet of the discharge line 18. Thus, a partial flow of the cooling steam can be directed in the direction of the main flow 13 and lock the piston leakage 20. In this way, the above-described cooling of the piston surface 18 is ensured. This mixed steam formed from the cooling steam and a compensating piston leakage steam is flowed in at a suitable point in the flow channel 9 in order to perform work there.

Die Rückführungsleitung 21 kann als externe Leitung innerhalb des Außengehäuses 2 ausgebildet sein. Die Rückführungsleitung 21 kann auch als Bohrung innerhalb des Innengehäuses 3 ausgebildet sein.The return line 21 may be formed as an external line within the outer housing 2. The return line 21 may also be formed as a bore within the inner housing 3.

In der Figur 3 ist eine Turbinenwelle 5 dargestellt. Die Turbinenwelle 5 ist aus einem Material gefertigt, das den thermischen Beanspruchungen Rechnung trägt. Nachteilig ist hierbei allerdings, dass die thermische Beanspruchung nicht gleichmäßig auf der Turbinenwelle 5 verteilt ist, sondern wie weiter vorne dargestellt, im Bereich der Einströmung 10 und des Ausgleichskolbens 4 besonders stark ist. Der Übersichtlichkeit wegen sind die Laufschaufeln 7 nicht dargestellt.FIG. 3 shows a turbine shaft 5. The turbine shaft 5 is made of a material that takes into account the thermal stresses. The disadvantage here, however, that the thermal stress is not uniformly distributed on the turbine shaft 5, but as shown earlier, in the region of the inflow 10 and the balance piston 4 is particularly strong. For clarity, the blades 7 are not shown.

Durch die Schraffur in der Figur 3 ist deutlich gemacht, dass die Turbinenwelle 5 aus einem Material ausgebildet ist.The hatching in FIG. 3 makes it clear that the turbine shaft 5 is formed from a material.

In der Figur 4 ist eine weitere Turbinenwelle 5 dargestellt, wobei diese Turbinenwelle 5 in Strömungsrichtung 13 zumindest zwei Bereiche aus verschiedenen Materialien aufweist. In alternativen Ausführungsformen kann die Turbinenwelle 5 in axialer Strömungsrichtung 13 drei Bereiche 24, 23, 22 aus verschiedenen Materialien aufweisen. Der mittlere Bereich 22 kann beispielsweise aus einem temperaturfesten 10%igen Chromstahl sein und die beiden äußeren Bereiche 23 und 24 aus dem gleichen Material wie z. B. 1%igem Chromstahl bestehen. In der in Figur 4 dargestellten Ausführungsform wird die Turbinenwelle 5 mittels Schweißverbindungen 25 und 26 miteinander verbunden.FIG. 4 shows a further turbine shaft 5, wherein this turbine shaft 5 has at least two regions made of different materials in the flow direction 13. In alternative embodiments, the turbine shaft 5 in the axial flow direction 13 may comprise three regions 24, 23, 22 made of different materials. The central region 22 may for example be made of a temperature-resistant 10% chromium steel and the two outer regions 23 and 24 made of the same material such. B. 1% chromium steel. In the embodiment shown in Figure 4, the turbine shaft 5 is connected by means of welded joints 25 and 26 with each other.

Die Turbinenwelle 5 kann in ihrem mittleren Bereich 22 als Hohlwelle und in ihren äußeren Bereichen 23, 24 als Vollwelle ausgeführt werden.The turbine shaft 5 can be designed as a hollow shaft in its central region 22 and in its outer regions 23, 24 as a solid shaft.

Sofern die Bereiche 22, 23, 24 miteinander verschweißt werden, wird mindestens eine Schweißnaht verwendet.If the areas 22, 23, 24 are welded together, at least one weld is used.

Die Turbinenwelle 5 kann aus verschiedenen Materialien bestehenden Bereiche 22, 23, 24 mittels einer Flanschverbindung 40 miteinander verbunden werden, wobei die Zuströmleitung 16 und die Abströmleitung 18 in der Flanschverbindung integriert ist.The turbine shaft 5 can be made of different materials existing areas 22, 23, 24 by means of a flange 40 with each other, wherein the inflow line 16 and the discharge line 18 is integrated in the flange connection.

In der Figur 5 ist eine alternative Ausführungsform der Turbinenwelle 5 dargestellt. Der Unterschied zu der in Figur 4 dargestellten Turbinenwelle ist der, dass die in Figur 5 dargestellte Turbinenwelle 5 mittels einer Hirth-Verzahnung 27, 28 zusammengesetzt ist. Dabei muss ein Zuganker 29 ausgebildet werden, der derart angeordnet wird, dass die beiden äußeren Bereiche 23 und 24 gegen den mittleren Bereich 22 gedrückt werden. Der mittlere Bereich 22 einen oder mehrere Abschnitte umfassen, die rohr- oder scheibenförmig ausgebildet sind und jeweils eine oder mehrere Laufschaufelstufen enthalten können.FIG. 5 shows an alternative embodiment of the turbine shaft 5. The difference from the turbine shaft shown in FIG. 4 is that the turbine shaft 5 shown in FIG. 5 is assembled by means of a Hirth gear 27, 28. In this case, a tie rod 29 must be formed, which is arranged such that the two outer regions 23 and 24 are pressed against the central region 22. The central region 22 comprises one or more sections which are tubular or disk-shaped are and may each contain one or more blade stages.

In einer weiteren alternativen Ausführungsform wird, wie in Figur 6 dargestellt, die Turbinenwelle 5 mittels einer Hirth-Verzahnung 30, 31 miteinander verbunden, wobei die Zuströmleitung 16 und die Abströmleitung 18 in der Hirth-Verzahnung 30, 31 integriert ist.In a further alternative embodiment, as shown in Figure 6, the turbine shaft 5 is connected to each other by means of a Hirth toothing 30, 31, wherein the inflow line 16 and the discharge line 18 in the Hirth toothing 30, 31 is integrated.

In der Figur 7 ist eine weitere alternative Ausführungsform der Turbinenwelle 5 dargestellt. Die Turbinenwelle 5 umfasst zumindest zwei aus unterschiedlichen Materialien ausgebildete Bereiche 22' und 23'. Der Bereich 23' wird an den Bereich 22' angeflanscht. Die Verschraubung erfolgt durch geeignete Dehnschaft-Schrauben 39. Die Flanschverbindung 40 ist dem Stand der Technik gemäß zentriert. Zweckdienlicherweise ist im Bereich 22' ein Gewinde 41 zum Fassen der Schraube 39 ausgebildet. Des Weiteren erfolgt die Verschraubung des Bereichs 23' mit dem Bereich 22' bevorzugt von der kühleren Seite.FIG. 7 shows a further alternative embodiment of the turbine shaft 5. The turbine shaft 5 comprises at least two regions 22 'and 23' formed of different materials. The area 23 'is flanged to the area 22'. The screwing takes place by means of suitable expansion shank bolts 39. The flange connection 40 is centered according to the prior art. Conveniently, a thread 41 for grasping the screw 39 is formed in the region 22 '. Furthermore, the screwing of the region 23 'with the region 22' preferably takes place from the cooler side.

In der Figur 8 ist eine Schnittdarstellung der angeschraubten Verbindung aus der Figur 7 zu sehen. Auch in dieser Darstellung ist zu sehen, dass sich die Abströmleitung 18 durch Ausnehmungen in die Verbindung integrieren. Dies ist in einer perspektivischen Darstellung eines Teils der Turbinenwelle 5 in der Figur 5 dargestellt. Durch eine Verbindung der Abströmleitung 18 mit der Schraubenbohrung 43 mittels eines Ringraumes 42 lässt sich die Kühlung der Schrauben realisieren sowie eine Angleichung der Temperaturen des Flansches (Ausgleichskolben) mit den Schrauben.In the figure 8 is a sectional view of the screwed connection of Figure 7 can be seen. It can also be seen in this illustration that the discharge line 18 integrates into the connection through recesses. This is shown in a perspective view of a part of the turbine shaft 5 in FIG. By connecting the outflow line 18 with the screw hole 43 by means of an annular space 42, the cooling of the screws can be realized and an approximation of the temperatures of the flange (balance piston) with the screws.

In der Figur 10 ist eine perspektivische Darstellung einer Hirth-Verzahnung 30, 31 zu sehen. Der mittlere Bereich 2 weist hierbei eine gemäß Figur 10 dargestellte Hirth-Verzahnung 30, 31 auf. Genauso weisen die beiden äußeren aus verschiedenen Materialien bestehenden Bereiche 24 und 23 genauso eine Hirth-Verzahnung 30, 31 auf.FIG. 10 shows a perspective view of a Hirth toothing 30, 31. The middle region 2 in this case has a Hirth toothing 30, 31 shown in FIG. Likewise, the two outer regions 24 and 23 made of different materials likewise have a Hirth toothing 30, 31.

In der Figur 11 ist eine Querschnittsansicht der Hirth-Verzahnung 30, 31 zu sehen. Der linke Teil ist beispielsweise der linke Bereich 24 und der rechte Teil der mittlere Bereich 22 der über die Hirth-Verzahnung 30 miteinander verbunden ist. Die Zuströmleitung 16 ist in der Hirth-Verzahnung integriert. Die in Figur 11 dargestellte Querschnittsabbildung kann ebenso die Abströmleitung 18 darstellen. In diesem Fall wäre der linke Bereich der mittlere Bereich 22 und der rechte über die Hirth-Verzahnung 31 verbundene Bereich 23. Die Abströmleitung 18 ist in der Hirth-Verzahnung 30, 31 integriert. Die in Figur 11 dargestellte Ausführungsform weist eine dreieckige Verzahnung auf.FIG. 11 shows a cross-sectional view of the Hirth toothing 30, 31. The left part is, for example, the left region 24 and the right part of the central region 22 is connected to one another via the Hirth toothing 30. The inflow line 16 is integrated in the Hirth toothing. The cross-sectional illustration shown in FIG. 11 can also represent the discharge line 18. In this case, the left-hand region would be the middle region 22 and the right-hand region 23 connected via the Hirth toothing 31. The outflow line 18 is integrated in the Hirth toothing 30, 31. The embodiment shown in Figure 11 has a triangular toothing.

Die Zuströmleitung 16 bzw. die Abströmleitung 18 ist über Ausnehmungen 32 der Hirth-Verzahnung 30, 31 ausgebildet.The inflow line 16 or the outflow line 18 is formed via recesses 32 of the Hirth toothing 30, 31.

In der Figur 12 dargestellten Ausführungsform der Hirth-Verzahnung 30, 31 weist diese eine trapezförmige Verzahnung auf. Mögliche Ausführungsformen der Hirth-Verzahnung sind eine Trapez-, rechteckige oder dreieckige Verzahnung. Andere Ausführungsformen sind möglich.In the embodiment shown in FIG. 12, the Hirth toothing 30, 31 has a trapezoidal toothing. Possible embodiments of the Hirth toothing are a trapezoidal, rectangular or triangular toothing. Other embodiments are possible.

In der Figur 13 sind die relevanten Festigkeitswerte für 1%igen und 10%ige Chromstähle für Dampfturbinenwellen gezeigt.FIG. 13 shows the relevant strength values for 1% and 10% chromium steels for steam turbine shafts.

Auf der x-Achse 35 ist die Temperatur in einer linearen Skala von 400 bis 600°C aufgetragen. Auf der y-Achse 36 ist die Zeitstandsfestigkeit Rm,200000h in einer linearen Skala von 30 bis 530 N mm 2

Figure imgb0001
aufgetragen. Die obere Kurve 37 zeigt das Temperaturverhalten für den Werkstoff 30 CrMoNiV5-11 und die untere Kurve 38 zeigt das Temperaturverhalten für den Werkstoff X12CrMoWVNbN10-1-1.On the x-axis 35, the temperature is plotted in a linear scale of 400 to 600 ° C. On the y-axis 36, the creep rupture strength R m is 200,000 h in a linear scale of 30 to 530 N mm 2
Figure imgb0001
applied. The upper curve 37 shows the temperature behavior for the material 30 CrMoNiV5-11 and the lower curve 38 shows the temperature behavior for the material X12CrMoWVNbN10-1-1.

Es hat sich gezeigt, dass zusätzlich zur erfindungsgemäßen Führung des Kühldampfes eine Auftragung einer Wärmedämmschicht auf die Oberflächen der thermisch beanspruchten Bauteile den Effekt der wirksamen Kühlung erhöht.It has been found that in addition to the guidance of the cooling steam according to the invention, a plot of a thermal barrier coating on the surfaces of the thermally stressed components increases the effect of effective cooling.

Durch den Einsatz des Zugankers 29 wird ein Teil der Axialkräfte übernommen. Dadurch kann die Turbinenwelle 5 dünnwandiger ausgebildet werden, was sich auf die thermische Flexibilität und die Ausbildung der Radialspiele positiv auswirkt.Through the use of the tie rod 29, a part of the axial forces is taken. This allows the turbine shaft 5 are formed thin-walled, which has a positive effect on the thermal flexibility and the formation of radial play.

Die Erfindung ist nicht auf die Ausbildung einer Hochdruck-Teilturbine als Ausführungsform einer Dampfturbine 1 einzuschränken, die erfindungsgemäße Turbinenwelle 5 kann auch in einer Mitteldruck- oder einer Kompakt-Teilturbine (Hochdruck- und Mitteldruck innerhalb eines Gehäuses) eingesetzt werden. Ebenso kann die Turbinenwelle 5 in anderen Dampfturbinentypen eingesetzt werden.The invention is not limited to the formation of a high-pressure turbine part as an embodiment of a steam turbine 1, the turbine shaft 5 according to the invention can also be used in a medium-pressure or a compact turbine part (high pressure and medium pressure within a housing). Likewise, the turbine shaft 5 can be used in other types of steam turbine.

Claims (15)

Dampfturbine (1) mit einem Gehäuse (2, 3),
wobei eine einen Schubausgleichskolben (4) aufweisende Turbinenwelle (5) drehgelagert innerhalb des Gehäuses (2, 3) angeordnet und entlang einer Rotationsachse (6) gerichtet ist,
wobei ein Strömungskanal (9) zwischen dem Gehäuse (2, 3) und der Turbinenwelle (5) ausgebildet ist,
wobei die Turbinenwelle (5) in ihrem Inneren eine Kühlleitung (17) zur Führung von Kühldampf in Richtung der Rotationsachse (6) aufweist und die Kühlleitung (17) einerseits mit zumindest einer Zuströmleitung (16) zur Zuströmung von Kühldampf aus dem Strömungskanal (9) in die Kühlleitung (17) verbunden ist,
dadurch gekennzeichnet, dass
die Kühlleitung (17) andererseits mit zumindest einer Abströmleitung (18) zur Führung von Kühldampf auf eine Schubausgleichskolbenmanteloberfläche (19) verbunden ist.
Steam turbine (1) with a housing (2, 3),
wherein a turbine shaft (5) having a thrust balance piston (4) is mounted rotatably inside the housing (2, 3) and directed along a rotation axis (6),
wherein a flow channel (9) between the housing (2, 3) and the turbine shaft (5) is formed,
wherein the turbine shaft (5) in its interior a cooling line (17) for guiding cooling steam in the direction of the axis of rotation (6) and the cooling line (17) on the one hand with at least one inflow line (16) for the inflow of cooling steam from the flow channel (9) is connected in the cooling line (17),
characterized in that
the cooling line (17) on the other hand with at least one outflow line (18) for guiding cooling steam on a thrust balance piston skirt surface (19) is connected.
Dampfturbine (1) nach Anspruch 1,
wobei das Gehäuse (2, 3) ein Innengehäuse (3) und ein Außengehäuse (2) umfasst.
Steam turbine (1) according to claim 1,
wherein the housing (2, 3) comprises an inner housing (3) and an outer housing (2).
Dampfturbine (1) nach Anspruch 1 oder 2,
wobei die Turbinenwelle (5) in axialer Richtung (34) zumindest zwei Bereiche aus verschiedenen Materialien aufweist.
Steam turbine (1) according to claim 1 or 2,
wherein the turbine shaft (5) in the axial direction (34) has at least two regions made of different materials.
Dampfturbine (1) nach Anspruch 1, 2 oder 3,
wobei die Turbinenwelle (5) in axialer Richtung (34) drei Bereiche (22, 23, 24) aus verschiedenen Materialien aufweist.
Steam turbine (1) according to claim 1, 2 or 3,
wherein the turbine shaft (5) in the axial direction (34) has three regions (22, 23, 24) made of different materials.
Dampfturbine (1) nach Anspruch 4
wobei die beiden äußeren Bereiche (23, 24) aus dem gleichen Material bestehen.
Steam turbine (1) according to claim 4
wherein the two outer regions (23, 24) consist of the same material.
Dampfturbine (1) nach Anspruch 3, 4 oder 5,
wobei die aus verschiedenen Materialien (22, 23, 24) umfassenden Bereiche miteinander verschweißt sind.
Steam turbine (1) according to claim 3, 4 or 5,
wherein the areas comprising different materials (22, 23, 24) are welded together.
Dampfturbine (1) nach Anspruch 3, 4, 5 oder 6,
wobei die Bereiche (23, 24) als Vollwelle und der Bereich (22) als Hohlwelle ausgebildet sind.
Steam turbine (1) according to claim 3, 4, 5 or 6,
wherein the regions (23, 24) are formed as a solid shaft and the region (22) as a hollow shaft.
Dampfturbine (1) nach Anspruch 3, 4, 5 oder 7,
wobei die aus verschiedenen Materialien (22, 23, 24) bestehenden Bereiche mittels einer Hirth-Verzahnung (30, 31) miteinander verbunden sind.
Steam turbine (1) according to claim 3, 4, 5 or 7,
wherein the different materials (22, 23, 24) existing areas by means of a Hirth toothing (30, 31) are interconnected.
Dampfturbine (1) nach Anspruch 3, 4, 5 oder 7,
wobei die aus verschiedenen Materialien (22, 23, 24) bestehenden Bereiche mittels einer Flanschverbindung (40) miteinander verbunden sind.
Steam turbine (1) according to claim 3, 4, 5 or 7,
wherein the different materials (22, 23, 24) existing areas by means of a flange (40) are interconnected.
Dampfturbine (1) nach Anspruch 8,
wobei die Zuströmleitung (16) und die Abströmleitung (18) in der Hirth-Verzahnung (30, 31) integriert ist.
Steam turbine (1) according to claim 8,
wherein the inflow line (16) and the outflow line (18) in the Hirth toothing (30, 31) is integrated.
Dampfturbine nach Anspruch 9,
wobei die Zuströmleitung (16) und die Abströmleitung (18) in der Flanschverbindung (40) integriert sind.
Steam turbine according to claim 9,
wherein the inflow line (16) and the outflow line (18) are integrated in the flange connection (40).
Dampfturbine (1) nach Anspruch 8,
wobei die Hirth-Verzahnung (30, 31) eine Trapez-, rechteckige oder dreieckige Verzahnung mit einer als Zuström-(16) und /oder Abströmleitung (18) ausgebildeten Ausnehmung (32) aufweist.
Steam turbine (1) according to claim 8,
wherein the Hirth toothing (30, 31) has a trapezoidal, rectangular or triangular toothing with a recess (32) formed as an inflow (16) and / or outflow (18).
Dampfturbine (1) nach einem der vorhergehenden Ansprüche,
mit einer Rückführungsleitung (21) zur Rückführung eines Mischdampfes, gebildet aus dem Kühldampf und einem Ausgleichskolbenleckdampf, wobei die Rückführungsleitung (21) in den Strömungskanal (9) mündet.
Steam turbine (1) according to one of the preceding claims,
with a return line (21) for returning a mixed vapor, formed from the cooling steam and a compensation piston leakage steam, wherein the return line (21) opens into the flow channel (9).
Dampfturbine (1) nach Anspruch 13,
wobei die Rückführungsleitung (21) innerhalb des Außengehäuses (2) angeordnet ist.
Steam turbine (1) according to claim 13,
wherein the return line (21) is disposed within the outer housing (2).
Dampfturbine (1) nach Anspruch 13,
wobei die Rückführungsleitung (21) als Bohrung im Innengehäuse (2) ausgebildet ist.
Steam turbine (1) according to claim 13,
wherein the return line (21) is formed as a bore in the inner housing (2).
EP05023760A 2005-10-31 2005-10-31 Steam turbine Withdrawn EP1780376A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP05023760A EP1780376A1 (en) 2005-10-31 2005-10-31 Steam turbine
RU2008121935/06A RU2410545C2 (en) 2005-10-31 2006-10-24 Steam turbine
PL06819128T PL1945911T3 (en) 2005-10-31 2006-10-24 Steam turbine
DE502006005550T DE502006005550D1 (en) 2005-10-31 2006-10-24 STEAM TURBINE
JP2008537085A JP4662570B2 (en) 2005-10-31 2006-10-24 Steam turbine
EP06819128A EP1945911B1 (en) 2005-10-31 2006-10-24 Steam turbine
CN2006800405336A CN101300405B (en) 2005-10-31 2006-10-24 Steam turbine
KR1020087012683A KR101014151B1 (en) 2005-10-31 2006-10-24 Steam turbine
PCT/EP2006/067717 WO2007051733A1 (en) 2005-10-31 2006-10-24 Steam turbine
AT06819128T ATE450693T1 (en) 2005-10-31 2006-10-24 STEAM TURBINE
ES06819128T ES2336610T3 (en) 2005-10-31 2006-10-24 STEAM TURBINE.
US12/084,300 US8128341B2 (en) 2005-10-31 2006-10-24 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05023760A EP1780376A1 (en) 2005-10-31 2005-10-31 Steam turbine

Publications (1)

Publication Number Publication Date
EP1780376A1 true EP1780376A1 (en) 2007-05-02

Family

ID=35985854

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05023760A Withdrawn EP1780376A1 (en) 2005-10-31 2005-10-31 Steam turbine
EP06819128A Not-in-force EP1945911B1 (en) 2005-10-31 2006-10-24 Steam turbine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06819128A Not-in-force EP1945911B1 (en) 2005-10-31 2006-10-24 Steam turbine

Country Status (11)

Country Link
US (1) US8128341B2 (en)
EP (2) EP1780376A1 (en)
JP (1) JP4662570B2 (en)
KR (1) KR101014151B1 (en)
CN (1) CN101300405B (en)
AT (1) ATE450693T1 (en)
DE (1) DE502006005550D1 (en)
ES (1) ES2336610T3 (en)
PL (1) PL1945911T3 (en)
RU (1) RU2410545C2 (en)
WO (1) WO2007051733A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135802A1 (en) * 2008-05-09 2009-11-12 Siemens Aktiengesellschaft Turbo machine with stroke-compensating piston
EP2211017A1 (en) * 2009-01-27 2010-07-28 Siemens Aktiengesellschaft Rotor with cavity for a turbo engine
EP2410128A1 (en) * 2010-07-21 2012-01-25 Siemens Aktiengesellschaft Internal cooling for a flow machine
FR2968034A1 (en) * 2010-11-30 2012-06-01 Gen Electric PURGE SYSTEM FOR ROTATING MACHINE
EP2554789A1 (en) * 2011-08-04 2013-02-06 Siemens Aktiengesellschaft Steamturbine comprising a dummy piston
EP2660431A2 (en) * 2012-05-01 2013-11-06 General Electric Company Gas turbomachine including a counter-flow cooling system and method
US8622696B2 (en) 2009-12-08 2014-01-07 Alstom Technology Ltd Steam turbine rotor
CN103782011A (en) * 2011-08-30 2014-05-07 西门子公司 Cooling device for a fluid flow machine
EP2998506A1 (en) * 2014-09-19 2016-03-23 Siemens Aktiengesellschaft System for reducing the start-up time of a steam turbine
RU2655068C1 (en) * 2014-08-20 2018-05-23 Сименс Акциенгезелльшафт Steam turbine and method for operation of steam turbine
EP3015644B1 (en) * 2014-10-29 2018-12-12 General Electric Technology GmbH Steam turbine rotor
US10221717B2 (en) 2016-05-06 2019-03-05 General Electric Company Turbomachine including clearance control system
US10309246B2 (en) 2016-06-07 2019-06-04 General Electric Company Passive clearance control system for gas turbomachine
US10392944B2 (en) 2016-07-12 2019-08-27 General Electric Company Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium
US10605093B2 (en) 2016-07-12 2020-03-31 General Electric Company Heat transfer device and related turbine airfoil
EP3879078A4 (en) * 2018-11-06 2022-08-31 Shanghai Electric Power Generation Equipment Co., Ltd. Steam turbine and internal cooling method therefor

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780376A1 (en) 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Steam turbine
US8282349B2 (en) * 2008-03-07 2012-10-09 General Electric Company Steam turbine rotor and method of assembling the same
JP2011069307A (en) * 2009-09-28 2011-04-07 Hitachi Ltd Steam turbine rotor and steam turbine using the same
EP2518277B1 (en) * 2009-12-21 2018-10-10 Mitsubishi Hitachi Power Systems, Ltd. Cooling method and device in single-flow turbine
US8425180B2 (en) * 2009-12-31 2013-04-23 General Electric Company Systems and apparatus relating to steam turbine operation
IT1399881B1 (en) * 2010-05-11 2013-05-09 Nuova Pignone S R L CONFIGURATION OF BALANCING DRUM FOR COMPRESSOR ROTORS
EP2412937A1 (en) * 2010-07-30 2012-02-01 Siemens Aktiengesellschaft Steam turbine and method for cooling same
EP2423454A1 (en) * 2010-08-25 2012-02-29 Siemens Aktiengesellschaft Casing for a turbomachine and method of manufacture
US20120189460A1 (en) * 2011-01-21 2012-07-26 General Electric Company Welded Rotor, a Steam Turbine having a Welded Rotor and a Method for Producing a Welded Rotor
JP2012207594A (en) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd Rotor of rotary machine, and rotary machine
US8888436B2 (en) * 2011-06-23 2014-11-18 General Electric Company Systems and methods for cooling high pressure and intermediate pressure sections of a steam turbine
FR2983908B1 (en) * 2011-12-08 2015-02-20 Snecma SYSTEM FOR ENSURING SEALING BETWEEN AN OIL ENCLOSURE AND AN OUTER VOLUME ATTACHED AND TURBOMACHINE EQUIPPED WITH SUCH A SEALING SYSTEM.
JP5917324B2 (en) * 2012-07-20 2016-05-11 株式会社東芝 Turbine and turbine operating method
WO2014197343A1 (en) * 2013-06-06 2014-12-11 Dresser-Rand Company Compressor having hollow shaft
US20150020527A1 (en) * 2013-07-19 2015-01-22 General Electric Company Steam turbomachine having a bypass circuit for throttle flow capacity adjustment
DE102013219771B4 (en) * 2013-09-30 2016-03-31 Siemens Aktiengesellschaft steam turbine
RU2636953C1 (en) * 2016-12-20 2017-11-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Method of thermal power plant operation with regenerative rankine cycle
DE102017211295A1 (en) 2017-07-03 2019-01-03 Siemens Aktiengesellschaft Steam turbine and method of operating the same
CN108252961A (en) * 2017-12-28 2018-07-06 中国航发四川燃气涡轮研究院 A kind of axial thrust balancing devices for axial flow compressor performance test
CN109026202A (en) * 2018-06-29 2018-12-18 东方电气集团东方汽轮机有限公司 A kind of steam turbine and the method that steam turbine outer shell operating temperature can be reduced
JP7134002B2 (en) * 2018-07-04 2022-09-09 三菱重工業株式会社 Steam turbine equipment and combined cycle plants
RU2701424C1 (en) * 2018-12-24 2019-09-26 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Free turbine shaft cooling device of gas-turbine plant
CN109826675A (en) * 2019-03-21 2019-05-31 上海电气电站设备有限公司 Steam turbine cooling system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048169A (en) * 1996-06-21 2000-04-11 Siemens Aktiengesellschaft Turbine shaft and method for cooling a turbine shaft
US6082962A (en) * 1996-05-23 2000-07-04 Siemens Aktiengesellschaft Turbine shaft and method for cooling a turbine shaft
EP1154123A1 (en) * 2000-05-10 2001-11-14 Siemens Aktiengesellschaft Method of cooling the shaft of a high pressure steam turbine
US20050118025A1 (en) * 2003-11-28 2005-06-02 Alstom Technology Ltd. Rotor for a steam turbine
EP1624155A1 (en) * 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Steam turbine and method of operating a steam turbine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170435A (en) * 1977-10-14 1979-10-09 Swearingen Judson S Thrust controlled rotary apparatus
US5061151A (en) * 1990-02-22 1991-10-29 Sundstrand Corporation Centrifugal pump system with liquid ring priming pump
DE4313455A1 (en) * 1993-04-24 1994-10-27 Klein Schanzlin & Becker Ag Radial gap, for example a turbomachine
ES2172905T3 (en) 1997-06-27 2002-10-01 Siemens Ag TREE OF A STEAM TURBINE WITH INTERNAL REFRIGERATION, AS WELL AS PROCEDURE FOR THE REFRIGERATION OF A TURBINE TREE.
JP3537349B2 (en) * 1998-04-20 2004-06-14 日機装株式会社 Thrust balance device
US6129507A (en) * 1999-04-30 2000-10-10 Technology Commercialization Corporation Method and device for reducing axial thrust in rotary machines and a centrifugal pump using same
US6695575B1 (en) 1999-08-27 2004-02-24 Siemens Aktiengesellschaft Turbine method for discharging leakage fluid
US6655910B2 (en) * 2002-01-16 2003-12-02 G. Fonda-Bonardi Turbocompressor with specially configured thrust washer
EP1780376A1 (en) 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Steam turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082962A (en) * 1996-05-23 2000-07-04 Siemens Aktiengesellschaft Turbine shaft and method for cooling a turbine shaft
US6048169A (en) * 1996-06-21 2000-04-11 Siemens Aktiengesellschaft Turbine shaft and method for cooling a turbine shaft
EP1154123A1 (en) * 2000-05-10 2001-11-14 Siemens Aktiengesellschaft Method of cooling the shaft of a high pressure steam turbine
US20050118025A1 (en) * 2003-11-28 2005-06-02 Alstom Technology Ltd. Rotor for a steam turbine
EP1624155A1 (en) * 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Steam turbine and method of operating a steam turbine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507399C2 (en) * 2008-05-09 2014-02-20 Сименс Акциенгезелльшафт Turbomachine with levelling piston against displacement
CN102016231A (en) * 2008-05-09 2011-04-13 西门子公司 Turbo machine with stroke-compensating piston
WO2009135802A1 (en) * 2008-05-09 2009-11-12 Siemens Aktiengesellschaft Turbo machine with stroke-compensating piston
CN102016231B (en) * 2008-05-09 2013-12-25 西门子公司 Turbo machine with stroke-compensating piston
EP2211017A1 (en) * 2009-01-27 2010-07-28 Siemens Aktiengesellschaft Rotor with cavity for a turbo engine
US8622696B2 (en) 2009-12-08 2014-01-07 Alstom Technology Ltd Steam turbine rotor
EP2410128A1 (en) * 2010-07-21 2012-01-25 Siemens Aktiengesellschaft Internal cooling for a flow machine
WO2012022551A3 (en) * 2010-07-21 2013-01-10 Siemens Aktiengesellschaft Steam turbine comprising an internal cooling arrangement
FR2968034A1 (en) * 2010-11-30 2012-06-01 Gen Electric PURGE SYSTEM FOR ROTATING MACHINE
EP2554789A1 (en) * 2011-08-04 2013-02-06 Siemens Aktiengesellschaft Steamturbine comprising a dummy piston
WO2013017634A1 (en) * 2011-08-04 2013-02-07 Siemens Aktiengesellschaft Steam turbine comprising a thrust balance piston
CN103782011A (en) * 2011-08-30 2014-05-07 西门子公司 Cooling device for a fluid flow machine
EP2660431A2 (en) * 2012-05-01 2013-11-06 General Electric Company Gas turbomachine including a counter-flow cooling system and method
EP2660431A3 (en) * 2012-05-01 2014-06-04 General Electric Company Gas turbomachine including a counter-flow cooling system and method
US9719372B2 (en) 2012-05-01 2017-08-01 General Electric Company Gas turbomachine including a counter-flow cooling system and method
RU2655068C1 (en) * 2014-08-20 2018-05-23 Сименс Акциенгезелльшафт Steam turbine and method for operation of steam turbine
EP2998506A1 (en) * 2014-09-19 2016-03-23 Siemens Aktiengesellschaft System for reducing the start-up time of a steam turbine
EP3015644B1 (en) * 2014-10-29 2018-12-12 General Electric Technology GmbH Steam turbine rotor
US10221717B2 (en) 2016-05-06 2019-03-05 General Electric Company Turbomachine including clearance control system
US10309246B2 (en) 2016-06-07 2019-06-04 General Electric Company Passive clearance control system for gas turbomachine
US10392944B2 (en) 2016-07-12 2019-08-27 General Electric Company Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium
US10605093B2 (en) 2016-07-12 2020-03-31 General Electric Company Heat transfer device and related turbine airfoil
EP3879078A4 (en) * 2018-11-06 2022-08-31 Shanghai Electric Power Generation Equipment Co., Ltd. Steam turbine and internal cooling method therefor
US11746674B2 (en) 2018-11-06 2023-09-05 Shanghai Electric Power Generation Equipment Co., Ltd. Steam turbine and method for internally cooling the same

Also Published As

Publication number Publication date
JP4662570B2 (en) 2011-03-30
RU2410545C2 (en) 2011-01-27
ATE450693T1 (en) 2009-12-15
JP2009513866A (en) 2009-04-02
RU2008121935A (en) 2009-12-10
EP1945911A1 (en) 2008-07-23
KR20080068893A (en) 2008-07-24
CN101300405B (en) 2013-05-29
PL1945911T3 (en) 2010-05-31
DE502006005550D1 (en) 2010-01-14
US8128341B2 (en) 2012-03-06
KR101014151B1 (en) 2011-02-14
ES2336610T3 (en) 2010-04-14
US20090185895A1 (en) 2009-07-23
EP1945911B1 (en) 2009-12-02
WO2007051733A1 (en) 2007-05-10
CN101300405A (en) 2008-11-05

Similar Documents

Publication Publication Date Title
EP1945911B1 (en) Steam turbine
EP0991850B1 (en) Internally cooled steam turbine shaft and method for cooling the same
EP1954922B1 (en) Steam turbine having bearing struts
EP1536102B1 (en) Rotor for a steam turbine
EP1452688A1 (en) Steam turbine rotor, method and use of actively cooling such a rotor
EP2078137B1 (en) Rotor for a turbo-machine
EP1389690A1 (en) Screw interiorly cooled
DE60035247T2 (en) Gas turbine blade
CH694257A5 (en) Steam turbine.
DE3406071A1 (en) Device for cooling the rotors of steam turbines
EP2886807B1 (en) Cooled flanged connection for a gas turbine engine
WO2001016467A1 (en) Turbine and method for discharging leakage fluid
DE10392802B4 (en) steam turbine
EP3155226B1 (en) Steam turbine and method for operating a steam turbine
EP2347100B1 (en) Gas turbine having cooling insert
DE1286333B (en) Ring-shaped guide device for gas turbine engines with axial flow
EP1445427A1 (en) Steam turbine and method of operating a steam turbine
DE19757945B4 (en) Rotor for thermal turbomachinery
EP1892376B1 (en) Cooled steam turbine rotor with inner tube
EP2598724B1 (en) Steam turbine and process for cooling such a steam turbine
EP1788191B1 (en) Steam turbine and method of cooling a steam turbine
EP1895094B1 (en) Swirl cooled rotor welding seam
EP2211017A1 (en) Rotor with cavity for a turbo engine
EP3587748B1 (en) Housing structure for a turbo engine, turbo engine and method for cooling a housing section of a structure of a turbo engine
EP1905949A1 (en) Cooling of a steam turbine component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071103

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566