EP3600642A1 - Procédé de préparation de capsules avec des propriétés de rétention améliorées et capsules obtenues - Google Patents

Procédé de préparation de capsules avec des propriétés de rétention améliorées et capsules obtenues

Info

Publication number
EP3600642A1
EP3600642A1 EP18711368.3A EP18711368A EP3600642A1 EP 3600642 A1 EP3600642 A1 EP 3600642A1 EP 18711368 A EP18711368 A EP 18711368A EP 3600642 A1 EP3600642 A1 EP 3600642A1
Authority
EP
European Patent Office
Prior art keywords
composition
emulsion
less
solid
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18711368.3A
Other languages
German (de)
English (en)
Inventor
Damien DEMOULIN
Alicia SADAOUI
Jamie WALTERS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calyxia SAS
Original Assignee
Calyxia SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calyxia SAS filed Critical Calyxia SAS
Publication of EP3600642A1 publication Critical patent/EP3600642A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light

Definitions

  • the present invention relates to a method for preparing capsules with improved retention properties. It also relates to the capsules as obtained and compositions containing them.
  • active ingredients are added to the formulated products in order to confer interesting application properties or increase their performance.
  • the encapsulation of the active principles represents a very interesting way to overcome the limitation of performance or stability of formulated products that contain them while benefiting from the effect of the active ingredient at the time of use of the formulated product.
  • the present invention therefore aims to provide a method for encapsulating active ingredients avoiding the aforementioned problems of leakage of said active ingredients.
  • the present invention also aims to provide capsules containing at least one active ingredient and having excellent retention properties.
  • the present invention relates to a process for preparing solid microcapsules, said solid microcapsules comprising in particular a core containing at least one active and a solid envelope completely encapsulating at its periphery said core, said solid envelope comprising pores less than 1 nm in size ,
  • said method comprising the following steps:
  • composition C1 comprising at least one active agent, in a polymeric composition C2, the compositions C1 and C2 being immiscible with one another,
  • composition C2 comprising at least one monomer or polymer with an average molecular weight of less than 5,000 g. mol "1 , at least one crosslinking agent with an average molecular weight of less than 5,000 g.mol -1 , and optionally at least one photoinitiator with an average molecular weight of less than 5,000 g. mole "1 or a crosslinking catalyst weight average molecular of less than 5000 g. mol" 1,
  • the viscosity of the composition C2 being between 500 mPa.s and 100 000 mPa.s at 25 ° C., and preferably being greater than the viscosity of the composition C1,
  • the viscosity of the composition C3 being between 500 mPa.s and 100 000 mPa.s at 25 ° C, and preferably being greater than the viscosity of the emulsion (E1),
  • the method of the invention thus makes it possible to prepare solid microcapsules comprising a core and a solid envelope completely encapsulating at its periphery the heart, wherein the heart is a composition C1 comprising at least one active.
  • the solid microcapsules obtained by the process of the invention are formed of a core containing at least one active agent (composition C1) and a solid envelope (obtained from composition C2) completely encapsulating at its periphery said core, said envelope solid comprising pores less than 1 nm in size.
  • the capsules thus obtained by this process have excellent retention capabilities.
  • the shell material of the capsules the pore size of which is preferably less than 1 nm, such that the diffusion of any compound with a molecular size greater than 1 nm is considerably slowed down if is completely stopped.
  • This result is obtained by controlling one or more parameters as described below, such as the ratio of core / shell material of the capsules (ratio C1 / C2 below), the concentration of crosslinking agent in the material, the number of reactive ends per monomer or polymer / oligomer, the length of the monomers or polymers / oligomers and / or the absence of inert materials in the shell material such as non-reactive solvents or oligomers or polymers.
  • the method of the invention also has the advantage of not requiring the use of surfactants or emulsifiers which could accelerate and make uncontrolled the release of active ingredients to the outside of the capsule; and / or react with the components of the formulated product in which the capsules are intended to be incorporated.
  • the method of the invention consists in producing a double emulsion composed of droplets containing at least one active agent, wrapped in a crosslinkable liquid phase. These double drops are then rendered monodisperse in size before being converted by crosslinking or polymerization in rigid capsules.
  • the preparation involves 4 steps described below in detail. Step a)
  • Step a) of the process according to the invention consists in preparing a first emulsion (E1).
  • the first emulsion consists of a dispersion of droplets of the composition C1 (containing at least one active ingredient) in a C1-immiscible polymeric composition C2, created by dropwise addition of C1 to C2 with stirring.
  • a composition C1 is added to a crosslinkable polymeric composition C2, this step being carried out with stirring, which means that the composition C2 is stirred, typically mechanically, while the composition C1 is added, and this in order to emulsify the mixture of compositions C1 and C2.
  • composition C1 in the composition C2 is typically carried out dropwise.
  • the composition C1 is at a temperature of between 0 ° C. and 100 ° C., preferably between 10 ° C. and 80 ° C., and preferably between 15 ° C. and 60 ° C.
  • the composition C2 is at a temperature of between 0 ° C. and 100 ° C., preferably between 10 ° C. and 80 ° C., and preferably between 15 ° C. and 60 ° C.
  • the compositions C1 and C2 are not miscible with each other, which means that the amount (by weight) of the composition C1 capable of being solubilized in the composition C2 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C2, and that the amount (by weight) of the composition C2 capable of to be solubilized in composition C1 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C1.
  • composition C1 comes into contact with the composition C2 with stirring, the latter is dispersed in the form of drops, called simple drops.
  • compositions C1 and C2 also makes it possible to avoid the migration of the active ingredient from composition C1 to composition C2.
  • Composition C2 is stirred to form an emulsion comprising drops of composition C1 dispersed in composition C2.
  • This emulsion is also called “simple emulsion” or emulsion C1-in-C2.
  • any type of stirrer usually used to form emulsions such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer or a homogenizer may be used.
  • a mechanical stirrer such as, for example, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer or a homogenizer may be used.
  • an ultrasonic homogenizer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer or a homogenizer
  • a membrane homogenizer such as, for example, a membrane homogenizer or a homogenizer.
  • composition C1 comprises at least one active ingredient A.
  • This composition C1 serves as a carrier for the active ingredient A in the process of the invention, within the drops formed during the process of the invention and the solid capsules obtained.
  • the composition C1 is monophasic, that is to say it is the pure active A or a solution comprising the active A in solubilized form .
  • the active agent is solubilized in composition C1.
  • the composition C1 typically consists of a solution of the active ingredient A in an aqueous solution, or an organic solvent, or a mixture of organic solvents, the active ingredient A being present in a mass content of between 1% and 99%. %, relative to the total mass of the composition C1.
  • the active agent A may be present in a mass content ranging from 5% to 95%, from 10% to 90%, from 20% to 80%, from 30% to 70%, or from 40% to 60%, relative to to the total mass of the composition C1.
  • the composition C1 consists of the asset A.
  • the composition C1 is a biphasic composition, which means that the active agent is dispersed, either in liquid form or in solid form, in the composition C1 and is not totally solubilized in said composition C1.
  • the active agent is dispersed in the form of solid particles in the composition C1.
  • the composition C1 can consist of a dispersion of solid particles of the active agent in an organic solvent or in a mixture of organic solvents.
  • the composition C1 may consist of a dispersion of solid particles of the active agent in an aqueous phase, which comprises water and optionally hydrophilic organic solvents.
  • the asset used is for example:
  • a crosslinking agent such as a crosslinking agent, a hardener, an organic or metal catalyst (such as an organometallic or inorganometallic complex of platinum, palladium, titanium, molybdenum, copper, zinc) used to polymerize polymer and elastomer formulations; rubber, paint, adhesive, seal, mortar, varnish or coating;
  • an organic or metal catalyst such as an organometallic or inorganometallic complex of platinum, palladium, titanium, molybdenum, copper, zinc
  • a dye or a pigment for formulations of elastomers for formulations of elastomers, paint, coating, adhesive, seal, mortar, or paper;
  • fragrance as defined by the International Fragrance Association (IFRA) molecule list and available on the www.ifraorg.org website) for detergents such as detergents, home care products, cosmetic and personal care products, textiles, paints, coatings;
  • IFRA International Fragrance Association
  • an anti-discoloration agent such as an ammonium derivative
  • an antifoam agent such as an alcohol ethoxylate, an alkylbenzene sulfonate, a polyethylene ethoxylate, an alkylethoxysulphate or alkylsulphate
  • an anti-discoloration agent such as an ammonium derivative
  • an antifoam agent such as an alcohol ethoxylate, an alkylbenzene sulfonate, a polyethylene ethoxylate, an alkylethoxysulphate or alkylsulphate
  • a brightening agent also called a color activator (such as a stilbene derivative, a coumarin derivative, a pyrazoline derivative, a benzoxazole derivative or a naphthalimide derivative) intended for detergents, detergents, cosmetics and personal care products;
  • a color activator such as a stilbene derivative, a coumarin derivative, a pyrazoline derivative, a benzoxazole derivative or a naphthalimide derivative
  • a biologically active compound such as an enzyme, a vitamin, a protein, a plant extract, an emollient agent, a disinfecting agent, an antibacterial agent, an anti-UV agent, a drug for the products cosmetics and personal care, to textiles.
  • biologically active compounds include: vitamins A, B, C, D and E, para-aminobenzoic acid, alpha hydroxy acids (such as glycolic acid, lactic acid, malic acid, tartaric acid or citric acid), camphor, ceramides, polyphenols (such as flavonoids, phenolic acid, ellagic acid, tocopherol, ubiquinol), hydroquinone, hyaluronic acid, isopropyl isostearate, isopropyl palmitate, oxybenzone, panthenol, proline, retinol, retinyl palmitate, salicylic acid, sorbic acid, sorbitol, triclosan, tyrosine;
  • a disinfecting agent for paints and coatings
  • a flame retardant also known as a flame retardant, (such as a brominated polyol such as tetrabromobisphenol A, a halogenated or non-halogenated organophosphorus compound, a chlorinated compound, an aluminum trihydrate, an antimony oxide, a zinc borate red phosphorus, melamine, or magnesium dihydroxide) for use in plastic materials, coatings, paints and textiles;
  • a flame retardant also known as a flame retardant, (such as a brominated polyol such as tetrabromobisphenol A, a halogenated or non-halogenated organophosphorus compound, a chlorinated compound, an aluminum trihydrate, an antimony oxide, a zinc borate red phosphorus, melamine, or magnesium dihydroxide) for use in plastic materials, coatings, paints and textiles;
  • a flame retardant such as a brominated polyol such as tetrabromobisphenol A, a hal
  • phase change materials capable of absorbing or returning heat when they undergo a phase change, intended for the storage of 'energy.
  • PCMs phase change materials
  • Examples of PCM and their applications are described in Farid et al., Energy Conversion and Management, 2004, 45 (9-10), 1597-1615.
  • composition C2 is intended to form the future solid envelope of the microcapsules.
  • the viscosity of the composition C2 at 25 ° C is between 1000 mPa.s and 50,000 mPa.s, preferably between 2000 mPa.s and 25,000 mPa.s, and for example between 3000 mPa. s and 15,000 mPa.s.
  • the viscosity of the composition C2 is greater than the viscosity of the composition C1.
  • the viscosity is measured using a Haake Rheostress TM 600 rheometer equipped with a cone of 60 mm diameter and 2 degrees angle, and a temperature control cell set at 25 ° C. The value of the viscosity is read for a shear rate of 10 s -1 .
  • the interfacial tension between compositions C1 and C2 is low.
  • these interfacial tensions vary between 0 mN / m and 50 mN / m, preferably between 0 mN / m and 20 mN / m.
  • the low interfacial tension between the compositions C1 and C2 also advantageously makes it possible to ensure the stability of the emulsion (E1) obtained at the end of step a).
  • the composition C2 contains at least one monomer or polymer with an average molecular weight of less than 5000 g. mol "1 , at least one crosslinking agent with an average molecular weight of less than 5,000 g.mol -1 , and optionally at least one photoinitiator with an average molecular weight of less than 5,000 g. mol "1 or catalyst crosslinking of average molecular weight less than 5,000 g. mol "1 , thus making it crosslinkable.
  • the rigid envelope of the capsules is thus formed of a polymeric material resulting from the crosslinking of the composition C2.
  • the dense molecular network thus formed has gaps (or voids) creating a hypothetical passage between the inside and the outside of the capsules. These interstices constitute the pores of the rigid envelope.
  • the pores have a size preferably of less than 5 nm, preferably less than 1 nm, or even less than 0.5 nm.
  • size refers to the diameter, in particular the average diameter, of the pores.
  • the size of the pores can be measured for example by surface analysis according to the so-called BET technique (Brunauer-Emmet-Teller) well known to those skilled in the art.
  • BET technique Brunauer-Emmet-Teller
  • This technique described in more detail in "The Journal of the American Chemical Society” of February 1938, Volume 60, page 309, consists in measuring the nitrogen adsorption by the sample whose pore size is to be measured.
  • the pressure of the reference cell in which the adsorbate is at its saturation vapor pressure and that of the sample cell in which known volumes of adsorbate are injected are then measured.
  • the curve resulting from these measurements is the adsorption isotherm.
  • a mathematical model allows to deduce the specific surface of the capsules, and consequently the pore size.
  • the term “monomer” or “polymer” denotes any base unit suitable for the formation of a solid material by polymerization, either alone or in combination with other monomers or polymers.
  • the term “polymer” also includes oligomers.
  • These monomers may be chosen from monomers comprising at least one reactive functional group chosen from the group consisting of acrylate functions, methacrylate, vinyl ether, N-vinyl ether, mercaptoester, thiolene, siloxane, epoxy, oxetane, urethane, isocyanate and peroxide.
  • the monomers may be chosen from monomers carrying at least one of the above-mentioned reactive functional groups and additionally bearing at least one functional group selected from the group consisting of primary, secondary and tertiary alkylamine functions, quaternary amino functions, sulfate functions, sulfonate, phoshate, phosphonate, carboxylate, hydroxyl, halogen, and mixtures thereof.
  • the polymers used in the composition C2 can be chosen from polyethers, polyesters, polyurethanes, polyureas, polyethylene glycols, polypropylene glycols, polyamides, polyacetals, polyimides, polyolefins, polysulphides and polydimethylsiloxanes, said polymers additionally bearing at least one reactive function chosen. in the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, mercaptoester, thiolene, siloxane, epoxy, oxetane, urethane, isocyanate and peroxide functions.
  • polymers examples include, but are not limited to, the following polymers: poly (2- (1-naphthyloxy) ethyl acrylate), poly (2- (2-naphthyloxy) ethyl acrylate), poly (2- (2-naphthyloxy) ethyl methacrylate), polysorbitol dimethacrylate, polyacrylamide, poly ((2- (1-naphthyloxy) ethanol), poly (2- (2-naphthyloxy) ethanol), poly (1-chloro-2) , 3-epoxypropane), poly (n-butyl isocyanate), poly (N-vinyl carbazole), poly (N-vinyl pyrrolidone), poly (p-benzamide), poly (p-chlorostyrene), poly (p-methyl styrene) poly (p-phenylene oxide), poly (p-phenylene sulfide), poly (N- (methacryloxye
  • crosslinking agent is meant a compound carrying at least two reactive functional groups capable of crosslinking a monomer or a polymer, or a mixture of monomers or polymers, during its polymerization.
  • the crosslinking agent may be chosen from molecules bearing at least two functional groups chosen from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, mercaptoester, thiolene, siloxane, epoxy, oxetane, urethane, isocyanate and peroxide functions.
  • crosslinking agent there may be mentioned in particular:
  • diacrylates such as 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, polyethylene glycol dimethacrylate, 1, 9-nonanediol dimethacrylate, 1,4-butanediol dimethacrylate, 2,2-bis (4) methacryloxyphenyl) propane, 1,3-butanediol dimethacrylate, 1,10-decanediol dimethacrylate, bis (2-methacryloxyethyl) N, N'-1,9-nonylene biscarbamate, 1,4-butanediol diacrylate, ethylene glycol diacrylate, 1,5-pentanediol dimethacrylate, 1,4-phenylene diacrylate, allyl methacrylate, ⁇ , ⁇ '-methylenebisacrylamide, 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) ) phenyl] propane, t
  • multifunctional acrylates such as dipentaerythritol pentaacrylate, 1,1,1-trimethylolpropane triacrylate, 1,1,1-trimethylolpropane trimethacrylate, ethylenediamine tetramethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate;
  • acrylates which also have other reactive functional groups, such as propargyl methacrylate, 2-cyanoethyl acrylate, tricyclodecane dimethanol diacrylate, hydroxypropyl methacrylate, N-acryloxysuccinimide, N- (2-hydroxypropyl) methacrylamide, N- ( 3-aminopropyl) methacrylamide hydrochloride, N- (t-BOC-aminopropyl) methacrylamide, 2-aminoethyl methacrylate hydrochloride, monoacryloxyethyl phosphate, o-nitrobenzyl methacrylate, acrylic anhydride, 2- (tert-butylamino) ethyl methacrylate, N, N-diallylacrylamide, glycidyl methacrylate, 2-hydroxyethyl acrylate, 4- (2-acryloxyaheoxy) -2-hydroxybenzophenone, N- (Phthalimidomethyl) acrylamide, cinnamy
  • photoinitiator is meant a compound capable of fragmenting under the effect of light radiation.
  • the photoinitiators which can be used according to the present invention are known in the art and are described, for example in "Photoinitiators in the crosslinking of coatings", G. Li Bassi, Double Liaison - Chemistry of Paints, No. 361, November 1985, p. 34-41; "Industrial applications of photoinduced polymerization", Henri Strub, L'Actualéclairage Chimique, February 2000, p.5-13; and "Photopolymers: theoretical considerations and reaction of taking", Marc, JM Abadie, Double Liaison - Chemistry of the Paintings, n ° 435-436, 1992, p.28-34.
  • photoinitiators include:
  • ⁇ -hydroxyketones such as 2-hydroxy-2-methyl-1-phenyl-1-propanone, sold for example under the names DAROCUR® 1 173 and 4265, IRGACURE® 184, 2959, and 500 by the company BASF, and ADDITOL® CPK by CYTEC;
  • ⁇ -aminoketones especially 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, sold, for example, under the names Irgacure® 907 and 369 by the company BASF;
  • acylphosphine oxides such as, for example, bis-acylphosphine oxides (BAPO) sold for example under the names IRGACURE® 819, 1700, and 1800, DAROCUR® 4265, LUCIRIN® TPO, and LUCIRIN® TPO-L by the company BASF.
  • BAPO bis-acylphosphine oxides
  • aromatic ketones such as benzophenone, phenylglyoxylates, such as the methyl ester of phenylglyoxylic acid, oxime esters, such as [1- (4-phenylsulfanylbenzoyl) heptylideneamino] benzoate, sulphonium salts, iodonium salts and oxime sulphonates.
  • the composition C2 may further comprise an additional monomer or polymer capable of improving the properties of the microcapsule casing and / or of giving new properties to the microcapsule casing.
  • additional monomers or polymers there may be mentioned monomers or polymers bearing a group sensitive to pH, temperature, UV or IR.
  • Additional monomers or polymers may be chosen from monomers or polymers bearing at least one reactive functional group chosen from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, mercaptoester, thiolene, siloxane, epoxy, oxetane and urethane functions. isocyanate and peroxide, and also bearing one of the following groups:
  • a hydrophobic group such as a fluorinated group, for example trifluoroethyl methacrylate, trifluoroethyl acrylate, tetrafluoropropyl methacrylate, pentafluoropropyl acrylate, hexafluorobutyl acrylate, or fluorophenyl isocyanate;
  • a group that is sensitive to pH such as primary, secondary or tertiary amines, carboxylic acids, phosphate, sulphate, nitrate or carbonate groups;
  • UV-sensitive or UV-cleavable group such as azobenzene, spiropyran, 2-diazo-1, 2-naphthoquinone, o-nitrobenzyl, thiol, or 6-nitro-veratroyloxycarbonyl, for example poly (ethylene) oxide) -block-poly (2-nitrobenzylmethacrylate), and other block copolymers, as described in particular in Liu et al., Polymer Chemistry 2013, 4, 3431-3443;
  • an IR-sensitive or IR-cleavable group such as o-nitrobenzyl or 2-diazo-1,2-naphthoquinone, for example the polymers described in Liu et al., Polymer Chemistry 2013, 4, 3431-3443; and
  • a temperature-sensitive group such as poly (N-isopropylacrylamide).
  • the average molecular weight of the monomers or polymers of the composition C2 is less than 5,000 g. mol "1.
  • the average molecular weight is between 50 g. mol" 1 and 3000 g. mol "1, preferably between 100 g. mol” 1 and 2000 g. mol "1 .
  • the average molecular weight of the crosslinking agent (or crosslinking agents) of the composition C2 is less than 5,000 g. mol "1.
  • the average molecular weight is between 50 g. mol” 1 and 2000 g. mol “1 , preferably between 50 g, mol -1 and 1000 g. mol "1 .
  • the average molecular weight of the initiator or crosslinking catalyst of the composition C2 is less than 5,000 g. mol "1.
  • the average molecular weight is between 50 g. mol" 1 and 3000 g. mol "1, preferably between 100 g. mol" 1 and 2000 g. mol "1 .
  • the composition C2 comprises only molecules of average molecular weight less than 5,000 g. mol "1. If the C2 composition comprises a molecule other than the monomers or polymers, crosslinking agents or crosslinking initiator or above catalyst, this molecule has an average molecular weight less than 5000 g. mol" 1.
  • the volume fraction of C1 in C2 is between 0.1 and 0.5.
  • This choice of the volume fraction of C1 in C2 makes it possible to advantageously control the thickness of the envelope of the capsules obtained at the end of the process between 0.2 ⁇ and 8 ⁇ depending on the size of the capsules (themselves between 1 ⁇ and 30 ⁇ ).
  • the composition C2 comprises from 5% to 30% by weight of crosslinking agent (s) relative to the total weight of said composition.
  • the composition C2 comprises from 5% to 20%, and preferably from 5% to 15%, by weight of crosslinking agent (s) relative to the total weight of said composition.
  • the ratio of the number of moles of reactive functional groups of the monomers or polymers (or oligomers) contained in C2 relative to the number of moles of monomers or polymers (or oligomers) contained in C2 is greater than 1, 5, preferably between 1, 7 and 3.
  • the term "reactive function" denotes an atom or a group of atoms present in the monomer or polymer and capable of creating a covalent chemical bond with another molecule included in C2. These functions include, for example, acrylate, methacrylate, vinyl ether, N-vinyl ether, mercaptoester, thiolene, siloxane, epoxy, oxetane, urethane, isocyanate and peroxide functions.
  • the term "molecules contained in C2" denotes all the molecules contained in the above-mentioned composition C2, and therefore especially the above-mentioned monomers or polymers, crosslinking agents and initiators or catalysts.
  • the composition C2 does not comprise other molecules than the monomers or polymers, crosslinking agents and initiators or catalysts mentioned above.
  • the molecules contained in the composition C2 consist of the monomers or polymers, crosslinking agents and initiators or catalysts mentioned above.
  • the composition C2 comprises a polymer, a crosslinking agent and a (photo) initiator.
  • the "number of moles of reactive functions of the monomers or polymers contained in C2 relative to the number of moles of monomers or polymers contained in C2" can be counted by counting the number of moles of reactive functions of monomers or polymers contained in C2 divided by the number of moles of monomers or polymers contained in C2. This ratio reflects the ability of C2's components to create a molecular network that contains numerous junction points between molecules.
  • the composition C2 contains less than 5% by weight of molecules having no reactive function, preferably between 0.01% and 4%, preferably between 0.01% and 3%.
  • This embodiment is advantageous in that it makes it possible to have a greater number of crosslinking points in the shell material of the capsules.
  • a "molecule having no reactive function" can not be linked to any other molecule included in C2.
  • a molecule with a The only reactive function can be linked to only one other molecule in C2, whereas a molecule with two reactive functions can be linked to two other molecules, and so on when the number of reactive functions increases.
  • the composition C2 comprises from 65% to 95% by weight of monomer or polymer, or a mixture of monomers or polymers, and from 5% to 30% by weight of crosslinking agent (s). ) relative to the total weight of the composition C2.
  • the composition C2 comprises from 0.1% to 5% by weight of photoinitiator or a mixture of photoinitiators, relative to the total weight of the composition C2.
  • Step b) of the process according to the invention consists in preparing a second emulsion (E2).
  • the second emulsion consists of a dispersion of droplets of the first emulsion in a composition C3 immiscible with C2, created by dropwise addition of the emulsion (E1) in C3 with stirring.
  • the emulsion (E1) is at a temperature between 15 ° C and 60 ° C.
  • the composition C3 is at a temperature between 15 ° C and 60 ° C.
  • the compositions C2 and C3 are not miscible with each other, which means that the amount (by weight) of the composition C2 capable of being solubilized in the composition C3 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C3, and that the amount (by weight) of the composition C3 capable of to be solubilized in composition C2 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C2.
  • a double drop formed during step b) corresponds to a single drop of composition C1 as described above, surrounded by a composition envelope C2 which completely encapsulates said single drop.
  • the double drop formed during step b) may also comprise at least two simple drops of composition C1, said simple drops being surrounded by a composition envelope C2 which completely encapsulates said single drops.
  • said double drops comprise a heart consisting of one or more single drops of composition C1, and a layer of composition C2 surrounding said heart.
  • the resulting emulsion (E2) is generally a double polydisperse emulsion (C1-in-C2-in-C3 emulsion or C1 / C2 / C3 emulsion), which means that the double drops do not have a distinct size distribution in the emulsion (E2).
  • compositions C2 and C3 make it possible to avoid mixing between the layer of composition C2 and the composition C3 and thus ensures the stability of the emulsion (E2).
  • compositions C2 and C3 also makes it possible to prevent the water-soluble substance of the composition C1 from migrating from the heart of the drops to the composition C3.
  • step b it is possible to use any type of stirrer usually used to form emulsions, such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a homogenizer at high pressure, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a homogenizer at high pressure, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a homogenizer at high pressure, a colloid mill, a high shear disperser or a high speed homogenizer.
  • the viscosity of the composition C3 at 25 ° C is higher than the viscosity of the emulsion (E1) at 25 ° C. According to the invention, the viscosity of the composition C3 at 25 ° C is between 500 mPa.s and 100,000 mPa.s.
  • the viscosity of the composition C3 at 25 ° C. is between 3,000 mPa.s and 100,000 mPa.s, preferably between 5,000 mPa.s and 80,000 mPa.s, for example between 7,000 mPa.s. and 70,000 mPa.s.
  • the destabilization rate of the double drops of the emulsion (E2) is significantly slow compared to the duration of the process of the invention. , which then provides a kinetic stabilization of the emulsions (E2) and then (E3) until the polymerization of the capsule shell is completed.
  • the capsules once polymerized are thermodynamically stable.
  • the very high viscosity of the composition C3 ensures the stability of the emulsion (E2) obtained at the end of step b).
  • a low surface tension between C3 and the first emulsion and a high viscosity of the system advantageously ensure the kinetic stability of the double emulsion (E2), preventing it from being out of phase for the duration of the manufacturing process.
  • the interfacial tension between compositions C2 and C3 is low.
  • the low interfacial tension between the compositions C2 and C3 also advantageously makes it possible to ensure the stability of the emulsion (E2) obtained at the end of step b).
  • the volume fraction of the first emulsion in C3 can be varied from 0.05 to 0.5 in order, on the one hand, to improve the production yield and, on the other hand, to vary the mean diameter of the capsules. At the end of this step, the size distribution of the second emulsion is relatively wide.
  • the ratio between the emulsion volume (E1) and the composition volume C3 varies between 1: 10 and 10: 1.
  • this ratio is between 1: 9 and 3: 1, preferably between 1: 9 and 1: 1.
  • the composition C3 further comprises at least one connected polymer, preferably with a molecular weight greater than 5000 g. mol "1 , and / or at least one polymer of molecular weight greater than 5,000 g. mol "1 , and / or solid particles such as silicates.
  • the composition C3 comprises at least one connected polymer, preferably with a molecular weight greater than 5,000 g. mol "1, preferably between 10 000 g. mol” 1 and 500 000 g. mol “1 , for example between 50,000 g mol -1 and 300,000 g. mol "1 .
  • branched polymer (or branched polymer) is meant a polymer having at least one branch point between its two end groups, a branch point (also called branch point) being a point of a chain on which is fixed a side chain also called branch or hanging chain.
  • branched polymers there may be mentioned for example graft polymers, comb, or star polymers or dendrimers.
  • the composition C3 comprises at least one polymer with a molecular weight greater than 5,000 g. mol "1, preferably between 10 000 g. mol” 1 and 500 000 g. mol "1 , for example between 50,000 g mol -1 and 300,000 g. mol "1 .
  • composition C3 As a polymer that can be used in the composition C3, mention may be made of the following compounds, used alone or mixed together:
  • cellulose derivatives such as cellulose ethers: methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, methylhydroxyethyl cellulose, ethylhydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose or methylhydroxypropyl cellulose;
  • polyacrylates also called carbomers
  • PAA polyacrylic acid
  • PMAA polymethacrylic acid
  • HPEMA poly (hydroxyethyl methacrylate)
  • HPMA poly (N-2-hydroxypropyl methacrylate)
  • polyacrylamides such as poly (N-isopropylacrylamide) (PNIPAM);
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • poly (ethylene glycol), poly (propylene glycol) and their derivatives such as poly (ethylene glycol) acrylate / methacrylate, poly (ethylene glycol) diacrylate / dimethacrylate, polypropylene carbonate; polysaccharides such as carrageenans, carob gum or tara gums, dextran, xanthan gums, chitosan, agarose, hyaluronic acids, gellan gum, guar gum, gum arabic, gum tragacanth, diuretic gum, oat gum, karaya gum, ghatti gum, curdlan gum, pectin, konjac gum, starch;
  • polysaccharides such as carrageenans, carob gum or tara gums, dextran, xanthan gums, chitosan, agarose, hyaluronic acids, gellan gum, guar gum, gum arabic, gum tragacanth, diuretic gum, oat gum, karay
  • protein derivatives such as gelatin, collagen, fibrin, polylysine, albumin, casein;
  • silicone derivatives such as polydimethylsiloxane (also called dimethicone), alkyl silicones, aryl silicones, alkyl aryl silicones, polyethylene glycol dimethicones, polypropylene glycol dimethicone;
  • waxes such as diester waxes (alkanediol diesters, hydroxyl acid diesters), triester waxes (triacylglycerols, triesters of alkane-1,2-diol, ⁇ -hydroxy acid and fatty acid, esters of hydroxymalonic acid, fatty acid and alcohol, triesters of hydroxyl acids, fatty acid and fatty alcohol, triesters of fatty acid, hydroxyl acid and diol) and polyester waxes (polyesters of acids bold).
  • diester waxes alkanediol diesters, hydroxyl acid diesters
  • triester waxes triacylglycerols, triesters of alkane-1,2-diol, ⁇ -hydroxy acid and fatty acid, esters of hydroxymalonic acid, fatty acid and alcohol, triesters of hydroxyl acids, fatty acid and fatty alcohol, triesters of fatty acid, hydroxyl acid and diol
  • polyester waxes
  • fatty acid esters which may be used as waxes in the context of the invention are, for example, cetyl palmitate, cetyl octanoate, cetyl laurate, cetyl lactate, cetyl isononanoate and stearate.
  • fatty acids which can be used as waxes such as cerotic acid, palmitic acid, stearic acid, dihydroxystearic acid, behenic acid, lignoceric acid, arachidic acid, myristic acid, lauric acid, tridecyclic acid, pentadecyclic acid, margaric acid, nonadecyclic acid, henicosylic acid, tricosylic acid, pentacosylic acid, heptacosylic acid, montanic acid or nonacosylic acid;
  • fatty acid salts especially fatty acid aluminum salts such as aluminum stearate, hydroxyl aluminum bis (2-ethylhexanoate);
  • hydrogenated lanolin oil castor oil and its derivatives, especially modified hydrogenated castor oil or compounds obtained by esterification of castor oil with fatty alcohols;
  • styrenic polymers such as styrene butadiene
  • polyolefins such as polyisobutene.
  • the composition C3 comprises solid particles such as clays, silicas and silicates.
  • clays and silicates belonging in particular to the category of phyllosilicates also known as layered silicas.
  • silicates also known as layered silicas.
  • the fumed synthetic silicas can also be used.
  • the clays, silicates and silicas mentioned above can advantageously be modified by organic molecules such as polyethers, ethoxylated amides, quaternary ammonium salts, long-chain diamines, long-chain esters, polyethylene glycols, polypropylene glycols.
  • These particles can be used alone or mixed together.
  • the composition C3 comprises at least one polymer with a molecular weight greater than 5,000 g. mol- 1 and solid particles Any mixture of the compounds mentioned above may be used.
  • Step c) of the process according to the invention consists in refining the size of the drops of the second emulsion (E2).
  • This step may consist in applying a homogeneous controlled shear to the emulsion (E2), said shear rate applied being between 10 s -1 and 100,000 s -1 .
  • the double polydisperse drops obtained in step b) are subjected to a refining in size consisting of shearing them capable of breaking them into new double drops of diameters. homogeneous and controlled.
  • this fragmentation step is carried out using a Couette type high-shear cell according to a process described in patent application EP 15 306 428.2.
  • step c) the second emulsion (E2), obtained at the end of step b), consisting of polydisperse double droplets dispersed in a continuous phase, is subjected to a shear in a mixer, which applies a homogeneous controlled shear.
  • step c) consists of applying homogenous controlled shear to the emulsion (E2), said shear rate applied being between 1000 s -1 and 100,000 s -1 .
  • the shear rate is said to be controlled and homogeneous, regardless of the duration, when it passes to an identical maximum value for all parts of the emulsion, at a given instant that may vary. from one point of the emulsion to another.
  • the exact configuration of the mixer is not essential according to the invention, as long as the entire emulsion has been subjected to the same maximum shear out of this device.
  • Mixers adapted to perform step c) are described in particular in US 5,938,581.
  • the second emulsion can undergo homogeneous controlled shear as it flows through a cell formed by:
  • the shear rate applied to the second emulsion is between 1,000 s -1 and 100,000 s -1 , preferably between 1,000 s -1 and 50,000 s -1 , and preferably between 2,000 s "1 and 20,000 s " 1 .
  • the second emulsion is introduced into the mixer and is then subjected to shear resulting in the formation of the third emulsion.
  • the third emulsion (E3) is chemically identical to the second emulsion (E2) but consists of monodisperse double drops while the emulsion (E2) consists of double polydisperse drops.
  • the third emulsion (E3) typically consists of a dispersion double drops comprising a core consisting of one or more drops of composition C1 and a layer of composition C2 encapsulating said core, said double drops being dispersed in composition C3.
  • the difference between the second emulsion and the third emulsion is the size variance of the double drops: the drops of the second emulsion are polydisperse in size while the drops of the third emulsion are monodisperse, thanks to the fragmentation mechanism described above.
  • the second emulsion is introduced continuously into the mixer, which means that the quantity of double emulsion (E2) introduced at the mixer inlet is the same as the quantity of third emulsion ( E3) at the mixer outlet.
  • the size of the drops of the emulsion (E3) corresponds essentially to the size of the drops of the solid microcapsules after polymerization, it is possible to adjust the size of the microcapsules and the thickness of the envelope by adjusting the speed of the shear during step c), with a strong correlation between droplet size decrease and shear rate increase. This makes it possible to adjust the resulting dimensions of the microcapsules by varying the shear rate applied during step c).
  • the mixer implemented during step c) is a Couette type mixer, comprising two concentric cylinders, an outer cylinder of inner radius R 0 and an inner cylinder of outer radius R , the cylinder external being fixed and the inner cylinder being rotated with an angular velocity ⁇ .
  • a Couette type mixer adapted for the process of the invention may be provided by T.S.R. France.
  • the angular velocity ⁇ of the internal rotating cylinder of the Couette type mixer is greater than or equal to 30 rad.s 1 .
  • the angular velocity ⁇ of the inner rotating cylinder of the Couette type mixer is about 70 rad.s -1 .
  • the distance d between the two concentric cylinders is equal to 100 ⁇ .
  • the second emulsion is introduced at the inlet of the mixer, typically via a pump, and is directed towards the space between the two concentric cylinders, the outer cylinder being fixed and the inner cylinder being rotated at an angular velocity ⁇ .
  • R 0 is the internal radius of the fixed outer cylinder
  • - R is the outer radius of the inner cylinder in rotation.
  • the step c) consists in applying to the emulsion (E2) a shear rate of less than 1000 s "1 .
  • the fragmentation step c) can be carried out using any type of mixer usually used to form emulsions with a shear rate of less than 1000 s -1 , in which case the viscosity of the composition C3 is greater than 2,000 mPa.s, namely under conditions such as those described in the patent application FR 16 61787.
  • the emulsion (E2) consisting of polydisperse drops dispersed in a continuous phase, is subjected to shear, for example in a mixer, at a low shear rate, to be less than 1,000 s "1 .
  • the shear rate applied in step c) is, for example, between 10 s -1 and 1000 s -1 .
  • the shear rate applied in step c) is strictly less than 1000 s -1 .
  • the emulsion drops (E2) can be efficiently fragmented into fine and monodisperse emulsion drops (E3) only if a high shear stress is applied thereto.
  • the shear stress ⁇ applied to a drop of emulsion (E2) is defined as the tangential force per unit area of drop resulting from the macroscopic shear applied to the emulsion during its stirring during step d).
  • the high viscosity of the composition C3 makes it possible to apply a very high shear stress to the emulsion drops (E2) in the mixer, even if the shear rate is low and the shear inhomogeneous.
  • step c) it is possible to use any type of stirrer usually used to form emulsions, such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a homogenizer membrane, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a homogenizer membrane, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a homogenizer membrane, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a simple emulsifier such as a mechanical stirrer with pale or a static emulsifier is used to implement step c). Indeed, this is possible because this embodiment requires neither controlled shear nor shear greater than 1,000 s -1 .
  • Step d) of the process of the invention consists of the crosslinking and therefore the formation of the shell of the solid microcapsules according to the invention.
  • step d) is a photopolymerization step of exposing the emulsion (E3) to a light source capable of initiating the photopolymerization of the composition C2, in particular to a UV light source emitting preferably in the wavelength range of between 100 nm and 400 nm, and in particular for a duration of less than 15 minutes.
  • step d) consists in subjecting the emulsion (E3) to photopolymerization, which will allow the photopolymerization of the composition C2. This step will make it possible to obtain microcapsules encapsulating the water-soluble substance as defined above.
  • step d) consists in exposing the emulsion (E3) to a light source capable of initiating the photopolymerization of the composition C2.
  • the light source is a source of UV light.
  • the UV light source emits in the wavelength range of between 100 nm and 400 nm.
  • the emulsion (E3) is exposed to a light source for less than 15 minutes, and preferably for 5 to 10 minutes.
  • step d the envelope of the aforementioned double drops, consisting of photocrosslinkable composition C2, is cross-linked and thus converted into a viscoelastic polymeric envelope, encapsulating and protecting the water-soluble substance from being released in the absence of mechanical triggering. .
  • step d) is a polymerization step, without exposure to a light source, the duration of this polymerization step d) being preferably between 8 hours and 100 hours and / or this step d) is carried out at a temperature between 20 ° C and 80 ° C.
  • the polymerization is initiated for example by exposure to heat (thermal initiation), or simply by contacting the monomers, polymers and crosslinking agents with each other, or with a catalyst.
  • the polymerization time is then generally greater than several hours.
  • step d) of polymerization of the composition C2 is carried out for a period of between 8 hours and 100 hours, at a temperature between 20 ° C and 80 ° C.
  • composition obtained at the end of step d), comprising solid microcapsules dispersed in the composition C3, is ready for use and can be used without any additional step of post-treatment of the capsules is required.
  • the thickness of the envelope of the microcapsules thus obtained is typically between 0.2 ⁇ and 8 ⁇ , preferably between 0.2 ⁇ and 5 ⁇ .
  • the solid microcapsules obtained at the end of step d) are devoid of surfactant.
  • the method of the invention has the advantage of not requiring a surfactant, in any of the steps described.
  • the process of the invention thus makes it possible to reduce the presence of additives which could modify the properties of the final product obtained after release of the active ingredient.
  • the present invention also relates to a series (or set) of solid microcapsules, obtainable by the method as defined above, in which each microcapsule comprises:
  • a core comprising a composition C1 as defined above, and
  • a solid envelope completely encapsulating the heart at its periphery, said solid envelope comprising pores less than 1 nm in size
  • the thickness of the rigid envelope is between 0.2 ⁇ and 8 ⁇ , preferably between 0.2 ⁇ and 5 ⁇ and the standard deviation the diameter distribution of the microcapsules is less than 50%, in particular less than 25%, or less than 1 ⁇ .
  • the solid microcapsules obtained by the process of the invention are formed of a core containing at least one active agent (composition C1) and a solid envelope (obtained from composition C2) completely encapsulating at its periphery said core, said envelope solid comprising pores less than 1 nm in size.
  • composition C1 active agent
  • composition C2 solid envelope
  • the process of the invention makes it possible to obtain monodisperse particles.
  • the series of solid microcapsules mentioned above is formed of a population of monodisperse particles in size.
  • the standard deviation of the diameter distribution of the microcapsules is less than 50%, in particular less than 25%, or less than 1 ⁇ m.
  • the size distribution of the solid microcapsules can be measured by light scattering technique using a Mastersizer 3000 (Malvern Instruments) equipped with a Hydro SV cell.
  • the aforementioned solid microcapsules comprise a solid envelope entirely composed of crosslinked polymer (obtained from composition C2) and comprising pores less than 1 nm in size.
  • the present invention therefore also relates to solid microcapsules comprising a core and a solid envelope completely encapsulating at its periphery the heart, in which the core is a composition C1 as defined above, and wherein said solid envelope is made of crosslinked polymer. and comprises pores less than 1 nm in size,
  • the diameter of said microcapsule being between 1 ⁇ and 30 ⁇ and the thickness of the rigid envelope being between 0.2 ⁇ and 8 ⁇ .
  • the present invention also relates to a composition comprising a series of solid microcapsules as defined above.
  • a mechanical stirrer (Ika Eurostar 20) equipped with a deflocculating stirring propeller is used to carry out all the stirring steps.
  • composition C2 according to the invention has the following characteristics:
  • CN component 1963 has 2 reactive acrylate functions per molecule and an average molecular weight of less than 5,000 g / mol.
  • the crosslinking agent SR 399 has 5 reactive acrylate functions per molecule and a molecular weight of 524.5 g / mol.
  • the Darocur 1,173 photoinitiator has no reactive functions and its molecular weight is 164 g / mol.
  • the composition C1 is added dropwise to the composition C 2 with stirring at 2000 rpm with a ratio of 3: 7.
  • the first emulsion (E1) is thus obtained.
  • composition C3 is stirred at 1000 rpm until complete homogenization and then left to stand for one hour at room temperature.
  • the first emulsion (E1) is then added dropwise to the composition C3 with stirring at 1000 rpm. This gives the second emulsion (E2).
  • the second polydisperse emulsion (E2) obtained in the previous step is stirred at 1000 rpm for 10 minutes.
  • a monodisperse emulsion (E3) is thus obtained.
  • the second monodisperse emulsion (E3) obtained in the previous step is irradiated for 10 minutes with the aid of a UV light source (Dymax LightBox ECE 2000) having a maximum light intensity of 0.1 W / cm 2 at a wavelength of 365 nm.
  • a UV light source Dymax LightBox ECE 2000
  • microcapsules obtained have a good size distribution, namely an average size of 5.5 ⁇ and their size distribution has a standard deviation of 2.5 ⁇ or 45%.
  • the porosity of the envelope of the microcapsules according to Example 1 was studied by surface analysis according to the BET technique (Brunauer-Emmet-Teller) as follows.
  • the sample of capsules is first washed in deionized water by centrifugation and redispersion and then dried at 50 ° C overnight.
  • An activation step is then performed using a Smart VacPrep device marketed by the company Micromeritics which applies a temperature ramp of 5 ° C per minute up to 150 ° C under vacuum to clear the air. sample of any gas adsorption.
  • a TriStar II Plus analyzer sold by the company Micromeritics is then used to measure the nitrogen adsorption by the sample at a temperature of -196 ° C.
  • the results of the BET analysis show the non-adsorbance of nitrogen on the sample.
  • the pore size of the microcapsules according to Example 1 is less than the sensitivity limit of the apparatus, which can be conservatively estimated at 1 nm.
  • a mechanical stirrer (Ika Eurostar 20) equipped with a deflocculating stirring propeller is used to carry out all the stirring steps.
  • composition C2 does not correspond to the invention since it comprises more than 5% by weight of molecules having no reactive function.
  • the composition C1 is added dropwise to the composition C 2 with stirring at 2000 rpm with a ratio of 3: 7.
  • the first emulsion (E1) is thus obtained.
  • composition C3 is stirred at 1000 rpm until complete homogenization and then left to stand for one hour at room temperature.
  • the first emulsion (E1) is then added dropwise to the composition C3 with stirring at 1000 rpm. This gives the second polydisperse emulsion (E2).
  • the second polydisperse emulsion (E2) obtained in the previous step is irradiated for 10 minutes with the aid of a UV light source (Dymax LightBox ECE 2000) having a maximum light intensity of 0.1 W / cm 2 at a wavelength of 365 nm.
  • a UV light source Dymax LightBox ECE 2000
  • microcapsules obtained have a size distribution ranging from 3 ⁇ to 40 ⁇ in diameter.
  • the porosity of the microcapsule shell according to this comparative example was studied by scanning electron microscopy.
  • the sample of capsules is first washed in deionized water by centrifugation and redispersion and then deposited on a conductive carbon disc and dried at 60 ° C for 10 minutes. It is then covered with gold by argon sputtering using a Sputter Coater 108 (Cressington) for 10 seconds, and then imaged under vacuum using an SEM 3030 scanning electron microscope (Hitashi).
  • the images obtained show porous capsules whose pores, clearly visible, have a mean diameter between 500 and 1000 nm.
  • the capsules of the comparative example therefore have low retention and protection properties compared to the capsules according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Detergent Compositions (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention concerne un procédé de préparation de microcapsules solides, comprenant les étapes suivantes : a) l'addition sous agitation d'une composition C1, comprenant au moins un actif, dans une composition polymérique C2, les compositions C1 et C2 n'étant pas miscibles l'une dans l'autre, ce par quoi on obtient une émulsion (E1) comprenant des gouttes de composition C1 dispersées dans la composition C2; b) l'addition sous agitation de l'émulsion (E1) dans une composition C3, les compositions C2 et C3 n'étant pas miscibles l'une dans l'autre, ce par quoi on obtient une émulsion double (E2) comprenant des gouttes dispersées dans la composition C3; c) l'application d'un cisaillement à l'émulsion (E2), ce par quoi on obtient une émulsion double (E3) comprenant des gouttes de taille contrôlée dispersées dans la composition C3; et d) la polymérisation de la composition C2, ce par quoi on obtient des microcapsules solides dispersées dans la composition C3.

Description

PROCÉDÉ DE PRÉPARATION DE CAPSULES AVEC DES PROPRIÉTÉS DE RÉTENTION AMÉLIORÉES ET CAPSULES OBTENUES
La présente invention a pour objet un procédé de préparation de capsules avec des propriétés de rétention améliorées. Elle a également pour objet les capsules telles qu'obtenues ainsi que des compositions les contenant.
De nombreux composés, appelés principes actifs, sont ajoutés aux produits formulés afin de leur conférer des propriétés d'application intéressantes ou augmenter leurs performances.
Cependant dans de nombreux cas, ces substances réagissent négativement avec d'autres composants du produit formulé, ce qui entraine des conséquences néfastes sur la stabilité ainsi qu'une diminution des performances.
L'encapsulation des principes actifs représente un moyen très intéressant pour pallier à la limitation de performance ou de stabilité des produits formulés qui les contiennent tout en bénéficiant de l'effet du principe actif au moment de l'utilisation du produit formulé.
Pour isoler complètement les principes actifs du milieu qui les contient, il est cependant nécessaire de conférer aux capsules des propriétés de rétention des principes actifs sur des durées allant jusqu'à plusieurs années.
De très nombreuses capsules ont été développées afin d'isoler des principes actifs dans les produits formulés. Ces capsules résultent de procédés de fabrication tels que l'atomisation (spray-drying), la polymérisation interfaciale, la précipitation interfaciale ou l'évaporation de solvant parmi de nombreux autres.
Les propriétés de rétention de ces capsules se révèlent souvent limitées, ce qui résulte à court terme en la fuite des principes actifs vers l'extérieur des capsules.
Il existe donc un besoin technique d'amélioration des propriétés de rétention des capsules présentes dans les produits formulés.
La présente invention a donc pour but de fournir un procédé permettant d'encapsuler des principes actifs en évitant les problèmes susmentionnés de fuite desdits principes actifs.
La présente invention a également pour but de fournir des capsules contenant au moins un principe actif et présentant d'excellentes propriétés de rétention. Ainsi, la présente invention concerne un procédé de préparation de microcapsules solides, lesdites microcapsules solides comprenant notamment un cœur contenant au moins un actif et une enveloppe solide encapsulant totalement à sa périphérie ledit cœur, ladite enveloppe solide comprenant des pores de taille inférieure à 1 nm,
ledit procédé comprenant les étapes suivantes :
a) l'addition sous agitation d'une composition C1 , comprenant au moins un actif, dans une composition polymérique C2, les compositions C1 et C2 n'étant pas miscibles l'une dans l'autre,
la composition C2 comprenant au moins un monomère ou polymère de poids moléculaire moyen inférieur à 5 000 g. mol"1 , au moins un agent réticulant de poids moléculaire moyen inférieur à 5 000 g. mol"1 , et éventuellement au moins un photoinitiateur de poids moléculaire moyen inférieur à 5 000 g. mol"1 ou un catalyseur de réticulation de poids moléculaire moyen inférieur à 5 000 g. mol"1 ,
la viscosité de la composition C2 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de la composition C1 ,
ce par quoi on obtient une émulsion (E1 ) comprenant des gouttes de composition C1 dispersées dans la composition C2 ;
b) l'addition sous agitation de l'émulsion (E1 ) dans une composition C3, les compositions C2 et C3 n'étant pas miscibles l'une dans l'autre,
la viscosité de la composition C3 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de l'émulsion (E1 ),
ce par quoi on obtient une émulsion double (E2) comprenant des gouttes dispersées dans la composition C3 ;
c) l'application d'un cisaillement à l'émulsion (E2),
ce par quoi on obtient une émulsion double (E3) comprenant des gouttes de taille contrôlée dispersées dans la composition C3 ; et
d) la polymérisation de la composition C2, ce par quoi on obtient des microcapsules solides dispersées dans la composition C3.
Le procédé de l'invention permet donc de préparer des microcapsules solides comprenant un cœur et une enveloppe solide encapsulant totalement à sa périphérie le cœur, dans laquelle le cœur est une composition C1 comprenant au moins un actif.
De préférence, les microcapsules solides obtenues par le procédé de l'invention sont formées d'un cœur contenant au moins un actif (composition C1 ) et une enveloppe solide (obtenue de la composition C2) encapsulant totalement à sa périphérie ledit cœur, ladite enveloppe solide comprenant des pores de taille inférieure à 1 nm.
Les capsules ainsi obtenues par ce procédé présentent d'excellentes capacités de rétention.
Ce niveau de performance est atteint grâce au matériau d'enveloppe des capsules dont la taille des pores est de préférence inférieure à 1 nm, de telle que sorte que la diffusion de tout composé de taille moléculaire supérieure à 1 nm est très fortement ralentie si ce n'est complètement stoppée.
Ce résultat est obtenu grâce au contrôle d'un ou plusieurs paramètres comme décrit plus loin, comme le ratio de matériau cœur / enveloppe des capsules (ratio C1/C2 ci-dessous), la concentration d'agent réticulant dans le matériau, le nombre d'extrémités réactives par monomère ou polymère/oligomère, la longueur des monomères ou polymères/oligomères et/ou l'absence de matériaux inertes dans le matériau d'enveloppe tels que des solvants ou des oligomères ou polymères non réactifs.
Le procédé de l'invention présente en outre l'avantage de ne pas nécessiter l'utilisation de tensioactifs ou d'émulsifiants qui pourraient accélérer et rendre incontrôlée la libération des principes actifs vers l'extérieur de la capsule ; et/ou réagir avec les composants du produit formulé dans lequel les capsules sont destinées à être incorporées.
Le procédé de l'invention consiste à réaliser une double émulsion composée de gouttelettes contenant au moins un actif, enveloppées d'une phase liquide réticulable. Ces doubles gouttes sont ensuite rendues monodisperses en taille avant d'être transformées par réticulation ou polymérisation en capsules rigides. La préparation implique 4 étapes décrites ci-après de façon détaillée. Etape a)
L'étape a) du procédé selon l'invention consiste à préparer une première émulsion (E1 ).
La première émulsion consiste en une dispersion de gouttelettes de la composition C1 (contenant au moins un actif) dans une composition polymérique C2 immiscible avec C1 , créée par addition goutte à goutte de C1 dans C2 sous agitation.
Pendant l'étape a), une composition C1 est ajoutée à une composition polymérique réticulable C2, cette étape étant effectuée sous agitation, ce qui signifie que la composition C2 est agitée, typiquement de façon mécanique, tandis que la composition C1 est ajoutée, et ce afin d'émulsifier le mélange des compositions C1 et C2.
L'addition de la composition C1 dans la composition C2 est typiquement effectuée goutte à goutte.
Pendant l'étape a), la composition C1 est à une température comprise entre 0°C et 100°C, de préférence entre 10°C et 80°C, et préférentiellement entre 15°C et 60°C. Pendant l'étape a), la composition C2 est à une température comprise entre 0°C et 100°C, de préférence entre 10°C et 80°C, et préférentiellement entre 15°C et 60°C.
Dans les conditions d'addition de l'étape a), les compositions C1 et C2 ne sont pas miscibles l'une dans l'autre, ce qui signifie que la quantité (en poids) de la composition C1 capable d'être solubilisée dans la composition C2 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C2, et que la quantité (en poids) de la composition C2 capable d'être solubilisée dans la composition C1 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C1 .
Ainsi, lorsque la composition C1 entre en contact avec la composition C2 sous agitation, celle-ci est dispersée sous la forme de gouttes, dites gouttes simples.
L'immiscibilité entre les compositions C1 et C2 permet également d'éviter la migration de l'actif de la composition C1 vers la composition C2. La composition C2 est agitée de manière à former une émulsion comprenant des gouttes de composition C1 dispersées dans la composition C2. Cette émulsion est aussi appelée « émulsion simple » ou émulsion C1 -dans-C2.
Pour mettre en œuvre l'étape a), on peut utiliser tout type d'agitateur usuellement utilisé pour former des émulsions, comme par exemple un agitateur mécanique à pâles, un émulseur statique, un homogénéisateur à ultrasons, un homogénéisateur à membrane, un homogénéisateur à haute pression, un moulin colloïdal, un disperseur à haut pouvoir de cisaillement ou un homogénéisateur à haute vitesse.
Composition C1
La composition C1 comprend au moins un actif A. Cette composition C1 sert de véhicule à l'actif A dans le procédé de l'invention, au sein des gouttes formées lors du procédé de l'invention et des capsules solides obtenues.
Selon une première variante du procédé de l'invention, la composition C1 est monophasique, c'est-à-dire qu'il s'agit de l'actif A pur ou bien d'une solution comprenant l'actif A sous forme solubilisée.
Selon un mode de réalisation, l'actif est solubilisé dans la composition C1 .
Selon cette variante, la composition C1 consiste typiquement en une solution de l'actif A dans une solution aqueuse, ou un solvant organique, ou un mélange de solvants organiques, l'actif A étant présent selon une teneur massique comprise de 1 % à 99%, par rapport à la masse totale de la composition C1 . L'actif A peut être présent selon une teneur massique comprise de 5% à 95%, de 10% à 90%, de 20% à 80%, de 30% à 70%, ou de 40% à 60%, par rapport à la masse totale de la composition C1 .
Selon un mode de réalisation, la composition C1 consiste en l'actif A.
Selon un autre mode de réalisation de l'invention, la composition C1 est une composition biphasique, ce qui signifie que l'actif est dispersé, soit sous forme liquide soit sous forme solide, dans la composition C1 et n'est pas totalement solubilisé dans ladite composition C1 .
Selon un mode de réalisation, l'actif est dispersé sous la forme de particules solides dans la composition C1 .
Selon ce mode de réalisation, la composition C1 peut consister en une dispersion de particules solides de l'actif dans un solvant organique ou dans un mélange de solvants organiques. Selon ce mode de réalisation, la composition C1 peut consister en une dispersion de particules solides de l'actif dans une phase aqueuse, qui comprend de l'eau et éventuellement des solvants organiques hydrophiles.
L'actif utilisé est par exemple :
- un réticulant, un durcisseur, un catalyseur organique ou métallique (tel qu'un complexe organométallique ou inorganométallique de platine, de palladium, de titane, de molybdène, de cuivre, de zinc) utilisé pour polymériser des formulations de polymère, d'élastomère, de caoutchouc, de peinture, d'adhésif, de joint, de mortier, de vernis ou de revêtement ;
- un colorant ou un pigment destiné aux formulations d'élastomères, de peinture, de revêtement, d'adhésif, de joint, de mortier, ou de papier ;
- un parfum (au sens de la liste de molécule établie par l'International Fragrance Association (IFRA) et disponible sur le site internet www.ifraorg.org) destiné aux produits de détergence comme les lessives, aux produits de soin de la maison, aux produits cosmétiques et de soin de la personne, aux textiles, aux peintures, aux revêtements ;
- un arôme, une vitamine, un acide aminé, une protéine, un lipide, un probiotique, un antioxydant, un correcteur de pH, un préservateur pour les composés alimentaires et l'alimentation animale ;
- un adoucissant, un conditionnant pour les produits de détergence, les lessives, les cosmétiques et les produits de soin de la personne. A ce titre, les actifs utilisables sont par exemple énumérés dans les brevets US 6 335 315 et US 5 877 145 ;
- un agent anti altération de couleur (tel qu'un dérivé d'ammonium), un agent antimousse (tel qu'un éthoxylate d'alcool, un sulfonate d'alkylbenzène, un éthoxylate de polyéthylène, un alkyléthoxysulfate ou alkylsulfate) destiné aux produits de détergence et aux lessives et aux produits de soin de la maison ;
- un agent azurant, aussi appelé activateur de couleur (tel qu'un dérivé de stilbène, un dérivé de coumarine, un dérivé de pyrazoline, un dérivé de benzoxazole ou un dérivé de naphtalimide) destiné aux produits de détergence, aux lessives, aux cosmétiques et aux produits de soin de la personne ;
- un composé biologiquement actif tel qu'une enzyme, une vitamine, une protéine, un extrait végétal, un agent émollient, un agent désinfectant, un agent antibactérien, un agent anti-UV, un médicament destiné aux produits cosmétiques et de soin de la personne, aux textiles. Parmi ces composés biologiquement actifs on peut citer : les vitamines A, B, C, D et E, l'acide para aminobenzoïque, les acides alpha hydroxylés (comme l'acide glycolique, l'acide lactique, l'acide malique, l'acide tartrique ou l'acide citrique), le camphre, les céramides, les polyphénols (comme les flavonoïdes, l'acide phénolique, l'acide ellagique, le tocophérol, l'ubiquinol), l'hydroquinone, l'acide hyaluronique, l'isopropyl isostéarate, l'isopropyl palmitate, l'oxybenzone, le panthenol, la proline, le rétinol, le rétinyl palmitate, l'acide salicylique, l'acide sorbique, le sorbitol, le triclosan, la tyrosine ;
- un agent désinfectant, un agent antibactérien, un agent anti-UV, destiné aux peintures et revêtements ;
- un fertilisant, un herbicide, un insecticide, un pesticide, un fongicide, un repoussant ou un désinfectant destiné aux produits agrochimiques ;
un agent ignifuge, aussi appelé retardateur de flamme, (tel qu'un polyol bromé comme le tetrabromobisphenol A, un composé organophosphoré halogéné ou non halogéné, un composé chloré, un trihydrate d'aluminium, un oxyde d'antimoine, un borate de zinc, un phosphore rouge, un mélamine, ou un dihydroxyde de magnésium) destiné aux matériaux plastiques, aux revêtement, aux peintures et aux textiles ;
- un cristal photonique ou un photochromophore destiné aux peintures, aux revêtements et aux matériaux polymères formant les écrans incurvés et souples ;
- un produit connu par l'homme de l'art sous le nom de matériaux à changement de phase (PCM pour Phase Change Materials) capables d'absorber ou restituer de la chaleur lorsqu'ils subissent un changement de phase, destinés au stockage d'énergie. Des exemples de PCM et de leurs applications sont décrits dans "A review on phase change energy storage: materials and applications", Farid et al., Energy Conversion and Management, 2004, 45(9- 10), 1597-1615. Comme exemples de PCM, on peut citer les sels fondus de phosphate d'aluminium, le carbonate d'ammonium, le chlorure d'ammonium, le carbonate de césium, le sulfate de césium, le citrate de calcium, le chlorure de calcium, l'hydroxyde de calcium, l'oxyde de calcium, le phosphate de calcium, le saccharate de calcium, le sulfate de calcium, le phosphate de cérium, le phosphate de fer, le carbonate de lithium, le sulfate de lithium, le chlorure de magnésium, le sulfate de magnésium, le chlorure de manganèse, le nitrate de manganèse, le sulfate de manganèse, l'acétate de potassium, le carbonate de potassium, le chlorure de potassium, le phosphate de potassium, le carbonate de rubidium, le sulfate de rubidium, le tétraborate de disodium, l'acétate de sodium, le bicarbonate de sodium, le bisulfate de sodium, le citrate de sodium, le chlorure de sodium, l'hydroxyde de sodium, le nitrate de sodium, le percarbonate de sodium, le persulfate de sodium, le phosphate de sodium, le propionate de sodium, le sélénite de sodium, le silicate de sodium, le sulfate de sodium, le tellurate de sodium, le thiosulfate de sodium, l'hydrophosphate de strontium, l'acétate de zinc, le chlorure de zinc, le thiosulfate de sodium, les cires hydrocarbonées paraff iniques, les polyéthylène glycols.
Composition C2
La composition C2 est destinée à former la future enveloppe solide des microcapsules.
De préférence, la viscosité de la composition C2 à 25°C est comprise entre 1 000 mPa.s et 50 000 mPa.s, préférentiellement entre 2 000 mPa.s et 25 000 mPa.s, et par exemple entre 3 000 mPa.s et 15 000 mPa.s.
De préférence, la viscosité de la composition C2 est supérieure à la viscosité de la composition C1 .
La viscosité est mesurée au moyen d'un rhéomètre Haake Rheostress™ 600 équipé d'un cône de diamètre 60 mm et d'angle 2 degrés, et d'une cellule de régulation en température réglée à 25°C. La valeur de la viscosité est lue pour une vitesse de cisaillement égale à 10 s"1.
De préférence, la tension interfaciale entre les compositions C1 et C2 est faible. Typiquement, ces tensions interfaciales varient entre 0 mN/m et 50 mN/m, de préférence entre 0 mN/m et 20 mN/m.
La faible tension interfaciale entre les compositions C1 et C2 permet également de façon avantageuse d'assurer la stabilité de l'émulsion (E1 ) obtenue à l'issue de l'étape a).
La composition C2 contient au moins un monomère ou polymère de poids moléculaire moyen inférieur à 5 000 g. mol"1 , au moins un agent réticulant de poids moléculaire moyen inférieur à 5 000 g. mol"1 , et éventuellement au moins un photoinitiateur de poids moléculaire moyen inférieur à 5 000 g. mol"1 ou catalyseur de réticulation de poids moléculaire moyen inférieur à 5 000 g. mol"1 , la rendant ainsi réticulable.
L'importance du choix des monomères, polymères et agents réticulants est cruciale, puisque ces composants dicteront les propriétés de rétention de la future enveloppe rigide des capsules. En particulier, ce choix est important en ce qu'il permet d'obtenir des capsules dont l'enveloppe rigide contient des pores de taille inférieure à 1 nm.
L'enveloppe rigide des capsules est donc formée d'un matériau polymérique issu de la réticulation de la composition C2. Le réseau moléculaire dense ainsi formé présente cependant des interstices (ou vides) créant un passage hypothétique entre l'intérieur et l'extérieur des capsules. Ces interstices constituent les pores de l'enveloppe rigide. Selon l'invention, les pores ont une taille de préférence inférieure à 5 nm, préférentiellement inférieure à 1 nm, voire inférieure à 0,5 nm.
Dans le cadre de la présente invention, le terme "taille" désigne le diamètre, notamment le diamètre moyen, des pores.
La taille des pores peut être mesurée par exemple par analyse de surface selon la technique dite BET (Brunauer-Emmet-Teller) bien connue de l'homme de l'art. Cette technique, décrite plus en détails dans "The Journal of the American Chemical Society" de Février 1938, volume 60, page 309, consiste à mesurer l'adsorption d'azote par l'échantillon dont on veut mesurer la taille de pores. On mesure alors la pression de la cellule de référence dans laquelle l'adsorbat est à sa pression de vapeur saturante et celle de la cellule de l'échantillon dans laquelle des volumes connus d'adsorbat sont injectés. La courbe résultant de ces mesures est l'isotherme d'adsorption. Un modèle mathématique permet d'en déduire la surface spécifique des capsules, et par suite la taille des pores.
Selon l'invention, le terme « monomère » ou « polymère » désigne toute unité de base adaptée pour la formation d'un matériau solide par polymérisation, soit seul soit en combinaison avec d'autres monomères ou polymères. Le terme « polymère » englobe également les oligomères.
Ces monomères peuvent être choisis parmi les monomères comprenant au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, mercaptoester, thiolène, siloxane, époxy, oxétane, uréthane, isocyanate et peroxyde.
En particulier, les monomères peuvent être choisis parmi les monomères portant au moins une des fonctions réactives susmentionnées et portant en outre au moins une fonction choisie dans le groupe constitué des fonctions alkylamines primaires, secondaires et tertiaires, des fonctions aminés quaternaires, des fonctions sulfate, sulfonate, phophate, phosphonate, carboxylate, hydroxyle, halogène, et leurs mélanges.
Les polymères utilisés dans la composition C2 peuvent être choisis parmi les polyéthers, polyesters, polyuréthanes, polyurées, polyéthylène glycols, polypropylène glycols, polyamides, polyacétals, polyimides, polyoléfines, polysulfures et les polydiméthylsiloxanes, lesdits polymères portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, mercaptoester, thiolène, siloxane, époxy, oxétane, uréthane, isocyanate et peroxyde.
Parmi les exemples de tels polymères, on peut citer, mais de façon non limitative, les polymères suivants : poly(2-(1 -naphthyloxy)-éthyl acrylate), poly(2-(2- naphthyloxy)-éthyl acrylate), poly(2-(2-naphthyloxy)-éthyl méthacrylate), polysorbitol diméthacrylate, polyacrylamide, poly((2-(1 -naphthyloxy) éthanol), poly(2-(2- naphthyloxy) éthanol), poly(1 -chloro-2,3-époxypropane), poly(n-butyl isocyanate), poly(N- vinyl carbazole), poly(N-vinyl pyrrolidone), poly(p-benzamide), poly(p- chlorostyrène), poly(p-méthyl styrène), poly(p-phénylène oxyde), poly(p-phénylène sulfure), poly(N-(méthacryloxyéthyl)succinimide), polybenzimidazol, polybutadiène, polybutylène téréphthalate, polychloral, polychloro trifluoro éthylène, polyéther imide, polyéther cétone, polyéther sulfone, polyhydridosilsesquioxane, poly(m- phénylène isophthalamide), poly(méthyl 2-acrylamido-2-méthoxyacéate), poly(2- acrylamido-2-méthylpropanesulfonique acide), poly-mono-butyl maléate, polybutylméthacrylate, poly(N-tert-butylméthacrylamide), poly(N-n- butylméthacrylamide), polycyclohexylméthacrylamide, poly(m-xylènebisacrylamide 2,3-diméthyl-1 ,3-butadiène,N,N-diméthylméthacrylamide), poly(n-butyl méthacrylate), poly(cyclohexyl méthacrylate), polyisobutyl méthacrylate, poly(4- cyclohexylstyrène), polycyclol acrylate, polycyclol méthacrylate, polydiéthyl éthoxyméthylènemalonate, poly(2,2,2-trifluoroéthyl méthacrylate), poly(1 ,1 ,1 - triméthylolpropane triméthacrylate), polyméthacrylate, poly(N,N-diméthylaniline, dihydrazide), poly(dihydrazine isophthalique), polyacide isophthalique, polydiméthyl benzilketal, épichlorohydrine, poly(éthyl-3,3-diéthoxyacrylate), poly(éthyl-3,3- diméthylacrylate), poly(éthyl vinylcétone), poly(vinyl éthylcétone), poly(penten-3- one), polyformaldéhyde poly(diallyl acétal), polyfumaronitrile, polyglycéryl propoxy triacrylate, polyglycéryl triméthacrylate, polyglycidoxypropyltriméthoxysilane, polyglycidyl acrylate, poly(n-heptyl acrylate), poly(n-heptyl ester d'acide acrylique), poly(n-heptyl méthacrylate), poly(3-hydroxypropionitrile), poly(2-hydroxypropyl acrylate), poly(2-hydroxypropyl méthacrylate), poly(N-
(méthacryloxyéthyl)phthalimide), poly(1 ,9-nonanediol diacrylate), poly(1 ,9- nonanediol diméthacrylate), poly(N-(n-propyl) acrylamide), poly(acide ortho- phthalique), poly(acide iso-phthalique), poly(acide 1 ,4-benzenedicarboxylique), poly(acide 1 ,3-benzenedicarboxylique), poly(acide phthalique), poly(mono-2- acryloxyéthyl ester), polyacide téréphthalique, polyanhydride phthalique, polyéthylène glycol diacrylate, polyéthylène glycol méthacrylate, polyéthylène glycol diméthacrylate, poly(isopropyl acrylate), polysorbitol pentaacrylate, polyvinyl bromoacétate, polychloroprène, poly(di-n-hexyl silylène), poly(di-n-propyl siloxane), polydiméthyl silylène, polydiphényl siloxane, polyvinyl propionate, polyvinyl triacétoxysilane, polyvinyl tris-tert-butoxysilane, polyvinyl butyral, polyalcool vinylique, polyacétate de vinyle, polyéthylène co-vinyl acétate, poly(bisphénol-A polysulfone), poly(1 ,3-dioxepane), poly(1 ,3-dioxolane), poly(1 ,4-phénylène vinylène), poly(2,6-diméthyl-1 A-phénylène oxyde), poly(acide 4-hydroxybenzoique), poly(4-méthyl pentène-1 ), poly(4-vinyl pyridine), polyméthylacrylonitrile, polyméthylphénylsiloxane, polyméthylsilméthylène, polyméthylsilsesquioxane, poly(phénylsilsesquioxane), poly(pyromellitimide-1 .4-diphényl éther), polytétrahydrofurane, polythiophène, poly(triméthylène oxyde), polyacrylonitrile, polyéther sulfone, polyéthylène-co-vinyl acétate, poly(perfluoréthylène propylène), poly(perfluoralkoxyl alcane), ou poly(styrène-acrylonitrile).
Par « agent réticulant », on entend un composé porteur d'au moins deux fonctions réactives susceptibles de réticuler un monomère ou un polymère, ou un mélange de monomères ou de polymères, lors de sa polymérisation.
L'agent réticulant peut être choisi parmi des molécules portant au moins deux fonctions choisies dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, mercaptoester, thiolène, siloxane, époxy, oxétane, uréthane, isocyanate et peroxyde. A titre d'agent réticulant, on peut notamment citer :
- les diacrylates, comme le 1 ,6-hexanediol diacrylate, le 1 ,6-hexanediol diméthacrylate, le polyéthylène glycol diméthacrylate, le 1 ,9-nonanediol diméthacrylate, le 1 ,4-butanediol diméthacrylate, le 2,2-bis(4-méthacryloxyphényl) propane, le 1 ,3-butanediol diméthacrylate, le 1 ,10-décanediol diméthacrylate, le bis(2-méthacryloxyéthyl) N,N'-1 ,9-nonylène biscarbamate, le 1 ,4-butanediol diacrylate, l'éthylène glycol diacrylate, le 1 ,5-pentanediol diméthacrylate, le 1 ,4- Phénylène diacrylate, l'allyl méthacrylate, le Ν,Ν'-méthylènebisacrylamide, le 2,2- bis[4-(2-hydroxy-3-méthacryloxypropoxy)phényl]propane, le tétraéthylène glycol diacrylate, l'éthylène glycol diméthacrylate, le diéthylène glycol diacrylate, le triéthylène glycol diacrylate, le triéthylène glycol diméthacrylate, le polyéthylène glycol diglycidyl éther, le Ν,Ν-diallylacrylamide, le 2,2-bis[4-(2-acryloxyéthoxy) phényl]propane, le glycidyl méthacrylate ;
- les acrylates multifonctionnels comme le dipentaérythritol pentaacrylate, le 1 ,1 ,1 - triméthylolpropane triacrylate, le 1 ,1 ,1 -triméthylolpropane triméthacrylate, l'éthylènediamine tétraméthacrylate, le pentaérythritol triacrylate, le pentaérythritol tétraacrylate ;
- les acrylates possédant également une autres fonction réactive, comme le propargyl méthacrylate, le 2-Cyanoéthyl acrylate, le tricyclodécane diméthanol diacrylate, l'hydroxypropyl méthacrylate, le N-acryloxysuccinimide, le N-(2- Hydroxypropyl)méthacrylamide, le N-(3-aminopropyl)méthacrylamide hydrochloride, le N-(t-BOC-aminopropyl)methacrylamide, le 2-aminoéthyl méthacrylate hydrochloride, le monoacryloxyéthyl phosphate, le o-nitrobenzyl méthacrylate, l'anhydride acrylique, le 2-(tert-butylamino)ethyl méthacrylate, le N,N- diallylacrylamide, le glycidyl méthacrylate, le 2-hydroxyéthyl acrylate, le 4-(2- acryloxyaéhoxy)-2-hydroxybenzophenone, le N-(Phthalimidométhyl)acrylamide, le cinnamyl méthacrylate.
Par « photoinitiateur », on entend un composé capable de se fragmenter sous l'effet d'un rayonnement lumineux.
Les photoinitiateurs utilisables selon la présente invention sont connus dans la technique et sont décrits, par exemple dans "Les photoinitiateurs dans la réticulation des revêtements", G. Li Bassi, Double Liaison - Chimie des Peintures, n°361 , novembre 1985, p.34-41 ; "Applications industrielles de la polymérisation photoinduite", Henri Strub, L'Actualité Chimique, février 2000, p.5-13 ; et "Photopolymères : considérations théoriques et réaction de prise", Marc, J.M. Abadie, Double Liaison - Chimie des Peintures, n°435-436, 1992, p.28-34.
Ces photoinitiateurs englobent :
les α-hydroxycétones, comme la 2-hydroxy-2-méthyl-1 -phényl-1 -propanone, commercialisées par exemple sous les dénominations DAROCUR® 1 173 et 4265, IRGACURE® 184, 2959, et 500 par la société BASF, et ADDITOL® CPK par la société CYTEC ;
les α-aminocétones, notamment la 2-benzyl-2-diméthylamino-1 -(4- morpholinophényl)-butanone-1 , commercialisées par exemple sous les dénominations IRGACURE® 907 et 369 par la société BASF ;
- les cétones aromatiques commercialisées par exemple sous la dénomination ESACURE® TZT par LAMBERTI ; ou encore les thioxanthones commercialisées par exemple sous la dénomination ESACURE® ITX par LAMBERTI, et les quinones. Ces cétones aromatiques nécessitent le plus souvent la présence d'un composé donneur d'hydrogène tel que les aminés tertiaires et notamment les alcanolamines. On peut notamment citer l'aminé tertiaire ESACURE® EDB commercialisée par la société LAMBERTI.
- les dérivés α-dicarbonyles dont le représentant le plus courant est le benzyldiméthylcétal commercialisé sous la dénomination IRGACURE® 651 par BASF. D'autres produits commerciaux sont commercialisés par la société LAMBERTI sous la dénomination ESACURE® KB1 , et
- les oxydes d'acylphosphine, tels que par exemple les oxydes de bis- acylphosphine (BAPO) commercialisés par exemple sous les dénominations IRGACURE® 819, 1700, et 1800, DAROCUR® 4265, LUCIRIN® TPO, et LUCIRIN® TPO-L par la société BASF.
Parmi les photoinitiateurs, on peut également mentionner les cétones aromatiques comme la benzophénone, les phénylglyoxylates, comme l'ester méthylique de l'acide phényl glyoxylique, les esters d'oxime, comme le [1 -(4- phénylsulfanylbenzoyl)heptylidèneamino]benzoate, les sels de sulfonium, les sels d'iodonium et les oxime sulfonates.
Selon un mode de réalisation, la composition C2 peut en outre comprendre un monomère ou un polymère additionnel capable d'améliorer les propriétés de l'enveloppe des microcapsules et/ou de donner de nouvelles propriétés à l'enveloppe des microcapsules. Parmi ces monomères ou polymères additionnels, on peut citer les monomères ou polymères portant un groupe sensible au pH, à la température, aux UV ou aux IR.
Ces monomères ou polymères additionnels peuvent induire la rupture des microcapsules solides et par la suite la libération de leur contenu, après une stimulation via le pH, la température, les UV ou les IR.
Ces monomères ou polymères additionnels peuvent être choisis parmi les monomères ou polymères portant au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, mercaptoester, thiolène, siloxane, époxy, oxétane, uréthane, isocyanate et peroxyde, et portant également l'un des groupes suivants :
- un groupe hydrophobe tel qu'un groupe fluoré, par exemple le trifluoroéthyl méthacrylate, le trifluoroéthyl acrylate, le tétrafluoropropyl méthacrylate, le pentafluoropropyl acrylate, le hexafluorobutyl acrylate, ou le fluorophényl isocyanate ;
- un groupe sensible au pH comme les aminés primaires, secondaires ou tertiaires, les acides carboxyliques, les groupes phosphate, sulfate, nitrate, ou carbonate ;
- un groupe sensible aux UV ou clivable par UV (ou groupe photochromique) comme les groupes azobenzène, spiropyrane, 2-diazo-1 ,2-naphthoquinone, o- nitrobenzylé, thiol, ou 6-nitro-veratroyloxycarbonyle, par exemple poly(éthylène oxyde)-bloc-poly(2-nitrobenzylméthacrylate), et d'autres copolymères à blocs, comme décrit notamment dans Liu et al., Polymer Chemistry 2013, 4, 3431 -3443 ;
- un groupe sensible aux IR ou clivable par IR comme le o-nitrobenzyle ou le 2-diazo-1 ,2-naphthoquinone, par exemple les polymères décrits dans Liu et al., Polymer Chemistry 2013, 4, 3431 -3443 ; et
- un groupe sensible à la température comme le poly(N-isopropylacrylamide).
Selon l'invention, le poids moléculaire moyen des monomères ou polymères de la composition C2 est inférieur à 5 000 g. mol"1. De préférence, ce poids moléculaire moyen est compris entre 50 g. mol"1 et 3 000 g. mol"1 , préférentiellement entre 100 g. mol"1 et 2 000 g. mol"1.
Selon l'invention, le poids moléculaire moyen de l'agent réticulant (ou des agents réticulants) de la composition C2 est inférieur à 5 000 g. mol"1. De préférence, ce poids moléculaire moyen est compris entre 50 g. mol"1 et 2 000 g. mol"1 , préférentiellement entre 50 g. mol"1 et 1 000 g. mol"1. Selon l'invention, le poids moléculaire moyen de l'initiateur ou catalyseur de réticulation de la composition C2 est inférieur à 5 000 g. mol"1. De préférence, ce poids moléculaire moyen est compris entre 50 g. mol"1 et 3 000 g. mol"1 , préférentiellement entre 100 g. mol"1 et 2 000 g. mol"1.
La mise en œuvre de tels constituants permet d'obtenir une plus courte distance entre les points de réticulation dans le matériau d'enveloppe des capsules de l'invention.
Ainsi, selon un mode de réalisation, la composition C2 comprend uniquement des molécules de poids moléculaire moyen inférieur à 5 000 g. mol"1. Si la composition C2 comprend une molécule autre que les monomères ou polymères, agents réticulants ou initiateur ou catalyseur de réticulation susmentionnés, cette molécule a un poids moléculaire moyen inférieur à 5 000 g. mol"1.
Selon un mode de réalisation, la fraction volumique de C1 dans C2 est comprise entre 0,1 et 0,5.
Ce choix de la fraction volumique de C1 dans C2 permet de contrôler de façon avantageuse l'épaisseur de l'enveloppe des capsules obtenues au terme du procédé entre 0,2 μηι et 8 μηι selon la taille des capsules (elles-mêmes entre 1 μηι et 30 μπι).
Selon un mode de réalisation, la composition C2 comprend de 5% à 30% en poids d'agent(s) réticulant(s) par rapport au poids total de ladite composition. De préférence, la composition C2 comprend de 5% à 20%, et préférentiellement de 5% à 15%, en poids d'agent(s) réticulant(s) par rapport au poids total de ladite composition.
Selon un mode de réalisation, le ratio du nombre de moles de fonctions réactives des monomères ou polymères (ou oligomères) contenues dans C2 par rapport au nombre de moles de monomères ou polymères (ou oligomères) contenues dans C2 est supérieur à 1 ,5, de préférence compris entre 1 ,7 et 3.
Ce mode de réalisation est avantageux en ce qu'il permet d'avoir un plus grand nombre de points de réticulation dans le matériau d'enveloppe des capsules. Selon l'invention, le terme "fonction réactive" désigne un atome ou un groupe d'atomes présent dans le monomère ou polymère et capable de créer une liaison chimique covalente avec une autre molécule comprise dans C2. Parmi ces fonctions, on peut par exemple citer les fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, mercaptoester, thiolène, siloxane, époxy, oxétane, uréthane, isocyanate et peroxyde.
Selon l'invention, le terme "molécules contenues dans C2" désigne toutes les molécules contenues dans la composition C2 susmentionnée, et donc notamment les monomères ou polymères, agents réticulants et initiateurs ou catalyseurs susmentionnés.
Selon un mode de réalisation, la composition C2 ne comprend pas d'autres molécules que les monomères ou polymères, agents réticulants et initiateurs ou catalyseurs susmentionnés. Ainsi, de préférence, les molécules contenues dans la composition C2 sont constituées des monomères ou polymères, agents réticulants et initiateurs ou catalyseurs susmentionnés.
Selon un mode de réalisation, la composition C2 comprend un polymère, un agent réticulant et un (photo)initiateur.
Dans le cadre de la présente invention, le "nombre de moles de fonctions réactives des monomères ou polymères contenues dans C2 par rapport au nombre de moles de monomères ou polymères contenues dans C2" peut être comptabilisé en comptant le nombre de moles de fonctions réactives des monomères ou polymères contenues dans C2 divisé par le nombre de moles de monomères ou polymères contenues dans C2. Ce ratio reflète la capacité des composants de C2 à créer un réseau moléculaire contenant de nombreux points de jonction entre molécules.
Selon un mode de réalisation, la composition C2 contient moins de 5% en poids de molécules ne possédant aucune fonction réactive, de préférence entre 0,01 % et 4%, préférentiellement entre 0,01 % et 3%.
Ce mode de réalisation est avantageux en ce qu'il permet d'avoir un plus grand nombre de points de réticulation dans le matériau d'enveloppe des capsules.
En effet, une "molécule ne possédant aucune fonction réactive" ne peut être liée à aucune autre molécule comprise dans C2. Une molécule présentant une seule fonction réactive ne peut être liée qu'à une seule autre molécule comprise dans C2, alors qu'une molécule présentant 2 fonctions réactives peut être liée à 2 autres molécules, et ainsi de suite lorsque le nombre de fonctions réactives augmente.
Selon un mode de réalisation, la composition C2 comprend de 65% à 95% en poids de monomère ou de polymère, ou un mélange de monomères ou polymères, et de 5% à 30% en poids d'agent(s) réticulant(s) par rapport au poids total de la composition C2.
Selon un mode de réalisation, la composition C2 comprend de 0,1 % à 5% en poids de photoinitiateur ou d'un mélange de photoinitiateurs, par rapport au poids total de la composition C2.
Etape b)
L'étape b) du procédé selon l'invention consiste à préparer une deuxième émulsion (E2).
La deuxième émulsion consiste en une dispersion de gouttelettes de la première émulsion dans une composition C3 immiscible avec C2, créée par addition goutte à goutte de l'émulsion (E1 ) dans C3 sous agitation.
Pendant l'étape b), l'émulsion (E1 ) est à une température comprise entre 15°C et 60°C. Pendant l'étape b), la composition C3 est à une température comprise entre 15°C et 60°C.
Dans les conditions d'addition de l'étape b), les compositions C2 et C3 ne sont pas miscibles l'une dans l'autre, ce qui signifie que la quantité (en poids) de la composition C2 capable d'être solubilisée dans la composition C3 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C3, et que la quantité (en poids) de la composition C3 capable d'être solubilisée dans la composition C2 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C2.
Ainsi, lorsque l'émulsion (E1 ) entre en contact avec la composition C3 sous agitation, celle-ci est dispersée sous la forme de gouttes, dites gouttes doubles, la dispersion de ces gouttes d'émulsion (E1 ) dans la phase continue C3 étant appelée émulsion (E2).
Typiquement, une goutte double formée pendant l'étape b) correspond à une goutte simple de composition C1 telle que décrite ci-dessus, entourée par une enveloppe de composition C2 qui encapsule totalement ladite goutte simple.
La goutte double formée pendant l'étape b) peut également comprendre au moins deux gouttes simples de composition C1 , lesdites gouttes simples étant entourées par une enveloppe de composition C2 qui encapsule totalement lesdites gouttes simples.
Ainsi, lesdites gouttes doubles comprennent un cœur constitué d'une ou plusieurs gouttes simples de composition C1 , et une couche de composition C2 entourant ledit cœur.
L'émulsion (E2) résultante est généralement une émulsion double polydisperse (émulsion C1 -dans-C2-dans-C3 ou émulsion C1/C2/C3), ce qui signifie que les gouttes doubles n'ont pas une nette distribution de taille dans l'émulsion (E2).
L'immiscibilité entre les compositions C2 et C3 permet d'éviter le mélange entre la couche de composition C2 et la composition C3 et assure ainsi la stabilité de l'émulsion (E2).
L'immiscibilité entre les compositions C2 et C3 permet également d'empêcher la substance hydrosoluble de la composition C1 de migrer du cœur des gouttes vers la composition C3.
Pour mettre en œuvre l'étape b), on peut utiliser tout type d'agitateur usuellement utilisé pour former des émulsions, comme par exemple un agitateur mécanique à pâles, un émulseur statique, un homogénéisateur à ultrasons, un homogénéisateur à membrane, un homogénéisateur à haute pression, un moulin colloïdal, un disperseur à haut pouvoir de cisaillement ou un homogénéisateur à haute vitesse.
Composition C3
Selon un mode de réalisation, la viscosité de la composition C3 à 25°C est supérieure à la viscosité de l'émulsion (E1 ) à 25°C. Selon l'invention, la viscosité de la composition C3 à 25°C est comprise entre 500 mPa.s et 100 000 mPa.s.
De préférence, la viscosité de la composition C3 à 25°C est comprise entre 3 000 mPa.s et 100 000 mPa.s, préférentiellement entre 5 000 mPa.s et 80 000 mPa.s, par exemple entre 7 000 mPa.s et 70 000 mPa.s.
Selon ce mode de réalisation, étant donné la viscosité très élevée de la phase continue formée par la composition C3, la vitesse de déstabilisation des gouttes doubles de l'émulsion (E2) est significativement lente par rapport à la durée du procédé de l'invention, ce qui fournit alors une stabilisation cinétique des émulsions (E2) puis (E3) jusqu'à ce que la polymérisation de l'enveloppe des capsules ne soit achevée. Les capsules une fois polymérisées sont stables thermodynamiquement.
Ainsi, la viscosité très élevée de la composition C3 assure la stabilité de l'émulsion (E2) obtenue à l'issue de l'étape b).
Une faible tension de surface entre C3 et la première émulsion ainsi qu'une haute viscosité du système permettent d'assurer avantageusement la stabilité cinétique de la double émulsion (E2), l'empêchant de se déphaser pendant la durée du procédé de fabrication.
De préférence, la tension interfaciale entre les compositions C2 et C3 est faible. La faible tension interfaciale entre les compositions C2 et C3 permet également de façon avantageuse d'assurer la stabilité de l'émulsion (E2) obtenue à l'issue de l'étape b).
La fraction volumique de première émulsion dans C3 peut être variée de 0,05 à 0,5 afin d'une part d'améliorer le rendement de production et d'autre part de faire varier le diamètre moyen des capsules. A la fin de cette étape, la distribution de taille de la seconde émulsion est relativement large.
Selon un mode de réalisation, le ratio entre le volume d'émulsion (E1 ) et le volume de composition C3 varie entre 1 :10 et 10:1 . De préférence, ce ratio est compris entre 1 :9 et 3:1 , préférentiellement entre 1 :9 et 1 :1 .
Selon un mode de réalisation, la composition C3 comprend en outre au moins un polymère branché, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , et/ou au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 , et/ou des particules solides telles que des silicates.
Selon un mode de réalisation, la composition C3 comprend au moins un polymère branché, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , préférentiellement entre 10 000 g. mol"1 et 500 000 g. mol"1 , par exemple entre 50 000 g. mol"1 et 300 000 g. mol"1.
Par « polymère branché » (ou polymère ramifié), on entend un polymère présentant au moins un point de ramification entre ses deux groupes terminaux, un point de ramification (aussi appelé point de branchement) étant un point d'une chaîne sur lequel est fixée une chaîne latérale aussi appelée branche ou chaîne pendante.
Parmi les polymères branchés, on peut par exemple citer les polymères greffés, en peigne ou encore les polymères en étoile ou les dendrimères.
Selon un mode de réalisation, la composition C3 comprend au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 , préférentiellement entre 10 000 g. mol"1 et 500 000 g. mol"1 , par exemple entre 50 000 g. mol"1 et 300 000 g. mol"1.
A titre de polymère utilisable dans la composition C3, on peut citer les composés suivants, utilisés seuls ou bien mélangés entre eux :
- les dérivés de cellulose, tels que les éthers de cellulose : le méthyl cellulose, l'éthyl cellulose, l'hydroxyéthyl cellulose, le méthylhydroxyéthyl cellulose, l'éthylhydroxyéthyl cellulose, le carboxyméthyl cellulose, l'hydroxypropyl cellulose ou le méthylhydroxypropyl cellulose ;
- les polyacrylates (encore appelés carbomères), tels que l'acide polyacrylique (PAA), l'acide polyméthacrylique (PMAA), le poly(hydroxyéthyl méthacrylate) (pHEMA), le poly(N-2-hydroxypropyl méthacrylate) (pHPMA) ;
- les polyacrylamides tels que le poly(N-isopropylacrylamide) (PNIPAM) ;
le polyvinylpyrrolidone (PVP) et ses dérivés ;
- l'alcool polyvinylique (PVA) et ses dérivés ;
- le poly(éthylène glycol), le poly(propylène glycol) et leurs dérivés, tels que le poly(éthylène glycol) acrylate/méthacrylate, le poly(éthylène glycol) diacrylate/diméthacrylate, le polypropylène carbonate ; les polysaccharides tels que les carraghénanes, les gommes de caroube ou gommes tara, le dextran, les gommes xanthanes, le chitosane, l'agarose, les acides hyaluroniques, la gomme gellane, la gomme de guar, la gomme arabique, la gomme adragante, la gomme diutane, la gomme d'avoine, la gomme karaya, la gomme ghatti, la gomme curdlan, la pectine, la gomme konjac, l'amidon ;
les dérivés protéinés tels que la gélatine, le collagène, la fibrine, la polylysine, l'albumine, la caséine ;
les dérivés de silicone tels que le polydimethylsiloxane (aussi appelé diméthicone), les alkyl silicones, les aryl silicones, les alkyl aryl silicones, les polyéthylène glycol diméthicones, les polypropylène glycol diméthicone ;
les cires, telles que les cires diester (diesters d'alcanediol, diesters d'hydroxylacides), les cires triester (triacylglycérols, triesters d'alcane-1 ,2-diol, de ω-hydroxy acide et d'acide gras, esters d'acide hydroxymalonique, d'acide gras et d'alcool, triesters d'hydroxylacides, d'acide gras et d'alcool gras, triesters d'acide gras, d'hydroxylacide et de diol) et les cires polyesters (polyesters d'acides gras). Les esters d'acides gras utilisables à titre de cires dans le cadre de l'invention sont par exemple le palmitate de cétyle, l'octanoate de cétyle, le laurate de cétyle, le lactate de cétyle, l'isononanoate de cétyle, le stéarate de cétyle, le stéarate de stéaryle, le stéarate de myristyle, le myristate de cétyle, le stéarate d'isocétyle, le trimyristate de glycéryle, le tripalmitate de glycéryle, le monostéarate de glycéryle ou le palmitate de glycéryle et de cétyle ;
les acides gras utilisables comme cires tels que l'acide cérotique, l'acide palmitique, l'acide stéarique, l'acide dihydroxystéarique, l'acide béhénique, l'acide lignocérique, l'acide arachidique, l'acide myristique, l'acide laurique, l'acide tridécyclique, l'acide pentadécyclique, l'acide margarique, l'acide nonadécyclique, l'acide hénéicosylique, l'acide tricosylique, l'acide pentacosylique, l'acide heptacosylique, l'acide montanique ou l'acide nonacosylique ;
les sels d'acide gras notamment les sels d'aluminium d'acide gras tels que l'aluminium stéarate, l'hydroxyl aluminium bis(2-éthylhexanoate) ;
l'huile de jojoba isomérisée ;
l'huile de tournesol hydrogénée ;
l'huile de coprah hydrogénée ;
l'huile de lanoline hydrogénée ; l'huile de ricin et ses dérivés, notamment l'huile de ricin hydrogénée modifiée ou les composés obtenus par estérification d'huile de ricin avec des alcools gras ;
- les polyuréthanes et leurs dérivés ;
- les polymères styréniques tels que le styrène butadiène ;
- les polyoléfines telles que le polyisobutène.
Selon un mode de réalisation, la composition C3 comprend des particules solides telles que des argiles, des silices et des silicates.
A titre de particules solides utilisables dans la composition C3, on peut citer les argiles et silicates appartenant notamment à la catégorie des phyllosilicates (encore appelées silices en feuillets). A titre d'exemple de silicate utilisable dans le cadre de l'invention, on peut citer la Bentonite, l'Hectorite, l'Attapulgite, la Sepiolite, la Montmorillonite, la Saponite, la Sauconite, la Nontronite, la Kaolinite, le Talc, la Sepiolite, la Craie. Les silices synthétiques pyrogénées peuvent également être utilisées. Les argiles, silicates et silices citées précédemment peuvent avantageusement être modifiées par des molécules organiques telles que des polyéthers, des amides éthoxylées, des sels d'ammonium quaternaires, des diamines à longue chaîne, des esters à longue chaîne, des polyéthylène glycols, des polypropylène glycols.
Ces particules peuvent être utilisées seules ou mélangées entre elles.
Selon un mode de réalisation, la composition C3 comprend au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 et des particules solides. Tout mélange des composés cités précédemment peut être utilisé.
Etape c)
L'étape c) du procédé selon l'invention consiste à affiner la taille des gouttes de la deuxième émulsion (E2).
Cette étape peut consister à appliquer un cisaillement contrôlé homogène à l'émulsion (E2), ladite vitesse de cisaillement appliquée étant comprise entre 10 s"1 et 100 000 s"1.
Selon un mode de réalisation, les doubles gouttes polydisperses obtenues à l'étape b) sont soumises à un affinage en taille consistant à leur faire subir un cisaillement capable de les fragmenter en nouvelles doubles gouttes de diamètres homogènes et contrôlés. De préférence, cette étape de fragmentation est effectuée à l'aide d'une cellule à haut cisaillement de type Couette selon un procédé décrit dans la demande de brevet EP 15 306 428.2.
Selon un mode de réalisation, dans l'étape c), la deuxième émulsion (E2), obtenue à l'issue de l'étape b), consistant en des doubles gouttes polydisperses dispersées dans une phase continue, est soumise à un cisaillement dans un mélangeur, qui applique un cisaillement contrôlé homogène.
Ainsi, selon ce mode de réalisation, l'étape c) consiste à appliquer un cisaillement contrôlé homogène à l'émulsion (E2), ladite vitesse de cisaillement appliquée étant comprise entre 1 000 s"1 et 100 000 s"1.
Selon ce mode de réalisation, dans un mélangeur, la vitesse de cisaillement est dite contrôlée et homogène, indépendamment de la durée, lorsqu'elle passe à une valeur maximale identique pour toutes les parties de l'émulsion, à un instant donné qui peut varier d'un point de l'émulsion à un autre. La configuration exacte du mélangeur n'est pas essentielle selon l'invention, du moment que l'émulsion entière a été soumise au même cisaillement maximal en sortant de ce dispositif. Les mélangeurs adaptés pour effectuer l'étape c) sont notamment décrits dans le document US 5 938 581 .
La deuxième émulsion peut subir un cisaillement contrôlé homogène lorsqu'elle circule à travers une cellule formée par :
- deux cylindres rotatifs concentriques (également appelé mélangeur de type Couette) ;
- deux disques rotatifs parallèles ; ou
- deux plaques oscillantes parallèles.
Selon ce mode de réalisation, la vitesse de cisaillement appliquée à la deuxième émulsion est comprise entre 1 000 s"1 et 100 000 s"1 , de préférence entre 1 000 s"1 et 50 000 s"1 , et préférentiellement entre 2 000 s"1 et 20 000 s"1.
Selon ce mode de réalisation, pendant l'étape c), la deuxième émulsion est introduite dans le mélangeur et est ensuite soumise à un cisaillement qui résulte en la formation de la troisième émulsion. La troisième émulsion (E3) est chimiquement identique à la deuxième émulsion (E2) mais consiste en des gouttes doubles monodisperses alors que l'émulsion (E2) consiste en des gouttes doubles polydisperses. La troisième émulsion (E3) consiste typiquement en une dispersion de gouttes doubles comprenant un cœur constitué d'une ou plusieurs gouttes de composition C1 et d'une couche de composition C2 encapsulant ledit cœur, lesdites gouttes doubles étant dispersées dans la composition C3.
La différence entre la deuxième émulsion et la troisième émulsion est la variance de taille des gouttes doubles : les gouttes de la deuxième émulsion sont polydisperses en taille alors que les gouttes de la troisième émulsion sont monodisperses, grâce au mécanisme de fragmentation décrit ci-dessus.
De préférence, selon ce mode de réalisation, la deuxième émulsion est introduite de façon continue dans le mélangeur ce qui signifie que la quantité d'émulsion double (E2) introduite à l'entrée du mélangeur est la même que la quantité de troisième émulsion (E3) à la sortie du mélangeur.
Etant donné que la taille des gouttes de l'émulsion (E3) correspond essentiellement à la taille des gouttes des microcapsules solides après polymérisation, il est possible d'ajuster la taille des microcapsules et l'épaisseur de l'enveloppe en ajustant la vitesse de cisaillement pendant l'étape c), avec une forte corrélation entre la diminution de la taille des gouttes et l'augmentation de la vitesse de cisaillement. Ceci permet d'ajuster les dimensions résultantes des microcapsules en faisant varier la vitesse de cisaillement appliquée pendant l'étape c).
Selon un mode de réalisation préféré, le mélangeur mis en œuvre pendant l'étape c) est un mélangeur de type Couette, comprenant deux cylindres concentriques, un cylindre externe de rayon interne R0 et un cylindre interne de rayon externe R,, le cylindre externe étant fixe et le cylindre interne étant en rotation avec une vitesse angulaire ω.
Un mélangeur de type Couette adapté pour le procédé de l'invention peut être fourni par la société T.S.R. France.
Selon un mode de réalisation, la vitesse angulaire ω du cylindre interne en rotation du mélangeur de type Couette est supérieure ou égale à 30 rad.s 1.
Par exemple, la vitesse angulaire ω du cylindre interne en rotation du mélangeur de type Couette est d'environ 70 rad.s"1.
Les dimensions du cylindre externe fixe du mélangeur de type Couette peuvent être choisies pour moduler l'espace (d = R0 - R,) entre le cylindre interne en rotation et le cylindre externe fixe.
Selon un mode de réalisation, l'espace (d = R0 - R,) entre les deux cylindres concentriques du mélangeur de type Couette est compris entre 50 μηι et 1 000 μηι, de préférence entre 100 μηι et 500 μηι, par exemple entre 200 μηι et 400 μηι. Par exemple, la distance d entre les deux cylindres concentriques est égale à 100 μπι.
Selon ce mode de réalisation, pendant l'étape c), la deuxième émulsion est introduite à l'entrée du mélangeur, typiquement via une pompe, et est dirigée vers l'espace entre les deux cylindres concentriques, le cylindre externe étant fixe et le cylindre interne étant en rotation à une vitesse angulaire ω.
Lorsque l'émulsion double est dans l'espace entre les deux cylindres, la vitesse de cisaillement appliquée à ladite émulsion est donnée par l'équation suivante :
Ritû dans laquelle :
- ω est la vitesse angulaire du cylindre interne en rotation,
- R0 est le rayon interne du cylindre externe fixe, et
- R, est le rayon externe du cylindre interne en rotation.
Selon un autre mode de réalisation, lorsque la viscosité de la composition C3 est supérieure à 2 000 mPa.s à 25°C, l'étape c) consiste à appliquer à l'émulsion (E2) une vitesse de cisaillement inférieure à 1 000 s"1.
Selon ce mode de réalisation, l'étape de fragmentation c) peut être effectuée à l'aide de tout type de mélangeur usuellement utilisé pour former des émulsions avec une vitesse de cisaillement inférieure à 1 000 s"1 , auquel cas la viscosité de la composition C3 est supérieure à 2 000 mPa.s, à savoir dans des conditions telles que celles décrites dans la demande de brevet FR 16 61787.
Les caractéristiques géométriques des doubles gouttes formées à la fin de cette étape dicteront celles des futures capsules.
Selon ce mode de réalisation, dans l'étape c), l'émulsion (E2), constituée de gouttes polydisperses dispersées dans une phase continue, est soumise à un cisaillement, par exemple dans un mélangeur, à une faible vitesse de cisaillement, à savoir inférieure à 1 000 s"1.
Selon ce mode de réalisation, la vitesse de cisaillement appliquée à l'étape c) est par exemple comprise entre 10 s"1 et 1 000 s"1.
De préférence, la vitesse de cisaillement appliquée à l'étape c) est strictement inférieure à 1 000 s"1. Selon ce mode de réalisation, les gouttes d'émulsion (E2) ne peuvent être fragmentées efficacement en des gouttes fines et monodisperses d'émulsion (E3) que si une contrainte de cisaillement élevée leur est appliquée.
La contrainte de cisaillement σ appliquée à une goutte d'émulsion (E2) est définie comme la force tangentielle par unité de surface de goutte résultant du cisaillement macroscopique appliqué à l'émulsion lors de son agitation au cours de l'étape d).
La contrainte de cisaillement σ (exprimée en Pa), la viscosité de la composition C3 η (exprimée en Pa s) et la vitesse de cisaillement γ (exprimée en s"1) appliquée à l'émulsion (E2) lors de son agitation au cours de l'étape d) sont reliées par l'équation suivante :
σ = ηγ
Ainsi, selon ce mode de réalisation, la viscosité élevée de la composition C3 permet d'appliquer une très haute contrainte de cisaillement aux gouttes d'émulsion (E2) dans le mélangeur, même si la vitesse de cisaillement est faible et le cisaillement inhomogène.
Pour mettre en œuvre l'étape c) selon ce mode de réalisation, on peut utiliser tout type d'agitateur usuellement utilisé pour former des émulsions, comme par exemple un agitateur mécanique à pâles, un émulseur statique, un homogénéisateur à ultrasons, un homogénéisateur à membrane, un homogénéisateur à haute pression, un moulin colloïdal, un disperseur à haut pouvoir de cisaillement ou un homogénéisateur à haute vitesse.
Selon un mode de réalisation préféré, on utilise un émulseur simple tel qu'un agitateur mécanique à pâles ou un émulseur statique pour mettre en œuvre l'étape c). En effet, ceci est possible car ce mode de réalisation ne requiert ni un cisaillement contrôlé ni un cisaillement plus grand que 1 000 s"1.
Etape d)
L'étape d) du procédé de l'invention consiste en la réticulation et donc la formation de l'enveloppe des microcapsules solides selon l'invention.
Cette étape permet à la fois d'atteindre les performances attendues de rétention des capsules et d'assurer leur stabilité thermodynamique, en empêchant définitivement tout mécanisme de déstabilisation comme la coalescence ou le mûrissement. Selon un mode de réalisation, lorsque la composition C2 comprend un photoinitiateur, l'étape d) est une étape de photopolymérisation consistant à exposer l'émulsion (E3) à une source de lumière apte à initier la photopolymérisation de la composition C2, notamment à une source de lumière UV émettant de préférence dans la gamme de longueur d'onde comprise entre 100 nm et 400 nm, et ce en particulier pendant une durée inférieure à 15 minutes.
Selon ce mode de réalisation, l'étape d) consiste à soumettre l'émulsion (E3) à une photopolymérisation, ce qui va permettre la photopolymérisation de la composition C2. Cette étape va permettre d'obtenir des microcapsules encapsulant la substance hydrosoluble tel que définie ci-dessus.
Selon un mode de réalisation, l'étape d) consiste à exposer l'émulsion (E3) à une source de lumière apte à initier la photopolymérisation de la composition C2.
De préférence, la source de lumière est une source de lumière UV.
Selon un mode de réalisation, la source de lumière UV émet dans la gamme de longueur d'onde comprise entre 100 nm et 400 nm.
Selon un mode de réalisation, l'émulsion (E3) est exposée à une source de lumière pendant une durée inférieure à 15 minutes, et de préférence pendant 5 à 10 minutes.
Pendant l'étape d), l'enveloppe des gouttes doubles susmentionnées, constituée de composition C2 photoréticulable, est réticulée et ainsi convertie en une enveloppe polymérique viscoélastique, encapsulant et protégeant la substance hydrosoluble de sa libération en l'absence d'un déclenchement mécanique.
Selon un autre mode de réalisation, lorsque la composition C2 ne comprend pas de photoinitiateur, l'étape d) est une étape de polymérisation, sans exposition à une source de lumière, la durée de cette étape d) de polymérisation étant de préférence comprise entre 8 heures et 100 heures et/ou cette étape d) est réalisée à une température comprise entre 20°C et 80°C.
Selon ce mode de réalisation, la polymérisation est initiée par exemple par exposition à la chaleur (initiation thermique), ou par la simple mise en contact des monomères, polymères et agents réticulants entre eux, ou avec un catalyseur. Le temps de polymérisation est alors généralement supérieur à plusieurs heures. De préférence, l'étape d) de polymérisation de la composition C2 est effectuée pendant une durée comprise entre 8 heures et 100 heures, à une température comprise entre 20°C et 80°C.
La composition obtenue à l'issue de l'étape d), comprenant des microcapsules solides dispersées dans la composition C3, est prête à l'emploi et peut être utilisée sans qu'aucune étape supplémentaire de post-traitement des capsules ne soit requise.
L'épaisseur de l'enveloppe des microcapsules ainsi obtenues est typiquement comprise entre 0,2 μηι et 8 μηι, de préférence entre 0,2 μηι et 5 μηι.
Selon un mode de réalisation, les microcapsules solides obtenues à l'issue de l'étape d) sont dépourvues de tensioactif.
Le procédé de l'invention présente l'avantage de ne pas nécessiter de tensioactif, dans aucune des étapes décrites. Le procédé de l'invention permet ainsi de réduire la présence d'additifs qui pourraient modifier les propriétés du produit final obtenu après libération de l'actif.
La présente invention concerne également une série (ou ensemble) de microcapsules solides, susceptible d'être obtenue selon le procédé tel que défini ci- dessus, dans laquelle chaque microcapsule comprend :
- un cœur comprenant une composition C1 telle que définie ci-dessus, et
- une enveloppe solide encapsulant totalement à sa périphérie le cœur, ladite enveloppe solide comprenant des pores de taille inférieure à 1 nm,
dans laquelle le diamètre moyen desdites microcapsules est compris entre 1 μηι et 30 μηι, l'épaisseur de l'enveloppe rigide est comprise entre 0,2 μηι et 8 μηι, de préférence entre 0,2 μηι et 5 μηι et l'écart type de la distribution du diamètre des microcapsules est inférieur à 50%, en particulier inférieur à 25%, ou inférieur à 1 μηι.
De préférence, les microcapsules solides obtenues par le procédé de l'invention sont formées d'un cœur contenant au moins un actif (composition C1 ) et une enveloppe solide (obtenue de la composition C2) encapsulant totalement à sa périphérie ledit cœur, ladite enveloppe solide comprenant des pores de taille inférieure à 1 nm. Comme indiqué ci-dessus, le procédé de l'invention permet d'obtenir des particules monodisperses. Aussi, la série de microcapsules solides susmentionnée est formée d'une population de particules monodisperses en taille. Ainsi, l'écart type de la distribution du diamètre des microcapsules est inférieur à 50%, en particulier inférieur à 25%, ou inférieur à 1 μηι.
La distribution de taille des microcapsules solides peut être mesurée par technique de diffusion de la lumière à l'aide d'un Mastersizer 3000 (Malvern Instruments) équipé d'une cellule de meure Hydro SV.
Selon un mode de réalisation, les microcapsules solides susmentionnées comprennent une enveloppe solide entièrement composée de polymère réticulé (obtenu à partir de la composition C2) et comprenant des pores de taille inférieure à 1 nm.
Comme indiqué ci-dessus, le procédé de l'invention permet d'obtenir des microcapsules solides. La présente invention concerne donc également des microcapsules solides comprenant un cœur et une enveloppe solide encapsulant totalement à sa périphérie le cœur, dans laquelle le cœur est une composition C1 telle que définie ci-dessus, et dans laquelle ladite enveloppe solide est constituée de polymère réticulé et comprend des pores de taille inférieure à 1 nm,
le diamètre de ladite microcapsule étant compris entre 1 μηι et 30 μηι et l'épaisseur de l'enveloppe rigide étant comprise entre 0,2 μηι et 8 μηι.
La présente invention concerne également une composition comprenant une série de microcapsules solides telle que définie ci-dessus.
Les expressions « compris entre ... et ... », « compris de ... à ... » et « allant de ... à ... » doivent se comprendre bornes incluses, sauf si le contraire est spécifié.
Les exemples qui suivent illustrent la présente invention sans en limiter la portée. EXEMPLES
Exemple 1 : Fabrication de capsules solides selon l'invention
Un agitateur mécanique (Ika Eurostar 20) équipé d'une hélice d'agitation de type défloculeuse est utilisé pour réaliser toutes les étapes d'agitation.
Etape a) : Préparation de la première émulsion (El)
La composition C2 selon l'invention présente les caractéristiques suivantes :
- Le composant CN 1963 présente 2 fonctions réactives acrylates par molécule et un poids moléculaire moyen inférieur à 5 000 g/mol.
- L'agent réticulant SR 399 présente 5 fonctions réactives acrylates par molécule et un poids moléculaire de 524,5 g/mol.
- Le photoinitiateur Darocur 1 173 ne présente pas de fonctions réactives et son poids moléculaire est de 164 g/mol.
La composition C1 est ajoutée goutte à goutte à la composition C2 sous agitation à 2 000 tpm avec un ratio 3:7. On obtient ainsi la première émulsion (E1 ). Etape b) : Préparation de la seconde émulsion (E2)
La composition C3 est placée sous agitation à 1 000 tpm jusqu'à complète homogénéisation puis laissée à reposer une heure à température ambiante. La première émulsion (E1 ) est ensuite ajoutée goutte à goutte à la composition C3 sous agitation à 1 000 tpm. On obtient ainsi la deuxième émulsion (E2).
Etape c) : Affinage en taille de la seconde émulsion
La seconde émulsion polydisperse (E2) obtenue à l'étape précédente est agitée à 1 000 tpm pendant 10 minutes. On obtient ainsi une émulsion monodisperse (E3).
Etape d) : Réticulation de l'enveloppe des capsules
La seconde émulsion monodisperse (E3) obtenue à l'étape précédente est irradiée pendant 10 minutes à l'aide d'une source de lumière UV (Dymax LightBox ECE 2000) ayant une intensité lumineuse maximale de 0,1 W/cm2 à une longueur d'onde de 365 nm.
Les microcapsules obtenues présentent une bonne distribution de taille, à savoir une taille moyenne de 5,5 μηι et leur distribution de taille présente un écart- type de 2,5 μηι soit 45%.
La porosité de l'enveloppe des microcapsules selon l'exemple 1 a été étudiée par analyse de surface selon la technique dite BET (Brunauer-Emmet-Teller) comme suit. L'échantillon de capsules est d'abord lavé dans l'eau déionisée par centrifugation et redispersion puis séché à 50°C pendant une nuit. Une étape d'activation est ensuite réalisée à l'aide d'un appareil Smart VacPrep commercialisé par la société Micromeritics qui applique une rampe de température de 5°C par minute jusqu'à 150°C sous vide d'air afin de débarrasser l'échantillon de toute adsorption de gaz. On utilise alors un analyseur TriStar II Plus commercialisé par la société Micromeritics pour mesurer l'adsorption d'azote par l'échantillon à la température de -196°C.
Les résultats de l'analyse BET montrent la non adsorbance d'azote sur l'échantillon. Ainsi, la taille des pores des microcapsules selon l'exemple 1 est inférieure à la limite de sensibilité de l'appareil, qui peut être estimée de façon conservative à 1 nm.
Exemple comparatif : Fabrication de capsules solides poreuses
Un agitateur mécanique (Ika Eurostar 20) équipé d'une hélice d'agitation de type défloculeuse est utilisé pour réaliser toutes les étapes d'agitation.
Etape a) : Préparation de la première émulsion (El)
La composition C2 ne correspond pas à l'invention puisqu'elle comprend plus de 5% en masse de molécules ne présentant aucune fonction réactive.
La composition C1 est ajoutée goutte à goutte à la composition C2 sous agitation à 2 000 tpm avec un ratio 3:7. On obtient ainsi la première émulsion (E1 ). Etape b) : Préparation de la seconde émulsion (E2)
La composition C3 est placée sous agitation à 1 000 tpm jusqu'à complète homogénéisation puis laissée à reposer une heure à température ambiante. La première émulsion (E1 ) est ensuite ajoutée goutte à goutte à la composition C3 sous agitation à 1 000 tpm. On obtient ainsi la deuxième émulsion polydisperse (E2).
Etape c) : Réticulation de l'enveloppe des capsules
La deuxième émulsion polydisperse (E2) obtenue à l'étape précédente est irradiée pendant 10 minutes à l'aide d'une source de lumière UV (Dymax LightBox ECE 2000) ayant une intensité lumineuse maximale de 0,1 W/cm2 à une longueur d'onde de 365 nm.
Les microcapsules obtenues présentent une distribution de taille s'étendant de 3 μηι à 40 μηι de diamètre.
La porosité de l'enveloppe des microcapsules selon cet exemple comparatif a été étudiée par microscopie électronique à balayage. L'échantillon de capsules est d'abord lavé dans l'eau déionisée par centrifugation et redispersion puis déposé sur un disque de carbone conducteur et séché à 60°C pendant 10 minutes. Il est ensuite recouvert d'or par pulvérisation cathodique sous argon à l'aide d'un Sputter Coater 108 (Cressington) pendant 10 secondes, puis imagé sous vide à l'aide d'un microscope électronique à balayage MEB 3030 (Hitashi).
Les clichés obtenus montrent des capsules poreuses dont les pores, nettement visibles, ont un diamètre moyen entre 500 et 1 000 nm. Les capsules de l'exemple comparatif ont donc des propriétés de rétention et de protection faibles comparées aux capsules selon l'invention.

Claims

REVENDICATIONS
1. Procédé de préparation de microcapsules solides, lesdites microcapsules solides comprenant notamment un cœur contenant au moins un actif et une enveloppe solide encapsulant totalement à sa périphérie ledit cœur, ladite enveloppe solide comprenant des pores de taille inférieure à 1 nm,
ledit procédé comprenant les étapes suivantes :
a) l'addition sous agitation d'une composition C1 , comprenant au moins un actif, dans une composition polymérique C2, les compositions C1 et C2 n'étant pas miscibles l'une dans l'autre, la fraction volumique de C1 dans C2 étant comprise entre 0,1 et 0,5,
la composition C2 comprenant au moins un monomère ou polymère de poids moléculaire moyen inférieur à 5 000 g. mol"1 , au moins un agent réticulant de poids moléculaire moyen inférieur à 5 000 g. mol"1 , et éventuellement au moins un photoinitiateur de poids moléculaire moyen inférieur à 5 000 g. mol"1 ou un catalyseur de réticulation de poids moléculaire moyen inférieur à 5 000 g. mol"1 ,
la viscosité de la composition C2 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de la composition C1 ,
ce par quoi on obtient une émulsion (E1 ) comprenant des gouttes de composition C1 dispersées dans la composition C2 ;
b) l'addition sous agitation de l'émulsion (E1 ) dans une composition C3, les compositions C2 et C3 n'étant pas miscibles l'une dans l'autre,
la viscosité de la composition C3 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de l'émulsion (E1 ),
ce par quoi on obtient une émulsion double (E2) comprenant des gouttes dispersées dans la composition C3 ;
c) l'application d'un cisaillement à l'émulsion (E2),
ce par quoi on obtient une émulsion double (E3) comprenant des gouttes de taille contrôlée dispersées dans la composition C3 ; et
d) la polymérisation de la composition C2, ce par quoi on obtient des microcapsules solides dispersées dans la composition C3.
2. Procédé selon la revendication 1 , dans lequel la composition C2 comprend de 5% à 30% en poids d'agent(s) réticulant(s) par rapport au poids total de ladite composition.
3. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel le ratio du nombre de moles de fonctions réactives des monomères ou polymères contenues dans C2 par rapport au nombre de moles de monomères ou polymères contenues dans C2 est supérieur à 1 ,5.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la composition C2 contient moins de 5% en poids de molécules ne possédant aucune fonction réactive.
5. Procédé de préparation selon l'une quelconque des revendications 1 à 4, dans lequel l'étape c) consiste à appliquer un cisaillement contrôlé homogène à l'émulsion (E2), ladite vitesse de cisaillement appliquée étant comprise entre
1 000 s"1 et 100 000 s"1.
6. Procédé de préparation selon l'une quelconque des revendications 1 à 4, dans lequel, lorsque la viscosité de la composition C3 est supérieure à
2 000 mPa.s à 25°C, l'étape c) consiste à appliquer à l'émulsion (E2) une vitesse de cisaillement inférieure à 1 000 s"1.
7. Procédé de préparation selon l'une quelconque des revendications 1 à 6, dans lequel, lorsque la composition C2 comprend un photoinitiateur, l'étape d) est une étape de photopolymérisation consistant à exposer l'émulsion (E3) à une source de lumière apte à initier la photopolymérisation de la composition C2, notamment à une source de lumière UV émettant de préférence dans la gamme de longueur d'onde comprise entre 100 nm et 400 nm, et ce en particulier pendant une durée inférieure à 15 minutes.
8. Procédé de préparation selon l'une quelconque des revendications 1 à 6, dans lequel, lorsque la composition C2 ne comprend pas de photoinitiateur, l'étape e) est une étape de polymérisation, sans exposition à une source de lumière, la durée de cette étape d) de polymérisation étant de préférence comprise entre 8 heures et 100 heures et/ou cette étape d) est réalisée à une température comprise entre 20°C et 80°C.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la composition C3 comprend en outre au moins un polymère branché, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , et/ou au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 , et/ou des particules solides telles que des silicates.
10. Série de microcapsules solides, susceptible d'être obtenue selon le procédé selon l'une des revendications 1 à 9, dans laquelle chaque microcapsule comprend :
- un cœur comprenant une composition C1 telle que définie selon la revendication 1 , et
- une enveloppe solide encapsulant totalement à sa périphérie le cœur, ladite enveloppe solide comprenant des pores de taille inférieure à 1 nm,
dans laquelle le diamètre moyen desdites microcapsules est compris entre 1 μηι et 30 μηι, l'épaisseur de l'enveloppe solide est comprise entre 0,2 μηι et 8 μηι et l'écart type de la distribution du diamètre des microcapsules est inférieur à 50%, de préférence inférieur à 25%, ou inférieur à 1 μηι.
11. Composition comprenant une série de microcapsules solides selon la revendication 10.
EP18711368.3A 2017-03-21 2018-03-21 Procédé de préparation de capsules avec des propriétés de rétention améliorées et capsules obtenues Pending EP3600642A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1752334A FR3064193B1 (fr) 2017-03-21 2017-03-21 Procede de preparation de capsules avec des proprietes de retention ameliorees et capsules obtenues
PCT/EP2018/057214 WO2018172431A1 (fr) 2017-03-21 2018-03-21 Procédé de préparation de capsules avec des propriétés de rétention améliorées et capsules obtenues

Publications (1)

Publication Number Publication Date
EP3600642A1 true EP3600642A1 (fr) 2020-02-05

Family

ID=59381387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18711368.3A Pending EP3600642A1 (fr) 2017-03-21 2018-03-21 Procédé de préparation de capsules avec des propriétés de rétention améliorées et capsules obtenues

Country Status (7)

Country Link
US (1) US11033872B2 (fr)
EP (1) EP3600642A1 (fr)
JP (1) JP7110226B2 (fr)
KR (1) KR102525477B1 (fr)
CN (1) CN110461462B (fr)
FR (1) FR3064193B1 (fr)
WO (1) WO2018172431A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3064190B1 (fr) * 2017-03-21 2023-04-14 Capsum Procede de preparation de capsules comprenant au moins une substance hydrosoluble ou hydrophile et capsules obtenues
FR3091877B1 (fr) * 2019-01-22 2023-06-16 Calyxia Compositions de detergence avec des propriétés olfactives améliorées
FR3091878B1 (fr) * 2019-01-22 2023-06-16 Calyxia Compositions de produits d’entretien avec des propriétés olfactives améliorées
KR102440764B1 (ko) * 2020-03-30 2022-09-06 경희대학교 산학협력단 습도 및 pH 민감형 항균 나노 캡슐 및 그 제조방법
CN114425285B (zh) * 2020-10-29 2023-07-04 中国石油化工股份有限公司 一种微胶囊相变储能材料及其制备方法和应用
WO2024089135A1 (fr) 2022-10-27 2024-05-02 Calyxia Sas Procédé de fabrication de microcapsules et microcapsules

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0755946A3 (fr) * 1995-07-24 1997-10-01 Basf Corp Méthode de préparation de polymères en émulsion rendus hydrophobes, les polymères ainsi obtenus et les compositions aqueuses de revêtement contenant ces polymères
AR006355A1 (es) 1996-03-22 1999-08-25 Procter & Gamble Activo suavizante biodegradable y composicion que lo contiene
FR2747321B1 (fr) 1996-04-16 1998-07-10 Centre Nat Rech Scient Procede de preparation d'une emulsion
BR9713263A (pt) 1996-10-21 2000-10-24 Procter & Gamble Composição amaciante de tecido concentrada
JP3634110B2 (ja) * 1997-03-26 2005-03-30 冷化工業株式会社 徐放性粒子の製造方法
GB0213599D0 (en) * 2002-06-13 2002-07-24 Bp Exploration Operating Process
CN1816389A (zh) * 2003-07-03 2006-08-09 Lg化学株式会社 通过微乳液聚合制备微胶囊的方法
FR2867075B1 (fr) 2004-03-03 2006-07-14 Ethypharm Sa Procede de preparation de microspheres biodegradables calibrees
HUE038015T2 (hu) * 2006-03-30 2018-09-28 Fmc Corp Acetilén karbamid származék-polikarbamid polimerek, és ezek mikrokapszulái és kiszerelései szabályozott kibocsátáshoz
CN101528339B (zh) * 2006-10-17 2013-03-27 巴斯夫欧洲公司 微胶囊
FR2918296B1 (fr) * 2007-07-05 2009-09-18 Oreal Capsules de type noyau/ecorce et procede de preparation
US9056302B2 (en) * 2009-06-15 2015-06-16 Basf Se Highly branched polymers as cross-linking agents in microcapsule wall
EP2497809A1 (fr) * 2011-03-11 2012-09-12 Rhodia Opérations Activateur encapsulé et son utilisation pour déclencher un système de gel par un moyen physique
BR112014004554A2 (pt) * 2011-08-30 2017-04-04 Basf Se sistemas e processos para encapsulamento de cápsulas
CN102504326B (zh) * 2011-09-28 2013-08-07 浙江大学 由聚合物纳米中空胶囊制备绝热聚合物材料的方法
JP5999439B2 (ja) * 2013-04-02 2016-09-28 株式会社豊田自動織機 ポリシラン誘導体を含むエマルション、ポリシラン誘導体を含むマイクロカプセル、及びケイ素単体を含む活物質粒子、並びにこれらの製造方法
WO2016061095A1 (fr) * 2014-10-14 2016-04-21 President And Fellows Of Harvard College Microcapsules et leurs utilisations
WO2016085743A1 (fr) * 2014-11-24 2016-06-02 President And Fellows Of Harvard College Procédés et systèmes pour encapsuler des agents actifs dans des gouttelettes et autres compartiments
US20170369614A1 (en) * 2014-12-17 2017-12-28 Lubrizol Advanced Materials, Inc. Surfactant responsive emulsion polymerized micro-gels
CN104485191A (zh) * 2014-12-29 2015-04-01 中国科学院上海硅酸盐研究所 一种磁性中空纳米球及其制备方法
FR3031914B1 (fr) * 2015-01-27 2019-06-07 Calyxia Procede d'encapsulation
EP3144059A1 (fr) * 2015-09-16 2017-03-22 Total Marketing Services Procédé servant à préparer des microcapsules par émulsion double
EP3144058A1 (fr) * 2015-09-16 2017-03-22 Calyxia Procédé servant à préparer des microcapsules par émulsion double
CN205463600U (zh) * 2016-02-29 2016-08-17 衡阳师范学院 一种土壤修复钝化微胶囊
CN106040117B (zh) * 2016-07-07 2018-05-04 西南石油大学 基于乳化液膜传质制备单分散性海藻酸钙微球的方法

Also Published As

Publication number Publication date
JP7110226B2 (ja) 2022-08-01
US11033872B2 (en) 2021-06-15
FR3064193A1 (fr) 2018-09-28
KR102525477B1 (ko) 2023-04-26
CN110461462B (zh) 2022-06-03
JP2020514047A (ja) 2020-05-21
US20200129948A1 (en) 2020-04-30
KR20190127878A (ko) 2019-11-13
CN110461462A (zh) 2019-11-15
WO2018172431A1 (fr) 2018-09-27
FR3064193B1 (fr) 2021-04-30

Similar Documents

Publication Publication Date Title
EP3600642A1 (fr) Procédé de préparation de capsules avec des propriétés de rétention améliorées et capsules obtenues
EP3548529B1 (fr) Procédé de préparation de microcapsules de taille contrôlée comprenant une étape de photopolymérisation
EP3624932A1 (fr) Procédé de préparation de capsules biodégradables et capsules obtenues
WO2018172360A1 (fr) Procédé de préparation de capsules comprenant au moins une substance hydrosoluble ou hydrophile et capsules obtenues
WO2018172434A2 (fr) Procédé de préparation de capsules comprenant au moins une substance hydrosoluble ou hydrophile et capsules obtenues
WO2018172433A1 (fr) Procédé de préparation de capsules comprenant au moins un composé volatile et capsules obtenues
WO2018172430A2 (fr) Procédé de préparation de capsules comprenant au moins un composé volatile et capsules obtenues
FR3059665B1 (fr) Procede de preparation de microcapsules et de microparticules de taille controlee.
WO2019076911A1 (fr) Procédé de préparation de capsules sensibles au ph ou au rayonnement uv et capsules obtenues
FR3064189A1 (fr) Encapsulation de reactifs pour la preparation d'un biomateriau

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SADAOUI, ALICIA

Inventor name: WALTERS, JAMIE

Inventor name: DEMOULIN, DAMIEN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210205

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509