WO2016188671A1 - Circuit de vapeur d'eau d'une installation de turbine à gaz et à vapeur - Google Patents

Circuit de vapeur d'eau d'une installation de turbine à gaz et à vapeur Download PDF

Info

Publication number
WO2016188671A1
WO2016188671A1 PCT/EP2016/058256 EP2016058256W WO2016188671A1 WO 2016188671 A1 WO2016188671 A1 WO 2016188671A1 EP 2016058256 W EP2016058256 W EP 2016058256W WO 2016188671 A1 WO2016188671 A1 WO 2016188671A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
low
pressure
pressure evaporator
heat recovery
Prior art date
Application number
PCT/EP2016/058256
Other languages
German (de)
English (en)
Inventor
Uwe Juretzek
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2016188671A1 publication Critical patent/WO2016188671A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/18Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • At least a first part of a condensate in the waste is Vorretermosis Structure ⁇ arranged directly between the Niederstdruck-evaporator and the low-pressure evaporator heating ⁇ .
  • VortagerMap phenomenon ⁇ arranged directly between the Niederstdruck-evaporator and the low-pressure evaporator heating ⁇ .
  • the steam generated in the low-pressure evaporator stage it must generally be ensured that the steam is sufficiently overheated. How strong the overheating must be depends on the usable binding point on the steam turbine. The lower the pressure at the binding site, the lower the requirements for overheating.
  • the saturated steam generated in the low-pressure evaporator stage is intended are not overheated in the heat recovery steam generator itself via a superheater heating surface in order to avoid the resulting pressure losses. Each pressure loss must be compensated by a higher vapor pressure in the low-pressure evaporator stage, which in turn means the additional usable heat and thus the possible steam production in the low-pressure evaporator stage
  • a sixth steam line branches off from the second, third, fourth or fifth steam line and opens into an intake air preheating system of a gas turbine plant.
  • the steam can (partially or completely) held in the steam turbine for the Air intake Gas turbine plant are passed.
  • the performance of the gas turbine plant and thus also of the entire system decreases without the partial closing of the Vorleitmaschinen the efficiency of the system drops sharply.
  • the use of the steam generated in the low-pressure evaporator stage has the advantage ⁇ part that for the intake air preheating low heat (because of comparatively low temperature levels) is used.
  • a seventh steam line branches off from the second, third, fourth or fifth steam line and opens into a heat exchanger, which ends in a
  • Main condensate system is arranged before entering the heat recovery steam generator.
  • the vapor condenses from the low-pressure evaporator stage, whereby the main condensate ⁇ sattemperatur is raised accordingly.
  • Heat exchanger accumulating condensate is on a corre sponding ⁇ pump again in the water-steam cycleIchbun ⁇ the.
  • the steam generated in the low-pressure evaporator stage (or a part thereof) can be used with varying sulfur contents in the fuel to increase the condensate inlet temperature into the heat recovery steam generator if required (increased sulfur content). It is expedient if the low-pressure evaporator stage is designed for pressures between 1 and 3.5 bar.
  • the limitation of the minimum pressure level in the entire system (from the low-pressure evaporator stage to the valve at the inlet of the steam ⁇ turbine) to greater than 1 bar (slight pressure over ambient pressure) has the advantage of limiting the flow, avoids the dew point below the exhaust and avoids simple Make the air entry into the water-steam cycle and resulting problems with the power plant chemistry.
  • the evaporator pressure level in the negative pressure range With further reduction of the evaporator pressure level in the negative pressure range, the heat ⁇ utilization at the cold end of the heat recovery steam generator improved even further, but also the problems dew point undershoot and the cost of steam flow and avoidance of ambient air intake increase. In addition, the usable enthalpy gradient becomes smaller and smaller.
  • a gas and steam turbine plant comprises a water-steam cycle according to the invention.
  • the object directed to a method is achieved by a method for operating a combined cycle power plant with a steam turbine and a heat recovery steam generator comprising a low-pressure evaporator stage and a low-pressure evaporator stage arranged in the flow direction of a gas turbine exhaust gas downstream of the low-pressure evaporator stage, in which The low-pressure evaporator stage generated rich ⁇ steam is removed from the heat recovery steam generator.
  • the saturated steam from the evaporator stage of the heat recovery steam generator Niederstdruck for superheating, via a valve is released before ⁇ supplied to the steam turbine.
  • the saturated steam from the low-pressure evaporator stage of the heat recovery steam generator is overheated by means of a heat recovery steam generator-external superheater before it is fed to the steam turbine. Further, it may be advantageous if the saturated steam is condensed from the evaporator stage of the heat recovery steam generator Niederstdruck-with ⁇ means of a steam compressor before it is supplied to the steam turbine.
  • the saturated steam from the low-pressure evaporator stage of the heat recovery steam generator is supplied at pressures of the steam turbine in which a steam flowing in the steam turbine is already present as saturated steam or wet steam.
  • the difference in the pressures of the low-pressure evaporator stage and the low-pressure evaporator stage is less than 10 bar.
  • the saturated steam from the low pressure evaporator stage of the heat recovery steam generator is fed to an intake air preheating system of a gas turbine plant.
  • Figure 1 is a gas and steam turbine plant according to the prior
  • Figure 2 according to the invention It ⁇ a first gas and steam turbine installation
  • Figure 3 is a second gas and steam turbine plant according to the
  • Invention and Figure 4 shows a third gas and steam turbine plant according to the invention.
  • the gas turbine plant 24 comprises a gas turbine 29 with coupled air compressor 30 and a gas turbine 29 upstream combustion chamber 31 which is connected to a compressed air line 32 of the compressor 30.
  • the still about 550 to 650 ° C hot exhaust gases of the gas turbine 29 are fed to the heat recovery steam generator 46 via an exhaust gas line 42, flow through this from the exhaust gas inlet 43 to the exhaust outlet 44 and leave the
  • the steam superheated in the heat recovery steam generator 46 and fed to the steam turbine 3 is released there by performing mechanical work.
  • the notify by ⁇ stretched in the steam turbine 3 high-pressure steam is supplied to a reheat heat recovery steam generator 70 in the 46th
  • the remaining steam is after the relaxation in the middle 39 and low pressure part 40 of Steam turbine 3 condensed in the condenser 37, and the so ent ⁇ standing condensate is fed back to the heat recovery steam generator 46 via the condensate pump 60, so that a water-steam cycle 45 is formed.
  • a seventh steam line 25 branches off from the second 14, third 16, fourth 17 or fifth steam line 19 and ends in a heat exchanger 26, which is arranged in a main condensate system 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

La présente invention concerne un circuit de vapeur d'eau (1) d'une installation de turbine à gaz et à vapeur (2) comprenant une turbine à vapeur (3) et un générateur de vapeur à récupération de chaleur (4) comportant au moins une surface de chauffe de surchauffeur haute pression (47, 49, 51), une surface de chauffe d'évaporateur haute pression (52), une surface de chauffe de préchauffeur haute pression, au moins une surface de chauffe de surchauffeur moyenne pression (48, 50, 54), une surface de chauffe d'évaporateur moyenne pression (56), une surface de chauffe de préchauffeur moyenne pression (57), et un étage d'évaporateur basse pression (5) comprenant une surface de chauffe de surchauffeur basse pression (6) et une surface de chauffe d'évaporateur basse pression (7). Dans le générateur de vapeur à récupération de chaleur (4) se trouve un étage d'évaporateur pression minimale (8) comprenant une surface de chauffe d'évaporateur pression minimale (9) dans la direction d'écoulement de gaz d'échappement de la turbine à gaz, après l'étage d'évaporateur basse pression (5). L'invention concerne également une installation de turbine à gaz et à vapeur (2) comprenant un circuit de vapeur d'eau (1). L'invention concerne en outre un procédé permettant de faire fonctionner une installation de turbine à gaz et à vapeur (2) de ce type.
PCT/EP2016/058256 2015-05-28 2016-04-14 Circuit de vapeur d'eau d'une installation de turbine à gaz et à vapeur WO2016188671A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015209812.5 2015-05-28
DE102015209812.5A DE102015209812A1 (de) 2015-05-28 2015-05-28 Wasser-Dampf-Kreislauf einer Gas- und Dampfturbinenanlage

Publications (1)

Publication Number Publication Date
WO2016188671A1 true WO2016188671A1 (fr) 2016-12-01

Family

ID=55754284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/058256 WO2016188671A1 (fr) 2015-05-28 2016-04-14 Circuit de vapeur d'eau d'une installation de turbine à gaz et à vapeur

Country Status (2)

Country Link
DE (1) DE102015209812A1 (fr)
WO (1) WO2016188671A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021046865A (ja) * 2020-12-24 2021-03-25 三菱重工業株式会社 排熱回収プラント、及びコンバインドサイクルプラント

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203730A1 (de) 2021-04-15 2022-10-20 Siemens Energy Global GmbH & Co. KG Erzeugung von elektrischer Energie aus Wasserstoff und Sauerstoff

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1266810A (fr) * 1960-09-02 1961-07-17 Sulzer Ag Centrale thermique à vapeur avec machine motrice à plusieurs étages
US20030131601A1 (en) * 2002-01-07 2003-07-17 Parsons Energy & Chemicals Group, Inc. Sliding steam temperature for combined cycle power plants
EP2584157A1 (fr) * 2011-10-19 2013-04-24 General Electric Company Générateur de vapeur à récupération de chaleur et procédés de couplage associés à une centrale à cycles combinés
US20150052906A1 (en) * 2013-08-22 2015-02-26 General Electric Company Duct Fired Combined Cycle System

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616787A (en) * 1970-01-02 1971-11-02 Sulzer Ag Overflow valve for a steam plant
JP4346213B2 (ja) * 2000-06-06 2009-10-21 株式会社東芝 コンバインドサイクル発電プラント
WO2002081870A1 (fr) * 2001-04-06 2002-10-17 Alstom (Switzerland) Ltd Procede de mise en attente d'une centrale electrique combinee
US20100232561A1 (en) * 2007-01-09 2010-09-16 Michael Joseph Boss Nuclear power generation method and system
US20100054926A1 (en) * 2008-08-29 2010-03-04 General Electric Company System and method for thermal management of a gas turbine inlet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1266810A (fr) * 1960-09-02 1961-07-17 Sulzer Ag Centrale thermique à vapeur avec machine motrice à plusieurs étages
US20030131601A1 (en) * 2002-01-07 2003-07-17 Parsons Energy & Chemicals Group, Inc. Sliding steam temperature for combined cycle power plants
EP2584157A1 (fr) * 2011-10-19 2013-04-24 General Electric Company Générateur de vapeur à récupération de chaleur et procédés de couplage associés à une centrale à cycles combinés
US20150052906A1 (en) * 2013-08-22 2015-02-26 General Electric Company Duct Fired Combined Cycle System

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021046865A (ja) * 2020-12-24 2021-03-25 三菱重工業株式会社 排熱回収プラント、及びコンバインドサイクルプラント
JP7059347B2 (ja) 2020-12-24 2022-04-25 三菱重工業株式会社 排熱回収プラント、及びコンバインドサイクルプラント

Also Published As

Publication number Publication date
DE102015209812A1 (de) 2016-12-01

Similar Documents

Publication Publication Date Title
DE102008037410B4 (de) Superkritischen Dampf verwendender kombinierter Kreisprozess und Verfahren
EP2100010B1 (fr) Procédé pour accroître le débit de vapeur dans une turbine à vapeur haute pression d'une centrale lors de la mise en route de la centrale
DE102010001118B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einer Dampfkraftanlage
WO2011144366A1 (fr) Procédé et dispositif pour la récupération de chaleur dans une partie de séchage d'une machine destinée à fabriquer une bande en matière fibreuse
EP3420202B1 (fr) Recirculation de condensat
WO2008107406A2 (fr) Installation à turbine à vapeur et procédé pour faire démarrer une installation à turbine à vapeur
EP2611995B1 (fr) Système de turbine à vapeur à alimentation en vapeur variable
WO2016188671A1 (fr) Circuit de vapeur d'eau d'une installation de turbine à gaz et à vapeur
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
EP3017152A2 (fr) Centrale à cycle combiné gaz-vapeur munie d'un générateur de vapeur à récupération de chaleur et un pre-chauffage du carburant
WO2007144285A2 (fr) Centrale à vapeur
EP0158629B1 (fr) Cycle à vapeur pour installation énergétique à vapeur
WO2012175230A1 (fr) Procédé et système de récupération de chaleur pour une partie sèche d'une machine de fabrication d'une bande de matériau
EP3810907B1 (fr) Recirculation des gaz d'échappement dans des installations de turbines à gaz et à vapeur
EP3728800B1 (fr) Centrale électrique
EP2138677B1 (fr) Installation de turbines à gaz et à vapeur
EP3365534B1 (fr) Procédé de préchauffage d'eau d'alimentation d'une chaudière à vapeur d'une centrale électrique et centrale à vapeur pour la mise en oeuvre du procédé
DE102010043683A1 (de) Fossil befeuerter Dampferzeuger
EP2426337A1 (fr) Dispositif de préchauffage de carburant et procédé de préchauffage de carburant
DE102011077796A1 (de) Verfahren und System zur Wärmerückgewinnung für eine Trockenpartie einer Maschine zur Herstellung einer Materialbahn
DE102008057490B4 (de) Kombiniertes Gas- und Dampfturbinenkraftwerk und Verfahren zum Betrieb
DE102016212634A1 (de) Verfahren zur Sekundärfrequenzregelung einer fossil befeuerten Kraftwerksanlage
DE102013205053B4 (de) Verfahren zum Betrieb eines einen Wasser-Dampf-Kreislauf aufweisenden Kraftwerks
DE19846458C1 (de) Verfahren zum Wiederanfahren einer Gas- und Dampfturbinenanlage
EP2625390B1 (fr) Générateur de vapeur à combustibles fossiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16716559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16716559

Country of ref document: EP

Kind code of ref document: A1