EP1536102B1 - Rotor for a steam turbine - Google Patents

Rotor for a steam turbine Download PDF

Info

Publication number
EP1536102B1
EP1536102B1 EP04105832.2A EP04105832A EP1536102B1 EP 1536102 B1 EP1536102 B1 EP 1536102B1 EP 04105832 A EP04105832 A EP 04105832A EP 1536102 B1 EP1536102 B1 EP 1536102B1
Authority
EP
European Patent Office
Prior art keywords
rotor
channel
cooling
well
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04105832.2A
Other languages
German (de)
French (fr)
Other versions
EP1536102A3 (en
EP1536102A2 (en
Inventor
Michael Dr. Hiegemann
Martin Reigl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
General Electric Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Technology GmbH filed Critical General Electric Technology GmbH
Publication of EP1536102A2 publication Critical patent/EP1536102A2/en
Publication of EP1536102A3 publication Critical patent/EP1536102A3/en
Application granted granted Critical
Publication of EP1536102B1 publication Critical patent/EP1536102B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/087Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/088Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in a closed cavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Definitions

  • the present invention relates to a rotor for a steam turbine for working steam, having the features of the preamble of claim 1.
  • Such a rotor for a steam turbine is for example from the EP 0 991 850 B1 known and extends along an axis of rotation and consists of at least two adjacent rotor parts in the axial direction.
  • the two rotor parts are welded together at mutually facing axial end faces by means of a circumferentially closed circumferential, annular weld zone.
  • a cooling channel system is formed which has at least one inflow channel, at least one outflow channel and a cooling channel.
  • the cooling channel leads cooling steam from at least one inflow channel to the at least one outflow channel.
  • the at least one inflow channel removes the cooling steam at a position on the rotor surface of the working steam and supplies it to the cooling channel.
  • the at least one outflow channel removes the cooling steam from the cooling channel and leads it to or through a cooling zone of the rotor.
  • a suitable Positioning of the at least one inflow channel and the at least one outflow channel can be formed between and inlet and outlet of the cooling channel system, a pressure difference sufficient to promote the cooling steam without additional measures from the at least one vapor extraction point to the at least one cooling zone.
  • the cooling channel extends concentrically to the axis of rotation.
  • the inflow channels are arranged in the region of a diffuser of a high-pressure single-flow turbine, while the outflow channels are positioned in the center of a double-flow medium-pressure turbine.
  • the cooling channel extends within the common rotor provided for the high-pressure turbine and the medium-pressure turbine.
  • This rotor is mounted axially between high-pressure turbine and medium-pressure turbine. Accordingly, the cooling line extends centrally through this camp. As a result of this camp is exposed to increased temperature stress, so that additional measures to protect this camp are required.
  • the known rotor is realized according to a so-called "drum construction", that is, the rotor is composed of a plurality of "drums".
  • a drum is a cylindrical or frusto-conical solid body which may generally contain voids, such as channels and chambers, of a cooling system.
  • a rotor with a drum construction is usually characterized by a small number of drums, which are preferably designed differently. Each drum is assigned to several turbine stages. Adjacent drums are frontally usually on the entire surface to each other.
  • the US 6048169 A describes a turbine shaft of a steam turbine having shaft segments having connection openings and two axially spaced passages, which are connected to an axial gap and a cavity, for flowing through a cooling medium.
  • a one-piece rotor which is arranged in a double-flow steam turbine and also contains a cooling channel system.
  • a cavity is formed in the center of the hot steam supply to the jacket, which is closed again by means of a lid, wherein the lid simultaneously fulfills a Strömungsleitfunktion. From this cavity is on each of two axially opposite sides of an axial cooling channel.
  • the one cooling channel communicates with an inflow channel, which takes the cooling steam of a pressure stage of a flood.
  • the other cooling channel communicates with a discharge channel, which supplies the cooling steam of a pressure stage of the other flood.
  • a rotor for a gas turbine on which a compressor part, a central part and a turbine part are formed and which consists mainly of individual, welded together rotational bodies whose geometric shape leads to the formation of axially symmetric cavities between the respective adjacent bodies of revolution.
  • a further extending around the central axis of the rotor, ranging from the downstream end of the rotor to the upstream last cavity further, cylindrical cavity and at least two tubes provided, which have different diameters and lengths and at least partially overlap telescopically and which are arranged in the cylindrical cavity.
  • the tubes are each firmly anchored to a fixed point, wherein the fixed points of the tubes are at axially different locations.
  • the tubes are each provided with at least two passage openings in the jacket, wherein at least one opening in the turbine part and at least one opening in the compressor or central part is arranged.
  • the openings of the various tubes overlap in the operating state in the turbine part and in the cold state in the compressor and central part. In this way, when the turbine is started up, the rotor can be warmed up faster, while cooling is provided in the operating state.
  • compressed air is taken from a suitable compressor stage and fed axially to one of the tubes.
  • This known rotor is realized with the so-called “disk construction", ie, the rotor is assembled from several “slices".
  • the discs correspond to disc-shaped bodies, which have radially outwardly an axially projecting edge region, which may be designed in the manner of a sleeve.
  • the adjacent discs abut each other at the edge regions along relatively small annular surfaces.
  • These discs are thus the aforementioned rotating body.
  • Each disc is in contrast to a drum only a few, in each case associated with only a single turbine stage.
  • a disk-type rotor consists of a comparatively large number of disks, which are also preferably of identical construction.
  • the cavities realized in a rotor with a disk construction serve primarily to reduce the inertial forces, but can additionally be used for a cooling system.
  • Further rotors for gas turbines which are realized in this disc construction, can, for example, from DE 854 445 B , the DE 198 52 604 A1 and the DE 196 17 539 A1 be removed.
  • the present invention deals with the problem of providing for a rotor of a steam turbine of the type mentioned in an improved embodiment which, in particular at reduced production costs sufficient cooling of the respective cooling zone of the rotor, in particular the rotor interior, allows.
  • the invention is based on the general idea, in a rotor whose rotor parts for producing the welded connection each have an indentation on the front side, which together form a cavity enclosed by the welding zone in the welded state, these in the production of the rotor anyway existing cavity in the cooling channel system integrate.
  • the cavity or the depressions mentioned can be used before the welding of the rotor parts to introduce the cooling channel (s) and / or the inflow channel (s) and / or the outflow channel (s) into the respective rotor part. Additional recesses, which on the one hand lead to a material weakening and on the other hand have to be closed again, are therefore unnecessary.
  • the effort to realize the rotor internal cooling channel system can be reduced. simultaneously the cavity receives a meaningful double function, whereby the overall relative expense of forming the welded connection or the rotor relativized.
  • the steam turbine is designed to be single-flow and the at least one cooling zone comprises a thrust balance piston of the rotor.
  • the cooling effect of a cooling steam flow through bore system is particularly large when many small holes are used as cooling channels instead of a large bore, because then the cooling duct wall acted upon by the cooling steam is considerably larger.
  • the cross-sectional area of a cooling channel should be small so that a high velocity of the cooling steam is achieved and thus the heat transfer, ie the cooling effect, is improved.
  • the many cooling channels do not run in the rotor center, since a piercing of the rotor center considerably weakens the strength of the rotor there.
  • the mechanical stress in the rotor center due to the rotor centrifugal force is of particular importance. It often represents a limit of the buildable.
  • a rotor which is made of at least three rotor parts and accordingly comprises two welding zones and two cavities.
  • the two cavities can then pass through at least one Cooling channel be connected to each other, while the at least one inflow channel terminates at the one cavity and the at least one outflow channel begins at the other cavity.
  • the cavities form quasi node points which establish the communication between the at least one cooling channel and the at least one inflow channel on the one hand and the at least one outflow channel on the other hand.
  • a steam turbine 1 comprises a rotor 2, which is rotatably mounted at its axial ends 3 and 4 about a central axis of rotation 5.
  • the rotor 2 is arranged centrally in a housing 6 which carries a plurality of guide vanes 7.
  • the rotor 2 carries a plurality of rotor blades 8, the rotor blades 8 and the stator blades 7 forming in pairs the turbine stages 9 of the steam turbine 1.
  • a steam turbine 1 works with steam as a working medium, also called working steam.
  • the housing 6 contains an inflow space 10 to which the tensioned steam is supplied and from which the steam is led to the first turbine stage 9 of the steam turbine 1.
  • the expanded steam is discharged at an outlet 11 of the housing 6.
  • Arrows 12 symbolize the main flow of the steam through the steam turbine 1.
  • the rotor 2 is designed in several parts and has in the embodiments of Fig. 1 to 5 two rotor parts 2a and 2b, which adjoin each other in the axial direction.
  • the rotor 2 is designed here as a "drum rotor” 2, ie, the rotor 2 is realized according to the drum design.
  • the individual rotor parts 2a, 2b form the "drums" of the drum rotor 2. They are characterized by their massive design with large material thickness in the radial and axial directions.
  • the two rotor parts 2a, 2b are welded together.
  • a welding zone 15 is formed on mutually facing axial end faces 13 and 14 of the rotor parts 2a, 2b, which extends in the circumferential direction and thereby rotates closed. In this way, the welding zone 15 is given an annular shape.
  • the two rotor parts 2a, 2b are provided at their end faces 13, 14 each with a recess 16 or 17 of any shape.
  • the two depressions 16, 17 complement one another to form a cavity 18.
  • This cavity 18 is thus surrounded circumferentially by the welding zone 15.
  • the rotor 2 is also equipped with an internal cooling channel system 19, which makes it possible to remove partially relaxed and thus partially cooled vapor at a position on the rotor surface 20 and this as cooling steam at least one thermally loaded component of the rotor 2, such. B. a thrust balance piston 21 supply.
  • the cooling steam is the same medium as the working steam.
  • the cooling channel system 19 comprises at least one inflow channel 22 for removing the cooling steam from the working steam at a position on the rotor surface 20 at a turbine stage 9 suitable for this purpose. In the present case, two such inflow channels 22 are shown. It is clear that too more than two inflow channels 22 may be provided, which may be arranged in particular star-shaped with respect to the axis of rotation 5.
  • At least one outflow channel 23 is provided which guides the cooling steam through at least one cooling zone, here exemplarily the thrust balance piston 21 and / or to a cooling zone of the rotor 2 or a rotor or turbine component.
  • at least one cooling zone here exemplarily the thrust balance piston 21 and / or to a cooling zone of the rotor 2 or a rotor or turbine component.
  • two outflow channels 23 are also shown.
  • more than two outflow channels 23 may be provided, which may be arranged in particular star-shaped with respect to the axis of rotation 5.
  • the cooling channel system 19 comprises at least one cooling channel 24, which together or in each case connect the at least one inflow channel 22 to the at least one outflow channel 23.
  • the cooling steam is removed according to the arrows 25 via the at least one inflow channel 22 of the respective turbine stage 9, supplied via the or the cooling channels 24 to at least one outflow channel 23, which in turn the cooling steam of the respective cooling zone, for. B. the thrust balance piston 21, supplies. Due to the selected positioning of the inflow ends of the inflow channels 22 and the outflow ends of the outflow channels 23, there is a pressure gradient within the cooling channel system 19, which automatically transports the cooling steam within the cooling channel system 19 in the desired manner.
  • the cavity 18 is now integrated into the cooling channel system 19.
  • the cooling channels 24 are each connected to this cavity 18.
  • the cooling channel 24 shown on the right is connected on the input side to the inflow channels 22 and the output side to the cavity 18.
  • the cooling channel 24 shown on the left is connected to the input side of the cavity 18 and In this way, the cavity 18 to a flowed through by the cooling steam component of the cooling channel system 19.
  • the cavity 18 forms a kind of distribution node, the cooling steam, which is supplied via one or more channels 22 or 24, to a or multiple channels 23, 24 distributed.
  • the two cooling channels 24 are each designed centric to the axis of rotation 5 in the respective rotor part 2a, 2b.
  • the design of these cooling channels 24 is particularly simple, since the rotor parts 2a, 2b can be drilled centrally before welding in the region of their recesses 16, 17 in order to form these cooling channels 24.
  • An additional, alternatively mounted recess in the surface of the respective rotor part 2a, 2b is not required.
  • the inflow channels 22, which extend essentially radially here, can be produced in the form of bores. The same applies to the discharge channels 23, which extend here diagonally - centrally. With regard to the flow direction within the cooling channel system 19, the cooling channel 24 shown on the right ends on the cavity 18, while the cooling channel 24 shown on the left begins at the cavity 18.
  • FIG. 2 The embodiment shown differs from that in FIG Fig. 1 shown embodiment in that in the rotor part shown on the right 2a no central cooling channel 24, but a plurality of decentralized or with respect to the rotation axis 5 eccentrically arranged, but parallel to the longitudinal axis extending cooling channels 24 are provided, each communicate with one of the inflow channels 22. In this construction, the attachment of a central cooling channel 24 can be avoided, which may be advantageous in certain rotor designs.
  • the number of cooling channels 24 formed in the right-hand rotor part 2a then corresponds to the number of inflow channels 22 provided there.
  • a plurality of fan-like arranged inflow channels 22 may encounter a cooling channel 24.
  • the embodiment of the Fig. 3 differs from the embodiment according to Fig. 2 in that, in addition to a central cooling channel 24, a plurality of decentralized or with respect to the rotation axis 5 eccentrically arranged cooling channels 24 are provided in the rotor part 2b shown on the left. These cooling channels 24 also preferably extend parallel to the longitudinal axis of the rotor 2 and in each case communicate with one of the outflow channels 23. The number of cooling channels 24 in the rotor part 2b shown on the left then corresponds to the number of outflow channels 23 attached thereto, although this does not necessarily have to be. In the case of certain embodiments of the rotor 2, the attachment of a plurality of decentralized or eccentric cooling channels 24 with respect to a central cooling channel 24 can also be advantageous in the case of the left rotor part 2b.
  • cooling channels 24 extend parallel to each other eccentrically, as for example in the embodiments of Fig. 2 and 3 is the case, these are expediently symmetrically distributed in the respective rotor part 2a, 2b arranged, that is, the respective cooling channels 24 are arranged concentrically around the rotation axis 5 around.
  • the cavity 18 is arranged quasi between the successive cooling channels 24 in the axial direction.
  • the inflow channels 22 and the outflow channels 23 can communicate with the cavity 18 only via the cooling channels 24.
  • the pitch of the rotor 2 adapted to the position of the outflow channels 23, that is, the welding zone 15 is compared to the embodiments of the Fig. 1 to 3 in the direction of the respective cooling zone, ie shifted here in the direction of the thrust balance piston 21.
  • the cooling passage system 19 is as in the embodiment according to FIG Fig. 1 designed by a central cooling channel 24 is provided, which communicates with the inflow channels 22.
  • FIG. 5 The embodiment shown differs from the embodiment according to FIG Fig. 4 in that a plurality of decentralized or eccentrically arranged to the rotation axis 5 cooling channels 24 are provided in the right rotor part 2a instead of the central cooling channel 24, each communicating with one of the inflow channels 22. This may be advantageous for certain embodiments of the rotor 2.
  • the outflow channels 23 are connected directly to the cavity 18, while the inflow channels 22 are connected indirectly via the cooling channels 24 to the cavity 18.
  • the pitch of the rotor 2 is selected such that the inflow channels 22 can be connected directly to the cavity 18, while the outflow channels 23 are then connected indirectly via one or more cooling channels 24 to the cavity 18 could be.
  • the welding zone 15 is then displaced in the direction of the removal point of the cooling steam.
  • the at least one cooling channel 24 may be formed by the cavity 18, with the result that both the inflow channels 22 and the outflow channels 23 are connected directly to the cavity 18.
  • the at least one removal points here the respective turbine stage 9
  • the at least one cooling zone here the thrust balance piston 21
  • the at least one inflow channel 22 is necessarily arranged in the one rotor part 2a
  • the at least one outflow channel 23 is arranged in the other rotor part 2b.
  • the cooling channel system 19 thus extends within the two-piece rotor 2 through both rotor parts 2a and 2b.
  • Fig. 6 an embodiment with a three-part rotor 2, wherein the individual rotor parts are designated from right to left with 2a, 2b and 2c.
  • This rotor 2 is designed as a drum rotor 2. Due to the three-parted two welding zones 15 and thus two cavities 18 are accordingly provided. In this case, both cavities 18 are integrated into the cooling channel system 19 in the sense of the invention.
  • the pitch of the rotor 2 is specifically chosen so that the inflow channels 22 communicate directly with the one cavity 18, while the outflow channels 23 communicate directly with the other cavity 18.
  • the two cavities 18 are then connected to one another via the at least one cooling channel 24, here via at least two cooling channels 24.
  • This targeted division of the rotor 2 simplifies the integration of the cooling channel system 19 into the rotor 2.
  • simple bores can be provided which are from the respective removal point or lead from the respective cooling zone to the respective cavity 18.
  • the one or more cooling channels 24 can be prepared by simple holes.
  • only the inflow channels 22 and in the rotor part 2c shown on the left are exclusively the outflow channels 23 formed, while the central rotor part 2b contains only the or the cooling channels 24.
  • two or more cooling channels 24 are arranged eccentrically in the central rotor part 2b.
  • a central cooling channel 24 extends between the two cavities 18.
  • at least one of the welding zones 15 is positioned so that the associated outer rotor part 2 a or 2 c contains neither an inflow channel 22 nor an outflow channel 23.
  • the welding zone 15 shown on the right can be positioned to the right of the cooling steam removal point, with the result that the inflow passages 22 then have to be formed in the central rotor part 2b.
  • This design leads to the fact that in the right rotor part 2a then no inflow channel 22 is included.
  • twin-flow steam turbines 1 While in the embodiments of Fig. 1 to 6 the steam turbine 1 is designed single-flow, show the Fig. 7 to 9 twin-flow steam turbines 1.
  • the two floods are designated 26 and 27 respectively.
  • the rotor 2 In this twin-flow steam turbine 1, the rotor 2 is again in three parts and formed as a drum rotor 2, wherein the central rotor part 2b hineinerstreckt in both floods 26, 27.
  • the division of the rotor 2 is targeted so that the welding zones 15 are each positioned with their cavities 18 so that the Inflow channels 22 directly to the one, here to the left cavity 18, and the outflow channels 23 directly to the other, here to the right cavity 18, can be connected.
  • the two cavities 18 then communicate with each other via the at least one cooling channel 24.
  • cooling steam of the flood 27 shown on the left can be taken at a certain turbine stage 9 and the blading 26 are shown the other flood 26 shown on the right.
  • a sufficient pressure gradient arises within the cooling channel system 19 in order to be able to drive the cooling steam without additional measures.
  • the two cavities 18 are interconnected by a centrally disposed cooling channel 24.
  • the two cavities 18 are interconnected by two or more cooling channels 24 arranged eccentrically with respect to the axis of rotation 5.
  • these cooling channels 24 are arranged concentrically distributed about the rotation axis 5. In this case, the number of cooling channels 24 does not have to match either the number of inflow channels 22 or the number of outflow channels 23.
  • Fig. 7 and 8th are the inflow channels 22 in the rotor part 2c shown on the left, the outflow channels 23 in the rotor part 2a shown on the right and the one or more cooling channels 24 formed in the central rotor part 2b.
  • Fig. 9 shows an embodiment which is not part of the invention, in which both the inflow channels 22 and the outflow channels 23 are arranged in the central rotor part 2b, in which the cooling channels or the channels 24 are formed. In this construction, therefore, only the central rotor part 2 b must be processed in order to form the cooling channel system 19 in the entire rotor 2. The cost of implementing the cooling channel system 19 is thereby reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches GebietTechnical area

Die vorliegende Erfindung betrifft einen Rotor für eine Dampfturbine für Arbeitsdampf, mit den Merkmalen des Oberbegriffs des Anspruchs 1.The present invention relates to a rotor for a steam turbine for working steam, having the features of the preamble of claim 1.

Stand der TechnikState of the art

Ein derartiger Rotor für eine Dampfturbine ist beispielsweise aus der EP 0 991 850 B1 bekannt und erstreckt sich entlang einer Rotationsachse und besteht aus wenigstens zwei in Achsrichtung aneinandergrenzenden Rotorteilen. Dabei sind die beiden Rotorteile an einander zugewandten axialen Stirnseiten mittels einer in Umfangsrichtung geschlossen umlaufenden, ringförmigen Schweißzone miteinander verschweißt. Im Rotor ist ein Kühlkanalsystem ausgebildet, das zumindest einen Zuströmkanal, wenigstens einen Abströmkanal sowie einen Kühlkanal aufweist. Der Kühlkanal führt Kühldampf von wenigstens einem Zuströmkanal zum wenigstens einen Abströmkanal. Der wenigstens eine Zuströmkanal entnimmt den Kühldampf an einer Position an der Rotoroberfläche dem Arbeitsdampf und führt diesen dem Kühlkanal zu. Im Unterschied dazu entnimmt der wenigstens eine Abströmkanal den Kühldampf dem Kühlkanal und führt diesen zu einer bzw. durch eine Kühlzone des Rotors. Durch eine geeignete Positionierung des wenigstens einen Zuströmkanals und des wenigstens einen Abströmkanals kann zwischen und Einlass und Auslass des Kühlkanalsystems eine Druckdifferenz ausgebildet werden, die ausreicht, den Kühldampf ohne zusätzliche Maßnahmen von der wenigstens einen Dampfentnahmestelle zu der wenigstens einen Kühlzone zu fördern.Such a rotor for a steam turbine is for example from the EP 0 991 850 B1 known and extends along an axis of rotation and consists of at least two adjacent rotor parts in the axial direction. In this case, the two rotor parts are welded together at mutually facing axial end faces by means of a circumferentially closed circumferential, annular weld zone. In the rotor, a cooling channel system is formed which has at least one inflow channel, at least one outflow channel and a cooling channel. The cooling channel leads cooling steam from at least one inflow channel to the at least one outflow channel. The at least one inflow channel removes the cooling steam at a position on the rotor surface of the working steam and supplies it to the cooling channel. In contrast, the at least one outflow channel removes the cooling steam from the cooling channel and leads it to or through a cooling zone of the rotor. By a suitable Positioning of the at least one inflow channel and the at least one outflow channel can be formed between and inlet and outlet of the cooling channel system, a pressure difference sufficient to promote the cooling steam without additional measures from the at least one vapor extraction point to the at least one cooling zone.

Beim bekannten Rotor erstreckt sich der Kühlkanal konzentrisch zur Rotationsachse. Die Zuströmkanäle sind im Bereich eines Diffusors einer einflutigen Hochdruckturbine angeordnet, während die Abströmkanäle im Zentrum einer zweiflutigen Mitteldruckturbine positioniert sind. Der Kühlkanal erstreckt sich dabei innerhalb des für die Hochdruckturbine und die Mitteldruckturbine vorgesehenen gemeinsamen Rotors. Dieser Rotor ist axial zwischen Hochdruckturbine und Mitteldruckturbine gelagert. Dementsprechend erstreckt sich die Kühlleitung zentral auch durch dieses Lager. Als Folge davon ist dieses Lager einer erhöhten Temperaturbelastung ausgesetzt, so dass zusätzliche Maßnahmen zum Schutz dieses Lagers erforderlich sind.In the known rotor, the cooling channel extends concentrically to the axis of rotation. The inflow channels are arranged in the region of a diffuser of a high-pressure single-flow turbine, while the outflow channels are positioned in the center of a double-flow medium-pressure turbine. The cooling channel extends within the common rotor provided for the high-pressure turbine and the medium-pressure turbine. This rotor is mounted axially between high-pressure turbine and medium-pressure turbine. Accordingly, the cooling line extends centrally through this camp. As a result of this camp is exposed to increased temperature stress, so that additional measures to protect this camp are required.

Der bekannte Rotor ist nach einer sogenannten "Trommelbauweise" realisiert, d.h., der Rotor ist aus mehreren "Trommeln" zusammengebaut. Bei einer solchen Trommel handelt es sich um einen zylindrischen oder kegelstumpfförmigen Massivkörper, der grundsätzlich Hohlräume, wie Kanäle und Kammern, eines Kühlsystems enthalten kann. Ein Rotor mit Trommelbauweise charakterisiert sich in der Regel durch eine kleine Anzahl von Trommeln, die vorzugsweise unterschiedlich ausgestaltet sind. Dabei ist jede Trommel mehreren Turbinenstufen zugeordnet. Benachbarte Trommeln liegen stirnseitig in der Regel vollflächig aneinander an.The known rotor is realized according to a so-called "drum construction", that is, the rotor is composed of a plurality of "drums". Such a drum is a cylindrical or frusto-conical solid body which may generally contain voids, such as channels and chambers, of a cooling system. A rotor with a drum construction is usually characterized by a small number of drums, which are preferably designed differently. Each drum is assigned to several turbine stages. Adjacent drums are frontally usually on the entire surface to each other.

Die US 6048169 A beschreibt eine Turbinenwelle einer Dampfturbine mit Wellensegmenten, die Verbindungsöffnungen aufweisen und zwei axial beabstandete Duchgänge, die mit einem axialen Spalt und einer Kavität verbunden sind, zum Durchfliessen eines Kühlmediums.The US 6048169 A describes a turbine shaft of a steam turbine having shaft segments having connection openings and two axially spaced passages, which are connected to an axial gap and a cavity, for flowing through a cooling medium.

Aus der DE 196 20 828 C1 ist ein einteiliger Rotor bekannt, der in einer zweiflutigen Dampfturbine angeordnet ist und ebenfalls ein Kühlkanalsystem enthält. In diesem Rotor ist im Zentrum der Heißdampfzuführung am Mantel ein Hohlraum ausgebildet, der mit Hilfe eines Deckels wieder verschlossen ist, wobei der Deckel gleichzeitig eine Strömungsleitfunktion erfüllt. Von diesem Hohlraum geht an zwei axial gegenüberliegenden Seiten jeweils ein axialer Kühlkanal ab. Der eine Kühlkanal kommuniziert mit einem Zuströmkanal, der den Kühldampf einer Druckstufe der einen Flut entnimmt. Im Unterschied dazu kommuniziert der andere Kühlkanal mit einem Abströmkanal, der den Kühldampf einer Druckstufe der anderen Flut zuführt. Der Aufwand zur Realisierung dieser internen Kühlung ist vergleichsweise groß, da zur Herstellung der Kühlkanäle zunächst der Hohlraum am Umfang des Rotors ausgebildet und anschließend wieder verschlossen werden muss. Ungünstig ist dabei außerdem, dass bei der gewählten Positionierung des Hohlraums genau an derjenigen Stelle des Rotors eine Schwächung in der Struktur erreicht wird, die im Betrieb der Dampfturbine den höchsten thermischen und hohen mechanischen Belastungen ausgesetzt ist. Des Weiteren ist ein zusätzlicher Aufwand erforderlich, um den Hohlraum wieder mittels des entsprechenden Deckels zu verschließen.From the DE 196 20 828 C1 a one-piece rotor is known, which is arranged in a double-flow steam turbine and also contains a cooling channel system. In this rotor, a cavity is formed in the center of the hot steam supply to the jacket, which is closed again by means of a lid, wherein the lid simultaneously fulfills a Strömungsleitfunktion. From this cavity is on each of two axially opposite sides of an axial cooling channel. The one cooling channel communicates with an inflow channel, which takes the cooling steam of a pressure stage of a flood. In contrast, the other cooling channel communicates with a discharge channel, which supplies the cooling steam of a pressure stage of the other flood. The expense of realizing this internal cooling is comparatively high, since for the production of the cooling channels first the cavity has to be formed on the circumference of the rotor and subsequently closed again. Unfavorable is also that in the selected positioning of the cavity exactly at that point of the rotor, a weakening in the structure is achieved, which is exposed to the highest thermal and high mechanical loads during operation of the steam turbine. Furthermore, an additional effort is required to close the cavity again by means of the corresponding lid.

Aus der EP 0 761 929 A1 ist ein Rotor für eine Gasturbine bekannt, an dem ein Verdichterteil, ein Mittelteil und ein Turbinenteil ausgebildet sind und der vorwiegend aus einzelnen, miteinander verschweißten Rotationskörpern besteht, deren geometrische Form zur Ausbildung von axial symmetrischen Hohlräumen zwischen den jeweils benachbarten Rotationskörpern führt. Bei diesem Rotor sind ein sich um die Mittelachse des Rotors erstreckender, vom stromabwärtigen Ende des Rotors bis zum stromaufwärts letzten Hohlraum reichender weiterer, zylinderförmiger Hohlraum sowie wenigstens zwei Rohre vorgesehen, die unterschiedliche Durchmesser und Längen aufweisen und sich zumindest teilweise teleskopisch überlappen und die im zylinderförmigen Hohlraum angeordnet sind. Die Rohre sind jeweils an einem Fixpunkt fest verankert, wobei die Fixpunkte der Rohre an axial unterschiedlichen Stellen liegen. Die Rohre sind jeweils mit mindestens zwei Durchgangsöffnungen im Mantel versehen, wobei mindestens eine Öffnung im Turbinenteil und mindestens eine Öffnung im Verdichter- bzw. Mittelteil angeordnet ist. Die Öffnungen der verschiedenen Rohre überlappen sich im Betriebszustand im Turbinenteil und im kalten Zustand im Verdichter- und Mittelteil. Auf diese Weise kann beim Hochfahren der Turbine der Rotor schneller aufgewärmt werden, während im Betriebszustand eine Kühlung bereitgestellt wird. Für die Vorwärmung bzw. für die Kühlung wird dabei an einer geeigneten Verdichterstufe Druckluft entnommen und axial einem der Rohre zugeführt.From the EP 0 761 929 A1 a rotor for a gas turbine is known, on which a compressor part, a central part and a turbine part are formed and which consists mainly of individual, welded together rotational bodies whose geometric shape leads to the formation of axially symmetric cavities between the respective adjacent bodies of revolution. In this rotor, a further extending around the central axis of the rotor, ranging from the downstream end of the rotor to the upstream last cavity further, cylindrical cavity and at least two tubes provided, which have different diameters and lengths and at least partially overlap telescopically and which are arranged in the cylindrical cavity. The tubes are each firmly anchored to a fixed point, wherein the fixed points of the tubes are at axially different locations. The tubes are each provided with at least two passage openings in the jacket, wherein at least one opening in the turbine part and at least one opening in the compressor or central part is arranged. The openings of the various tubes overlap in the operating state in the turbine part and in the cold state in the compressor and central part. In this way, when the turbine is started up, the rotor can be warmed up faster, while cooling is provided in the operating state. For preheating or for cooling, compressed air is taken from a suitable compressor stage and fed axially to one of the tubes.

Dieser bekannte Rotor ist mit der sogenannten "Scheibenbauweise" realisiert, d.h., der Rotor ist aus mehreren "Scheiben" zusammengebaut. Die Scheiben entsprechen scheibenförmigen Körpern, die radial außen einen axial vorstehenden Randbereich aufweisen, der nach Art einer Hülse ausgestaltet sein kann. Die benachbarten Scheiben liegen an den Randbereichen entlang relativ kleiner Ringflächen aneinander an. Bei diesen Scheiben handelt es sich somit um die vorgenannten Rotationskörper. Jede Scheibe ist im Unterschied zu einer Trommel nur wenigen, insbesondere jeweils nur einer einzigen Turbinenstufe zugeordnet. Dementsprechend besteht ein Rotor in Scheibenbauweise aus einer vergleichsweise großen Anzahl an Scheiben, die außerdem vorzugsweise baugleich ausgestaltet sind. Die in einem Rotor mit Scheibenbauweise realisierten Hohlräume dienen vorwiegend zur Reduzierung der Trägheitskräfte, können jedoch zusätzlich für ein Kühlsystem genutzt werden.This known rotor is realized with the so-called "disk construction", ie, the rotor is assembled from several "slices". The discs correspond to disc-shaped bodies, which have radially outwardly an axially projecting edge region, which may be designed in the manner of a sleeve. The adjacent discs abut each other at the edge regions along relatively small annular surfaces. These discs are thus the aforementioned rotating body. Each disc is in contrast to a drum only a few, in each case associated with only a single turbine stage. Accordingly, a disk-type rotor consists of a comparatively large number of disks, which are also preferably of identical construction. The cavities realized in a rotor with a disk construction serve primarily to reduce the inertial forces, but can additionally be used for a cooling system.

Weitere Rotoren für Gasturbinen, die in dieser Scheibenbauweise realisiert sind, können beispielsweise aus der DE 854 445 B , der DE 198 52 604 A1 und der DE 196 17 539 A1 entnommen werden.Further rotors for gas turbines, which are realized in this disc construction, can, for example, from DE 854 445 B , the DE 198 52 604 A1 and the DE 196 17 539 A1 be removed.

Darstellung der ErfindungPresentation of the invention

Die vorliegende Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für einen Rotor einer Dampfturbine der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die insbesondere bei reduziertem Herstellungsaufwand eine hinreichende Kühlung der jeweiligen Kühlzone des Rotors, insbesondere des Rotorinneren, ermöglicht.The present invention, as characterized in the claims, deals with the problem of providing for a rotor of a steam turbine of the type mentioned in an improved embodiment which, in particular at reduced production costs sufficient cooling of the respective cooling zone of the rotor, in particular the rotor interior, allows.

Erfindungsgemäß wird dieses Problem durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.According to the invention, this problem is solved by the subject matter of the independent claim. Advantageous embodiments are the subject of the dependent claims.

Die Erfindung beruht auf dem allgemeinen Gedanken, bei einem Rotor, dessen Rotorteile zum Herstellen der Schweißverbindung stirnseitig jeweils eine Vertiefung aufweisen, die zusammen im verschweißten Zustand eine von der Schweißzone umschlossene Kavität bilden, diese bei der Herstellung des Rotors ohnehin vorhandene Kavität in das Kühlkanalsystem zu integrieren. Durch diese Maßnahme kann die Kavität bzw. können die genannten Vertiefungen vor dem Verschweißen der Rotorteile dazu genutzt werden, den oder die Kühlkanäle und/oder den oder die Zuströmkanäle und/oder den oder die Abströmkanäle in das jeweilige Rotorteil einzubringen. Zusätzliche Ausnehmungen, die einerseits zu einer Materialschwächung führen und andererseits wieder verschlossen werden müssen, sind dadurch entbehrlich. Der Aufwand zur Realisierung des rotorinternen Kühlkanalsystems kann dadurch reduziert werden. Gleichzeitig erhält die Kavität eine sinnvolle Doppelfunktion, wodurch sich insgesamt der Aufwand zur Ausbildung der Schweißverbindung bzw. des Rotors relativiert. Weiterhin ist die Dampfturbine einflutig ausgebildet ist und die wenigstens eine Kühlzone umfasst einen Schubausgleichskolben des Rotors.The invention is based on the general idea, in a rotor whose rotor parts for producing the welded connection each have an indentation on the front side, which together form a cavity enclosed by the welding zone in the welded state, these in the production of the rotor anyway existing cavity in the cooling channel system integrate. By virtue of this measure, the cavity or the depressions mentioned can be used before the welding of the rotor parts to introduce the cooling channel (s) and / or the inflow channel (s) and / or the outflow channel (s) into the respective rotor part. Additional recesses, which on the one hand lead to a material weakening and on the other hand have to be closed again, are therefore unnecessary. The effort to realize the rotor internal cooling channel system can be reduced. simultaneously the cavity receives a meaningful double function, whereby the overall relative expense of forming the welded connection or the rotor relativized. Furthermore, the steam turbine is designed to be single-flow and the at least one cooling zone comprises a thrust balance piston of the rotor.

Besonders wichtig ist die Kühlung des Rotorzentrums in dem Bereich, in dem der Rotor einen großen Außendurchmesser besitzt und gleichzeitig dort außen mit heißem Arbeitsdampf beaufschlagt wird. Das ist häufig im Bereich der Dichtung am Schubausgleichskolben der Fall, durch die unmittelbar heißer Arbeitsdampf von der Turbineneinströmung strömt und wo gleichzeitig der Durchmesser besonders groß ist.Particularly important is the cooling of the rotor center in the area in which the rotor has a large outer diameter and at the same time there is applied externally with hot working steam. This is often the case in the area of the seal on the thrust balance piston, through which immediately hot working steam flows from the turbine inlet and where at the same time the diameter is particularly large.

Die Kühlwirkung eines kühldampfdurchströmten Bohrungssystems (Kühlkanalsystems) ist besonders groß, wenn anstelle einer großen Bohrung viele kleine Bohrungen als Kühlkanäle verwendet werden, denn dann ist die vom Kühldampf beaufschlagte Kühlkanalwand erheblich größer. Gleichzeitig sollte die Querschnittsfläche eines Kühlkanals klein sein, damit eine große Geschwindigkeit des Kühldampf erreicht und damit der Wärmeübergang, also die Kühlwirkung, verbessert wird. Vorteilhaft verlaufen die vielen Kühlkanäle nicht im Rotorzentrum, da eine Durchbohrung des Rotorzentrums die Festigkeit des Rotors dort erheblich schwächt. Bei Rotorabschnitten mit großem Außendurchmesser ist die mechanische Beanspruchung im Rotorzentrum aufgrund der Rotorfliehkraft von besonderer Bedeutung. Sie stellt häufig eine Grenze des Baubaren dar. Durch die erfindungsgemäße Lösung wird aufgrund der Kühlwirkung die Festigkeit des Rotorzentrums erhöht und die Baubarkeitsgrenzen werden in Richtung größerer Temperaturen des Arbeitsdampfes und größerer Rotordurchmesser verschoben.The cooling effect of a cooling steam flow through bore system (cooling channel system) is particularly large when many small holes are used as cooling channels instead of a large bore, because then the cooling duct wall acted upon by the cooling steam is considerably larger. At the same time, the cross-sectional area of a cooling channel should be small so that a high velocity of the cooling steam is achieved and thus the heat transfer, ie the cooling effect, is improved. Advantageously, the many cooling channels do not run in the rotor center, since a piercing of the rotor center considerably weakens the strength of the rotor there. For rotor sections with a large outer diameter, the mechanical stress in the rotor center due to the rotor centrifugal force is of particular importance. It often represents a limit of the buildable. By the solution according to the invention, the strength of the rotor center is increased due to the cooling effect and the Baubarkeitsgrenzen be moved towards higher temperatures of the working steam and larger rotor diameter.

Besondere Vorteile ergeben sich auch für einen Rotor, der aus wenigstens drei Rotorteilen hergestellt ist und dementsprechend zwei Schweißzonen sowie zwei Kavitäten umfasst. Die beiden Kavitäten können dann durch wenigstens einen Kühlkanal miteinander verbunden sein, während der wenigstens eine Zuströmkanal an der einen Kavität endet und der wenigstens eine Abströmkanal an der anderen Kavität beginnt. Bei dieser Bauweise bilden die Kavitäten quasi Knotenstellen, welche die Kommunikation zwischen dem wenigstens einen Kühlkanal und dem wenigstens einen Zuströmkanal einerseits und dem wenigstens einen Abströmkanal andererseits herstellen. Durch die Anbindung des wenigstens einen Zuströmkanals sowie des wenigstens einen Abströmkanals jeweils an eine der Kavitäten, ist es außerdem möglich, den wenigstens einen Kühlkanal nur im mittleren Rotorteil der drei Rotorteile auszubilden, was den Aufwand zur Realisierung des Kühlkanalsystems reduziert.Particular advantages also result for a rotor which is made of at least three rotor parts and accordingly comprises two welding zones and two cavities. The two cavities can then pass through at least one Cooling channel be connected to each other, while the at least one inflow channel terminates at the one cavity and the at least one outflow channel begins at the other cavity. In this construction, the cavities form quasi node points which establish the communication between the at least one cooling channel and the at least one inflow channel on the one hand and the at least one outflow channel on the other hand. By connecting the at least one inflow channel and the at least one outflow channel in each case to one of the cavities, it is also possible to form the at least one cooling channel only in the central rotor part of the three rotor parts, which reduces the effort to realize the cooling channel system.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.Other important features and advantages of the invention will become apparent from the dependent claims, from the drawings and from the associated figure description with reference to the drawings.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen. Es zeigen, jeweils schematisch,

Fig. 1 bis 5
jeweils einen stark vereinfachten Längsschnitt durch eine einflutige Dampfturbine mit zweiteiligem geschweißten Trommelrotor nach der Erfindung bei unterschiedlichen Ausführungsformen,
Fig. 6
einen stark vereinfachten Längsschnitt durch eine einflutige Dampfturbine mit dreiteiligem geschweißten Trommelrotor nach der Erfindung,
Fig. 7 bis 9
jeweils einen stark vereinfachten Längsschnitt durch eine zweiflutige Dampfturbine mit dreiteiligem geschweißten Trommelrotor bei verschiedenen Ausführungsformen, die nicht Teil der Erfindung sind.
Preferred embodiments of the invention are illustrated in the drawings and will be described in more detail in the following description, wherein like reference numerals refer to the same or similar or functionally identical components. Show, in each case schematically,
Fig. 1 to 5
in each case a greatly simplified longitudinal section through a single-flow steam turbine with two-part welded drum rotor according to the invention in different embodiments,
Fig. 6
a highly simplified longitudinal section through a single-flow steam turbine with three-piece welded drum rotor according to the invention,
Fig. 7 to 9
in each case a greatly simplified longitudinal section through a double-flow steam turbine with a three-part welded drum rotor in various embodiments, which are not part of the invention.

Bei allen Figuren sind nur das Innengehäuse und der Rotor dargestellt, nicht aber das Außengehäuse.In all figures, only the inner housing and the rotor are shown, but not the outer housing.

Wege zur Ausführung der ErfindungWays to carry out the invention

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Fig. 1 bis 9 näher erläutert.Hereinafter, the invention with reference to embodiments and the Fig. 1 to 9 explained in more detail.

Entsprechend Fig. 1 umfasst eine Dampfturbine 1 einen Rotor 2, der an seinen Axialenden 3 und 4 um eine zentrale Rotationsachse 5 drehend gelagert ist. Der Rotor 2 ist zentrisch in einem Gehäuse 6 angeordnet, das mehrere Leitschaufeln 7 trägt. Korrespondierend dazu trägt der Rotor 2 mehrere Laufschaufeln 8, wobei die Laufschaufeln 8 und die Leitschaufeln 7 paarweise die Turbinenstufen 9 der Dampfturbine 1 bilden. Bekanntermaßen arbeitet eine Dampfturbine 1 mit Dampf als Arbeitsmedium, auch Arbeitsdampf genannt. Das Gehäuse 6 enthält einen Zuströmraum 10, dem der gespannte Dampf zugeführt wird und von dem der Dampf zur ersten Turbinenstufe 9 der Dampfturbine 1 geführt wird. Der entspannte Dampf wird an einem Austritt 11 des Gehäuses 6 abgeführt. Pfeile 12 symbolisieren dabei die Hauptströmung des Dampfes durch die Dampfturbine 1.Corresponding Fig. 1 For example, a steam turbine 1 comprises a rotor 2, which is rotatably mounted at its axial ends 3 and 4 about a central axis of rotation 5. The rotor 2 is arranged centrally in a housing 6 which carries a plurality of guide vanes 7. Correspondingly, the rotor 2 carries a plurality of rotor blades 8, the rotor blades 8 and the stator blades 7 forming in pairs the turbine stages 9 of the steam turbine 1. As is known, a steam turbine 1 works with steam as a working medium, also called working steam. The housing 6 contains an inflow space 10 to which the tensioned steam is supplied and from which the steam is led to the first turbine stage 9 of the steam turbine 1. The expanded steam is discharged at an outlet 11 of the housing 6. Arrows 12 symbolize the main flow of the steam through the steam turbine 1.

Der Rotor 2 ist mehrteilig ausgeführt und besitzt bei den Ausführungsformen der Fig. 1 bis 5 jeweils zwei Rotorteile 2a und 2b, die in Achsrichtung aneinander grenzen. Der Rotor 2 ist hier als "Trommelrotor" 2 ausgestaltet, d.h., der Rotor 2 ist nach der Trommelbauweise realisiert. Die einzelnen Rotorteile 2a, 2b bilden dabei die "Trommeln" des Trommelrotors 2. Sie zeichnen sich durch ihre massive Bauweise mit großer Materialstärker in radialer und axialer Richtung aus.The rotor 2 is designed in several parts and has in the embodiments of Fig. 1 to 5 two rotor parts 2a and 2b, which adjoin each other in the axial direction. The rotor 2 is designed here as a "drum rotor" 2, ie, the rotor 2 is realized according to the drum design. The individual rotor parts 2a, 2b form the "drums" of the drum rotor 2. They are characterized by their massive design with large material thickness in the radial and axial directions.

Die beiden Rotorteile 2a, 2b sind miteinander verschweißt. Zu diesem Zweck ist an einander zugewandten axialen Stirnseiten 13 und 14 der Rotorteile 2a, 2b eine Schweißzone 15 ausgebildet, die sich in Umfangsrichtung erstreckt und dabei geschlossen umläuft. Auf diese Weise erhält die Schweißzone 15 eine ringförmige Gestalt.The two rotor parts 2a, 2b are welded together. For this purpose, a welding zone 15 is formed on mutually facing axial end faces 13 and 14 of the rotor parts 2a, 2b, which extends in the circumferential direction and thereby rotates closed. In this way, the welding zone 15 is given an annular shape.

Zur Ausbildung dieser Schweißzone 15 sind die beiden Rotorteile 2a, 2b an ihren Stirnseiten 13, 14 jeweils mit einer Vertiefung 16 bzw. 17 beliebiger Gestalt versehen. Im zusammengebauten Zustand ergänzen sich die beiden Vertiefungen 16, 17 zu einer Kavität 18. Diese Kavität 18 ist somit von der Schweißzone 15 umfangsmäßig umschlossen.To form this weld zone 15, the two rotor parts 2a, 2b are provided at their end faces 13, 14 each with a recess 16 or 17 of any shape. In the assembled state, the two depressions 16, 17 complement one another to form a cavity 18. This cavity 18 is thus surrounded circumferentially by the welding zone 15.

Der Rotor 2 ist außerdem mit einem internen Kühlkanalsystem 19 ausgestattet, das es ermöglicht, teilweise entspannten und somit teilweise abgekühlten Dampf an einer Position an der Rotoroberfläche 20 zu entnehmen und diesen als Kühldampf zumindest einem thermisch belasteten Bestandteil des Rotors 2, wie z. B. einem Schubausgleichskolben 21 zuzuführen. Demnach handelt es sich beim Kühldampf um dasselbe Medium wie beim Arbeitsdampf. Das Kühlkanalsystem 19 umfasst hierzu zumindest einen Zuströmkanal 22 zur Entnahme des Kühldampfes aus dem Arbeitsdampf an einer Position an der Rotoroberfläche 20 an einer dazu geeigneten Turbinenstufe 9. Im vorliegenden Fall sind zwei derartigen Zuströmkanäle 22 dargestellt. Es ist klar, dass auch mehr als zwei Zuströmkanäle 22 vorgesehen sein können, die insbesondere sternförmig bezüglich der Rotationsachse 5 angeordnet sein können. Des Weiteren ist wenigstens ein Abströmkanal 23 vorgesehen, der den Kühldampf durch wenigstens eine Kühlzone, hier exemplarisch der Schubausgleichskolben 21 und/oder zu einer Kühlzone des Rotors 2 oder eines Rotor- bzw. Turbinenbauteils führt. Im vorliegenden Fall sind ebenfalls zwei Abströmkanäle 23 dargestellt. Es können jedoch auch mehr als zwei Abströmkanäle 23 vorgesehen sein, die insbesondere sternförmig bezüglich der Rotationsachse 5 angeordnet sein können.The rotor 2 is also equipped with an internal cooling channel system 19, which makes it possible to remove partially relaxed and thus partially cooled vapor at a position on the rotor surface 20 and this as cooling steam at least one thermally loaded component of the rotor 2, such. B. a thrust balance piston 21 supply. Accordingly, the cooling steam is the same medium as the working steam. For this purpose, the cooling channel system 19 comprises at least one inflow channel 22 for removing the cooling steam from the working steam at a position on the rotor surface 20 at a turbine stage 9 suitable for this purpose. In the present case, two such inflow channels 22 are shown. It is clear that too more than two inflow channels 22 may be provided, which may be arranged in particular star-shaped with respect to the axis of rotation 5. Furthermore, at least one outflow channel 23 is provided which guides the cooling steam through at least one cooling zone, here exemplarily the thrust balance piston 21 and / or to a cooling zone of the rotor 2 or a rotor or turbine component. In the present case, two outflow channels 23 are also shown. However, more than two outflow channels 23 may be provided, which may be arranged in particular star-shaped with respect to the axis of rotation 5.

Des Weiteren umfasst das Kühlkanalsystem 19 zumindest einen Kühlkanal 24, der bzw. die zusammen oder jeweils für sich den wenigstens einen Zuströmkanal 22 mit dem wenigstens einen Abströmkanal 23 verbinden. Auf diese Weise wird der Kühldampf entsprechend den Pfeilen 25 über den wenigstens einen Zuströmkanal 22 der jeweiligen Turbinenstufe 9 entnommen, über den oder die Kühlkanäle 24 dem wenigstens einen Abströmkanal 23 zugeführt, der den Kühldampf seinerseits der jeweiligen Kühlzone, z. B. dem Schubausgleichskolben 21, zuführt. Durch die gewählte Positionierung der Einströmenden der Zuströmkanäle 22 und der Ausströmenden der Abströmkanäle 23 besteht innerhalb des Kühlkanalsystems 19 ein Druckgefälle, das den Kühldampf selbsttätig in der gewünschten Weise innerhalb des Kühlkanalsystems 19 transportiert.Furthermore, the cooling channel system 19 comprises at least one cooling channel 24, which together or in each case connect the at least one inflow channel 22 to the at least one outflow channel 23. In this way, the cooling steam is removed according to the arrows 25 via the at least one inflow channel 22 of the respective turbine stage 9, supplied via the or the cooling channels 24 to at least one outflow channel 23, which in turn the cooling steam of the respective cooling zone, for. B. the thrust balance piston 21, supplies. Due to the selected positioning of the inflow ends of the inflow channels 22 and the outflow ends of the outflow channels 23, there is a pressure gradient within the cooling channel system 19, which automatically transports the cooling steam within the cooling channel system 19 in the desired manner.

Erfindungsgemäß ist nun die Kavität 18 in das Kühlkanalsystem 19 integriert. Bei der in Fig. 1 gezeigten Ausführungsform erfolgt dies dadurch, dass die Kühlkanäle 24 jeweils an diese Kavität 18 angeschlossen sind. Der rechts dargestellte Kühlkanal 24 ist eingangsseitig an die Zuströmkanäle 22 angeschlossen und ausgangsseitig an die Kavität 18. Der links dargestellte Kühlkanal 24 ist eingangsseitig an die Kavität 18 angeschlossen und ausgangsseitig an die Abströmkanäle 23. Auf diese Weise wird die Kavität 18 zu einem vom Kühldampf durchströmten Bestandteil des Kühlkanalsystems 19. Die Kavität 18 bildet dabei eine Art Verteilerknoten, der den Kühldampf, der über einen oder mehrere Kanäle 22 oder 24 zugeführt wird, auf einen oder mehrere Kanäle 23, 24 verteilt.According to the invention, the cavity 18 is now integrated into the cooling channel system 19. At the in Fig. 1 As shown, this is done by the cooling channels 24 are each connected to this cavity 18. The cooling channel 24 shown on the right is connected on the input side to the inflow channels 22 and the output side to the cavity 18. The cooling channel 24 shown on the left is connected to the input side of the cavity 18 and In this way, the cavity 18 to a flowed through by the cooling steam component of the cooling channel system 19. The cavity 18 forms a kind of distribution node, the cooling steam, which is supplied via one or more channels 22 or 24, to a or multiple channels 23, 24 distributed.

Bei der Ausführungsform gemäß Fig. 1 sind die beiden Kühlkanäle 24 jeweils zentrisch zur Rotationsachse 5 im jeweiligen Rotorteil 2a, 2b ausgestaltet. Die Ausbildung dieser Kühlkanäle 24 ist dabei besonders einfach, da die Rotorteile 2a, 2b vor dem Verschweißen im Bereich ihrer Vertiefungen 16, 17 zentral aufgebohrt werden können, um diese Kühlkanäle 24 auszubilden. Eine zusätzliche, hilfsweise angebrachte Vertiefung in der Oberfläche des jeweiligen Rotorteils 2a, 2b ist nicht erforderlich. Die Zuströmkanäle 22, die sich hier im wesentlichen radial erstrecken, können in Form von Bohrungen hergestellt werden. Entsprechendes gilt auch für die Abströmkanäle 23, die sich hier diagonal - zentrisch erstrecken. Im Hinblick auf die Strömungsrichtung innerhalb des Kühlkanalsystems 19 endet der rechts dargestellte Kühlkanal 24 an der Kavität 18, während der links dargestellte Kühlkanal 24 an der Kavität 18 beginnt.In the embodiment according to Fig. 1 the two cooling channels 24 are each designed centric to the axis of rotation 5 in the respective rotor part 2a, 2b. The design of these cooling channels 24 is particularly simple, since the rotor parts 2a, 2b can be drilled centrally before welding in the region of their recesses 16, 17 in order to form these cooling channels 24. An additional, alternatively mounted recess in the surface of the respective rotor part 2a, 2b is not required. The inflow channels 22, which extend essentially radially here, can be produced in the form of bores. The same applies to the discharge channels 23, which extend here diagonally - centrally. With regard to the flow direction within the cooling channel system 19, the cooling channel 24 shown on the right ends on the cavity 18, while the cooling channel 24 shown on the left begins at the cavity 18.

Die in Fig. 2 gezeigte Ausführungsform unterscheidet sich von der in Fig. 1 gezeigten Ausführungsform dadurch, dass im rechts dargestellten Rotorteil 2a kein zentraler Kühlkanal 24, sondern mehrere dezentrale bzw. bezüglich der Rotationsachse 5 exzentrisch angeordnete, jedoch parallel zur Längsachse verlaufende Kühlkanäle 24 vorgesehen sind, die jeweils mit einem der Zuströmkanäle 22 kommunizieren. Bei dieser Bauweise kann die Anbringung eines zentralen Kühlkanals 24 vermieden werden, was bei bestimmten Rotorbauformen von Vorteil sein kann. Die Anzahl der im rechten Rotorteil 2a ausgebildeten Kühlkanäle 24 entspricht dann der Anzahl der dort vorgesehenen Zuströmkanäle 22.In the Fig. 2 The embodiment shown differs from that in FIG Fig. 1 shown embodiment in that in the rotor part shown on the right 2a no central cooling channel 24, but a plurality of decentralized or with respect to the rotation axis 5 eccentrically arranged, but parallel to the longitudinal axis extending cooling channels 24 are provided, each communicate with one of the inflow channels 22. In this construction, the attachment of a central cooling channel 24 can be avoided, which may be advantageous in certain rotor designs. The number of cooling channels 24 formed in the right-hand rotor part 2a then corresponds to the number of inflow channels 22 provided there.

In einer weiteren nicht dargestellten Ausführungsform können auch mehrere fächerartig angeordnete Zuströmkanäle 22 auf einen Kühlkanal 24 treffen.In a further embodiment, not shown, a plurality of fan-like arranged inflow channels 22 may encounter a cooling channel 24.

Die Ausführungsform der Fig. 3 unterscheidet sich von der Ausführungsform gemäß Fig. 2 dadurch, dass außerdem im links dargestellten Rotorteil 2b anstelle eines zentralen Kühlkanals 24 mehrere dezentrale bzw. bezüglich der Rotationsachse 5 exzentrisch angeordnete Kühlkanäle 24 vorgesehen sind. Auch diese Kühlkanäle 24 erstrecken sich vorzugsweise parallel zur Längsachse des Rotors 2 und kommunizieren jeweils mit einem der Abströmkanäle 23. Die Anzahl der Kühlkanäle 24 im links dargestellten Rotorteil 2b entspricht dann der Anzahl der dort angebrachten Abströmkanäle 23, wobei dies nicht notwendigerweise sein muss. Auch beim linken Rotorteil 2b kann bei bestimmten Ausführungsformen des Rotors 2 die Anbringung mehrerer dezentraler oder exzentrischer Kühlkanäle 24 gegenüber einem zentralen Kühlkanal 24 vorteilhaft sein.The embodiment of the Fig. 3 differs from the embodiment according to Fig. 2 in that, in addition to a central cooling channel 24, a plurality of decentralized or with respect to the rotation axis 5 eccentrically arranged cooling channels 24 are provided in the rotor part 2b shown on the left. These cooling channels 24 also preferably extend parallel to the longitudinal axis of the rotor 2 and in each case communicate with one of the outflow channels 23. The number of cooling channels 24 in the rotor part 2b shown on the left then corresponds to the number of outflow channels 23 attached thereto, although this does not necessarily have to be. In the case of certain embodiments of the rotor 2, the attachment of a plurality of decentralized or eccentric cooling channels 24 with respect to a central cooling channel 24 can also be advantageous in the case of the left rotor part 2b.

Sobald mehrere Kühlkanäle 24 parallel zueinander exzentrisch verlaufen, wie dies beispielsweise bei den Ausführungsformen der Fig. 2 und 3 der Fall ist, sind diese zweckmäßig symmetrisch verteilt im jeweiligen Rotorteil 2a, 2b angeordnet, das heißt, die jeweiligen Kühlkanäle 24 sind konzentrisch um die Rotationsachse 5 herum angeordnet.As soon as a plurality of cooling channels 24 extend parallel to each other eccentrically, as for example in the embodiments of Fig. 2 and 3 is the case, these are expediently symmetrically distributed in the respective rotor part 2a, 2b arranged, that is, the respective cooling channels 24 are arranged concentrically around the rotation axis 5 around.

Bei den Ausführungsformen der Fig. 1 bis 3 ist die Kavität 18 quasi zwischen den in Achsrichtung aufeinander folgenden Kühlkanälen 24 angeordnet. Die Zuströmkanäle 22 und die Abströmkanäle 23 können nur über die Kühlkanäle 24 mit der Kavität 18 kommunizieren. Im Unterschied dazu ist bei der Ausführungsform gemäß Fig. 4 die Teilung des Rotors 2 an die Position der Abströmkanäle 23 adaptiert, das heißt, die Schweißzone 15 ist im Vergleich zu den Ausführungsformen der Fig. 1 bis 3 in Richtung der jeweiligen Kühlzone, also hier in Richtung des Schubausgleichskolbens 21 verschoben. Bei dieser Bauweise ist es möglich, die Abströmkanäle 23 direkt mit der Kavität 18 zu verbinden. Dementsprechend beginnen die Abströmkanäle 23 bei dieser Ausführungsform an der Kavität 18. Dies bedeutet eine erhebliche Vereinfachung der Herstellung des Kühlkanalsystems 19, da im linken Rotorteil 2b kein Kühlkanal 24 ausgebildet werden muss. Im rechten Rotorteil 2a ist das Kühlkanalsystem 19 wie in der Ausführungsform gemäß Fig. 1 gestaltet, indem ein zentraler Kühlkanal 24 vorgesehen ist, der mit den Zuströmkanälen 22 kommuniziert.In the embodiments of the Fig. 1 to 3 the cavity 18 is arranged quasi between the successive cooling channels 24 in the axial direction. The inflow channels 22 and the outflow channels 23 can communicate with the cavity 18 only via the cooling channels 24. In contrast, in the embodiment according to Fig. 4 the pitch of the rotor 2 adapted to the position of the outflow channels 23, that is, the welding zone 15 is compared to the embodiments of the Fig. 1 to 3 in the direction of the respective cooling zone, ie shifted here in the direction of the thrust balance piston 21. In this construction, it is possible to connect the outflow channels 23 directly to the cavity 18. Accordingly, the discharge channels 23 in this embodiment start at the cavity 18. This means a considerable simplification of the production of the cooling channel system 19, since no cooling channel 24 has to be formed in the left rotor part 2b. In the right rotor part 2a, the cooling passage system 19 is as in the embodiment according to FIG Fig. 1 designed by a central cooling channel 24 is provided, which communicates with the inflow channels 22.

Die in Fig. 5 gezeigte Ausführungsform unterscheidet sich von der Ausführungsform gemäß Fig. 4 dadurch, dass im rechten Rotorteil 2a anstelle des zentralen Kühlkanals 24 mehrere dezentrale bzw. exzentrisch zur Rotationsachse 5 angeordnete Kühlkanäle 24 vorgesehen sind, die jeweils mit einem der Zuströmkanäle 22 kommunizieren. Dies kann für bestimmte Ausführungsformen des Rotors 2 von Vorteil sein.In the Fig. 5 The embodiment shown differs from the embodiment according to FIG Fig. 4 in that a plurality of decentralized or eccentrically arranged to the rotation axis 5 cooling channels 24 are provided in the right rotor part 2a instead of the central cooling channel 24, each communicating with one of the inflow channels 22. This may be advantageous for certain embodiments of the rotor 2.

Bei den Ausführungsformen der Fig. 4 und 5 sind die Abströmkanäle 23 direkt an die Kavität 18 angeschlossen, während die Zuströmkanäle 22 indirekt über die Kühlkanäle 24 an die Kavität 18 angeschlossen sind. Grundsätzlich ist auch eine andere Ausführungsform möglich, bei welcher die Teilung des Rotors 2 so gewählt ist, dass die Zuströmkanäle 22 direkt an die Kavität 18 angeschlossen werden können, während die Abströmkanäle 23 dann indirekt über einen oder über mehrere Kühlkanäle 24 an die Kavität 18 angeschlossen sein können. Die Schweißzone 15 ist dann in Richtung der Entnahmestelle des Kühldampfes verschoben.In the embodiments of the Fig. 4 and 5 the outflow channels 23 are connected directly to the cavity 18, while the inflow channels 22 are connected indirectly via the cooling channels 24 to the cavity 18. In principle, another embodiment is possible in which the pitch of the rotor 2 is selected such that the inflow channels 22 can be connected directly to the cavity 18, while the outflow channels 23 are then connected indirectly via one or more cooling channels 24 to the cavity 18 could be. The welding zone 15 is then displaced in the direction of the removal point of the cooling steam.

Bei einer anderen Ausführungsform kann der wenigstens eine Kühlkanal 24 durch die Kavität 18 gebildet sein, mit der Folge, dass sowohl die Zuströmkanäle 22 als auch die Abströmkanäle 23 direkt an die Kavität 18 angeschlossen sind.In another embodiment, the at least one cooling channel 24 may be formed by the cavity 18, with the result that both the inflow channels 22 and the outflow channels 23 are connected directly to the cavity 18.

Bei den Ausführungsformen der Fig. 1 bis 5 ist gemeinsam, dass die wenigstens eine Entnahmestellen, hier die jeweilige Turbinenstufe 9, an einer Position an der Rotoroberfläche 20 im Bereich des einen Rotorteils 2a angeordnet ist, während die wenigstens eine Kühlzone, hier der Schubausgleichskolben 21, im Bereich des anderen Rotorteils 2b angeordnet ist. Dies hat zur Folge, dass bei diesen Ausführungsformen der wenigstens eine Zuströmkanal 22 zwangsläufig in dem einen Rotorteil 2a angeordnet ist, während der wenigstens eine Abströmkanal 23 in dem anderen Rotorteil 2b angeordnet ist. Das Kühlkanalsystem 19 erstreckt sich somit innerhalb des zweiteiligen Rotors 2 durch beide Rotorteile 2a und 2b.In the embodiments of the Fig. 1 to 5 It is common that the at least one removal points, here the respective turbine stage 9, is arranged at a position on the rotor surface 20 in the region of one rotor part 2a, while the at least one cooling zone, here the thrust balance piston 21, is arranged in the region of the other rotor part 2b , This has the consequence that in these embodiments, the at least one inflow channel 22 is necessarily arranged in the one rotor part 2a, while the at least one outflow channel 23 is arranged in the other rotor part 2b. The cooling channel system 19 thus extends within the two-piece rotor 2 through both rotor parts 2a and 2b.

Während der Rotor 2 bei den Ausführungsformen der Fig. 1 bis 5 zweiteilig ausgestaltet ist, zeigt Fig. 6 eine Ausführungsform mit einem dreiteiligen Rotor 2, wobei die einzelnen Rotorteile von rechts nach links mit 2a, 2b und 2c bezeichnet sind. Auch dieser Rotor 2 ist als Trommelrotor 2 ausgestaltet. Aufgrund der Dreiteiligkeit sind dementsprechend zwei Schweißzonen 15 und somit auch zwei Kavitäten 18 vorgesehen. Dabei sind im Sinne der Erfindung beide Kavitäten 18 in das Kühlkanalsystem 19 integriert. Die Teilung des Rotors 2 ist dabei gezielt so gewählt, dass die Zuströmkanäle 22 direkt mit der einen Kavität 18 kommunizieren, während die Abströmkanäle 23 direkt mit der anderen Kavität 18 kommunizieren. Die beiden Kavitäten 18 sind dann über den wenigstens einen Kühlkanal 24, hier über wenigstens zwei Kühlkanäle 24 miteinander verbunden. Diese gezielte Teilung des Rotors 2 vereinfacht die Integration des Kühlkanalsystems 19 in den Rotor 2. Denn sowohl für die Ausbildung der Zuströmkanäle 22 als auch für die Ausbildung der Abströmkanäle 23 können einfache Bohrungen vorgesehen werden, die von der jeweiligen Entnahmestelle beziehungsweise von der jeweiligen Kühlzone zur jeweiligen Kavität 18 führen. Des Weiteren können auch der oder die Kühlkanäle 24 durch einfache Bohrungen hergestellt werden. Bei der in Fig. 6 gezeigten Ausführungsform sind demnach im rechts dargestellten Rotorteil 2a ausschließlich die Zuströmkanäle 22 und im links dargestellten Rotorteil 2c ausschließlich die Abströmkanäle 23 ausgebildet, während das mittlere Rotorteil 2b ausschließlich den oder die Kühlkanäle 24 enthält.While the rotor 2 in the embodiments of Fig. 1 to 5 is designed in two parts, shows Fig. 6 an embodiment with a three-part rotor 2, wherein the individual rotor parts are designated from right to left with 2a, 2b and 2c. This rotor 2 is designed as a drum rotor 2. Due to the three-parted two welding zones 15 and thus two cavities 18 are accordingly provided. In this case, both cavities 18 are integrated into the cooling channel system 19 in the sense of the invention. The pitch of the rotor 2 is specifically chosen so that the inflow channels 22 communicate directly with the one cavity 18, while the outflow channels 23 communicate directly with the other cavity 18. The two cavities 18 are then connected to one another via the at least one cooling channel 24, here via at least two cooling channels 24. This targeted division of the rotor 2 simplifies the integration of the cooling channel system 19 into the rotor 2. For both the formation of the inflow channels 22 and the formation of the outflow channels 23, simple bores can be provided which are from the respective removal point or lead from the respective cooling zone to the respective cavity 18. Furthermore, the one or more cooling channels 24 can be prepared by simple holes. At the in Fig. 6 1, only the inflow channels 22 and in the rotor part 2c shown on the left are exclusively the outflow channels 23 formed, while the central rotor part 2b contains only the or the cooling channels 24.

Beim Rotor 2 sind im mittleren Rotorteil 2b zwei oder mehr Kühlkanäle 24 exzentrisch angeordnet. Ebenso ist eine Ausführungsform möglich, bei der sich ein zentraler Kühlkanal 24 zwischen den beiden Kavitäten 18 erstreckt. Des weiteren ist grundsätzlich auch eine Ausführungsform möglich, bei der zumindest eine der Schweißzonen 15 so positioniert ist, dass das zugehörige äußere Rotorteil 2a oder 2c weder einen Zuströmkanal 22 noch einen Abströmkanal 23 enthält. Beispielsweise kann die rechts gezeigte Schweißzone 15 rechts neben der Kühldampfentnahmestelle positioniert sein, mit der Folge, dass die Zuströmkanäle 22 dann im mittleren Rotorteil 2b ausgebildet werden müssen. Diese Bauweise führt dazu, dass im rechten Rotorteil 2a dann kein Zuströmkanal 22 enthalten ist. Dies hat den Vorteil, dass das rechte Rotorteil 2a überhaupt nicht bearbeitet werden muss, um das rotorinterne Kühlkanalsystem 19 auszubilden. Entsprechendes gilbt dann auch für die links gezeigte Schweißzone 15 im Hinblick auf die Abströmkanäle 23.When rotor 2, two or more cooling channels 24 are arranged eccentrically in the central rotor part 2b. Likewise, an embodiment is possible in which a central cooling channel 24 extends between the two cavities 18. Furthermore, in principle, an embodiment is possible in which at least one of the welding zones 15 is positioned so that the associated outer rotor part 2 a or 2 c contains neither an inflow channel 22 nor an outflow channel 23. For example, the welding zone 15 shown on the right can be positioned to the right of the cooling steam removal point, with the result that the inflow passages 22 then have to be formed in the central rotor part 2b. This design leads to the fact that in the right rotor part 2a then no inflow channel 22 is included. This has the advantage that the right rotor part 2 a does not have to be processed at all, in order to form the rotor-internal cooling channel system 19. The same then applies to the weld zone 15 shown on the left with regard to the outflow channels 23.

Während bei den Ausführungsformen der Fig. 1 bis 6 die Dampfturbine 1 einflutig ausgestaltet ist, zeigen die Fig. 7 bis 9 zweiflutige Dampfturbinen 1. Die beiden Fluten sind dabei mit 26 bzw. 27 bezeichnet. Bei dieser zweiflutigen Dampfturbine 1 ist der Rotor 2 wieder dreiteilig und als Trommelrotor 2 ausgebildet, wobei sich das mittlere Rotorteil 2b in beide Fluten 26, 27 hineinerstreckt. Die Teilung des Rotors 2 erfolgt gezielt so, dass die Schweißzonen 15 mit ihren Kavitäten 18 jeweils so positioniert sind, dass die Zuströmkanäle 22 direkt an die eine, hier an die linke Kavität 18, und die Abströmkanäle 23 direkt an die andere, hier an die rechte Kavität 18, angeschlossen werden können. Die beiden Kavitäten 18 kommunizieren dann über den wenigstens einen Kühlkanal 24 miteinander. Mit Hilfe des Kühlkanalsystems 19 kann somit Kühldampf der links dargestellten Flut 27 an einer bestimmten Turbinenstufe 9 entnommen werden und der Beschaufelung der rechts dargestellten anderen Flut 26 zugeführt werden. Durch eine geeignete Positionierung der wenigstens einen Entnahmestelle sowie der wenigstens einen Rückleitungsstelle entsteht innerhalb des Kühlkanalsystems 19 ein hinreichendes Druckgefälle, um den Kühldampf ohne zusätzliche Maßnahmen antreiben zu können.While in the embodiments of Fig. 1 to 6 the steam turbine 1 is designed single-flow, show the Fig. 7 to 9 twin-flow steam turbines 1. The two floods are designated 26 and 27 respectively. In this twin-flow steam turbine 1, the rotor 2 is again in three parts and formed as a drum rotor 2, wherein the central rotor part 2b hineinerstreckt in both floods 26, 27. The division of the rotor 2 is targeted so that the welding zones 15 are each positioned with their cavities 18 so that the Inflow channels 22 directly to the one, here to the left cavity 18, and the outflow channels 23 directly to the other, here to the right cavity 18, can be connected. The two cavities 18 then communicate with each other via the at least one cooling channel 24. With the help of the cooling channel system 19 thus cooling steam of the flood 27 shown on the left can be taken at a certain turbine stage 9 and the blading 26 are shown the other flood 26 shown on the right. By means of a suitable positioning of the at least one removal point and the at least one return point, a sufficient pressure gradient arises within the cooling channel system 19 in order to be able to drive the cooling steam without additional measures.

Auch bei dieser Ausführungsform wird deutlich, dass durch die Integration der Kavitäten 18 in das Kühlkanalsystem 19 der Aufwand zur Realisierung des Kühlkanalsystems 19 relativ gering ist, da die Vertiefungen 16, 17 in den Stirnseiten 13, 14 der Rotorteile 2a, 2b, 2c das Einbringen der Zuströmkanäle 22 und der Abströmkanäle 23 sowie der Kühlkanäle 24 erheblich vereinfachen.In this embodiment, too, it becomes clear that the expense of realizing the cooling channel system 19 is relatively low due to the integration of the cavities 18 into the cooling channel system 19, since the depressions 16, 17 in the end faces 13, 14 of the rotor parts 2 a, 2 b, 2 c introduce the inflow channels 22 and the outflow channels 23 and the cooling channels 24 considerably simplify.

Bei der Ausführungsform gemäß Fig. 7, die nicht Bestandteil der Erfindung ist, sind die beiden Kavitäten 18 durch einen zentral angeordneten Kühlkanal 24 miteinander verbunden. Im Unterschied dazu sind bei der Ausführungsform gemäß Fig. 8 die beiden Kavitäten 18 durch zwei oder mehr bezüglich der Rotationsachse 5 exzentrisch angeordnete Kühlkanäle 24 miteinander verbunden. Zweckmäßig sind diese Kühlkanäle 24 um die Rotationsachse 5 herum konzentrisch verteilt angeordnet. Dabei muss die Anzahl der Kühlkanäle 24 weder mit der Anzahl der Zuströmkanäle 22 noch mit der Anzahl der Abströmkanäle 23 übereinstimmen.In the embodiment according to Fig. 7 , which is not part of the invention, the two cavities 18 are interconnected by a centrally disposed cooling channel 24. In contrast, in the embodiment according to Fig. 8 the two cavities 18 are interconnected by two or more cooling channels 24 arranged eccentrically with respect to the axis of rotation 5. Suitably, these cooling channels 24 are arranged concentrically distributed about the rotation axis 5. In this case, the number of cooling channels 24 does not have to match either the number of inflow channels 22 or the number of outflow channels 23.

Bei den Ausführungsformen der Fig. 7 und 8 sind die Zuströmkanäle 22 im links dargestellten Rotorteil 2c, die Abströmkanäle 23 im rechts gezeigten Rotorteil 2a und der oder die Kühlkanäle 24 im mittleren Rotorteil 2b ausgebildet. Grundsätzlich ist es möglich, die axiale Teilung des Rotors 2 gezielt so anzubringen, dass die Zuströmkanäle 22 und/oder die Abströmkanäle 23 ebenfalls im mittleren Rotorteil 2b angeordnet sind. Fig. 9 zeigt eine Ausführungsform, die nicht Bestandteil der Erfindung ist, bei der sowohl die Zuströmkanäle 22 als auch die Abströmkanäle 23 im mittleren Rotorteil 2b angeordnet sind, in dem auch der oder die Kühlkanäle 24 ausgebildet sind. Bei dieser Bauweise muss somit nur das mittlere Rotorteil 2b bearbeitet werden, um das Kühlkanalsystem 19 im gesamten Rotor 2 auszubilden. Der Aufwand zur Realisierung des Kühlkanalsystems 19 wird dadurch reduziert.In the embodiments of the Fig. 7 and 8th are the inflow channels 22 in the rotor part 2c shown on the left, the outflow channels 23 in the rotor part 2a shown on the right and the one or more cooling channels 24 formed in the central rotor part 2b. In principle, it is possible to selectively mount the axial division of the rotor 2 in such a way that the inflow channels 22 and / or the outflow channels 23 are likewise arranged in the central rotor part 2b. Fig. 9 shows an embodiment which is not part of the invention, in which both the inflow channels 22 and the outflow channels 23 are arranged in the central rotor part 2b, in which the cooling channels or the channels 24 are formed. In this construction, therefore, only the central rotor part 2 b must be processed in order to form the cooling channel system 19 in the entire rotor 2. The cost of implementing the cooling channel system 19 is thereby reduced.

Selbstverständlich ist die Erfindung nicht auf die beschriebenen Ausführungsbeispiele begrenzt.Of course, the invention is not limited to the described embodiments.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Dampfturbinesteam turbine
22
Rotorrotor
2a2a
Rotorteilrotor part
2b2 B
Rotorteilrotor part
2c2c
Rotorteilrotor part
33
Axialende von 2Axial end of 2
44
Axialende von 2Axial end of 2
55
Rotationsachseaxis of rotation
66
Gehäusecasing
77
Leitschaufelvane
88th
Laufschaufelblade
99
Turbinenstufeturbine stage
1010
Zuströmrauminflow
1111
Austrittexit
1212
Hauptströmungmainstream
1313
Stirnseitefront
1414
Stirnseitefront
1515
Schweißzonewelding zone
1616
Vertiefungdeepening
1717
Vertiefungdeepening
1818
Kavitätcavity
1919
KühlkanalsystemCooling duct system
2020
Rotoroberflächerotor surface
2121
SchubausgleichskolbenThrust balance piston
2222
Zuströmkanalinflow
2323
Abströmkanaloutflow channel
2424
Kühlkanalcooling channel
2525
KühldampfströmungCooling steam flow
2626
Flutflood
2727
Flutflood

Claims (11)

  1. Rotor for a steam turbine (1) for working steam
    - wherein the steam turbine (1) is formed mono-flow,
    - wherein the rotor (2) extends along a rotation axis (5) and comprises at least two rotor parts (2a, 2b, 2c) contiguous to one another in axis direction,
    - wherein in each case two rotor parts (2a, 2b, 2c) at axial face sides (13, 14) facing one another are welded with one another by means of an annular weld zone (15) forming a closed circle in circumferential direction,
    - wherein in the rotor (2) is formed a cooling channel system (19), which has at least one inflow channel (22), at least one outflow channel (23) and at least one cooling channel (24) extending axially in the rotor (2),
    - wherein the at least one cooling channel (24) guides cooling steam directly or indirectly from the at least one inflow channel (22) directly or indirectly to the at least one outflow channel (23),
    - wherein the at least one inflow channel (22) extracts from the working steam the cooling steam at a position on the rotor surface (20),
    - wherein the at least one outflow channel (23) guides the cooling steam through at least one and/or to at least one cooling zone,
    - wherein the at least one cooling zone comprises a thrust compensation piston (21) of the rotor (2),
    - wherein at least in the case of two rotor parts (2a, 2b, 2c) the weld zone (15) encloses a well (18) circumferentially, which is formed from two recesses (16, 17), which are in each case incorporated in the corresponding rotor part (2a, 2b, 2c) on the face side,
    - wherein the at least one well (18) forms a component of the cooling channel system (19) and is flowed through by cooling steam.
  2. Rotor according to claim 1,
    characterised in
    - that at least one cooling channel (24) communicating with at least one inflow channel (22) ends at the at least one well (18),
    - that at least one cooling channel (24) communicating with at least one outflow channel (23) begins at the at least one well (18).
  3. Rotor according to claim 1,
    characterised in
    - that at least one cooling channel (24) communicating with at least one inflow channel (22) ends at the at least one well (18),
    - that the at least one outflow channel (23) begins at this well (18).
  4. Rotor according to claim 1,
    characterised in
    - that at least one cooling channel (24) communicating with at least one outflow channel (23) begins at the well (18),
    - that the at least one inflow channel (22) ends at this well (18).
  5. Rotor according to claim 1,
    characterised in
    - that the at least one cooling channel (24) is formed by the well (18),
    - that the at least one inflow channel (22) ends at the well (18),
    - that the at least one outflow channel (23) begins at the well (18).
  6. Rotor according to any of claims 1 to 5,
    characterised in
    that the at least one inflow channel (22) extends in the one rotor part (2a), while the at least one outflow channel (23) extends in the other rotor part (2b).
  7. Rotor according to claim 1,
    characterised in
    - that in the case of a rotor (1) having at least three rotor parts (2a, 2b, 2c) are provided two weld zones (15) and two wells (18),
    - that the two wells (18) are connected with one another via the at least one cooling channel (24),
    - that the at least one inflow channel (22) ends at the one well (18),
    - that the at least one outflow channel (23) begins at the other well (18).
  8. Rotor according to claim 7,
    characterised in
    - that the at least one inflow channel (22) extends in the one outer rotor part (2c) or in the middle rotor part (2b) of the three rotor parts (2a, 2b, 2c),
    - that the at least one outflow channel (23) extends in the other outer rotor part (2a) or in the middle rotor part (2b) of the two rotor parts (2a, 2b, 2c).
  9. Rotor according to any of claims 1 to 8,
    characterised in
    - that the at least one cooling channel (24) extends concentrically to the rotation axis (5), or
    - that the at least one cooling channel (24) extends eccentrically to the rotation axis (5) and substantially parallel thereto.
  10. Rotor according to any of claims 1 to 9,
    characterised in
    - that the at least one inflow channel (22) extends with respect to the rotation axis (5) substantially radially or diagonal-centrally or diagonal-non-centrally such that it meets the cooling channel (24), and/or
    - that the at least one outflow channel (23) extends with respect to the rotation axis (5) substantially radially or diagonal-centrally or diagonal-non-centrally such that it meets the cooling channel (24).
  11. Rotor according to any of claims 1 to 10,
    characterised in
    that the rotor (2) is constructed according to the drum design as drum rotor (2) made of several drums formed by the rotor parts (2a, 2b, 2c).
EP04105832.2A 2003-11-28 2004-11-17 Rotor for a steam turbine Not-in-force EP1536102B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10355738 2003-11-28
DE10355738A DE10355738A1 (en) 2003-11-28 2003-11-28 Rotor for a turbine

Publications (3)

Publication Number Publication Date
EP1536102A2 EP1536102A2 (en) 2005-06-01
EP1536102A3 EP1536102A3 (en) 2012-08-22
EP1536102B1 true EP1536102B1 (en) 2019-03-20

Family

ID=34442341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04105832.2A Not-in-force EP1536102B1 (en) 2003-11-28 2004-11-17 Rotor for a steam turbine

Country Status (3)

Country Link
US (1) US7267525B2 (en)
EP (1) EP1536102B1 (en)
DE (1) DE10355738A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0979073A4 (en) * 1997-03-31 2004-04-07 Childrens Medical Center Nitrosylation to inactivate apoptotic enzymes
EP1780376A1 (en) * 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Steam turbine
EP1793091A1 (en) * 2005-12-01 2007-06-06 Siemens Aktiengesellschaft Steam turbine with bearing struts
JP2007291966A (en) 2006-04-26 2007-11-08 Toshiba Corp Steam turbine and turbine rotor
GB0616832D0 (en) * 2006-08-25 2006-10-04 Alstom Technology Ltd Turbomachine
ATE483096T1 (en) * 2006-08-25 2010-10-15 Siemens Ag SPIRAL-COOLED ROTOR WELD
JP4908137B2 (en) * 2006-10-04 2012-04-04 株式会社東芝 Turbine rotor and steam turbine
EP1911933A1 (en) * 2006-10-09 2008-04-16 Siemens Aktiengesellschaft Rotor for a turbomachine
JP5049578B2 (en) 2006-12-15 2012-10-17 株式会社東芝 Steam turbine
JP5634869B2 (en) 2007-11-02 2014-12-03 アルストム テクノロジー リミテッドALSTOM Technology Ltd Method for determining the remaining life of a rotor of a fluid machine under thermal load
US8105032B2 (en) * 2008-02-04 2012-01-31 General Electric Company Systems and methods for internally cooling a wheel of a steam turbine
US8484975B2 (en) * 2008-02-05 2013-07-16 General Electric Company Apparatus and method for start-up of a power plant
EP2211017A1 (en) * 2009-01-27 2010-07-28 Siemens Aktiengesellschaft Rotor with cavity for a turbo engine
US8453463B2 (en) * 2009-05-27 2013-06-04 Pratt & Whitney Canada Corp. Anti-vortex device for a gas turbine engine compressor
US8251643B2 (en) * 2009-09-23 2012-08-28 General Electric Company Steam turbine having rotor with cavities
EP2565419A1 (en) * 2011-08-30 2013-03-06 Siemens Aktiengesellschaft Flow machine cooling
EP2573317A1 (en) * 2011-09-21 2013-03-27 Siemens Aktiengesellschaft Rotor for a steam turbine
US8926273B2 (en) 2012-01-31 2015-01-06 General Electric Company Steam turbine with single shell casing, drum rotor, and individual nozzle rings
WO2014138035A1 (en) 2013-03-04 2014-09-12 Echogen Power Systems, L.L.C. Heat engine systems with high net power supercritical carbon dioxide circuits
WO2014197343A1 (en) * 2013-06-06 2014-12-11 Dresser-Rand Company Compressor having hollow shaft
EP2998506A1 (en) * 2014-09-19 2016-03-23 Siemens Aktiengesellschaft System for reducing the start-up time of a steam turbine
WO2016073252A1 (en) 2014-11-03 2016-05-12 Echogen Power Systems, L.L.C. Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US10883388B2 (en) 2018-06-27 2021-01-05 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
JP7242597B2 (en) * 2020-03-12 2023-03-20 東芝エネルギーシステムズ株式会社 turbine rotor
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
AU2021397292A1 (en) 2020-12-09 2023-07-06 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE854445C (en) * 1948-11-27 1952-11-04 Brown Ag Liquid-cooled gas turbine runner
CH353218A (en) * 1957-09-18 1961-03-31 Escher Wyss Ag An axial turbine rotor composed of disks
DE4411616C2 (en) * 1994-04-02 2003-04-17 Alstom Method for operating a turbomachine
DE19531290A1 (en) 1995-08-25 1997-02-27 Abb Management Ag Rotor for thermal turbomachinery
DE19617539B4 (en) * 1996-05-02 2006-02-09 Alstom Rotor for a thermal turbomachine
DE19620828C1 (en) 1996-05-23 1997-09-04 Siemens Ag Steam turbine shaft incorporating cooling circuit
ATE230065T1 (en) * 1996-06-21 2003-01-15 Siemens Ag TURBINE SHAFT AND METHOD FOR COOLING A TURBINE SHAFT
DE19648185A1 (en) * 1996-11-21 1998-05-28 Asea Brown Boveri Welded rotor of a turbomachine
DE59803075D1 (en) 1997-06-27 2002-03-21 Siemens Ag TURBINE SHAFT OF A STEAM TURBINE WITH INTERNAL COOLING AND METHOD FOR COOLING A TURBINE SHAFT
DE19757945B4 (en) * 1997-12-27 2006-11-30 Alstom Rotor for thermal turbomachinery
DE19852604A1 (en) * 1998-11-14 2000-05-18 Abb Research Ltd Rotor for gas turbine, with first cooling air diverting device having several radial borings running inwards through first rotor disk
EP1013879A1 (en) * 1998-12-24 2000-06-28 Asea Brown Boveri AG Liquid cooled turbomachine shaft
JP2003206701A (en) * 2002-01-11 2003-07-25 Mitsubishi Heavy Ind Ltd Turbine rotor for gas turbine, and gas turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US7267525B2 (en) 2007-09-11
EP1536102A3 (en) 2012-08-22
DE10355738A1 (en) 2005-06-16
US20050118025A1 (en) 2005-06-02
EP1536102A2 (en) 2005-06-01

Similar Documents

Publication Publication Date Title
EP1536102B1 (en) Rotor for a steam turbine
EP1945911B1 (en) Steam turbine
DE2913987C2 (en)
EP2140114B1 (en) Axial bearing particularly for a turbocharger
EP0170938B1 (en) Blade and seal clearance optimization device for compressors of gas turbine power plants, particularly of gas turbine jet engines
DE2553193A1 (en) BORE BLADE DEVICE FOR TURBINE BLADES WITH BORE INLET COOLING
EP1201879B1 (en) Cooled component, casting core and method for the manufacture of the same
EP2543865A2 (en) Turbofan engine with heat exchanger on the core engine housing
EP1389690A1 (en) Screw interiorly cooled
EP1180578A1 (en) Statoric blades for a turbomachine
EP2818724B1 (en) Fluid flow engine and method
EP2173972B1 (en) Rotor for an axial flow turbomachine
EP1705339B1 (en) Rotor shaft, in particular for a gas turbine
CH694257A5 (en) Steam turbine.
DE112015005131B4 (en) Cooling structure for turbine and gas turbine
DE69632837T2 (en) GAS TURBINE WHERE THE REFRIGERANT IS RE-USED
EP2886807B1 (en) Cooled flanged connection for a gas turbine engine
DE10355230A1 (en) Rotor for a turbomachine
CH701151B1 (en) Turbo engine with a Verdichterradelement.
EP3159487B1 (en) Stator of a turbine of a gas turbine with improved cooling air conduction
EP2324208B1 (en) Turbine lead rotor holder for a gas turbine
EP3464825B1 (en) Turbine blade with passages for coolant and outlet openings
EP1785587A1 (en) Internally cooled rotor of a turbomachine
EP1389668A1 (en) Gas turbine
EP2159384A1 (en) Stator vane support for a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: F02C 7/16 20060101ALI20120716BHEP

Ipc: F01D 5/08 20060101AFI20120716BHEP

17P Request for examination filed

Effective date: 20130219

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181002

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REIGL, MARTIN

Inventor name: HIEGEMANN, MICHAEL, DR.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/08 20060101AFI20120716BHEP

Ipc: F02C 7/16 20060101ALI20120716BHEP

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015778

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1110726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015778

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191021

Year of fee payment: 16

26N No opposition filed

Effective date: 20200102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191022

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191022

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1110726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015778

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117