EP1201879B1 - Cooled component, casting core and method for the manufacture of the same - Google Patents

Cooled component, casting core and method for the manufacture of the same Download PDF

Info

Publication number
EP1201879B1
EP1201879B1 EP01123193A EP01123193A EP1201879B1 EP 1201879 B1 EP1201879 B1 EP 1201879B1 EP 01123193 A EP01123193 A EP 01123193A EP 01123193 A EP01123193 A EP 01123193A EP 1201879 B1 EP1201879 B1 EP 1201879B1
Authority
EP
European Patent Office
Prior art keywords
duct
cooling
casting core
cooling duct
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01123193A
Other languages
German (de)
French (fr)
Other versions
EP1201879A2 (en
EP1201879A3 (en
Inventor
Hartmut Haehnle
Ibrahim Dr. El-Nashar
Rudolf Dr. Kellerer
Beat Von Arx
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1201879A2 publication Critical patent/EP1201879A2/en
Publication of EP1201879A3 publication Critical patent/EP1201879A3/en
Application granted granted Critical
Publication of EP1201879B1 publication Critical patent/EP1201879B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage

Definitions

  • the present invention relates to the field of gas turbines. It relates to a cooled component for gas turbines according to the preamble of Claim 1.
  • Such a component is in the form of a turbine blade e.g. from the publication GB-A-2 202 907.
  • the invention further relates to a casting core for the production of such Component and a method for producing such a component.
  • the efficiency of gas turbines which closely matches the height of the inlet temperature for the hot combustion gases and for reasons of efficient combustion Fuel efficiency and economy should be as high as possible, is out material-technical reasons in particular depends on an efficient Use of cooling air, which as a coolant usually the compressor stage is removed.
  • the operational safety and service life of the gas turbine require sufficient cooling of the thermally highly loaded turbine components or components, to which in particular the input-side guide vanes and blades of the first turbine stages include.
  • the cooling can do this be effected in different ways, e.g. by means of internal cooling (cooling the component by circulating cooling air inside) and / or by means of Film cooling (producing a cooling air film through suitably arranged outlet openings on the loaded outside of the component).
  • a well-known method for efficient internal cooling is a so-called “cyclone” (or “vortex chamber” in GB-A-2 202 907).
  • cyclone is an elongated cooling channel with a mostly circular or elliptical cross section through a series of tangentially opening feed bores with cooling air applied.
  • the incoming cooling air forms a vortex in the cooling channel, the order the longitudinal axis of the channel is rotated and due to the high speed and Turbulence in the edge area a particularly effective cooling of the channel wall and thus causing the cooled component.
  • Fig. 1 is a simplified perspective view of a turbine blade 10 reproduced with such a per se known cyclone cooling.
  • the turbine blade 10 is shown "transparent", so that the inner Cavities and channels are recognizable as solid lines.
  • the Turbine blade 10 has a leading edge 13 and a trailing edge ("trailing edge") 14, each extending in the longitudinal direction of the blade between the blade root 11 and the blade tip 12 extend.
  • the special one Training the blade root 11 for attachment of the blade on the rotor and to Supplying the blade with cooling air, as shown for example in US-A-4,293,275 or US-A-5,002,460 is shown in Fig. 1 for the sake of Simplification not reproduced.
  • Coolant channel 15 For internal cooling of the turbine blade 10 is from the blade root 11 ago a connection channel, not shown, cooling air in a longitudinal direction extending coolant channel 15 fed (vertical arrows in Fig. 1). Parallel to the coolant channel 15 and parallel to the to be cooled, especially thermally loaded front edge 13 of the turbine blade 10 extends a cylindrical cooling channel 16, which forms the cyclone. From the coolant channel 15 is a series of transverse Anspeisebohritch 17 to the cooling channel 16 and there opens approximately tangential. The tangentially through the Anspeisebohronne 17 in the cooling channel 16 incoming cooling air (horizontal arrows in Fig. 1) forms over the Channel extending vortex, which heat from the surrounding channel wall receives.
  • the heated cooling air either exits the cooling channel 16 from the front side from, or as shown in GB-A-2 202 907 through tangential outlets in FIG Shape of holes or slots.
  • Other indoor cooling facilities that simultaneously serve for film cooling and / or with the trailing edge 14 in conjunction are omitted in Fig. 1 for the sake of simplicity.
  • the object is solved by the entirety of the features of claim 1.
  • the essence of the invention is, by a suitable formation of the whole the feed bores to the rigidity of the associated casting core improve without adhering to the given diameter conditions for to give up the feed bores. This happens because the Anspeisebohrungen predominantly have a bore diameter, the smaller than half the hydraulic diameter of the cooling channel, and that to Improvement in the rate of application during the casting of the component Selected drilling holes have a bore diameter that is greater than that half hydraulic diameter of the cooling channel.
  • the selected Anspeisebohrept each at the ends of the cooling channel arranged, in particular the lowest and the uppermost Anspeisebohrung are used as a selected Anspeisebohrung. This can be over the entire interior of the cooling channel of the desired cooling air vortex form virtually unhindered and unfold its maximum cooling effect.
  • the component e.g. a turbine blade, especially long, but it can in With regard to the stability of the core, if according to another Embodiment additionally selected in the central region of the cooling channel Anspeisebohritch are provided.
  • the inventive casting core for the production of such a component which Cast core a first channel part to form the coolant channel and a second channel part for forming the cooling channel, and a plurality of Connecting webs which extend transversely between the two channel parts and serve the formation of Anspeisebohrept is characterized in that the Connecting webs predominantly have an outer diameter, the smaller is as half the hydraulic diameter of the cooling channel, and that selected Connecting webs have an outer diameter which is greater than half the hydraulic diameter of the cooling channel.
  • the selected connecting webs are each at the ends of the arranged second channel part, wherein in particular the lowermost and the uppermost Connecting web are used as a selected connecting web.
  • the inventive method for producing a component according to the invention By means of a metal casting process is characterized in that a Casting core according to the invention is used.
  • Fig. 3 is an embodiment of an internally cooled gas turbine component reproduced according to the invention a comparable to FIG. 1 turbine blade 10 '.
  • the same parts of the turbine blade 10 ' are denoted by the same reference numerals provided, as in the turbine blade 10 of Fig. 1.
  • Also in the turbine blade 10 ' are the coolant channel 15 and the cooling channel 16 through a superimposed series of feed bores 17 and 25, .., 27 connected.
  • the cast core 18 includes a first channel part 19, which requires the formation of the coolant channel 15 is, and a second channel portion 20, the 16 for the formation of the cooling channel responsible is. Both channel parts 19 and 20 are crossed by a series of arranged connecting webs 21 and 22, .., 24 connected, each one have round cross-section.
  • the majority of connecting webs, namely the "thin” connecting webs 21, serve to form the feed bores, the o.g. "Cyclone criterion" in terms of diameter suffice.
  • Only a few selected connecting webs, namely the connecting webs 22, 23 and 24, are “thicker” and thus strengthen the connection between the core parts 19 and 20 and thus the mechanical rigidity of the casting core 18 in total.
  • cooling channel 16 and the second channel part 20 is not very long, it is sufficient from, the two outer connecting webs 22 and 24 as selected Form connecting bridges with an enlarged cross-section. In this way can be practically on the entire length of the cooling channel 16 of the cooling air vortex form undisturbed, because there the "cyclone criterion" is fulfilled.
  • the diameter of the selected feed bores 25, .., 27 or the selected Connecting webs 22, .., 24 is chosen in each case larger than the half hydraulic diameter. How big the diameter actually is depends crucially on the geometry of the casting core and the casting process and must be determined on an individual basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Technik von Gasturbinen. Sie betrifft ein gekühltes Bauteil für Gasturbinen gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to the field of gas turbines. It relates to a cooled component for gas turbines according to the preamble of Claim 1.

Eins solches Bauteil ist in Gestalt einer Turbinenschaufel z.B. aus der Druckschrift GB-A-2 202 907 bekannt.Such a component is in the form of a turbine blade e.g. from the publication GB-A-2 202 907.

Die Erfindung betrifft weiterhin einen Gusskern für die Herstellung eines solchen Bauteils sowie ein Verfahren zur Herstellung eines solchen Bauteils. The invention further relates to a casting core for the production of such Component and a method for producing such a component.

STAND DER TECHNIKSTATE OF THE ART

Der Wirkungsgrad von Gasturbinen, der eng mit der Höhe der Eintrittstemperatur für die heissen Verbrennungsgase zusammenhängt und aus Gründen der effizienten Brennstoffausnutzung und Wirtschaftlichkeit möglichst hoch sein soll, ist aus werkstofftechnischen Gründen in besonderem Masse abhängig von einer effizienten Nutzung der Kühlluft, die als Kühlmittel üblicherweise der Kompressorstufe entnommen wird. Die Betriebssicherheit und Lebensdauer der Gasturbine bedingen eine ausreichende Kühlung der thermisch hoch belasteten Turbinenkomponenten bzw. -bauteile, zu denen insbesondere die eingangsseitigen Leitschaufeln und Laufschaufeln der ersten Turbinenstufen gehören. Die Kühlung kann dabei auf unterschiedliche Weise bewirkt werden, also z.B. mittels Innenkühlung (Kühlung der Komponente durch im Inneren zirkulierende Kühlluft) und/oder mittels Filmkühlung (Erzeugen eines Kühlluftfilms durch geeignet angeordnete Austrittsöffnungen auf der belasteten Aussenseite der Komponente).The efficiency of gas turbines, which closely matches the height of the inlet temperature for the hot combustion gases and for reasons of efficient combustion Fuel efficiency and economy should be as high as possible, is out material-technical reasons in particular depends on an efficient Use of cooling air, which as a coolant usually the compressor stage is removed. The operational safety and service life of the gas turbine require sufficient cooling of the thermally highly loaded turbine components or components, to which in particular the input-side guide vanes and blades of the first turbine stages include. The cooling can do this be effected in different ways, e.g. by means of internal cooling (cooling the component by circulating cooling air inside) and / or by means of Film cooling (producing a cooling air film through suitably arranged outlet openings on the loaded outside of the component).

Eine bekannte Methode zur effizienten Innenkühlung ist ein sogenannter "Zyklon" (oder "vortex chamber" in der GB-A-2 202 907). Bei einem solchen "Zyklon" wird eine länglicher Kühlkanal mit meist kreisrundem oder elliptischem Querschnitt durch eine Reihe von tangential einmündenden Anspeisebohrungen mit Kühlluft beaufschlagt. Die einströmende Kühlluft bildet einen Wirbel im Kühlkanal, der um die Längsachse des Kanals rotiert und aufgrund der hohen Geschwindigkeit und Turbulenz im Randbereich eine besonders wirksame Kühlung der Kanalwand und damit des gekühlten Bauteils bewirkt.A well-known method for efficient internal cooling is a so-called "cyclone" (or "vortex chamber" in GB-A-2 202 907). In such a "cyclone" is an elongated cooling channel with a mostly circular or elliptical cross section through a series of tangentially opening feed bores with cooling air applied. The incoming cooling air forms a vortex in the cooling channel, the order the longitudinal axis of the channel is rotated and due to the high speed and Turbulence in the edge area a particularly effective cooling of the channel wall and thus causing the cooled component.

In Fig. 1 ist in einer vereinfachten perspektivischen Darstellung eine Turbinenschaufel 10 mit einer solchen an sich bekannten Zyklon-Kühlung wiedergegeben. Die Turbinenschaufel 10 ist dabei "durchsichtig" dargestellt, so dass die innenliegenden Hohlräume und Kanäle als durchgezogene Linien erkennbar sind. Die Turbinenschaufel 10 weist eine Vorderkante ("leading edge") 13 und eine Hinterkante ("trailing edge") 14 aus, die sich jeweils in Längsrichtung der Schaufel zwischen dem Schaufelfuss 11 und der Schaufelspitze 12 erstrecken. Die spezielle Ausbildung des Schaufelfusses 11 zur Befestigung der Schaufel am Rotor und zur Versorgung der Schaufel mit Kühlluft , wie sie beispielsweise in der US-A-4,293,275 oder der US-A-5,002,460 offenbart ist, ist in Fig. 1 aus Gründen der Vereinfachung nicht wiedergegeben.In Fig. 1 is a simplified perspective view of a turbine blade 10 reproduced with such a per se known cyclone cooling. The turbine blade 10 is shown "transparent", so that the inner Cavities and channels are recognizable as solid lines. The Turbine blade 10 has a leading edge 13 and a trailing edge ("trailing edge") 14, each extending in the longitudinal direction of the blade between the blade root 11 and the blade tip 12 extend. The special one Training the blade root 11 for attachment of the blade on the rotor and to Supplying the blade with cooling air, as shown for example in US-A-4,293,275 or US-A-5,002,460 is shown in Fig. 1 for the sake of Simplification not reproduced.

Zur Innenkühlung der Turbinenschaufel 10 wird vom Schaufelfuss 11 her durch einen nicht gezeigten Verbindungskanal Kühlluft in einen sich in Längsrichtung erstreckenden Kühlmittelkanal 15 eingespeist (vertikale Pfeile in Fig. 1). Parallel zum Kühlmittelkanal 15 und parallel zu der zu kühlenden, thermisch besonders belasteten Vorderkante 13 der Turbinenschaufel 10 verläuft ein zylindrischer Kühlkanal 16, der den Zyklon bildet. Vom Kühlmittelkanal 15 aus geht eine Reihe von querliegenden Anspeisebohrungen 17 zum Kühlkanal 16 und mündet dort in etwa tangential ein. Die durch die Anspeisebohrungen 17 in den Kühlkanal 16 tangential einströmende Kühlluft (horizontale Pfeile in Fig. 1) bildet einen sich über den Kanal erstreckenden Wirbel aus, der von der umgebenden Kanalwand Wärme aufnimmt. Die erwärmte Kühlluft tritt entweder stirnseitig aus dem Kühlkanal 16 aus, oder - wie in der GB-A-2 202 907 gezeigt - durch tangentiale Auslässe in Form von Bohrungen oder Schlitzen. Weitere Einrichtungen zur Innenkühlung, die gleichzeitig zur Filmkühlung dienen und/oder mit der Hinterkante 14 in Verbindung stehen, sind in Fig. 1 der Einfachheit halber weggelassen.For internal cooling of the turbine blade 10 is from the blade root 11 ago a connection channel, not shown, cooling air in a longitudinal direction extending coolant channel 15 fed (vertical arrows in Fig. 1). Parallel to the coolant channel 15 and parallel to the to be cooled, especially thermally loaded front edge 13 of the turbine blade 10 extends a cylindrical cooling channel 16, which forms the cyclone. From the coolant channel 15 is a series of transverse Anspeisebohrungen 17 to the cooling channel 16 and there opens approximately tangential. The tangentially through the Anspeisebohrungen 17 in the cooling channel 16 incoming cooling air (horizontal arrows in Fig. 1) forms over the Channel extending vortex, which heat from the surrounding channel wall receives. The heated cooling air either exits the cooling channel 16 from the front side from, or as shown in GB-A-2 202 907 through tangential outlets in FIG Shape of holes or slots. Other indoor cooling facilities that simultaneously serve for film cooling and / or with the trailing edge 14 in conjunction are omitted in Fig. 1 for the sake of simplicity.

Die Wirkung der Zyklon-Kühlung hängt in starkem Masse von der Anspeisung (Randbedingungen, Lage und Querschnitte der Anspeisebohrungen, etc.) ab. Erforderlich sind dabei Anspeisebohrungen 17 mit einem Bohrungsdurchmesser, der kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals (Zyklons) 16. Da eine Turbinenschaufel 10 der in Fig. 1 gezeigten Art üblicherweise durch ein Metallgussverfahren hergestellt wird, muss für die Ausbildung des Kühlmittelkanals 15, des Kühlkanals 16 und der beide verbindenden Anspeisebohrungen 17 ein entsprechender mehrfach zusammenhängender Gusskern eingesetzt werden. Schwachstellen eines solchen Gusskerns sind die wegen der o.g. Durchmesserbedingung vergleichsweise dünnen Verbindungsstege, welche beim Guss die späteren Anspeisebohrungen bilden. An dieser Stelle kann es daher leicht zu einem Kernbruch kommen, der den Erfolg des Gusses in Frage stellt.The effect of the cyclone cooling depends heavily on the feed (Boundary conditions, position and cross sections of the feed bores, etc.). Required are here Anspeisebohrungen 17 with a bore diameter, the smaller than half the hydraulic diameter of the cooling channel (cyclone) 16. As a turbine blade 10 of the type shown in Fig. 1 usually by a Metal casting process is produced, must be for the training of the coolant channel 15, the cooling channel 16 and the two connecting Anspeisebohrungen 17th a corresponding multi-continuous casting core can be used. Weaknesses of such a casting core are due to the o.g. Diameter condition comparatively thin connecting webs, which during casting the form later Anspeisebohrungen. At this point it can therefore easily become one Break in the core, which questions the success of the casting.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es ist daher Aufgabe der Erfindung, ein Gasturbinen-Bauteil der eingangs genannten Art so zu gestalten, dass das Auftreten von Kernbrüchen beim Giessen wirksam eingeschränkt und die beim Giessen erreichte Ausbringungsrate deutlich verbessert wird.It is therefore an object of the invention to provide a gas turbine component of the aforementioned Art to be designed so that the occurrence of core breaks during casting effectively limited and the output rate achieved during the casting clearly is improved.

Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Der Kern der Erfindung besteht darin, durch eine geeignete Ausbildung der Gesamtheit der Anspeisebohrungen die Steifigkeit des zugehörigen Gusskerns zu verbessern, ohne die Einhaltung der vorgegebenen Durchmesserbedingungen für die Anspeisebohrungen aufgeben zu müssen. Dies geschieht dadurch, dass die Anspeisebohrungen überwiegend einen Bohrungsdurchmesser aufweisen, der kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals, und dass zur Verbesserung der Ausbringungsrate beim Giessen des Bauteils ausgewählte Anspeisebohrungen einen Bohrungsdurchmesser aufweisen, der grösser ist als der halbe hydraulische Durchmesser des Kühlkanals.The object is solved by the entirety of the features of claim 1. The essence of the invention is, by a suitable formation of the whole the feed bores to the rigidity of the associated casting core improve without adhering to the given diameter conditions for to give up the feed bores. This happens because the Anspeisebohrungen predominantly have a bore diameter, the smaller than half the hydraulic diameter of the cooling channel, and that to Improvement in the rate of application during the casting of the component Selected drilling holes have a bore diameter that is greater than that half hydraulic diameter of the cooling channel.

Gemäss einer ersten bevorzugten Ausführungsform des Bauteils nach der Erfindung sind die ausgewählten Anspeisebohrungen jeweils an den Enden des Kühlkanals angeordnet , wobei insbesondere die unterste und die oberste Anspeisebohrung als ausgewählte Anspeisebohrung eingesetzt sind. Hierdurch kann sich über den gesamten Innenbereich des Kühlkanals der gewünschte Kühlluftwirbel praktisch ungehindert ausbilden und seine maximale Kühlwirkung entfalten.According to a first preferred embodiment of the component according to the invention are the selected Anspeisebohrungen each at the ends of the cooling channel arranged, in particular the lowest and the uppermost Anspeisebohrung are used as a selected Anspeisebohrung. This can be over the entire interior of the cooling channel of the desired cooling air vortex form virtually unhindered and unfold its maximum cooling effect.

Ist das Bauteil, z.B. eine Turbinenschaufel, besonders lang, kann es jedoch im Hinblick auf die Stabilität des Kerns vorteilhaft sein, wenn gemäss einer anderen Ausführungsform zusätzlich im mittleren Bereich des Kühlkanals ausgewählte Anspeisebohrungen vorgesehen sind.If the component, e.g. a turbine blade, especially long, but it can in With regard to the stability of the core, if according to another Embodiment additionally selected in the central region of the cooling channel Anspeisebohrungen are provided.

Der erfindungsgemässe Gusskern für die Herstellung eines solchen Bauteils, welcher Gusskern einen ersten Kanalteil zur Bildung des Kühlmittelkanals und einen zweiten Kanalteil zur Bildung des Kühlkanals umfasst, sowie eine Mehrzahl von Verbindungsstegen, welche zwischen den beiden Kanalteilen quer verlaufen und der Bildung der Anspeisebohrungen dienen, ist dadurch gekennzeichnet, dass die Verbindungsstege überwiegend einen Aussendurchmesser aufweisen, der kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals, und dass ausgewählte Verbindungsstege einen Aussendurchmesser aufweisen, der grösser ist als der halbe hydraulische Durchmesser des Kühlkanals.The inventive casting core for the production of such a component, which Cast core a first channel part to form the coolant channel and a second channel part for forming the cooling channel, and a plurality of Connecting webs which extend transversely between the two channel parts and serve the formation of Anspeisebohrungen is characterized in that the Connecting webs predominantly have an outer diameter, the smaller is as half the hydraulic diameter of the cooling channel, and that selected Connecting webs have an outer diameter which is greater than half the hydraulic diameter of the cooling channel.

Bevorzugt sind die ausgewählten Verbindungsstege jeweils an den Enden des zweiten Kanalteils angeordnet, wobei insbesondere der unterste und der oberste Verbindungssteg als ausgewählter Verbindungssteg eingesetzt sind.Preferably, the selected connecting webs are each at the ends of the arranged second channel part, wherein in particular the lowermost and the uppermost Connecting web are used as a selected connecting web.

Das erfindungsgemässe Verfahren zum Herstellen eines Bauteils nach der Erfindung mittels eines Metallgussverfahrens ist dadurch gekennzeichnet, dass ein erfindungsgemässer Gusskern verwendet wird.The inventive method for producing a component according to the invention By means of a metal casting process is characterized in that a Casting core according to the invention is used.

Weitere Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.Further embodiments emerge from the dependent claims.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen

Fig. 1
in einer vereinfachten perspektivischen Seitenansicht eine Turbinenschaufel mit an sich bekannter Innenkühlung der Vorderkante durch einen sogenannten Zyklon;
Fig. 2
in perspektivischer Seitenansicht einen versteiften Gusskern zur Herstellung einer zu Fig. 1 vergleichbaren Turbinenschaufel gemäss einem bevorzugten Ausführungsbeispiel der Erfindung; und
Fig. 3
in einer zu Fig. 1 vergleichbaren Darstellung die mit dem Gusskern aus Fig. 2 hergestellte Turbinenschaufel.
The invention will be explained in more detail with reference to embodiments in conjunction with the drawings. Show it
Fig. 1
in a simplified perspective side view of a turbine blade with known internal cooling of the leading edge by a so-called cyclone;
Fig. 2
in a perspective side view of a stiffened casting core for producing a comparable to FIG. 1 turbine blade according to a preferred embodiment of the invention; and
Fig. 3
in a representation comparable to FIG. 1, the turbine blade produced with the casting core from FIG. 2.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

In Fig. 3 ist als Ausführungsbeispiel eines innengekühlten Gasturbinen-Bauteils nach der Erfindung eine zu Fig. 1 vergleichbare Turbinenschaufel 10' wiedergegeben. Gleiche Teile der Turbinenschaufel 10' sind dabei mit denselben Bezugszeichen versehen, wie bei der Turbinenschaufel 10 aus Fig. 1. Auch bei der Turbinenschaufel 10' sind der Kühlmittelkanal 15 und der Kühlkanal 16 durch eine übereinander angeordnete Reihe von Anspeisebohrungen 17 bzw. 25,..,27 verbunden. Die Mehrzahl der Anspeisebohrungen, nämlich die Anspeisebohrungen 17, erfüllen vom Durchmesser her das für einen Zyklon charakteristische Kriterium, dass nämlich ihr Bohrungsdurchmesser kleiner ist als der halbe hydraulische Durchmesser des Kühlkanals 16. Nur wenige ausgewählte Anspeisebohrungen, nämlich die Anspeisebohrungen 25, 26 und 27, weisen einen Bohrungsdurchmesser auf, der abweichend davon grösser ist als der halbe hydraulische Durchmesser des Kühlkanals 16. Durch diese ausgewählten Anspeisebohrungen 25,..,27 kann - wie nachfolgend erläutert wird - die Ausbringungsrate bei der Herstellung der Schaufeln deutlich erhöht werden.In Fig. 3 is an embodiment of an internally cooled gas turbine component reproduced according to the invention a comparable to FIG. 1 turbine blade 10 '. The same parts of the turbine blade 10 'are denoted by the same reference numerals provided, as in the turbine blade 10 of Fig. 1. Also in the turbine blade 10 'are the coolant channel 15 and the cooling channel 16 through a superimposed series of feed bores 17 and 25, .., 27 connected. The majority of the Anspeisebohrungen, namely the Anspeisebohrungen 17, meet the diameter characteristic of the characteristic of a cyclone criterion namely that their bore diameter is smaller than half the hydraulic Diameter of the cooling channel 16. Only a few selected feed bores, namely the Anspeisebohrungen 25, 26 and 27, have a bore diameter which, unlike that, is larger than half the hydraulic diameter of the cooling channel 16. Through these selected Anspeisebohrungen 25, .., 27 can - as explained below - the rate of application during production the blades are increased significantly.

Für die Herstellung der Turbinenschaufel 10' mittels eines Metallgussverfahrens wird ein Gusskern 18 der in Fig. 2 dargestellten Art benötigt. Der Gusskern 18 umfasst einen ersten Kanalteil 19, der zur Ausbildung des Kühlmittelkanals 15 benötigt wird, und einen zweiten Kanalteil 20, der für die Bildung des Kühlkanals 16 zuständig ist. Beide Kanalteile 19 und 20 sind durch eine Reihe von übereinander angeordneten Verbindungsstegen 21 und 22,..,24 verbunden, die jeweils einen runden Querschnitt aufweisen. Die Mehrzahl der Verbindungsstege, nämlich die "dünnen" Verbindungsstege 21, dienen zur Bildung der Anspeisebohrungen, die dem o.g. "Zyklon-Kriterium" hinsichtlich der Durchmesser genügen. Nur wenige ausgewählte Verbindungsstege, nämlich die Verbindungsstege 22, 23 und 24, sind "dicker" ausgebildet und verstärken so die Verbindung zwischen den Kernteilen 19 und 20 und damit die mechanische Steifigkeit des Gusskerns 18 insgesamt.For the manufacture of the turbine blade 10 'by means of a metal casting process a casting core 18 of the type shown in Fig. 2 is required. The cast core 18 includes a first channel part 19, which requires the formation of the coolant channel 15 is, and a second channel portion 20, the 16 for the formation of the cooling channel responsible is. Both channel parts 19 and 20 are crossed by a series of arranged connecting webs 21 and 22, .., 24 connected, each one have round cross-section. The majority of connecting webs, namely the "thin" connecting webs 21, serve to form the feed bores, the the o.g. "Cyclone criterion" in terms of diameter suffice. Only a few selected connecting webs, namely the connecting webs 22, 23 and 24, are "thicker" and thus strengthen the connection between the core parts 19 and 20 and thus the mechanical rigidity of the casting core 18 in total.

Ist der Kühlkanal 16 bzw. der zweite Kanalteil 20 nicht sehr lang, reicht es vollkommen aus, die beiden äusseren Verbindungsstege 22 und 24 als ausgewählte Verbindungsstege mit vergrössertem Querschnitt auszubilden. Auf diese Weise kann sich praktisch auf der gesamten Länge des Kühlkanals 16 der Kühlluftwirbel ungestört ausbilden, weil dort das "Zyklon-Kriterium" erfüllt ist. Bei längeren Kühlkanälen 16 bzw. Kanalteilen 20 kann es jedoch zweckmässig und vorteilhaft sein, auch einzelne ausgewählte Verbindungsstege 26 im mittleren Bereich vorzusehen, um den Gusskern 18 dort steifer zu machen.Is the cooling channel 16 and the second channel part 20 is not very long, it is sufficient from, the two outer connecting webs 22 and 24 as selected Form connecting bridges with an enlarged cross-section. In this way can be practically on the entire length of the cooling channel 16 of the cooling air vortex form undisturbed, because there the "cyclone criterion" is fulfilled. For longer cooling channels 16 or channel parts 20, however, it may be expedient and advantageous also to provide individual selected connecting webs 26 in the central region, to make the casting core 18 stiffer there.

Der Durchmesser der ausgewählten Anspeisebohrungen 25,..,27 bzw. der ausgewählten Verbindungsstege 22,..,24 wird in jedem Fall grösser gewählt als der halbe hydraulische Durchmesser. Wie gross der Durchmesser tatsächlich sein wird, hängt massgeblich von der Geometrie des Gusskerns und dem Giessverfahren ab und muss im Einzelfall bestimmt werden.The diameter of the selected feed bores 25, .., 27 or the selected Connecting webs 22, .., 24 is chosen in each case larger than the half hydraulic diameter. How big the diameter actually is depends crucially on the geometry of the casting core and the casting process and must be determined on an individual basis.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

10,10'10.10 '
Turbinenschaufelturbine blade
1111
Schaufelfussblade root
1212
Schaufelspitzeblade tip
1313
Vorderkanteleading edge
1414
Hinterkantetrailing edge
1515
Kühlmittelkanal Coolant channel
1616
Kühlkanal (Zyklon)Cooling channel (cyclone)
1717
AnspeisebohrungAnspeisebohrung
1818
Gusskerncasting core
19,2019.20
Kanalteil (Gusskern)Channel part (casting core)
2121
Verbindungsstegconnecting web
22,..,2422, .., 24
ausgewählter Verbindungsstegselected connecting bridge
25,..,2725, .., 27
ausgewählte Anspeisebohrungselected feed bore

Claims (9)

  1. Cooled component, in particular turbine blade (10, 10'), for gas turbines, the said component (10, 10') having an inner cooling duct (16) of round duct cross section for efficient internal cooling, into which cooling duct (16) a series of feed bores (17) for the coolant, arranged one above the other in the direction of the longitudinal axis of the cooling duct (16) and emanating from a common coolant duct (15), issue essentially tangentially in order to form a coolant vortex, characterized in that the feed bores (17) have predominantly a bore diameter which is smaller than half the hydraulic diameter of the cooling duct (16), and in that, to improve the output rate during the casting of the component (10'), selected feed bores (25, ..., 27) have a bore diameter which is larger than half the hydraulic diameter of the cooling duct (16).
  2. Component according to Claim 1, characterized in that the selected feed bores (25, 27) are arranged in each case at the ends of the cooling duct (16).
  3. Component according to Claim 2, characterized in that the lowermost and the uppermost feed bore (25 and 27) are used as the selected feed bore.
  4. Component according to one of Claims 2 and 3, characterized in that selected feed bores (26) are additionally provided in the middle region of the cooling duct (16).
  5. Casting core (18) for the production of a component according to Claim 1, the said casting core (18) comprising a first duct part (19) for forming the coolant duct (15) and a second duct part (20) for forming the cooling duct (16) and also a plurality of connecting webs (21; 22, ..., 24) which run transversely between the two duct parts (19, 20) and serve for forming the feed bores (17; 25, ..., 27), characterized in that the connecting webs (21) have predominantly an outside diameter which is smaller than half the hydraulic diameter of the cooling duct (16), and in that selected connecting webs (22, ..., 24) have an outside diameter which is larger than half the hydraulic diameter of the cooling duct (16).
  6. Casting core according to Claim 5, characterized in that the selected connecting webs (22, 24) are arranged in each case at the ends of the second duct part (20).
  7. Casting core according to Claim 6, characterized in that the lowermost and the uppermost connecting web (22 and 24) are used as the selected connecting web.
  8. Casting core according to one of Claims 6 and 7, characterized in that selected connecting webs (23) are additionally provided in the middle region of the second duct part (20).
  9. Method for the production of a component according to Claim 1 by means of a metal casting method, characterized in that a casting core according to one of Claims 5 to 8 is used.
EP01123193A 2000-10-27 2001-09-28 Cooled component, casting core and method for the manufacture of the same Expired - Lifetime EP1201879B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10053356A DE10053356A1 (en) 2000-10-27 2000-10-27 Cooled component, casting core for the production of such a component, and method for producing such a component
DE10053356 2000-10-27

Publications (3)

Publication Number Publication Date
EP1201879A2 EP1201879A2 (en) 2002-05-02
EP1201879A3 EP1201879A3 (en) 2003-07-16
EP1201879B1 true EP1201879B1 (en) 2004-11-10

Family

ID=7661311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01123193A Expired - Lifetime EP1201879B1 (en) 2000-10-27 2001-09-28 Cooled component, casting core and method for the manufacture of the same

Country Status (3)

Country Link
US (1) US6547525B2 (en)
EP (1) EP1201879B1 (en)
DE (2) DE10053356A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106687232A (en) * 2014-09-04 2017-05-17 赛峰航空器发动机 Method for producing a ceramic core

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1529580B1 (en) * 2003-10-29 2009-01-07 Siemens Aktiengesellschaft Casting mould
US7128533B2 (en) * 2004-09-10 2006-10-31 Siemens Power Generation, Inc. Vortex cooling system for a turbine blade
US7690894B1 (en) 2006-09-25 2010-04-06 Florida Turbine Technologies, Inc. Ceramic core assembly for serpentine flow circuit in a turbine blade
US9056795B2 (en) * 2009-08-09 2015-06-16 Rolls-Royce Corporation Support for a fired article
GB0921818D0 (en) * 2009-12-15 2010-01-27 Rolls Royce Plc Casting of internal features within a product (
DE102010046331A1 (en) 2010-09-23 2012-03-29 Rolls-Royce Deutschland Ltd & Co Kg Cooled turbine blades for a gas turbine engine
DE102012017491A1 (en) 2012-09-04 2014-03-06 Rolls-Royce Deutschland Ltd & Co Kg Turbine blade of a gas turbine with swirl-generating element
EP2964891B1 (en) 2013-03-05 2019-06-12 Rolls-Royce North American Technologies, Inc. Gas turbine engine component arrangement
WO2014163698A1 (en) 2013-03-07 2014-10-09 Vandervaart Peter L Cooled gas turbine engine component
US10012090B2 (en) * 2014-07-25 2018-07-03 United Technologies Corporation Airfoil cooling apparatus
US9988912B2 (en) * 2015-05-08 2018-06-05 United Technologies Corporation Thermal regulation channels for turbomachine components
US10240465B2 (en) * 2016-10-26 2019-03-26 General Electric Company Cooling circuits for a multi-wall blade
US10465521B2 (en) 2016-10-26 2019-11-05 General Electric Company Turbine airfoil coolant passage created in cover
US10352176B2 (en) 2016-10-26 2019-07-16 General Electric Company Cooling circuits for a multi-wall blade
US10450950B2 (en) 2016-10-26 2019-10-22 General Electric Company Turbomachine blade with trailing edge cooling circuit
US10450875B2 (en) 2016-10-26 2019-10-22 General Electric Company Varying geometries for cooling circuits of turbine blades
US10301946B2 (en) 2016-10-26 2019-05-28 General Electric Company Partially wrapped trailing edge cooling circuits with pressure side impingements
US10273810B2 (en) 2016-10-26 2019-04-30 General Electric Company Partially wrapped trailing edge cooling circuit with pressure side serpentine cavities
US10598028B2 (en) 2016-10-26 2020-03-24 General Electric Company Edge coupon including cooling circuit for airfoil
US10309227B2 (en) * 2016-10-26 2019-06-04 General Electric Company Multi-turn cooling circuits for turbine blades
EP3832069A1 (en) 2019-12-06 2021-06-09 Siemens Aktiengesellschaft Turbine blade for a stationary gas turbine
US11814965B2 (en) 2021-11-10 2023-11-14 General Electric Company Turbomachine blade trailing edge cooling circuit with turn passage having set of obstructions
CN114215607A (en) * 2021-11-29 2022-03-22 西安交通大学 Turbine blade leading edge rotational flow cooling structure
CN114109518A (en) * 2021-11-29 2022-03-01 西安交通大学 Turbine blade leading edge ribbed rotational flow-air film composite cooling structure
CN114412577B (en) * 2022-01-24 2024-03-15 杭州汽轮动力集团股份有限公司 Turbine moving blade

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB893706A (en) * 1960-01-05 1962-04-11 Rolls Royce Blades for fluid flow machines
US3542486A (en) * 1968-09-27 1970-11-24 Gen Electric Film cooling of structural members in gas turbine engines
JPS5540221A (en) 1978-09-14 1980-03-21 Hitachi Ltd Cooling structure of gas turbin blade
FR2516165B1 (en) * 1981-11-10 1986-07-04 Snecma GAS TURBINE BLADE WITH FLUID CIRCULATION COOLING CHAMBER AND METHOD FOR PRODUCING THE SAME
US4669957A (en) * 1985-12-23 1987-06-02 United Technologies Corporation Film coolant passage with swirl diffuser
GB2202907A (en) 1987-03-26 1988-10-05 Secr Defence Cooled aerofoil components
US5002460A (en) 1989-10-02 1991-03-26 General Electric Company Internally cooled airfoil blade
US5603606A (en) * 1994-11-14 1997-02-18 Solar Turbines Incorporated Turbine cooling system
US5498133A (en) * 1995-06-06 1996-03-12 General Electric Company Pressure regulated film cooling
EP0892151A1 (en) * 1997-07-15 1999-01-20 Asea Brown Boveri AG Cooling system for the leading edge of a hollow blade for gas turbine
DE19738065A1 (en) * 1997-09-01 1999-03-04 Asea Brown Boveri Turbine blade of a gas turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106687232A (en) * 2014-09-04 2017-05-17 赛峰航空器发动机 Method for producing a ceramic core
CN106687232B (en) * 2014-09-04 2019-04-05 赛峰航空器发动机 Method for manufacturing ceramic core

Also Published As

Publication number Publication date
US20020051706A1 (en) 2002-05-02
EP1201879A2 (en) 2002-05-02
EP1201879A3 (en) 2003-07-16
DE10053356A1 (en) 2002-05-08
DE50104476D1 (en) 2004-12-16
US6547525B2 (en) 2003-04-15

Similar Documents

Publication Publication Date Title
EP1201879B1 (en) Cooled component, casting core and method for the manufacture of the same
EP1113145B1 (en) Blade for gas turbines with metering section at the trailing edge
DE1476796C3 (en) A component of a gas turbine system made integrally from a high-strength material
DE60018817T2 (en) Chilled gas turbine blade
DE69203705T2 (en) Stator for introducing air inside a turbomachine and method for mounting a blade of this stator.
DE1946535C3 (en) Component for a gas turbine engine
DE10001109B4 (en) Cooled shovel for a gas turbine
DE60015233T2 (en) Turbine blade with internal cooling
DE69817094T2 (en) Blading with a helical ramp with serial impact cooling through a double-walled rib system
DE3789514T2 (en) Cooled gas turbine blade.
DE69723663T2 (en) Vortex element construction for cooling ducts of a gas turbine blade
EP1709298B1 (en) Cooled blade for a gas turbine
EP1536102B1 (en) Rotor for a steam turbine
DE60122050T2 (en) Turbine vane with insert with areas for impingement cooling and convection cooling
EP2304185A1 (en) Turbine vane for a gas turbine and casting core for the production of such
DE2031917A1 (en) Fluid medium-cooled wing
DE2241194A1 (en) FLOW MACHINE SHOVEL WITH A WING-SHAPED CROSS-SECTIONAL PROFILE AND WITH A NUMBER OF COOLING DUCTS RUNNING IN THE LENGTH DIRECTION OF THE SHOVEL
DE19813173A1 (en) Cooled gas turbine blade
EP1000224B1 (en) Distribution of cooling air in a turbine stage of a gas turbine
EP1905950A1 (en) Turbine blade
EP0745756A1 (en) Fixture and method for the assembly of runner blades
CH710576A2 (en) Turbine blade having a plurality of cooling channels.
WO2001098634A1 (en) Configuration of a coolable turbine blade
EP1288435A2 (en) Turbine blade with at least one cooling orifice
EP1644614B1 (en) Cooled blade for a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 01D 5/18 A

Ipc: 7B 22C 9/24 B

Ipc: 7F 02C 7/18 B

Ipc: 7B 22C 9/10 B

Ipc: 7F 01D 5/14 B

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20031206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104476

Country of ref document: DE

Date of ref document: 20041216

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050211

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50104476

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50104476

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50104476

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50104476

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50104476

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170928

Year of fee payment: 17

Ref country code: GB

Payment date: 20170921

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50104476

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180928