JPS60195304A - Thermal stress controller for steam turbine casing - Google Patents

Thermal stress controller for steam turbine casing

Info

Publication number
JPS60195304A
JPS60195304A JP5096684A JP5096684A JPS60195304A JP S60195304 A JPS60195304 A JP S60195304A JP 5096684 A JP5096684 A JP 5096684A JP 5096684 A JP5096684 A JP 5096684A JP S60195304 A JPS60195304 A JP S60195304A
Authority
JP
Japan
Prior art keywords
steam
casing
thermal stress
temperature
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5096684A
Other languages
Japanese (ja)
Inventor
Shigeo Sakurai
茂雄 桜井
Sadao Umezawa
梅沢 貞夫
Hajime Toritani
初 鳥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5096684A priority Critical patent/JPS60195304A/en
Publication of JPS60195304A publication Critical patent/JPS60195304A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce a degree of thermal stress, by installing a first flow passage along an outer surface on an inner casing and also a second flow passage along an inner surface on an outer casing both of a steam turbine consisting of double casings. CONSTITUTION:A first flow passage 18 is formed on an outer surface of an inner casing 5 by a cover 17, while a second flow passage is formed on an inner surface of an outer casing 6 by a cover 27. In time of transient operation in a turbine, steam is made to flow in the first flow passage along but in time of steady operation, the steam is made to flow in the second flow passage alone, thus thermal stress in both casings is reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、二重ケーシング構造の蒸気タービンのケーシ
ング熱応力制御装置に係り、特に、起動停止の頻繁な蒸
気タービンに好適なケーシング熱応力制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a casing thermal stress control device for a steam turbine having a double casing structure, and particularly to a casing thermal stress control device suitable for a steam turbine that frequently starts and stops. Regarding.

〔発明の背景〕[Background of the invention]

従来の蒸気タービンでは主蒸気温度538℃、圧力24
6augが最高で、これ以上の超高温、高圧の蒸気ター
ビンは比較的小規模なものが実験的に二、三試みられた
だけである。高温、高圧化をはばむ要因の一つには構造
材料の耐熱強度に限界がある点があげられる。従来の蒸
気タービンの主要な耐熱材料は少量のCr、Mo等を合
金元素としたフェライト系低合金鋼であり、その使用限
界温度は593℃であるとされている。しかし、近年の
エネルギ事情が引き金となって5蒸気条件を649℃+
 352augまで高温、高圧化することにより、蒸気
タービンの熱効率を抜本的に向上させようとする試みが
進められている。しかし、593℃以上では従来採用さ
れていたフェライト系耐熱鋼は使用できず、これに代わ
り、耐熱強度の優れたオーステナイト系耐熱鋼の使用が
検討されている。この系統の材料は高温機器の構造材料
として原子力機器、化学装置等に幅広く使用され十分な
実績をもつものであるが、これを超高温、高圧蒸気ター
ビンの構造材料として使用する場合は次の点が問題とな
る。
In a conventional steam turbine, the main steam temperature is 538°C and the pressure is 24°C.
The maximum is 6aug, and only a few comparatively small-scale steam turbines with higher temperatures and pressures have been experimentally attempted. One of the factors that prevents higher temperatures and pressures is that there is a limit to the heat resistance strength of structural materials. The main heat-resistant material for conventional steam turbines is ferritic low-alloy steel containing small amounts of Cr, Mo, etc. as alloying elements, and its operating temperature limit is said to be 593°C. However, due to the energy situation in recent years, the 5 steam conditions have been changed to 649℃+
Attempts are being made to dramatically improve the thermal efficiency of steam turbines by increasing the temperature and pressure to 352 AUG. However, the conventionally employed ferritic heat-resistant steel cannot be used at temperatures above 593° C., and instead, the use of austenitic heat-resistant steel, which has excellent heat resistance strength, is being considered. This type of material is widely used as a structural material for high-temperature equipment in nuclear equipment, chemical equipment, etc., and has a sufficient track record. However, when using it as a structural material for ultra-high-temperature, high-pressure steam turbines, the following points should be taken into account. becomes a problem.

すなわち、オーステナイト系耐熱鋼は、例えば。That is, austenitic heat-resistant steel, for example.

5US316を採ればその熱伝導率は15にcaQ/m
h’c熱膨張率は17XlO−’/’C程度で、一方、
従来、蒸気タービンの構造材料として一般に用いられて
いる2jCr1Mo鋼のようなフェライト鋼の熱伝導率
は、35KcaR/ rn h ”C1熱膨張率は13
xio−’/’C7’あり、オーステナイト系組熱鋼は
、熱伝導率が小さく熱膨張率の大きい材料で熱応力の発
生機構から考え、不利な材料といえる。
If 5US316 is used, its thermal conductivity is 15 caQ/m.
h'c thermal expansion coefficient is about 17XlO-'/'C, on the other hand,
Conventionally, the thermal conductivity of ferritic steel such as 2jCr1Mo steel, which is commonly used as a structural material for steam turbines, is 35KcaR/rn h, and the C1 thermal expansion coefficient is 13.
xio-'/'C7', and the austenitic laminated steel is a material with a low thermal conductivity and a large coefficient of thermal expansion, and can be said to be a disadvantageous material considering the mechanism of generation of thermal stress.

ところで、蒸気タービンは他の高温機器に比較して超高
圧であるため、その構造部材はオーステナイト系耐熱鋼
としては、これまでに類を見ない厚肉構造となる。また
、電力需給事情から火力用蒸気タービンはピーク電力用
として毎日1回、ないし、2回の起動・停止、あるいは
、負荷変動を受ける。
By the way, since steam turbines are under extremely high pressure compared to other high-temperature equipment, their structural members have a thick structure that has never been seen before as an austenitic heat-resistant steel. Furthermore, due to power supply and demand conditions, steam turbines for thermal power plants are started and stopped once or twice a day, or undergo load fluctuations for peak power use.

このように材料の特性と蒸気タービンの厚肉構造となる
特徴とから、超高温、高圧蒸気タービンでは起動・停止
、あるいは、負荷電動に伴う各部の熱応力が従来の蒸気
タービンに比較した著しく大きくなることは、容易に類
推できる。従って、超高温・高圧蒸気タービンを実現す
るには、熱応力の制御、特に、熱応力の抑制が重要な課
題となる。特に、P&近の火力プラントの大容凰タービ
ンでは肉厚部に発生する熱応力によるクラックの発生を
いかに抑え、急速な起動・停止及び負荷変動をするかが
電力供給の安全性、経済性を確保するための重要な課題
である。そのため、従来から稚拙の運転制御方法が提案
されてきた。蒸気タービンの熱応力を制御する方法とし
て、蒸気温度を測定し、その値からタービンロータの表
面温度とロータ中心孔の温度を推定してロータ表面及び
中心孔の熱応力を計算し、熱応力の値が許容値以内にな
るように蒸気温度及び圧力の変化率を制御する方法が知
られている。また、ボイラの熱応力に関しては蒸気温度
を測定し、その値から将来の蒸気温度を予測して熱応力
を計算し、熱応力が許容値内に納まる最大の温度上昇率
となるよ・)、蒸気温度を制御する試みも行なわれてい
る。
Due to the characteristics of the materials and the thick-walled structure of steam turbines, ultra-high temperature, high-pressure steam turbines are subject to significantly greater thermal stress in various parts due to start-up, shutdown, or electrical load, compared to conventional steam turbines. What happens can be easily inferred. Therefore, in order to realize an ultra-high temperature/high pressure steam turbine, controlling thermal stress, particularly suppressing thermal stress, is an important issue. In particular, in the large-capacity turbines of P&K's thermal power plants, the safety and economic efficiency of power supply depends on how to suppress the occurrence of cracks due to thermal stress that occurs in the thick walls, and how to ensure rapid startup, shutdown, and load fluctuations. This is an important issue to ensure. For this reason, crude operation control methods have been proposed. As a method to control thermal stress in a steam turbine, the steam temperature is measured, the surface temperature of the turbine rotor and the temperature of the rotor center hole are estimated from the measured value, and the thermal stress on the rotor surface and center hole is calculated. Methods are known for controlling the rate of change of steam temperature and pressure so that the values are within acceptable values. In addition, regarding thermal stress in the boiler, the steam temperature is measured, the future steam temperature is predicted from that value, the thermal stress is calculated, and the maximum temperature increase rate that keeps the thermal stress within the allowable value is determined. Attempts have also been made to control steam temperature.

この様な従来技術は、若干の修正を行なえばその基本的
考え方はそのまま超高温・高圧蒸気タービンの熱応力制
御にも適用可能と思われる。しかし、従来技術は、いず
れも、熱応力が許容値内に納まる様に、蒸気の温度及び
圧力の変化率を制御するものである。従って、オーステ
ナイト系耐熱鋼を使用する超高温・高圧蒸気タービンで
は熱応力を許容値以内に抑制しようとすると、蒸気温度
・圧力の変化率を著しく小さくしなければならず、起動
停止や負荷変動の所要時間が長くなり、近年の電力需要
形態に反するという問題が生じる。
It seems that the basic concept of such conventional technology can be applied as it is to the thermal stress control of ultra-high temperature and high pressure steam turbines with some modifications. However, all of the conventional techniques control the rate of change of the temperature and pressure of steam so that the thermal stress falls within an allowable value. Therefore, in an ultra-high temperature, high pressure steam turbine that uses austenitic heat-resistant steel, in order to suppress thermal stress within an allowable value, it is necessary to significantly reduce the rate of change in steam temperature and pressure. The problem arises that the required time is longer, which is contrary to recent electricity demand patterns.

第1図は超高温・高圧蒸気タービンの蒸気人口管の起動
待熱応力変化をフェライト系耐熱鋼とオーステナイト系
耐熱鋼を採用した場合で比較したものである。熱応力の
繰返しに対する強度はオーステナイト系耐熱鋼の方がフ
ェライト系耐熱鋼よりも若干価れているが、せいぜい1
0〜20%上まわる程度である。従って、従来の蒸気タ
ービンと同様の熱応力制御方法を超高温・高圧蒸気ター
ビンに適用するならば、第1図から明らかなように、起
動時間を5〜lO倍に伸ばさねばならない。
Figure 1 compares the stress changes during startup of the steam manifold pipe of an ultra-high temperature/high pressure steam turbine when ferritic heat-resistant steel and austenitic heat-resistant steel are used. Austenitic heat-resistant steel has slightly higher strength against repeated thermal stress than ferritic heat-resistant steel, but at most
It is about 0 to 20% higher. Therefore, if a thermal stress control method similar to that used in conventional steam turbines is applied to an ultra-high temperature/high pressure steam turbine, as is clear from FIG. 1, the start-up time must be increased by 5 to 10 times.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、蒸気タービンの起動、停止、あるいは
、負荷変動の所要時間を短縮し、熱応力を規定値内に納
めろように適正に制御し安全運転が可能な蒸気タービン
の熱応力制御装置を提供するにある。
An object of the present invention is to provide thermal stress control for a steam turbine that can reduce the time required for starting, stopping, or changing the load of a steam turbine, properly controlling thermal stress to within a specified value, and enabling safe operation. We are in the process of providing equipment.

[発明の概要] 内ケーシングと外ケーシングを備えた二重ケーシング蒸
気タービンでは、ボイラから送られる主蒸気は最初に内
ケーシングに流入し、タービン各段で仕事をして温度、
圧力の低下した排気蒸気が次のタービンに送られる。こ
の排気蒸気の一部は冷却蒸気として外ケーシングと内ケ
ーシングの間の空間を通って、外ケーシングに設けられ
た貫通孔から外部配管に導かれる。これは、主蒸気より
も温度の低い排気蒸気によって、内ケーシングの外表面
と外ケーシングの内表面の温度が主蒸気温度近くまで上
昇するのを防止するためである。冷却蒸気はそのエネル
ギが蒸気タービンの仕事に変換されないため、熱効率の
面からはできるかぎり少ない量とすることが望ましい。
[Summary of the Invention] In a double casing steam turbine equipped with an inner casing and an outer casing, main steam sent from the boiler first flows into the inner casing and performs work at each stage of the turbine, increasing the temperature and temperature.
The reduced pressure exhaust steam is sent to the next turbine. A part of this exhaust steam passes through the space between the outer casing and the inner casing as cooling steam, and is led to the external piping from a through hole provided in the outer casing. This is to prevent the temperature of the outer surface of the inner casing and the inner surface of the outer casing from rising close to the main steam temperature due to exhaust steam having a lower temperature than the main steam. Since the energy of the cooling steam is not converted into work for the steam turbine, it is desirable to keep the amount as small as possible from the standpoint of thermal efficiency.

このような二重ケーシング蒸気タービンにおいて、起動
・停止、あるいは、負荷変動などの過渡時には、主蒸気
の流入する内ケーシング内表面の温度変化率が大きく、
次いで、冷却蒸気の流路に面した内ケーシング外表面と
外ケーシング内表面の温度変化率が大きく、外ケーシン
グの外表面は通常保温材で断熱されるため、最も温度変
化率が小さい、従って、内ケーシング、外ケーシングと
も内表面から外表面に向う温度勾配が大きくなり、高い
熱応力が発生する。
In such a double casing steam turbine, during transient periods such as startup, shutdown, or load fluctuations, the rate of temperature change on the inner surface of the inner casing into which the main steam flows is large;
Next, the rate of temperature change is large on the outer surface of the inner casing and the inner surface of the outer casing facing the cooling steam flow path, and the outer surface of the outer casing is usually insulated with a heat insulating material, so the rate of temperature change is the smallest. In both the inner casing and the outer casing, the temperature gradient from the inner surface to the outer surface increases, generating high thermal stress.

このように過渡時の熱応力発生メカニズムを分析すると
、過渡時には内ケーシング外表面の温度変化率を積極的
に大きくし、外ケーシング内表面の温度変化率は逆に小
さくしてやることによって、ケーシングの肉厚方向の温
度勾配を緩和させるこ−とができ、従って過渡時の熱応
力を軽減できる。
Analyzing the mechanism of thermal stress generation during transients in this way, it is found that during transients, the rate of temperature change on the outer surface of the inner casing is actively increased, while the rate of temperature change on the inner surface of the outer casing is conversely reduced. The temperature gradient in the thickness direction can be relaxed, and therefore the thermal stress during transient periods can be reduced.

本発明は以上の考え方に基づいてなされたもので、蒸気
の流路を内ケーシングに面した部分と外ケーシングに面
した部分に分ける。
The present invention was made based on the above idea, and divides the steam flow path into a portion facing the inner casing and a portion facing the outer casing.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の一実施例を説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図は本発明を超高温・高圧タービンの適用した場合
の一実施例を縦断面図で示したものである。図において
、ロータ軸l、ディスク2a〜2Cおよび羽根3a〜3
6よりなるロータ4は、内ケーシング5および外ケーシ
ング6よりなる二重ケーシングの中に保持さイt、ボイ
ラ(図示しない)より送られる主蒸気7の熱エネルギに
より回転される。主蒸気7は主蒸気管8の先端に延伸さ
れる主蒸気入口管9を経てノズルボックス10に入り、
ここで環状流路となってノズルlla〜ligと羽根3
8〜3eを通過しなから熱エネルギを回転エネルギに変
え、温度・圧力の低下した排気蒸気12となる。
FIG. 2 is a longitudinal sectional view of an embodiment in which the present invention is applied to an ultra-high temperature/high pressure turbine. In the figure, a rotor shaft l, disks 2a to 2C, and blades 3a to 3
A rotor 4 consisting of a rotor 6 is held in a double casing consisting of an inner casing 5 and an outer casing 6, and is rotated by the thermal energy of main steam 7 sent from a boiler (not shown). The main steam 7 enters the nozzle box 10 through the main steam inlet pipe 9 extending to the tip of the main steam pipe 8.
Here, it becomes an annular flow path and connects the nozzles lla to lig and the blade 3.
8 to 3e, the thermal energy is converted into rotational energy and becomes exhaust steam 12 with reduced temperature and pressure.

内ケーシング5のノズルlla入口部には半径方向に溝
状に伸びた抽気孔13が設けられ、抽気孔13から内ケ
ーシング外表面に向って複数の吹き出し孔14があけら
れる。吹き出し孔14の出口には圧力上昇時は圧力P、
で閉じ、圧力降下時は圧力P2で開く圧力開閉装置15
が設けられる。
A bleed hole 13 extending in a groove shape in the radial direction is provided at the inlet of the nozzle lla of the inner casing 5, and a plurality of blow holes 14 are formed from the bleed hole 13 toward the outer surface of the inner casing. At the outlet of the blowout hole 14, pressure P is applied when the pressure increases;
Pressure switch device 15 that closes at P2 and opens at pressure P2 when the pressure drops.
is provided.

内ケーシング5の外面には内ケーシング全体を覆うカバ
ー17が設けられ、カバー17と内ケーシングSの間の
空間が抽気蒸気16の蒸気流路18となっている。また
、カバー17の内側には軸方向に捩られたら旋状の旋回
羽根23が設けられ、軸気蒸気16が内ケーシング5の
外表面全体に均一に流れるようになっている。
A cover 17 that covers the entire inner casing is provided on the outer surface of the inner casing 5, and a space between the cover 17 and the inner casing S serves as a steam flow path 18 for the extracted steam 16. Furthermore, a swirling vane 23 is provided inside the cover 17 in a spiral shape when twisted in the axial direction, so that the axial steam 16 flows uniformly over the entire outer surface of the inner casing 5.

外ケーシング6と主蒸気管8との接続部付近には蒸気量
[1孔19が円周上に複数個あけられ、また外ケーシン
グ6の一部にも蒸気出口孔22が複数個あけられ、それ
ぞれが外部配管(図示しない)に接続されている。排気
蒸気12は外ケーシング6に設けられた排気孔20を経
て1次の低圧タービン(図示しない)に送られるが、そ
の一部は冷却蒸気21として外ケーシング6の内面を流
れ、蒸気出口孔19及び22を経て外部配管に流入する
。蒸気出口19及び22の近傍には、圧力上昇時は圧力
P、で開き、圧力降下時には、圧力P4で閉じる圧力開
閉装置24及び25が設けられる。
Near the connection between the outer casing 6 and the main steam pipe 8, a plurality of holes 19 are formed on the circumference, and a plurality of steam outlet holes 22 are also formed in a part of the outer casing 6, Each is connected to external piping (not shown). The exhaust steam 12 is sent to the primary low pressure turbine (not shown) through the exhaust hole 20 provided in the outer casing 6 , and a part of it flows as cooling steam 21 on the inner surface of the outer casing 6 and passes through the steam outlet hole 19 . and 22 into the external piping. In the vicinity of the steam outlets 19 and 22, pressure switching devices 24 and 25 are provided which open at a pressure P when the pressure increases and close at a pressure P4 when the pressure decreases.

なお、圧力P、−P4は、P、とP、を定格運転時の蒸
気圧よりわずかに低い圧力に設定し、P2及びP4を部
分負荷運転時の蒸気圧力より、わずかに高い圧力に設定
しておく。
For pressures P and -P4, P and P are set to slightly lower pressures than the steam pressure during rated operation, and P2 and P4 are set to slightly higher pressures than the steam pressure during partial load operation. I'll keep it.

このように構成した蒸気タービンを起動すると、主蒸気
7が内ケーシング5の内部を流れると、圧力がPl及び
P3に達するまでは圧力開閉装置15は開き、圧力開閉
装置24.25は閉じているので抽気蒸気16が内ケー
シング5の外表面に沿って流れるため、内ケーシング外
表面の温度」二昇率は本発明を適用しない場合よりも大
きくなり、従って内ケーシング5の肉厚方向の温度勾配
が緩和され、熱応力が抑制される。
When the steam turbine configured as described above is started, when the main steam 7 flows inside the inner casing 5, the pressure switchgear 15 is opened and the pressure switchgear 24.25 is closed until the pressure reaches Pl and P3. Therefore, since the extracted steam 16 flows along the outer surface of the inner casing 5, the rate of temperature rise on the outer surface of the inner casing becomes larger than when the present invention is not applied, and therefore the temperature gradient in the thickness direction of the inner casing 5 increases. is relaxed and thermal stress is suppressed.

一方、圧力開閉装[24,25が閉じているので、排気
蒸気21が流れないため、外ケーシング6はカバー17
からの放射によって加熱されるだけになり、外ケーシン
グ内表面の温度」二昇率は本発明を適用しない場合より
も小さくなる。従って、外ケーシング6の肉厚方向の温
度勾配が緩和され、熱応力が抑制される。
On the other hand, since the pressure switches [24 and 25 are closed, the exhaust steam 21 does not flow, so the outer casing 6 is closed to the cover 17.
The rate of temperature rise on the inner surface of the outer casing is smaller than that in the case where the present invention is not applied. Therefore, the temperature gradient in the thickness direction of the outer casing 6 is relaxed, and thermal stress is suppressed.

本実施例では蒸気流路の開閉を蒸気の圧力によって自動
的に行なうようにしたので、特別な制御回路を必要とせ
ず、安価で確実な熱応力制御が行なえる。
In this embodiment, since the steam flow path is automatically opened and closed based on steam pressure, a special control circuit is not required, and thermal stress control can be performed at low cost and with certainty.

第3図は本発明の他の実施例を示す超高温・高圧蒸気タ
ービンの縦断面図である。前述の実施例と異なる点は、
内ケーシングを最終段より軸方向に長くし、最終段の前
の外ケーシング部に圧力開閉装置付きのノズル状バルブ
26を設け、このバルブの後方には外ケーシング内周面
と冷却蒸気の流路を形成するカバー27を設けた点であ
る。
FIG. 3 is a longitudinal sectional view of an ultra-high temperature/high pressure steam turbine showing another embodiment of the present invention. The difference from the previous embodiment is that
The inner casing is made longer in the axial direction than the final stage, and a nozzle-shaped valve 26 with a pressure opening/closing device is provided in the outer casing part in front of the final stage, and behind this valve there is a flow path between the inner peripheral surface of the outer casing and the cooling steam flow path. The point is that a cover 27 is provided to form a .

この蒸気タービンを起動すると、前述の実施例と同様に
、主蒸気7が内ケーシング5の内部を流れると圧力がP
□及びPヨに達するまでは圧力開閉装置15は開き、圧
力開閉装置24.25及び最終段前方のノズル状バルブ
26も閉じているので、油気蒸気16は内ケーシング外
表面に沿って流れ、内ケーシングの肉厚方向の温度勾配
が緩和され熱応力が効果的に低減される。
When this steam turbine is started, as in the previous embodiment, when the main steam 7 flows inside the inner casing 5, the pressure increases to P.
Until reaching □ and Pyo, the pressure switch 15 is open, and the pressure switch 24, 25 and the nozzle-shaped valve 26 in front of the final stage are also closed, so the oil vapor 16 flows along the outer surface of the inner casing, The temperature gradient in the thickness direction of the inner casing is relaxed and thermal stress is effectively reduced.

一方、圧力開閉装置24.25及びノズル状バルブ26
も閉じているので、外ケーシング内表面には蒸気が流れ
ないため外ケーシング6はカバー17及びカバー27か
らの放射によって加熱されるだけになり、外ケーシング
内表面の温度上昇率は本発明を適用しない場合よりも効
果的に小さくなる。従って、外ケーシング6の肉厚方向
の温度勾配が緩和され、熱応力が抑制される。
On the other hand, the pressure switch device 24, 25 and the nozzle-like valve 26
Since the inner surface of the outer casing is also closed, no steam flows to the inner surface of the outer casing, so the outer casing 6 is only heated by radiation from the cover 17 and the cover 27, and the temperature increase rate of the inner surface of the outer casing is determined by applying the present invention. effectively smaller than without. Therefore, the temperature gradient in the thickness direction of the outer casing 6 is relaxed, and thermal stress is suppressed.

本実施例では、油気蒸気を最終段の後に流すことにより
、タービン効率を低下させず、がっ、最終段前方に圧力
開閉機構をもつノズル状バルブ26を設け、より効果的
に外ケーシングの起動時の熱応力が低減でき、定常運転
時には冷却蒸気が効果的に外ケーシング内表面を冷却す
ることになる。
In this embodiment, by allowing the oil vapor to flow after the final stage, the turbine efficiency is not reduced, and a nozzle-shaped valve 26 with a pressure opening/closing mechanism is provided in front of the final stage to more effectively open the outer casing. Thermal stress at startup can be reduced, and the cooling steam effectively cools the inner surface of the outer casing during steady operation.

第4図は本発明の他の実施例の超高温・高圧蒸気タービ
ンの縦断面図である。本実施例ではボイラ(図示しない
)から送られる主蒸気は主蒸気管28を流れて、タービ
ンに入る前に主蒸気管8とバイパス管29とに分れ、バ
イパス管29を流れる蒸気量は流量制御弁3oにより制
御され、温度・圧力も、それぞれ、温度制御装[31及
び圧力制御装誼32によって所定の値に制御される。所
定の温度・圧力に制御されてバイパス管を流れる蒸気3
8は、外ケーシング6と主蒸気管8の接続部に近いとこ
ろに設けられた蒸気人口孔33を通って蒸気流路18に
流入し、内ケーシング5の外表面に沿って流れ、最終的
には排気蒸気12と混流する。一方、排気蒸気12の一
部は冷却蒸気21として外ケーシング6の内表面に沿っ
て流れ、蒸気出口22及び34を通って外部配管35及
び36に流入し、他の蒸気系統に戻される、外部配管3
5及び36が一緒になった後に、流量制御弁37が設け
られ、冷却蒸気21の流量が制御される。
FIG. 4 is a longitudinal sectional view of an ultra-high temperature/high pressure steam turbine according to another embodiment of the present invention. In this embodiment, the main steam sent from the boiler (not shown) flows through the main steam pipe 28 and is divided into the main steam pipe 8 and the bypass pipe 29 before entering the turbine, and the amount of steam flowing through the bypass pipe 29 is determined by the flow rate. It is controlled by a control valve 3o, and the temperature and pressure are also controlled to predetermined values by a temperature control device [31] and a pressure control device 32, respectively. Steam 3 flowing through the bypass pipe while being controlled at a predetermined temperature and pressure
8 flows into the steam passage 18 through the steam port 33 provided near the connection between the outer casing 6 and the main steam pipe 8, flows along the outer surface of the inner casing 5, and finally is mixed with the exhaust steam 12. Meanwhile, a part of the exhaust steam 12 flows along the inner surface of the outer casing 6 as cooling steam 21, flows into the external pipes 35 and 36 through the steam outlets 22 and 34, and is returned to other steam systems. Piping 3
After 5 and 36 are brought together, a flow control valve 37 is provided to control the flow rate of the cooling steam 21.

上記実施例で、蒸気タービンの起動時には流量制御弁3
7を絞り、流量制御弁30は開いて蒸気流路18に主蒸
気7の一部の蒸気38を流すとともに、冷却蒸気21は
流さないようにする。その際、蒸気36の温度は主蒸気
7の温度と排気蒸気12の温度の約平均湿度程度に制御
され、圧力は排気蒸気12の圧力よりもわずかに高い圧
力に制御される。こうすることによって内ケーシング外
表面の温度上昇率は1本発明を適用しない場合よりも大
きくなり、従って、内ケーシング5の肉厚方向の温度勾
配が緩和され、熱応力が効果的に低減される。一方、外
ケーシング内表面には冷却蒸気21が流れないため、外
ケーシング6はカバー17からの放射によって加熱され
るだけになり、外ケーシング内表面の温度上昇率は本発
明を適用しない場合よりも小さくなる。従って、外ケー
シング6の肉厚方向の温度勾配が緩和され、熱応力が抑
制される。
In the above embodiment, when starting the steam turbine, the flow control valve 3
7 and the flow rate control valve 30 is opened to allow a part of the main steam 7 to flow into the steam flow path 18, but not to allow the cooling steam 21 to flow. At this time, the temperature of the steam 36 is controlled to approximately the average humidity of the temperature of the main steam 7 and the temperature of the exhaust steam 12, and the pressure is controlled to a pressure slightly higher than the pressure of the exhaust steam 12. By doing this, the rate of temperature rise on the outer surface of the inner casing becomes larger than in the case where the present invention is not applied, and therefore, the temperature gradient in the thickness direction of the inner casing 5 is alleviated, and thermal stress is effectively reduced. . On the other hand, since the cooling steam 21 does not flow to the inner surface of the outer casing, the outer casing 6 is only heated by radiation from the cover 17, and the temperature increase rate of the inner surface of the outer casing is higher than that in the case where the present invention is not applied. becomes smaller. Therefore, the temperature gradient in the thickness direction of the outer casing 6 is relaxed, and thermal stress is suppressed.

起動時の過渡状態が終って、定常状態に至ったならば、
流量制御弁30は絞られ、一方、流量制御弁37が開か
れる。それによって、蒸気流路18を流れる蒸気36は
流量が無くなるが、それまでの間に内ケーシング外表面
の温度は十分上昇している。一方、冷却蒸気21が外ケ
ーシング内表面に沿って流れ始めるがそれまでの間にカ
バー17からの放射によって、外ケーシング内表面の温
度は徐々に上昇しており、冷却蒸気21による温度上昇
率は低く抑えられる。
Once the transient state at startup is over and a steady state has been reached,
Flow control valve 30 is throttled while flow control valve 37 is opened. As a result, the flow rate of the steam 36 flowing through the steam flow path 18 is reduced, but the temperature of the outer surface of the inner casing has risen sufficiently until then. On the other hand, the cooling steam 21 begins to flow along the inner surface of the outer casing, but until then, the temperature of the inner surface of the outer casing is gradually rising due to radiation from the cover 17, and the rate of temperature increase due to the cooling steam 21 is Can be kept low.

次に、定常運転状態から停止または部分負荷運転に移行
する場合を説明する。この場合も起動時と同様流量制御
弁35を絞り、流量制御弁28を開くことにより、起動
時と同様に内ケーシング外表面の温度降下率は本発明を
適用しない場合よりも大きくなり、外ケーシング内表面
の温度降下率は小さくなる。従って、停止時または部分
負荷への移行時にも、ケーシング肉厚方向の温度勾配が
緩和され、熱応力が抑制される。
Next, the case of transitioning from a steady state of operation to stop or partial load operation will be described. In this case as well, by throttling the flow rate control valve 35 and opening the flow rate control valve 28 as at the time of startup, the rate of temperature drop on the outer surface of the inner casing becomes greater than when the present invention is not applied, and The rate of temperature drop on the inner surface becomes smaller. Therefore, the temperature gradient in the casing thickness direction is alleviated and thermal stress is suppressed even when the engine is stopped or when transitioning to a partial load.

本実施例では内・外ケーシング表面に沿って流す蒸気の
流量、温度、圧力を夫々制御することができるので熱応
力のきめ細い制御が可能になる。
In this embodiment, the flow rate, temperature, and pressure of the steam flowing along the inner and outer casing surfaces can be controlled, so that thermal stress can be precisely controlled.

さらに、変形例として第5図に示すように最終段の蒸気
温度T8、及び内ケーシング外表面を流れる蒸気の出口
温度T2を検出する蒸気温度検出器40.41を該当す
る位置に設け、最終段蒸気温度T、と内ケーシング外表
面蒸気温度TQの差を温度変化計算装置42で計算し、
最終段蒸気温度T、と内ケーシング外表面温度T2がほ
ぼ等しくなる様に、温度制御装[31にフィードバック
して、蒸気38の温度を制御する。これにより、起動時
及び負荷変動運転時の内ケーシングに発生する肉厚方向
の温度勾配が緩和され、積極的に熱応力を抑制すること
ができる。一方、外ケーシングについては、最終段前方
に設けたノズル状バルブ39を、起動時や負荷変動時に
は外ケーシング内周面に設けたカバー27の外側をそれ
ぞれ流れるように、流路変更できるような開閉制御装置
をもつものとする。なお、定常運転時には、外ケーシン
グの肉厚方向の温度変化は少ないため、効果的に外ケー
シング内面を冷却するようカバーの内を冷却蒸気が流れ
るようにする。本実施例によれば、さらに積極的にケー
シングの肉厚方向の温度勾配を積極的に緩和できるため
熱応力を効果的に抑制することができる。
Furthermore, as a modified example, as shown in FIG. 5, steam temperature detectors 40 and 41 for detecting the final stage steam temperature T8 and the outlet temperature T2 of the steam flowing on the outer surface of the inner casing are provided at corresponding positions. Calculate the difference between the steam temperature T and the inner casing outer surface steam temperature TQ with a temperature change calculation device 42,
The temperature of the steam 38 is controlled by feeding back to the temperature control device [31] so that the final stage steam temperature T and the inner casing outer surface temperature T2 are approximately equal. As a result, the temperature gradient in the wall thickness direction that occurs in the inner casing during startup and load fluctuation operation is alleviated, and thermal stress can be actively suppressed. On the other hand, regarding the outer casing, a nozzle-shaped valve 39 provided in front of the final stage is opened and closed so that the flow path can be changed so that the flow flows outside the cover 27 provided on the inner peripheral surface of the outer casing during startup or load fluctuation. It shall have a control device. Note that during steady operation, since there is little temperature change in the thickness direction of the outer casing, cooling steam is made to flow inside the cover to effectively cool the inner surface of the outer casing. According to this embodiment, the temperature gradient in the thickness direction of the casing can be more actively relaxed, so that thermal stress can be effectively suppressed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、蒸気タービンの起動・停止あるいは負
荷変動などの過渡時に生じる内、外ケーシングの熱応力
が抑制されるので、二重ケーシング構造蒸気タービンの
起動時間、あるいは、負荷変動の所要時間を大幅に短縮
することができる。
According to the present invention, thermal stress in the inner and outer casings that occurs during transitions such as starting and stopping the steam turbine or load fluctuations is suppressed, so that the starting time of the double casing structure steam turbine or the time required for load fluctuations is suppressed. can be significantly shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を補足する説明図、第2図、第3図、第
4図及び第5−図は本発明の一実施例の断面図である。
FIG. 1 is an explanatory diagram supplementing the present invention, and FIGS. 2, 3, 4, and 5 are sectional views of one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、内ケーシングと外ケーシングとから構成される二重
ケーシング蒸気タービンにおいて、前記内ケーシングの
外表面に沿った第一の蒸気流路及び前記外ケーシングの
内表面に沿った第二の蒸気流路を設け、前記第一および
第二の蒸気流路の入口から主流蒸気の一部を導入し、こ
れらの蒸気を、夫々、前記内ケーシングの外表面、又は
、前記外ケーシングの内表面に沿って流しながら前記第
一および第二の蒸気流路の出口を経て前記外ケーシング
の外部に排出するようにし、前記第一および第二の蒸気
流路には夫々開閉制御装置を設け、前記蒸気タービンの
過渡運転時には前記第二の蒸気流路を閉じて前記第一の
蒸気流路にのみ蒸気を流し、前記蒸気タービンの定常運
転中は前記第一の蒸気流路を閉じて前記第二の蒸気流路
にのみ蒸気を流すように制御することを特徴とする蒸気
タービンケーシングの熱応力制御装置’r。 2、特許請求の範囲第1項において、 前記蒸気流路の開閉装置を、前記蒸気流路に導入する蒸
気の圧力による力を利用して開閉することを特徴とする
蒸気タービンケーシングの熱応力制御装置。 3、特許請求の範囲第1項において、前記第一および第
二の蒸気流路の内側に旅回羽根を設けたことを特徴とす
る蒸気タービンケーシングの熱応力制御装置。 4、特許請求の範囲第1項において、 前記第一および第二の蒸気流路に導入する蒸気の圧力及
び温度を制御する装置を設けたことを特徴とする蒸気タ
ービンケーシングの熱応力制御装置。 5、特許請求の範囲第1項または第4項において、前記
第〜および第二の蒸気流路の内に温度及び圧力検出器を
設けこれにより蒸気タービンケーシング熱応力を計算す
る装置を設け、この熱応力計算装置の出力により前記蒸
気流路に導入する蒸気の圧力、温度を制御することを特
徴とする蒸気タービンケーシングの熱応力制御装置。
[Claims] 1. In a double casing steam turbine comprising an inner casing and an outer casing, a first steam flow path along the outer surface of the inner casing and a first steam flow path along the inner surface of the outer casing. A second steam flow path is provided, a portion of the mainstream steam is introduced from the inlets of the first and second steam flow paths, and these steams are directed to the outer surface of the inner casing or the outer casing, respectively. The steam is discharged to the outside of the outer casing through the outlets of the first and second steam passages while flowing along the inner surface of the outer casing, and each of the first and second steam passages is provided with an opening/closing control device. the second steam flow path is closed during transient operation of the steam turbine to allow steam to flow only through the first steam flow path, and the first steam flow path is closed during steady operation of the steam turbine. A thermal stress control device for a steam turbine casing, characterized in that the steam is controlled to flow only through the second steam flow path. 2. The thermal stress control of a steam turbine casing according to claim 1, wherein the opening/closing device for the steam flow path is opened and closed using force due to the pressure of steam introduced into the steam flow path. Device. 3. A thermal stress control device for a steam turbine casing according to claim 1, characterized in that travel vanes are provided inside the first and second steam flow paths. 4. The thermal stress control device for a steam turbine casing according to claim 1, further comprising a device for controlling the pressure and temperature of steam introduced into the first and second steam flow paths. 5. In claim 1 or 4, there is provided a device for calculating the steam turbine casing thermal stress by providing temperature and pressure detectors in the first to second steam flow paths; A thermal stress control device for a steam turbine casing, characterized in that the pressure and temperature of steam introduced into the steam flow path are controlled by the output of a thermal stress calculation device.
JP5096684A 1984-03-19 1984-03-19 Thermal stress controller for steam turbine casing Pending JPS60195304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5096684A JPS60195304A (en) 1984-03-19 1984-03-19 Thermal stress controller for steam turbine casing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5096684A JPS60195304A (en) 1984-03-19 1984-03-19 Thermal stress controller for steam turbine casing

Publications (1)

Publication Number Publication Date
JPS60195304A true JPS60195304A (en) 1985-10-03

Family

ID=12873558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5096684A Pending JPS60195304A (en) 1984-03-19 1984-03-19 Thermal stress controller for steam turbine casing

Country Status (1)

Country Link
JP (1) JPS60195304A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266806A (en) * 1997-03-24 1998-10-06 Hitachi Ltd Steam turbine
EP2112335A1 (en) * 2008-04-21 2009-10-28 Siemens Aktiengesellschaft Steam turbine with cooling device
CN102803661A (en) * 2009-12-15 2012-11-28 西门子公司 Steam turbine in three-shelled design
JP2017214913A (en) * 2016-06-02 2017-12-07 株式会社東芝 Steam turbine blade, and manufacturing process thereof
WO2018074593A1 (en) * 2016-10-21 2018-04-26 三菱重工業株式会社 Steam turbine
US11352910B2 (en) 2017-07-03 2022-06-07 Siemens Energy Global GmbH & Co. KG Steam turbine and method for operating same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266806A (en) * 1997-03-24 1998-10-06 Hitachi Ltd Steam turbine
US8740555B2 (en) 2008-04-21 2014-06-03 Siemens Aktiengesellschaft Steam turbine having a cooling apparatus
WO2009130077A1 (en) * 2008-04-21 2009-10-29 Siemens Aktiengesellschaft Steam turbine having a cooling apparatus
CN102016239A (en) * 2008-04-21 2011-04-13 西门子公司 Steam turbine having a cooling apparatus
RU2477802C2 (en) * 2008-04-21 2013-03-20 Сименс Акциенгезелльшафт Steam turbine with cooling device
EP2112335A1 (en) * 2008-04-21 2009-10-28 Siemens Aktiengesellschaft Steam turbine with cooling device
CN102803661A (en) * 2009-12-15 2012-11-28 西门子公司 Steam turbine in three-shelled design
US9222370B2 (en) 2009-12-15 2015-12-29 Siemens Aktiengesellschaft Steam turbine in a three-shelled design
JP2017214913A (en) * 2016-06-02 2017-12-07 株式会社東芝 Steam turbine blade, and manufacturing process thereof
WO2018074593A1 (en) * 2016-10-21 2018-04-26 三菱重工業株式会社 Steam turbine
CN109844267A (en) * 2016-10-21 2019-06-04 三菱重工业株式会社 Steamturbine
CN109844267B (en) * 2016-10-21 2021-10-19 三菱重工业株式会社 Steam turbine
US11719121B2 (en) 2016-10-21 2023-08-08 Mitsubishi Heavy Industries, Ltd. Steam turbine
US11352910B2 (en) 2017-07-03 2022-06-07 Siemens Energy Global GmbH & Co. KG Steam turbine and method for operating same

Similar Documents

Publication Publication Date Title
US8210801B2 (en) Systems and methods of reducing heat loss from a gas turbine during shutdown
RU2351766C2 (en) Steam turbine and method of its operation
RU2506440C2 (en) Device for starting steam turbine at rated pressure
JP2700797B2 (en) Gas turbine equipment
US4651532A (en) Method of warming up a reheat turbine
EP1154136B1 (en) Method and apparatus to cool the cooling air for turbine engines
EP2208862B1 (en) Compressor clearance control system and method for providing clearance control
KR20140139603A (en) Gas turbine with adjustable cooling air system
JP2006183666A (en) Control method for steam turbine thrust pressure
JPS62182444A (en) Method and device for controlling cooling air for gas turbine
US20100178161A1 (en) Compressor Clearance Control System Using Bearing Oil Waste Heat
RU2498098C2 (en) Turbine cooling system and method of cooling turbine section with intermediate pressure
JP2009162177A (en) Steam valve and power generation unit
JPS60195304A (en) Thermal stress controller for steam turbine casing
JP2000502775A (en) Turbine shaft of internal cooling type steam turbine
US6851265B2 (en) Steam cooling control for a combined cycle power plant
Retzlaff et al. Steam turbines for ultrasupercritical power plants
RU2326252C1 (en) Gas-turbine unit
US7086828B2 (en) Steam turbine and method for operating a steam turbine
JPH08319852A (en) Gas turbine plant and its cooling method
JPS61138804A (en) Cooling system for steam turbine
Kizuka et al. Conceptual design of the cooling system for 1700° C-class, hydrogen-fueled combustion gas turbines
JPH04148035A (en) Vapor cooled gas turbine system
KR101353840B1 (en) Cooling method and device in single-flow turbine
JPS60159310A (en) Thermal stress control device for double casing of steam turbine