WO2018172433A1 - Procédé de préparation de capsules comprenant au moins un composé volatile et capsules obtenues - Google Patents

Procédé de préparation de capsules comprenant au moins un composé volatile et capsules obtenues Download PDF

Info

Publication number
WO2018172433A1
WO2018172433A1 PCT/EP2018/057216 EP2018057216W WO2018172433A1 WO 2018172433 A1 WO2018172433 A1 WO 2018172433A1 EP 2018057216 W EP2018057216 W EP 2018057216W WO 2018172433 A1 WO2018172433 A1 WO 2018172433A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
emulsion
temperature
solid
preparation process
Prior art date
Application number
PCT/EP2018/057216
Other languages
English (en)
Inventor
Damien DEMOULIN
Ludivine MOUSNIER
Karima OUHENIA
Jamie WALTERS
Original Assignee
Calyxia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calyxia filed Critical Calyxia
Priority to US16/496,057 priority Critical patent/US20210113984A1/en
Priority to CN201880020511.6A priority patent/CN110831693A/zh
Priority to EP18711369.1A priority patent/EP3600643A1/fr
Priority to JP2019552456A priority patent/JP7258770B2/ja
Priority to KR1020197030797A priority patent/KR102528482B1/ko
Publication of WO2018172433A1 publication Critical patent/WO2018172433A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents

Definitions

  • the present invention relates to a method for preparing capsules comprising at least one volatile compound. It also relates to the capsules as obtained and compositions containing them.
  • capsules have been developed in order to protect and / or isolate active ingredients in the formulated products, and in particular volatile compounds. These capsules result from manufacturing processes such as spray-drying, interfacial polymerization, interfacial precipitation or solvent evaporation among many others.
  • the diffusion time of volatile compounds through the capsule-forming materials made by most of these methods remains very short, resulting in very rapid leakage of the capsules.
  • the life of the odorant properties of the formulated product that contains them is not significantly longer.
  • the difficulty of providing a truly effective barrier to the diffusion of volatile compounds means that, to date, there is no capsule with satisfactory protection and retention properties of these volatile compounds. In other words, the development of capsules with improved protection and retention properties of volatile compounds remains a constant goal.
  • the present invention therefore aims to provide a method for encapsulating volatile compounds, or very volatile, and avoiding the aforementioned drawbacks.
  • the present invention also aims to provide a double emulsion encapsulation process for obtaining controlled size capsules, in particular of size less than 20 ⁇ , or even 5 ⁇ .
  • the present invention also aims to provide capsules containing at least one volatile compound, or very volatile, with excellent retention capacity.
  • the present invention also aims to provide capsules containing at least one volatile compound, or very volatile, limiting the diffusion of chemical species capable of degrading said volatile compounds and thus protect the volatile compounds from degradation.
  • the present invention also aims to improve the performance of formulated products containing highly volatile compounds by providing capsules having an effective barrier to their evaporation and protection against degradation.
  • the present invention relates to a method for preparing solid microcapsules comprising the following steps:
  • composition C1 which is either a composition C1a, comprising a single hydrophobic solid particle, or a composition C1b comprising a plurality of hydrophobic solid particles dispersed in a hydrophilic phase
  • hydrophobic solid particle (s) containing one or more lipophilic volatile compounds and one or more hydrophobic materials, solid at room temperature and liquid at a temperature greater than T m ,
  • the temperature T b being greater than T m when the composition C1 is a composition C1 a and the temperature T b being less than T m when the composition C1 is a composition C1 b
  • the composition C2 comprising at least one monomer or polymer, at least one crosslinking agent, and optionally at least one (photo) initiator or crosslinking catalyst
  • the viscosity of the composition C2 being between 500 mPa.s and 100 000 mPa.s at 25 ° C., and preferably being greater than the viscosity of the composition C1,
  • the temperature T c being greater than T m when the emulsion (E1) comprises drops of composition C1a dispersed in composition C2 and the temperature T c being less than T m when the emulsion (E1) comprises drops of composition C1 b dispersed in the composition C2,
  • the viscosity of the composition C3 being between 500 mPa.s and 100 000 mPa.s at 25 ° C, and preferably being greater than the viscosity of the emulsion (E1),
  • the method of the invention thus makes it possible to prepare solid microcapsules comprising a core and a solid envelope completely encapsulating at its periphery the core, in which the core is a composition C1 comprising at least one hydrophobic solid particle containing one or more volatile lipophilic compounds.
  • the capsules of the invention have excellent retention capacities of volatile compounds they contain through several mechanisms to reduce or even eliminate their evaporation:
  • the heart of the capsules contains a material or a mixture of materials in which the volatile compounds are soluble.
  • the volatile compounds thus have a high affinity for this material, which greatly limits their volatile character.
  • the heart of the capsules contains more than one particle, they are dispersed in a hydrophilic phase in which the solubility of the volatile compounds is negligible. This makes it possible to contain the volatile compounds in the particles and to prevent their diffusion towards the outside of the capsules.
  • the polymer forming the rigid envelope of the capsules advantageously limits the diffusion of the chemical species through this envelope, in particular the diffusion of the volatile compounds towards the outside of the capsules.
  • the polymer forming the rigid envelope of the capsules also advantageously limits the diffusion (or penetration) of chemical species capable of degrading the volatile compounds through this envelope, thus protecting the volatile compounds from degradation.
  • the process of the invention consists in producing a double emulsion composed of droplets containing the particles of volatile compounds enveloped in a crosslinkable liquid phase. These double drops are then rendered monodisperse in size before being converted by crosslinking or polymerization in rigid capsules.
  • the preparation involves 5 steps described below in detail.
  • Stage a) of the process according to the invention consists in preparing a composition C1 comprising at least one hydrophobic solid particle containing at least one volatile lipophilic compound.
  • step a) comprises a step of heating the hydrophobic material (s) at a temperature greater than T m , followed by a step of adding the one or more lipophilic volatile compounds, and a step of mixing the assembly at a temperature greater than T m .
  • composition C1a the hydrophobic material or the mixture of hydrophobic materials for forming the particles is heated above T m .
  • the volatile compounds are then added and the mixture formed is stirred while maintaining the temperature above T m .
  • step a) further comprises a step of dispersing the composition C1a in a hydrophilic phase optionally further comprising at least one dispersing agent and / or at least one gelling agent, followed by a cooling step of the dispersion thus obtained at a temperature below T m , whereby hydrophobic solid particles dispersed in said hydrophilic phase are obtained.
  • the C.sub.1a mixture is dispersed in a hydrophilic phase immiscible with C.sub.1a, preferably in the presence of at least one dispersing agent and / or at least one gelling agent. as described below.
  • the emulsion obtained is then cooled below T m in order to make the particles of volatile compounds solid.
  • composition C1 according to the invention comprises at least one hydrophobic solid particle, said particle containing at least one volatile lipophilic compound and at least one hydrophobic material, solid at room temperature and liquid at a temperature greater than T m .
  • the composition C1 comprises a single hydrophobic solid particle. This one is named C1 a.
  • the composition C1 comprises a plurality of hydrophobic solid particles which are then dispersed in a hydrophilic phase.
  • a composition is named C1 b.
  • the composition C1 b thus corresponds to the dispersion of a composition C1 a in a hydrophilic phase.
  • the hydrophobic solid particle (s) according to the invention contain one or more volatile lipophilic compounds and one or more hydrophobic materials which are solid at room temperature and which are liquid at a temperature greater than T m ,
  • composition C1 according to the invention comprises at least one volatile lipophilic compound. It may also include a mixture of several volatile compounds.
  • volatile compound is meant a compound capable of evaporating in less than one hour at ambient temperature (25 ° C.) and atmospheric pressure (760 mmHg).
  • a volatile compound according to the invention is therefore liquid at ambient temperature, in particular having a non-zero vapor pressure, at ambient temperature and atmospheric pressure, in particular having a vapor pressure ranging from 0.13 Pa to 40 000 Pa (10 ⁇ 3 to 300 mm Hg), and preferably ranging from 1.3 Pa to 13 000 Pa (0.01 to 100 mm Hg), and preferably ranging from 1.3 Pa to
  • the evaporation rate of a volatile compound according to the invention can be evaluated in particular by means of the protocol described in the international application WO2006 / 013413, and more particularly by means of the protocol described below.
  • the liquid is allowed to evaporate freely, without stirring, providing ventilation by a fan (PAPST-MOTOREN, reference 8550 N, rotating to
  • the mass of volatile compound remaining in the crystallizer is measured at regular intervals of time.
  • the evaporation profile of the volatile compound is then obtained by plotting the curve of the amount of product evaporated (in mg / cm 2 ) as a function of time (in min). Then we calculate the evaporation rate that corresponds to the tangent to the origin of the curve obtained. The evaporation rates are expressed in mg of volatile compound evaporated per unit area (cm 2 ) and per unit of time (minute).
  • the volatile compounds are lipophilic, which are thus miscible in the hydrophobic material, in particular the waxes / butters and immiscible in the hydrophilic phase, when present, in which the particles are suspended.
  • the volatile lipophilic compound may be a single compound or a mixture comprising any volatile lipophilic compound that can be used within the meaning of the invention.
  • the volatile lipophilic compounds are chosen from perfuming agents, flavonoids, polyunsaturated fatty acids, and mixtures thereof.
  • the volatile lipophilic compound may be in the form of a mixture.
  • the volatile lipophilic compound according to the invention may comprise a single perfuming agent (or single perfume) or a mixture of several perfuming agents (or a mixture of several perfumes).
  • perfumes or fragrances are well known to those skilled in the art and include, in particular, those mentioned, for example, in S. Arctander, Perfume and Flavor Chemicals (Montclair, NJ, 1969), S. Arctander, Perfume and Flavor Materials of Natural Origin (Elizabeth, NJ, 1960), in the International Fragrance Association's list (IFRA http://www.ifraorg.org/en/ingredients) and in "Flavor and Fragrance Materials," 1991 (Allured Publishing Co. Wheaton, III, USA).
  • the perfumes used in the context of the present invention may comprise natural products such as extracts, essential oils, absolutes, resinoids, resins, concretes, etc., as well as basic synthetic substances such as hydrocarbons, alcohols, aldehydes, ketones, ethers, acids, esters, acetals, ketals, nitriles, etc., including saturated and unsaturated compounds, aliphatic, alicyclic and heterocyclic compounds.
  • the perfuming agent comprises less than 10% or even less than 7.5%, by weight of compound (s) with a ClogP less than 2.1, relative to the total weight of said perfuming agent. According to one embodiment, the perfuming agent does not comprise a compound with a ClogP less than 2.1.
  • the volatile lipophilic compounds are chosen from organic solvents such as saturated and unsaturated, halogenated and non-halogenated, linear, branched and cyclic aliphatic hydrocarbons; halogenated and non-halogenated aromatic hydrocarbons; alcohols; glycols such as ethylene glycol, propylene glycol and their derivatives; ketones such as acetone, butanone or methyl isobutyl ketone; esters; linear and cyclic, aliphatic and aromatic ethers, such as methyl t-butyl ether or tetrahydrofuran; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether,
  • the volatile lipophilic compounds are chosen from flame retardants or flame retardants such as brominated compounds, for example decabromodiphenyl ethers, hexabromocyclododecanes, brominated epoxide oligomers; phosphorus compounds, for example alkyl phosphates, aryl phosphates, bisaryl phosphates; short- and medium-chain chloroparaffins (containing up to about 25 carbon atoms).
  • flame retardants or flame retardants such as brominated compounds, for example decabromodiphenyl ethers, hexabromocyclododecanes, brominated epoxide oligomers
  • phosphorus compounds for example alkyl phosphates, aryl phosphates, bisaryl phosphates
  • short- and medium-chain chloroparaffins containing up to about 25 carbon atoms.
  • the content by weight of volatile compounds is between 50% and 99%, preferably between 70% and 98%, relative to the weight of the composition C1 a.
  • the composition C1a when the composition C1 is a composition C1b, the composition C1a represents between 20% and 70% of the weight of C1b.
  • the weight of volatile compounds then represents between 10% and 69.3% of the weight of C1b, preferably between 14% and 68.6%.
  • the heart of the capsules represents between 20% and 70% of the weight of the capsules.
  • the weight of volatile compounds therefore represents between 10% and 69.3% (preferably between 14% and 68.6%) of the weight of the capsules for capsules whose heart is formed by a composition C1 a (a single particle), or between 2% and 48.5% (preferably between 2.8% and 48%) of the weight of the capsules for capsules whose core is formed by a composition C1 b (dispersion of several particles).
  • the hydrophobic particles of the composition C1 according to the invention contain at least one hydrophobic material.
  • said hydrophobic material is a solid compound at ambient temperature and liquid at a temperature T greater than T m .
  • T m is between 30 ° C and 80 ° C, and preferably between 35 ° C and 55 ° C.
  • the hydrophobic material or materials are chosen from waxes, butters or pasty fatty substances, and mixtures thereof.
  • the term "wax” means a lipophilic compound, solid at room temperature (25 ° C.), with reversible solid / liquid state change, having a melting point greater than or equal to 30 ° C. up to 120 ° C, preferably 80 ° C.
  • the waxes that may be used according to the invention may be chosen from waxes, solid, deformable or not at room temperature, of animal, vegetable, mineral or synthetic origin, and mixtures thereof.
  • hydrocarbon-based waxes such as beeswax, lanolin wax, and Chinese insect waxes; rice wax, Carnauba wax, Candelilla wax, Ouricurry wax, Alfa wax, cork fiber wax, sugar cane wax, Japanese wax and sumac wax ; montan wax, microcrystalline waxes, paraffins and ozokerite; polyethylene waxes, waxes obtained by Fisher-Tropsch synthesis and waxy copolymers and their esters.
  • Polyvinyl ether waxes waxes based on cetyl palmitate, glycerol ester and fatty acid waxes, ethylene copolymer waxes, oxidized polyethylene waxes, ethylene homopolymer waxes, polyethylene, polyether waxes, copolymer waxes ethylene / vinyl acetate and polypropylene waxes, the waxes sold under the names Kahlwax®2039 (INCI name: Candelilla cera) and Kahlwax®6607 (INCI name: Helianthus Annuus Seed Wax) by the company Kahl Wachsraffinerie, Casid HSA (INCI name: Hydroxystearic Acid) by SACI CFPA, Performa®260 (INCI name: Synthetic wax) and Performa®103 (INCI name: Synthetic wax) by New Phase, and AJK-CE2046 (INCI name: Cetearyl alcohol, dibutyl lauroyl glutamide , dibut
  • waxes obtained by catalytic hydrogenation of animal or vegetable oils having linear or branched C 8 -C 32 fatty chains.
  • hydrogenated jojoba oil hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coconut oil and hydrogenated lanolin oil
  • di-tetrastearate trimethylol-1, 1, 1 propane
  • HEST 2T-4S di-tetrastearate sold under the name "HEST 2T-4S” by the company HETERENE
  • di- (trimethylol-1, 1, 1 propane) tetraprenate sold under the name HEST 2T-4B by the company HETERENE.
  • waxes obtained by transesterification and hydrogenation of vegetable oils, such as castor oil or olive oil, such as waxes sold under the names Phytowax ricin 16L64 and 22L73 ® ® and Phytowax Olive 18L57 by the company Sophim. Such waxes are described in application FR-A-2792190.
  • hydrocarbons n-alkanes, branched alkanes, olefins, cyclic alkanes, isoprenoids
  • ketones monocetones, ⁇ -diketones
  • secondary alcohols alkanediols ( alkane-1,2-diols, alkane-2,3-diols, alkane- ⁇ , o-diols), acids (alkenoic acid and alkanoic acid), ester waxes (primary alcohol esters and secondary alcohol esters) ), the diester waxes (alkanediol diesters, hydroxyl acid diesters), the triesterglycerols, triesters of alkane-1,2-diol, ⁇ -hydroxy acid and fatty acid, esters of hydroxymalonic acid, fatty acid and alcohol, triesters of hydroxyl acids, fatty acid and fatty alcohol, triesters of hydroxyl acids, fatty acid and fatty alcohol, tries
  • n-octacosan n-heptacosane, n-hexacosane, n-pentacosan, n-tetracosane, n-tricosane, n-docosan, n-heneicosane and n-eicosane may be mentioned.
  • n-nonadecane myristyl alcohol, pentadecyl alcohol, cetyl alcohol, palmitoleyl alcohol, heptadecyl alcohol, stearyl alcohol, nonadecyl alcohol, arachidyl alcohol, henicosyl alcohol, behenyl alcohol, erucyl alcohol, lignocyl alcohol, ceryl alcohol, 1-heptacosanol, montanyl alcohol, cluytyl alcohol, 1-octacosanol, 1-nonacosanol, myricylic alcohol, melissyl alcohol, 1-triacontanol and 1-dtriacontanol.
  • fatty acids that can be used as waxes in the context of the invention are, for example, cerotic acid, palmitic acid, stearic acid, behenic acid, lignoceric acid, arachidic acid, myristic acid, lauric acid, tridecyclic acid, pentadecyclic acid, margaric acid, nonadecyclic acid, henicosylic acid, tricosylic acid, pentacosylic acid, heptacosylic acid, montanic acid, and nonacosylic acid.
  • fatty acid esters which can be used as waxes in the context of the invention are, for example, cetyl palmitate, cetyl octanoate, cetyl laurate, cetyl lactate, cetyl isononanoate, cetyl stearate, stearyl stearate, myristyl stearate, cetyl myristate, isocetyl stearate, glyceryl trimyristate, glyceryl tripalmitate, glyceryl monostearate and glyceryl and cetyl palmitate.
  • silicone waxes which may advantageously be substituted polysiloxanes, preferably at a low melting point.
  • the silicone waxes that may be used may also be alkyl or alkoxydimethicones such as the following commercial products: Abilwax 2428, 2434 and 2440 (GOLDSCHMIDT), or VP 1622 and VP 1621 (WACKER), as well as (C 2 o C 6 o) alkyldimethicones , in particular the (C30-C45) alkyldimethicones, such as the silicone wax sold under the name SF-1642 by the company GE-Bayer Silicones.
  • alkyl or alkoxydimethicones such as the following commercial products: Abilwax 2428, 2434 and 2440 (GOLDSCHMIDT), or VP 1622 and VP 1621 (WACKER), as well as (C 2 o C 6 o) alkyldimethicones , in particular the (C30-C45) alkyldimethicones, such as the silicone wax sold under the name SF-1642 by the company GE-Bayer
  • hydrocarbon waxes modified with silicone or fluorinated groups such as, for example, siliconyl candelilla, siliconyl beeswax and Fluorobeeswax by Koster Keunen.
  • the waxes may also be chosen from fluorinated waxes.
  • the term “butter” (also referred to as "pasty fatty substance”) is intended to mean a lipophilic fat compound with a reversible solid / liquid state change and comprising at a temperature of 25 ° C. a liquid fraction. and a solid fraction, and at atmospheric pressure (760 mm Hg).
  • the starting melting temperature of the pasty compound may be less than 25 ° C.
  • the liquid fraction of the pasty compound measured at 25 ° C. may represent from 9% to 97% by weight of the compound. This liquid fraction at 25 ° C is preferably between 15% and 85%, more preferably between 40% and 85% by weight.
  • the one or more butters have an end-of-melting temperature of less than 60 ° C.
  • the one or more butters have a hardness less than or equal to 6 MPa.
  • the butters or pasty fatty substances have in the solid state an anisotropic crystalline organization, visible by X-ray observations.
  • the melting temperature corresponds to the temperature of the most endothermic peak observed in thermal analysis (DSC) as described in the ISO 1 1357-3 standard; 1999.
  • the melting point of a paste or a wax can be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name "DSC Q2000" by the company TA Instruments .
  • DSC differential scanning calorimeter
  • sample preparation and measurement protocols are as follows: A sample of 5 mg of pasty fatty substance (or butter) or wax previously heated at 80 ° C. and taken with magnetic stirring using an equally heated spatula is placed in an airtight aluminum capsule or crucible. Two tests are carried out to ensure the reproducibility of the results.
  • the measurements are carried out on the calorimeter mentioned above.
  • the oven is subjected to a nitrogen sweep.
  • the cooling is ensured by the RCS 90 heat exchanger.
  • the sample is then subjected to the following protocol, first being brought to a temperature of 20 ° C and then subjected to a first temperature rise ranging from 20 ° C to 80 ° C. ° C, at the heating rate of 5 ° C / minute, then cooled from 80 ° C to -80 ° C at a cooling rate of 5 ° C / minute and finally subjected to a second temperature rise from - 80 ° C to 80 ° C at a heating rate of 5 ° C / minute.
  • the variation of the power difference absorbed by the empty crucible and the crucible containing the butter sample is measured as a function of temperature.
  • the melting point of the compound is the value of the temperature corresponding to the peak apex of the curve representing the variation of the power difference absorbed as a function of temperature.
  • the end of melting temperature corresponds to the temperature at which 95% of the sample melted.
  • the liquid fraction by weight of the butter (or pasty fatty substance) at 25 ° C. is equal to the ratio of the heat of fusion consumed at 25 ° C. on the enthalpy of melting of the butter.
  • the enthalpy of melting of the butter or pasty compound is the enthalpy consumed by the compound to pass from the solid state to the liquid state.
  • the butter is said to be in the solid state when the entirety of its mass is in crystalline solid form.
  • the butter is said to be in the liquid state when the entirety of its mass is in liquid form.
  • the melting enthalpy of the butter is equal to the integral of the whole of the melting curve obtained with the aid of the calorimeter evoked, with a rise in temperature of 5 ° C. or 10 ° C. per minute, according to the standard ISO 1,1357-3: 1999.
  • the melting enthalpy of the butter is the amount of energy required to pass the compound from the solid state to the liquid state. It is expressed in J / g.
  • the enthalpy of fusion consumed at 25 ° C is the amount of energy absorbed by the sample to change from the solid state to the state it has at 25 ° C consisting of a liquid fraction and a solid fraction.
  • the liquid fraction of the butter measured at 32 ° C preferably represents from 30% to 100% by weight of the compound, preferably from 50% to 100%, more preferably from 60% to 100% by weight of the compound.
  • the temperature of the end of the melting range of the pasty compound is less than or equal to 32 ° C.
  • the liquid fraction of the butter measured at 32 ° C. is equal to the ratio of the enthalpy of fusion consumed at 32 ° C. on the enthalpy of melting of the butter.
  • the enthalpy of fusion consumed at 32 ° C. is calculated in the same way as the heat of fusion consumed at 23 ° C.
  • the sample preparation and measurement protocols are as follows: the butter is placed in a 75 mm diameter mold that is about 75% full. In order to overcome the thermal past and control the crystallization, the mold is placed in the Vôtsch VC0018 programmable oven where it is first heated to 80 ° C for 60 minutes, then cooled from 80 ° C to 0 ° C at a cooling rate of 5 ° C / minute, then left at the stabilized temperature of 0 ° C for 60 minutes, then subjected to a temperature rise from 0 ° C to 20 ° C, at a rate of heat of 5 ° C / minute, then left at the stabilized temperature of 20 ° C for 180 minutes.
  • the compression force measurement is performed with Swantech TA / TX2i texturometer.
  • the mobile used is chosen according to the texture: - mobile cylindrical steel 2 mm diameter for raw materials very rigid; - Cylindrical 12 mm diameter steel for rigid raw materials.
  • the measurement comprises 3 steps: a first step after automatic detection of the surface of the sample where the mobile moves at a measuring speed of 0.1 mm / s, and penetrates the butter at a depth of penetration of 0 , 3 mm, the software notes the value of the maximum force reached; a second so-called relaxation stage where the mobile stays at this position for one second and where the force is noted after 1 second of relaxation; finally a third so-called withdrawal step where the mobile returns to its initial position at the speed of 1 mm / s and the energy of withdrawal of the probe (negative force) is recorded.
  • the value of the hardness measured in the first step corresponds to the maximum compression force measured in Newton divided by the surface area of the texturometer cylinder expressed in mm 2 in contact with the butter or emulsion according to the invention.
  • the value of hardness obtained is expressed in mega-pascals or MPa.
  • the pasty fatty substance or butter may be chosen from synthetic compounds and compounds of plant origin.
  • a pasty fatty substance can be obtained synthetically from starting materials of plant origin.
  • lanolin and its derivatives such as lanolin alcohol, oxyethylenated lanolins, acetylated lanolin, lanolin esters such as isopropyl lanolate, oxypropylenated lanolines,
  • polymeric or non-polymeric silicone compounds such as polydimethylsiloxanes of high molecular weight, polydimethylsiloxanes with side chains of the alkyl or alkoxy type having from 8 to 24 carbon atoms, especially stearyl dimethicones,
  • linear or branched oligomers homo or copolymers of alkyl (meth) acrylates preferably having a C 8 -C 30 alkyl group,
  • the homo- and copolymer oligomers of vinyl ethers having C 8 -C 3 alkyl groups the liposoluble polyethers resulting from the polyetherification between one or more C 2 -C 0 0 diols, preferably C 2 -C 5 o diols,
  • the particular butter or butters are of plant origin such as those described in Ullmann's Encyclopedia of Industrial Chemistry ("Fats and Fatty Oils", A. Thomas, published on 15/06/2000, D01 : 10.1002 / 14356007.a10_173, point 13.2.2.2F, Shea Butter, Borneo Tallow, and Related Fats (Vegetable Butters).
  • C10-C18 triglycerides having at a temperature of 25 ° C and at atmospheric pressure (760 mm Hg) a liquid fraction and a solid fraction, shea butter, Nilotica Shea butter (Butyrospermum parkii), Galam butter (Butyrospermum parkii), Borneo butter or fat or Tengkawang tallow) (Shorea stenoptera), Shorea butter, Illipé butter, Madhuca butter or Bassia Madhuca longifolia, mowrah butter (Madhuca Latifolia), Katiau butter (Madhuca mottleyana), Phulwara butter (M.
  • C10-C18 triglycerides having at a temperature of 25 ° C and at atmospheric pressure (760 mm Hg) a liquid fraction and a solid fraction
  • shea butter Nilotica Shea butter (Butyrospermum parkii), Galam butter (Butyrospermum parkii), Borneo butter or fat or Teng
  • the content by weight of hydrophobic materials is between 1% and 50%, preferably between 2% and 30%, relative to the composition of composition C1 a.
  • the composition C1a represents between 20% and 70% of the weight of C1b.
  • the content by weight of hydrophobic materials is therefore between 0.2% and 35%, preferably between 0.4% and 21%, relative to the weight of composition C1b.
  • composition C1 is a composition C1b, it comprises a hydrophilic phase in which the above-mentioned hydrophobic solid particles are dispersed.
  • the hydrophilic phase of C1b comprises at least one dispersing agent and / or at least one gelling agent.
  • said hydrophilic phase contains between 1% and 10%, preferably between 2% and 6%, by weight of one or more gelling agents and between 1% and 10%, preferably between 1% and 4%, in weight of one or more dispersing agent (s) relative to the weight of said hydrophilic phase.
  • the aforementioned hydrophilic phase may further comprise at least one dispersing agent, different from the gelling agent below.
  • the dispersing agent is preferably selected from the group consisting of polyacrylates; sugar / polysaccharide esters and fatty acid (s), in particular esters of dextrin and fatty acid (s), esters of inulin and fatty acid (s) or esters of glycerol and of 'Fatty acids ; polyamides; polyethers and polyesters of silicone; ethoxylated alcohols; and their mixtures.
  • the dispersing agent is a surfactant which may be selected from the group consisting of nonionic surfactants, anionic surfactants, amphoteric or zwitterionic surfactants and mixtures thereof, preferably nonionic surfactants.
  • a surfactant that can be used in the present invention is a nonionic surfactant chosen from sorbitan fatty acid esters and their oxyethylenated derivatives, such as sorbitan monostearate (CTFA name: Sorbitan stearate) sold by ICI under the name Span 60, sorbitan monopalmitate (CTFA name: Sorbitan palmitate) sold by ICI under the name Span 40, sorbitan stearates, palmitates and oleates oxyethylenated (CTFA name: Polysorbate) sold by ICI under the names Tween, including Polysorbate 60 (Tween 60), Polysorbate 65 (Tween 65), Polysorbate 80 (Tween 80).
  • the aforementioned hydrophilic phase may further comprise at least one gelling agent, different from the dispersing agent described above.
  • the gelling agent contributes to increasing the viscosity of the hydrophilic phase, and therefore of the composition C1b, which advantageously ensures the kinetic stability of the composition C1 b, thus preventing the risk of phase shift during the duration of the process of manufacturing. Also, the relatively high viscosity of the composition C1b ensures the stability of the emulsion (E1) obtained at the end of step b).
  • the gelling agent is chosen from branched polymers, preferably with a molecular weight greater than 5,000 g. mol “1 , polymers of molecular weight greater than 5000 g. mol “ 1 , and mixtures thereof. These gelling agents are described in more detail below.
  • the gelling agent is a branched polymer, preferably with a molecular weight greater than 5,000 g. mol "1, preferably between 10 000 g. mol” 1 and 500 000 g. mol “1 , for example between 50,000 g mol -1 and 300,000 g. mol "1 .
  • the gelling agent is a polymer with a molecular weight greater than 5,000 g. mol "1, preferably between 10 000 g. mol” 1 and 500 000 g. mol "1 , for example between 50,000 g mol -1 and 300,000 g. mol "1 .
  • the gelling agent is chosen from cellulose derivatives, polyacrylates, polyurethanes and their derivatives, polyethers and their derivatives, polyacrylamides, polyvinylpyrrolidone (PVP) and its derivatives, polyvinyl alcohol. (PVA) and its derivatives, poly (ethylene glycol), poly (propylene glycol) and their derivatives, polysaccharides, protein derivatives, fatty acid salts, glycerol derivatives, glycoluril derivatives and mixtures thereof .
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • poly (ethylene glycol) poly (ethylene glycol), poly (propylene glycol) and their derivatives, polysaccharides, protein derivatives, fatty acid salts, glycerol derivatives, glycoluril derivatives and mixtures thereof .
  • hydrophilic or water-soluble gelling agents in view of their implementation in the hydrophilic phase. This selection is a general knowledge of the skilled person.
  • the hydrophilic phase represents between 30% and 80% by weight relative to the weight of C1 b.
  • the heart of the capsules represents between 20% and 70% of the weight of the capsules.
  • the hydrophilic phase therefore preferably represents between 6% and 56% of the weight of the capsules.
  • the composition C1b comprises from 30% to 80% by weight of hydrophilic phase and from 20% to 70% by weight of hydrophobic particles relative to the total weight of composition C1b.
  • Step b) of the process according to the invention consists in preparing a first emulsion (E1).
  • the first emulsion consists of a dispersion of droplets of composition C1a (respectively C1b) in a polymeric composition C2 immiscible with C1a (respectively C1b), created by dropwise addition of C1a (respectively C1b) in C2 with stirring.
  • the composition C1 is at a temperature of between 0 ° C. and 100 ° C., preferably between 10 ° C. and 80 ° C., and preferably between 15 ° C. and 60 ° C.
  • the composition C2 is at a temperature of between 0 ° C. and 100 ° C., preferably between 10 ° C. and 80 ° C., and preferably between 15 ° C. and 60 ° C.
  • the compositions C1 and C2 are not miscible with each other, which means that the amount (by weight) of the composition C1 capable of being solubilized in the composition C2 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C2, and that the amount (by weight) of the composition C2 capable of to be solubilized in composition C1 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C1.
  • the composition C1 comes into contact with the composition C2 with stirring, the latter is dispersed in the form of drops, called simple drops.
  • composition C2 is stirred to form an emulsion comprising drops of composition C1 dispersed in composition C2.
  • This emulsion is also called “simple emulsion” or emulsion C1-in-C2.
  • step b it is possible to use any type of stirrer usually used to form emulsions, such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a homogenizer at high pressure, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a homogenizer at high pressure, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a homogenizer at high pressure, a colloid mill, a high shear disperser or a high speed homogenizer.
  • composition C1 is as defined above.
  • the heart of the drops of the first emulsion is entirely formed of C1 a or a single hydrophobic solid particle.
  • composition C2 is intended to form the future solid envelope of the microcapsules.
  • the volume fraction of C1 in C2 can vary from 0.1 to 0.7 in order to control the thickness of the envelope of the capsules obtained at the end of the process.
  • the ratio between the volume of composition C1 and the volume of composition C2 varies between 1: 10 and 10: 1.
  • this ratio is between 1: 3 and 5: 1, preferably between 1: 3 and 3: 1.
  • the destabilization kinetics of the drops of the emulsion (E1) is significantly slow, which allows the envelope of the microcapsules to be polymerized during step e) before the emulsion is destabilized. .
  • the polymerization once completed, then provides a thermodynamic stabilization.
  • the relatively high viscosity of the composition C2 ensures the stability of the emulsion (E1) obtained at the end of step b).
  • the viscosity of the composition C2 at 25 ° C is between 1000 mPa.s and 50,000 mPa.s, preferably between 2000 mPa.s and 25,000 mPa.s, and for example between 3000 mPa. s and 15,000 mPa.s.
  • the viscosity of the composition C2 is greater than the viscosity of the composition C1.
  • the viscosity is measured using a Haake Rheostress TM 600 rheometer equipped with a cone of 60 mm diameter and 2 degrees angle, and a temperature control cell set at 25 ° C. The value of the viscosity is read for a shear rate of 10 s -1 .
  • the interfacial tension between compositions C1 and C2 is low.
  • these interfacial tensions vary between 0 mN / m and 50 mN / m, preferably between 0 mN / m and 20 mN / m.
  • the low interfacial tension between the compositions C1 and C2 also advantageously makes it possible to ensure the stability of the emulsion (E1) obtained at the end of step b).
  • composition C2 contains at least one monomer or polymer, at least one crosslinking agent, and optionally at least one (photo) initiator or crosslinking catalyst, thus making it crosslinkable.
  • the composition C2 comprises from 50% to 99% by weight of monomer or polymer, or a mixture of monomers or polymers, relative to the total weight of the composition C2.
  • the composition C2 comprises from 1% to 20% by weight of crosslinking agent or of a mixture of crosslinking agents, relative to the total weight of the composition C2.
  • the composition C2 comprises from 0.1% to 5% by weight of photoinitiator or a mixture of photoinitiators, relative to the total weight of the composition C2.
  • the composition C2 comprises from 0.001% to 70% by weight of crosslinking agent with respect to the weight of said composition C2.
  • the term “monomer” or “polymer” denotes any base unit suitable for the formation of a solid material by polymerization, either alone or in combination with other monomers or polymers.
  • These monomers may be chosen from monomers comprising at least one reactive functional group chosen from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, mercaptoester, thiolene, siloxane, epoxy, oxetane, urethane, isocyanate and peroxide functions.
  • the monomers may be chosen from monomers carrying at least one of the above-mentioned reactive functional groups and additionally bearing at least one functional group selected from the group consisting of primary, secondary and tertiary alkylamine functions, quaternary amino functions, sulfate functions, sulfonate, phoshate, phosphonate, carboxylate, hydroxyl, halogen, and mixtures thereof.
  • the polymers used in the composition C2 can be chosen from polyethers, polyesters, polyurethanes, polyureas, polyethylene glycols, polypropylene glycols, polyamides, polyacetals, polyimides, polyolefins, polysulphides and polydimethylsiloxanes, said polymers additionally bearing at least one reactive function chosen. in the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, mercaptoester, thiolene, siloxane, epoxy, oxetane, urethane, isocyanate and peroxide functions.
  • polymers examples include, but are not limited to, the following polymers: poly (2- (1-naphthyloxy) ethyl acrylate), poly (2- (2-naphthyloxy) ethyl acrylate), poly (2- (2-naphthyloxy) ethyl methacrylate), polysorbitol dimethacrylate, polyacrylamide, poly ((2- (1-naphthyloxy) ethanol), poly (2- (2-naphthyloxy) ethanol), poly (1-chloro-2) , 3-epoxypropane), poly (n-butyl isocyanate), poly (N-vinyl carbazole), poly (N-vinyl pyrrolidone), poly (p-benzamide), poly (p-chlorostyrene), poly (p-methyl styrene) poly (p-phenylene oxide), poly (p-phenylene sulfide), poly (N- (methacryloxye
  • crosslinking agent is meant a compound carrying at least two reactive functional groups capable of crosslinking a monomer or a polymer, or a mixture of monomers or polymers, during its polymerization.
  • the crosslinking agent may be chosen from molecules bearing at least two functional groups chosen from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, mercaptoester, thiolene, siloxane, epoxy, oxetane, urethane, isocyanate and peroxide functions.
  • crosslinking agent there may be mentioned in particular:
  • diacrylates such as 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, polyethylene glycol dimethacrylate, 1, 9-nonanediol dimethacrylate, 1,4-butanediol dimethacrylate, 2,2-bis (4) methacryloxyphenyl) propane, 1,3-butanediol dimethacrylate, 1,10-decanediol dimethacrylate, bis (2-methacryloxyethyl) N, N'-1,9-nonylene biscarbamate, 1,4-butanediol diacrylate, ethylene glycol diacrylate, 1,5-pentanediol dimethacrylate, 1,4-phenylene diacrylate, allyl methacrylate, ⁇ , ⁇ '-methylenebisacrylamide, 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) ) phenyl] propane, t
  • multifunctional acrylates such as dipentaerythritol pentaacrylate, 1,1,1-trimethylolpropane triacrylate, 1,1,1-trimethylolpropane trimethacrylate, ethylenediamine tetramethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate;
  • acrylates which also have other reactive functional groups, such as propargyl methacrylate, 2-cyanoethyl acrylate, tricyclodecane dimethanol diacrylate, hydroxypropyl methacrylate, N-acryloxysuccinimide, N- (2-hydroxypropyl) methacrylamide, N- ( 3-aminopropyl) methacrylamide hydrochloride, N- (t-BOC-aminopropyl) methacrylamide, 2-aminoethyl methacrylate hydrochloride, monoacryloxyethyl phosphate, o-nitrobenzyl methacrylate, acrylic anhydride, 2- (tert-butylamino) ethyl methacrylate, N, N-diallylacrylamide, glycidyl methacrylate, 2-hydroxyethyl acrylate, 4- (2-acryloxyaheoxy) -2-hydroxybenzophenone, N- (Phthalimidomethyl) acrylamide, cinnamy
  • photoinitiator is meant a compound capable of fragmenting under the effect of light radiation.
  • photoinitiators which can be used according to the present invention are known in the art and are described, for example in "Photoinitiators in crosslinking”. Coatings ", G. Li Bassi, Double Bond - Chemistry of Paints, No. 361, November 1985, p.34-41” Industrial Applications of Photoinduced Polymerization “, Henri Strub, L'ActualInstitut Chimique, February 2000, p. .5-13 and "Photopolymers: theoretical considerations and reaction of taking", Marc, JM Abadie, Double Liaison - Chemistry of the Paintings, n ° 435-436, 1992, p.28-34.
  • photoinitiators include:
  • ⁇ -hydroxyketones such as 2-hydroxy-2-methyl-1-phenyl-1-propanone, sold for example under the names DAROCUR® 1 173 and 4265, IRGACURE® 184, 2959, and 500 by the company BASF, and ADDITOL® CPK by CYTEC;
  • ⁇ -aminoketones in particular 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, sold, for example, under the names Irgacure® 907 and 369 by the company BASF;
  • acylphosphine oxides such as, for example, bis-acylphosphine oxides (BAPO) sold for example under the names IRGACURE® 819, 1700, and 1800, DAROCUR® 4265, LUCIRIN® TPO, and LUCIRIN® TPO-L by the company BASF.
  • BAPO bis-acylphosphine oxides
  • aromatic ketones such as benzophenone, phenylglyoxylates, such as the methyl ester of phenylglyoxylic acid, oxime esters, such as [1- (4-phenylsulfanylbenzoyl) heptylideneamino] benzoate, sulphonium salts, iodonium salts and oxime sulphonates.
  • composition C2 may further comprise an additional monomer or polymer capable of improving the properties of the envelope of the microcapsules and / or to give new properties to the envelope of the microcapsules.
  • monomers or polymers bearing a group sensitive to pH, temperature, UV or IR there may be mentioned monomers or polymers bearing a group sensitive to pH, temperature, UV or IR.
  • Additional monomers or polymers may be chosen from monomers or polymers bearing at least one reactive functional group chosen from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, mercaptoester, thiolene, siloxane, epoxy, oxetane and urethane functions. isocyanate and peroxide, and also bearing one of the following groups:
  • a hydrophobic group such as a fluorinated group, for example trifluoroethyl methacrylate, trifluoroethyl acrylate, tetrafluoropropyl methacrylate, pentafluoropropyl acrylate, hexafluorobutyl acrylate, or fluorophenyl isocyanate;
  • a group that is sensitive to pH such as primary, secondary or tertiary amines, carboxylic acids, phosphate, sulphate, nitrate or carbonate groups;
  • UV-sensitive or UV-cleavable group such as azobenzene, spiropyran, 2-diazo-1, 2-naphthoquinone, o-nitrobenzyl, thiol, or 6-nitro-veratroyloxycarbonyl, for example poly (ethylene) oxide) -block-poly (2-nitrobenzylmethacrylate), and other block copolymers, as described in particular in Liu et al., Polymer Chemistry 2013, 4, 3431-3443;
  • an IR-sensitive or IR-cleavable group such as o-nitrobenzyl or 2-diazo-1,2-naphthoquinone, for example the polymers described in Liu et al., Polymer Chemistry 2013, 4, 3431-3443; and
  • a temperature-sensitive group such as poly (N-isopropylacrylamide).
  • Step c) of the process according to the invention consists in preparing a second emulsion (E2).
  • the second emulsion consists of a dispersion of droplets of the first emulsion in a composition C3 immiscible with C2, created by dropwise addition of the first emulsion in C3 with stirring.
  • a composition C1 a the preparation of the second emulsion is carried out at a temperature above T m .
  • the preparation of the second emulsion is carried out at a temperature below T m .
  • the compositions C2 and C3 are not miscible with each other, which means that the amount (by weight) of the composition C2 capable of being solubilized in the composition C3 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C3, and that the amount (by weight) of the composition C3 capable of to be solubilized in composition C2 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C2.
  • a double drop formed during step c) corresponds to a single drop of composition C1 as described above, surrounded by a composition envelope C2 which completely encapsulates said single drop.
  • the double drop formed during step c) may also comprise at least two single drops of composition C1, said single drops being surrounded by a composition envelope C2 which completely encapsulates said single drops.
  • said double drops comprise a heart consisting of one or more single drops of composition C1, and a layer of composition C2 surrounding said heart.
  • the resulting emulsion (E2) is generally a double polydisperse emulsion (C1-in-C2-in-C3 emulsion or C1 / C2 / C3 emulsion), which means that the double drops do not have a distinct size distribution in the emulsion (E2).
  • the immiscibility between the compositions C2 and C3 makes it possible to avoid mixing between the layer of composition C2 and the composition C3 and thus ensures the stability of the emulsion (E2).
  • compositions C2 and C3 also makes it possible to prevent the volatile compound of the composition C1 from migrating from the heart of the drops to the composition C3.
  • step c it is possible to use any type of stirrer usually used to form emulsions, such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a homogenizer at high pressure, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a homogenizer at high pressure, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a homogenizer at high pressure, a colloid mill, a high shear disperser or a high speed homogenizer.
  • the viscosity of the composition C3 at 25 ° C is higher than the viscosity of the emulsion (E1) at 25 ° C.
  • the viscosity of the composition C3 at 25 ° C is between 500 mPa.s and 100,000 mPa.s.
  • the viscosity of the composition C3 at 25 ° C. is between 3,000 mPa.s and 100,000 mPa.s, preferably between 5,000 mPa.s and 80,000 mPa.s, for example between 7,000 mPa.s. and 70,000 mPa.s.
  • the destabilization rate of the double drops of the emulsion (E2) is significantly slow compared to the duration of the process of the invention. , which then provides a kinetic stabilization of the emulsions (E2) and then (E3) until the polymerization of the capsule shell is completed.
  • the capsules once polymerized are thermodynamically stable.
  • the very high viscosity of the composition C3 ensures the stability of the emulsion (E2) obtained at the end of step b).
  • a high viscosity of the system advantageously ensures the kinetic stability of the double emulsion (E2), preventing it from being out of phase for the duration of the manufacturing process.
  • the interfacial tension between compositions C2 and C3 is low.
  • the low interfacial tension between the compositions C2 and C3 also advantageously makes it possible to ensure the stability of the emulsion (E2) obtained at the end of step c).
  • the volume fraction of the first emulsion (E1) in C3 can be varied from 0.05 to 0.5 in order, on the one hand, to improve the production yield and, on the other hand, to vary the mean diameter of the capsules. At the end of this step, the size distribution of the second emulsion is relatively wide.
  • the ratio between the emulsion volume (E1) and the composition volume C3 varies between 1: 10 and 10: 1.
  • this ratio is between 1: 9 and 3: 1, preferably between 1: 9 and 1: 1.
  • composition C3 may further comprise at least one gelling agent as described above.
  • the composition C3 further comprises at least one connected polymer, preferably with a molecular weight greater than 5000 g. mol "1 , and / or at least one polymer of molecular weight greater than 5,000 g. mol " 1 , and / or solid particles such as silicates.
  • the composition C3 comprises at least one plugged polymer that can be used as a gelling agent, preferably with a molecular weight greater than 5,000 g. mol "1, preferably between 10 000 g. mol” 1 and 500 000 g. mol "1 , for example between 50,000 g mol -1 and 300,000 g. mol "1 .
  • branched polymer (or branched polymer) is meant a polymer having at least one branch point between its two end groups, a branch point (also called branch point) being a point of a chain on which is fixed a side chain also called branch or hanging chain.
  • branched polymers there may be mentioned for example graft polymers, comb, or star polymers or dendrimers.
  • the composition C3 comprises at least one polymer with a molecular weight greater than 5,000 g. mol "1 , preferably between 10,000 g. mol "1 and 500,000 g mol -1 , for example between 50,000 g. mol "1 and 300 000 g mol -1 can be used as a gelling agent.
  • polymer that can be used as a gelling agent mention may be made of the following compounds, used alone or mixed together:
  • cellulose derivatives such as cellulose ethers: methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, methylhydroxyethyl cellulose, ethylhydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose or methylhydroxypropyl cellulose;
  • polyacrylates also called carbomers
  • PAA polyacrylic acid
  • PMAA polymethacrylic acid
  • HPEMA poly (hydroxyethyl methacrylate)
  • HPMA poly (N-2-hydroxypropyl methacrylate)
  • polyacrylamides such as poly (N-isopropylacrylamide) (PNIPAM);
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • poly (ethylene glycol), poly (propylene glycol) and their derivatives such as poly (ethylene glycol) acrylate / methacrylate, poly (ethylene glycol) diacrylate / dimethacrylate, polypropylene carbonate;
  • polysaccharides such as carrageenans, carob gum or tara gums, dextran, xanthan gums, chitosan, agarose, hyaluronic acids, gellan gum, guar gum, gum arabic, gum tragacanth , gum diutane, oat gum, karaya gum, ghatti gum, curdian gum, pectin, konjac gum, starch;
  • protein derivatives such as gelatin, collagen, fibrin, polylysine, albumin, casein;
  • silicone derivatives such as polydimethylsiloxane (also called dimethicone), alkyl silicones, aryl silicones, alkyl aryl silicones, polyethylene glycol dimethicones, polypropylene glycol dimethicone;
  • waxes such as diester waxes (alkanediol diesters, hydroxyl acid diesters), triester waxes (triacylglycerols, triesters of alkane-1, 2-diol, ⁇ -hydroxy acid and fatty acid, esters of hydroxymalonic acid, fatty acid and alcohol, triesters of hydroxyl acids, fatty acid and fatty alcohol, triesters of fatty acid, hydroxyl acid and diol) and polyester waxes (polyesters of Fatty acids).
  • the fatty acid esters which can be used as waxes in the context of the invention are, for example, cetyl palmitate or octanoate.
  • fatty acids that can be used as waxes such as cerotic acid, palmitic acid, stearic acid, dihydroxystearic acid, behenic acid, lignoceric acid, arachidic acid, myristic acid, lauric acid, tridecyclic acid, pentadecyclic acid, margaric acid, nonadecyclic acid, henicosylic acid, tricosylic acid, pentacosylic acid, heptacosylic acid, montanic acid or nonacosylic acid;
  • fatty acid salts in particular fatty acid aluminum salts, such as aluminum stearate, hydroxyl aluminum bis (2-ethylhexanoate);
  • castor oil and its derivatives especially modified hydrogenated castor oil or compounds obtained by esterification of castor oil with fatty alcohols;
  • styrenic polymers such as styrene butadiene
  • polyolefins such as polyisobutene.
  • the composition C3 comprises solid particles such as clays, silicas and silicates that can be used as gelling agents.
  • clays and silicates belonging in particular to the category of phyllosilicates also known as layered silicas.
  • silicates also known as layered silicas.
  • the fumed synthetic silicas can also be used.
  • the clays, silicates and silicas mentioned above can advantageously be modified by organic molecules such as polyethers, ethoxylated amides, quaternary ammonium salts, long chain diamines, long chain esters, polyethylene glycols, polypropylene glycols.
  • These particles can be used alone or mixed together.
  • the composition C3 comprises at least one polymer with a molecular weight greater than 5,000 g. mol- 1 and solid particles Any mixture of the compounds mentioned above may be used.
  • Step d) of the process according to the invention consists in refining the size of the drops of the second emulsion (E2).
  • the refining in size is carried out at a temperature greater than T m .
  • the second monodisperse emulsion is then allowed to cool below to a temperature below T m .
  • the refining in size is carried out at a temperature below T m .
  • Step d) may consist in applying a homogeneous controlled shear to the emulsion (E2), said shear rate applied being between 10 s -1 and 100,000 s -1 .
  • the double polydisperse drops obtained in step c) are subjected to a size refinement consisting of shearing them capable of breaking them into new double drops of homogeneous and controlled diameters.
  • this fragmentation step is carried out using a Couette type high-shear cell according to a process described in patent application EP 15 306 428.2.
  • step d) the second emulsion (E2), obtained at the end of step c), consisting of polydisperse double droplets dispersed in a continuous phase, is subjected to shear in a mixer, which applies a homogeneous controlled shear.
  • step d) consists in applying a homogeneous controlled shear to the emulsion (E2), said applied shearing speed being between 1000 s -1 and 100,000 s -1 .
  • the shear rate is said to be controlled and homogeneous, regardless of the duration, when it passes to an identical maximum value for all parts of the emulsion, at a given instant that may vary. from one point of the emulsion to another.
  • the exact configuration of the mixer is not essential according to the invention, as long as the entire emulsion has been subjected to the same maximum shear out of this device.
  • Mixers adapted to perform step d) are described in particular in US 5,938,581.
  • the second emulsion can undergo homogeneous controlled shear as it flows through a cell formed by:
  • the shear rate applied to the second emulsion is between 1,000 s -1 and 100,000 s -1 , preferably between 1,000 s -1 and 50,000 s -1 , and preferably between 2,000 s "1 and 20,000 s " 1 .
  • the second emulsion is introduced into the mixer and is then subjected to shear resulting in the formation of the third emulsion.
  • the third emulsion (E3) is chemically identical to the second emulsion (E2) but consists of monodisperse double drops while the emulsion (E2) consists of double polydisperse drops.
  • the third emulsion (E3) typically consists of a dispersion of double drops comprising a core consisting of one or more drops of composition C1 and a layer of composition C2 encapsulating said core, said double drops being dispersed in composition C3.
  • the difference between the second emulsion and the third emulsion is the size variance of the double drops: the drops of the second emulsion are polydisperse in size while the drops of the third emulsion are monodisperse, thanks to the fragmentation mechanism described above.
  • the second emulsion is introduced continuously into the mixer, which means that the quantity of double emulsion (E2) introduced at the mixer inlet is the same as the quantity of third emulsion ( E3) at the mixer outlet.
  • the size of the drops of the emulsion (E3) corresponds essentially to the size of the drops of the solid microcapsules after polymerization, it is possible to adjust the size of the microcapsules and the thickness of the envelope by adjusting the speed of the shearing during step d), with a strong correlation between decrease in drop size and increase in shear rate. This makes it possible to adjust the resulting dimensions of the microcapsules by varying the shear rate applied during step d).
  • the mixer implemented during step d) is a Couette type mixer, comprising two concentric cylinders, an outer cylinder of inner radius R 0 and an inner cylinder of outer radius R , the cylinder external being fixed and the inner cylinder being rotated with an angular velocity ⁇ .
  • a Couette type mixer adapted for the process of the invention may be provided by T.S.R. France.
  • the angular velocity ⁇ of the internal rotating cylinder of the Couette type mixer is greater than or equal to 30 rad.s 1 .
  • the angular velocity ⁇ of the inner rotating cylinder of the Couette type mixer is about 70 rad.s -1 .
  • the distance d between the two concentric cylinders is equal to 100 ⁇ .
  • the second emulsion is introduced at the inlet of the mixer, typically via a pump, and is directed towards the space between the two concentric cylinders, the outer cylinder being fixed and the inner cylinder being rotated at an angular velocity ⁇ .
  • the shear rate applied to said emulsion is given by the following equation:
  • R 0 is the internal radius of the fixed outer cylinder
  • - R is the outer radius of the inner cylinder in rotation.
  • the step d) consists in applying to the emulsion (E2) a shear rate of less than 1000 s "1 .
  • the fragmentation step d) can be carried out using any type of mixer usually used to form emulsions with a shear rate of less than 1000 s -1 , in which case the viscosity of the composition C3 is greater than 2,000 mPa.s, namely under conditions such as those described in the patent application FR 16 61787.
  • step d) the emulsion (E2), consisting of polydisperse drops dispersed in a continuous phase, is subjected to shearing, for example in a mixer, at a low shear rate, to be less than 1,000 s "1 .
  • the shear rate applied in step d) is, for example, between 10 s -1 and 1000 s -1 .
  • the shear rate applied in step d) is strictly less than 1000 s -1 .
  • the emulsion drops (E2) can be efficiently fragmented into fine and monodisperse emulsion drops (E3) only if a high shear stress is applied thereto.
  • the shear stress ⁇ applied to a drop of emulsion (E2) is defined as the tangential force per unit area of drop resulting from the macroscopic shear applied to the emulsion during its stirring during step d).
  • the high viscosity of the composition C3 makes it possible to apply a very high shear stress to the emulsion drops (E2) in the mixer, even if the shear rate is low and the shear inhomogeneous.
  • step d) it is possible to use any type of stirrer usually used to form emulsions, such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a homogenizer membrane, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a homogenizer membrane, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a homogenizer membrane, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a simple emulsifier such as a mechanical stirrer with pale or a static emulsifier is used to implement step d). Indeed, this is possible because this embodiment requires neither controlled shear nor shear greater than 1,000 s -1 .
  • Step e) of the process of the invention consists of the crosslinking and therefore the formation of the shell of the solid microcapsules according to the invention.
  • This step makes it possible both to achieve the expected performance of protection and retention of the capsules and to ensure their thermodynamic stability, permanently preventing any destabilizing mechanism such as coalescence or ripening.
  • step e) is a photopolymerization step of exposing the emulsion (E3) to a light source capable of initiating the photopolymerization of the composition C2, in particular to a UV light source emitting preferably in the wavelength range of between 100 nm and 400 nm, and in particular for a duration of less than 15 minutes.
  • step e) consists of subjecting the emulsion (E3) to photopolymerization, which will allow the photopolymerization of the composition C2. This step will make it possible to obtain microcapsules encapsulating the volatile compound as defined above.
  • step e) consists in exposing the emulsion (E3) to a light source capable of initiating the photopolymerization of the composition C2.
  • the light source is a source of UV light.
  • the UV light source emits in the wavelength range of between 100 nm and 400 nm.
  • the emulsion (E3) is exposed to a light source for less than 15 minutes, and preferably for 5 to 10 minutes.
  • the envelope of the aforementioned double drops consisting of photocurable composition C2
  • the envelope of the aforementioned double drops is crosslinked and thus converted into a viscoelastic polymeric envelope, encapsulating and protecting the volatile compound (s) from their) release in the absence of a mechanical trigger.
  • step e) is a polymerization step, without exposure to a light source, the duration of this polymerization step e) being preferably between 8 hours and 100 hours and / or this step e) being carried out at a temperature between 20 ° C and 80 ° C.
  • the polymerization is initiated for example by exposure to heat (thermal initiation), or simply by contacting the monomers, polymers and crosslinking agents with each other, or with a catalyst.
  • the polymerization time is then generally greater than several hours.
  • the polymerization step e) of the composition C2 is carried out for a period of between 8 hours and 100 hours at a temperature of between 20 ° C. and 80 ° C.
  • composition obtained at the end of stage e comprising solid microcapsules dispersed in composition C3, is ready for use and can be used without any additional step of post-treatment of the capsules is required.
  • the thickness of the envelope of the microcapsules thus obtained is typically between 0.1 ⁇ m and 20 ⁇ m, preferably between 0.2 ⁇ m and 10 ⁇ m, preferably between 0.2 ⁇ m and 8 ⁇ m.
  • the solid microcapsules obtained at the end of step e) are devoid of surfactant at the interface between the solid shell and the external medium (or continuous phase), in particular represented by the composition C3. .
  • the method of the invention has the advantage of not requiring a surfactant, in any of steps b) to e) of formation of the envelope of the solid microcapsules.
  • the method of the invention thus makes it possible to reduce the presence of additives which could modify the properties of the final product obtained after the release of the volatile compound.
  • the present invention also relates to a series (or set) of solid microcapsules, obtainable by the method as defined above, in which each microcapsule comprises:
  • a core comprising a composition C1 as defined above, and
  • a solid envelope completely encapsulating at its periphery the core, in which the mean diameter of said microcapsules is between 1 ⁇ and 30 ⁇ , the thickness of the rigid envelope is between 0.1 ⁇ and 20 ⁇ and the difference type of the diameter distribution of the microcapsules is less than 50%, in particular less than 25%, or less than 1 ⁇ .
  • the process of the invention makes it possible to obtain monodisperse particles.
  • the series of solid microcapsules mentioned above is formed of a population of monodisperse particles in size.
  • the standard deviation of the diameter distribution of the microcapsules is less than 50%, in particular less than 25%, or less than 1 ⁇ m.
  • the size distribution of the solid microcapsules can be measured by light scattering technique using a Mastersizer 3000 (Malvern Instruments) equipped with a Hydro SV cell.
  • the aforementioned solid microcapsules comprise a solid shell entirely composed of crosslinked polymer (obtained from composition C2).
  • the present invention therefore also relates to solid microcapsules comprising a core and a rigid envelope completely encapsulating at its periphery the core, the core being a composition C1 and said rigid envelope being made of crosslinked polymer,
  • the diameter of said capsule being between 1 ⁇ and 30 ⁇ and the thickness of the rigid envelope being between 0.1 ⁇ and 20 ⁇ ,
  • composition C1 is:
  • composition C1a comprising a single hydrophobic solid particle
  • composition C1b comprising a plurality of hydrophobic solid particles dispersed in a hydrophilic phase
  • hydrophobic solid particles containing one or more lipophilic volatile compounds and one or more hydrophobic materials, solid at room temperature and liquid at a temperature above T m , T m being between 30 ° C and 80 ° C.
  • the present invention also relates to a composition comprising a series of solid microcapsules as defined above.
  • the composition comprises at least one double population of solid microcapsules according to the invention which differ from each other at least in the composition C1, in particular at the level of the perfuming agent.
  • This embodiment is advantageous in that it notably makes it possible to stably and efficiently encapsulate incompatible volatile compounds when present within the same solution.
  • the capsules of the invention may advantageously be used to protect the active ingredients used in the polymer, elastomer, rubber, paint, adhesive, seal, mortar, paper, varnish or coating; in synthetic chemistry products; laundry, detergent, laundry and home care products; in agrochemicals such as fertilizers, herbicides, insecticides, fungicides or pesticides; textiles; petrochemicals such as lubricants, fuels, bitumens, drilling fluids and well stimulation.
  • the present invention also relates to a method for releasing a volatile compound, comprising a step of applying a mechanical shear stress to a composition comprising a series of solid microcapsules as defined above.
  • a mechanical stirrer (Ika Eurostar 20) equipped with a deflocculating stirring propeller is used to carry out all the stirring steps.
  • composition C1a is placed in a bath thermostated at 35 ° C and stirred at 500 rpm until complete dissolution of the wax.
  • Composition B is placed in a bath thermostated at 35 ° C and stirred at 200 rpm until complete homogenization.
  • the composition C1 a is then added to the composition B dropwise with stirring at 2000 rpm, still at 35 ° C.
  • the mixture is stirred at 2000 rpm for 5 minutes and then sonicated (Vibra-cell 75042, Sonics) for 20 minutes (draws 5s / 2s) at 30% amplitude. If the temperature exceeds 35 ° C during sonication, the mixture is cooled by ice.
  • the first emulsion (E1) is thus obtained.
  • composition C3 is stirred at 1000 rpm until complete homogenization.
  • the second monodisperse emulsion (E3) obtained in the previous step is irradiated for 15 minutes with the aid of a UV light source (Dymax LightBox ECE 2000) having a maximum light intensity of 0.1 W / cm 2 at a wavelength of 365 nm.
  • a UV light source Dymax LightBox ECE 2000
  • the solid microcapsules according to Example 1 have a good size distribution, namely an average size of 2.4 ⁇ and a standard deviation of 1.1 ⁇ , ie 46%. Moreover, the quality of encapsulation of the volatile lipophilic compound, namely the organic solvent, with the microcapsules according to Example 1 was followed for 30 days at room temperature.
  • the solid microcapsules according to Example 1 thus prove to be particularly suitable for effectively encapsulating a volatile lipophilic compound, in particular an organic solvent.
  • Example 2 Manufacture of solid capsules according to the invention
  • a mechanical stirrer (Ika Eurostar 20) equipped with a deflocculating stirring propeller is used to carry out all the stirring steps.
  • Beta-ionone (4- (2,6,6-Trimethyl-1-cyclohexenyl) -3-buten-2-one, Sigma 2
  • composition C1a is placed in a bath thermostated at 35 ° C and stirred at 500 rpm until complete dissolution of the wax.
  • Composition B is placed in a bath thermostated at 35 ° C and stirred at 200 rpm until complete homogenization.
  • the composition C1 a is then added to the composition B dropwise with stirring at 2000 rpm still at 35 ° C. It is then subjected to high agitation using an emulsification rod for 5 min (19G, Ultra-Turrax®, IKA) and sonication for 3 minutes (Vibra-cell 75042, Sonics, 5s / 2s) at 30% amplitude. If the temperature exceeds 35 ° C during sonication, the mixture is cooled by ice.
  • the first emulsion (E1) is thus obtained.
  • composition C3 is stirred at 2000 rpm until complete homogenization.
  • a monodisperse emulsion (E3) is thus obtained.
  • the second monodisperse emulsion (E3) obtained in the previous step is irradiated for 15 minutes with the aid of a UV light source (Dymax LightBox ECE 2000) having a maximum light intensity of 0.1 W / cm 2 at a wavelength of 365 nm.
  • a UV light source Dymax LightBox ECE 2000
  • the solid microcapsules according to Example 2 have a good size distribution, namely an average size of 10 ⁇ and a standard deviation of 3.7 ⁇ is 37%.
  • the capsules according to the invention are capable of efficiently retaining 99.5% +/- 0.2% of the initially encapsulated beta-ionone.
  • the solid microcapsules according to Example 2 thus prove to be particularly suitable for effectively encapsulating a volatile lipophilic compound, in particular an odoriferous molecule such as beta-ionone.

Abstract

La présente invention concerne un procédé de préparation de microcapsules solides comprenant les étapes suivantes : a) la préparation d'une composition C1, qui est soit une composition C1a, comprenant une particule solide hydrophobe unique, soit une composition C1b comprenant plusieurs particules solides hydrophobes dispersées dans une phase hydrophile, b) l'addition sous agitation de la composition C1 dans une composition polymérique C2 à une température Tb, ce par quoi on obtient une émulsion (E1); c) l'addition sous agitation de l'émulsion (E1) dans une composition C3 à une température Tc, ce par quoi on obtient une émulsion double (E2); d) l'application d'un cisaillement à l'émulsion (E2), ce par quoi on obtient une émulsion double (E3); et e) la polymérisation de la composition C2, ce par quoi on obtient des microcapsules solides dispersées dans la composition C3.

Description

PROCÉDÉ DE PRÉPARATION DE CAPSULES COMPRENANT AU MOINS UN COMPOSÉ VOLATILE ET CAPSULES OBTENUES
La présente invention a pour objet un procédé de préparation de capsules comprenant au moins un composé volatile. Elle a également pour objet les capsules telles qu'obtenues ainsi que des compositions les contenant.
De nombreux composés très volatiles sont souvent présents dans les produits formulés, notamment des composés parfumants qui confèrent aux produits formulés des propriétés odorantes intéressantes.
De par leur nature volatile, ces composés s'évaporent rapidement du produit formulé qui les contient, ce qui limite leur intérêt puisque le produit formulé perd ainsi rapidement ses propriétés odorantes.
De plus, certains de ces composés sont fragiles et susceptibles d'être dégradés par suite d'interactions avec leur environnement par des mécanismes tels que l'hydrolyse, la dénaturation thermique ou l'oxydation, ce qui restreint également la durée de vie des propriétés odorantes du produit formulé.
L'encapsulation des composés volatiles représente un moyen très intéressant pour limiter leur évaporation et empêcher leur dégradation, augmentant ainsi la durée de vie des performances odorantes du produit formulé qui les contient.
De très nombreuses capsules ont été développées afin de protéger et/ou isoler des principes actifs dans les produits formulés, et notamment des composés volatiles. Ces capsules résultent de procédés de fabrication tels que l'atomisation (spray-drying), la polymérisation interfaciale, la précipitation interfaciale ou l'évaporation de solvant parmi de nombreux autres. Le temps de diffusion de composés volatiles à travers les matériaux formant l'enveloppe des capsules réalisées par la plupart de ces procédés demeure très court, ce qui résulte en une fuite très rapide des capsules. Ainsi, la durée de vie des propriétés odorantes du produit formulé qui les contient n'est pas significativement allongée.
La difficulté de proposer une barrière réellement efficace à la diffusion des composés volatiles fait qu'il n'existe pas à ce jour de capsule possédant des propriétés de protection et de rétention satisfaisantes de ces composés volatiles. En d'autres termes, le développement de capsules possédant des propriétés de protection et de rétention améliorée de composés volatiles demeure un objectif constant. La présente invention a donc pour but de fournir un procédé permettant d'encapsuler des composés volatiles, voire très volatiles, et ce en évitant les inconvénients susmentionnés.
La présente invention a également pour but de fournir un procédé d'encapsulation par double émulsion permettant d'obtenir des capsules de taille contrôlée, notamment de taille inférieure à 20 μηι, voire 5 μηι.
La présente invention a également pour but de fournir des capsules contenant au moins un composé volatile, voire très volatile, présentant d'excellentes capacités de rétention.
La présente invention a également pour but de fournir des capsules contenant au moins un composé volatile, voire très volatile, limitant la diffusion d'espèces chimiques susceptibles de dégrader lesdits composés volatiles et donc de protéger les composés volatiles de la dégradation.
La présente invention a également pour but d'améliorer les performances de produits formulés contenant des composés très volatiles en proposant des capsules présentant une barrière efficace à leur évaporation ainsi qu'une protection contre leur dégradation.
Ainsi, la présente invention concerne un procédé de préparation de microcapsules solides comprenant les étapes suivantes :
a) la préparation d'une composition C1 , qui est soit une composition C1 a, comprenant une particule solide hydrophobe unique, soit une composition C1 b comprenant plusieurs particules solides hydrophobes dispersées dans une phase hydrophile,
la/les particule(s) solide(s) hydrophobe(s) contenant un ou plusieurs composés volatiles lipophiles et un ou plusieurs matériaux hydrophobes, solides à température ambiante et liquides à une température supérieure à Tm,
b) l'addition sous agitation de la composition C1 dans une composition polymérique C2 à une température Tb, les compositions C1 et C2 n'étant pas miscibles l'une dans l'autre,
la température Tb étant supérieure à Tm lorsque la composition C1 est une composition C1 a et la température Tb étant inférieure à Tm lorsque la composition C1 est une composition C1 b, la composition C2 comprenant au moins un monomère ou polymère, au moins un agent réticulant, et éventuellement au moins un (photo)initiateur ou catalyseur de réticulation,
la viscosité de la composition C2 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de la composition C1 ,
ce par quoi on obtient une émulsion (E1 ) comprenant des gouttes de composition C1 a ou C1 b dispersées dans la composition C2 ;
c) l'addition sous agitation de l'émulsion (E1 ) dans une composition C3 à une température Tc, les compositions C2 et C3 n'étant pas miscibles l'une dans l'autre,
la température Tc étant supérieure à Tm lorsque l'émulsion (E1 ) comprend des gouttes de composition C1 a dispersées dans la composition C2 et la température Tc étant inférieure à Tm lorsque l'émulsion (E1 ) comprend des gouttes de composition C1 b dispersées dans la composition C2,
la viscosité de la composition C3 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de l'émulsion (E1 ),
ce par quoi on obtient une émulsion double (E2) comprenant des gouttes dispersées dans la composition C3 ;
d) l'application d'un cisaillement à l'émulsion (E2), à une température Td, la température Td étant supérieure à Tm lorsque la composition C1 de l'étape a) est une composition C1 a et la température Td étant inférieure à Tm lorsque la composition C1 de l'étape a) est une composition C1 b,
ce par quoi on obtient une émulsion double (E3) comprenant des gouttes de taille contrôlée dispersées dans la composition C3 ; et
e) la polymérisation de la composition C2, ce par quoi on obtient des microcapsules solides dispersées dans la composition C3.
Le procédé de l'invention permet donc de préparer des microcapsules solides comprenant un cœur et une enveloppe solide encapsulant totalement à sa périphérie le cœur, dans laquelle le cœur est une composition C1 comprenant au moins une particule solide hydrophobe contenant un ou plusieurs composés volatiles lipophiles. Les capsules de l'invention présentent d'excellentes capacités de rétention des composés volatiles qu'elles contiennent grâce à plusieurs mécanismes permettant de réduire, voire même d'éliminer leur évaporation :
- Le cœur des capsules contient un matériau ou un mélange de matériaux dans lequel les composés volatiles sont solubles. Les composés volatiles ont ainsi une grande affinité pour ce matériau, ce qui limite grandement leur caractère volatile.
- Lorsque le cœur des capsules contient plus d'une particule, celles-ci sont dispersées dans une phase hydrophile dans laquelle la solubilité des composés volatiles est négligeable. Ceci permet de contenir les composés volatiles dans les particules et de prévenir leur diffusion vers l'extérieur des capsules.
- Le polymère formant l'enveloppe rigide des capsules limite avantageusement la diffusion des espèces chimiques à travers cette enveloppe, notamment la diffusion des composés volatiles vers l'extérieur des capsules.
Le polymère formant l'enveloppe rigide des capsules limite également avantageusement la diffusion (ou pénétration) d'espèces chimiques susceptibles de dégrader les composés volatiles à travers cette enveloppe, protégeant ainsi les composés volatiles de la dégradation.
Le procédé de l'invention consiste à réaliser une double émulsion composée de gouttelettes contenant les particules de composés volatiles enveloppées d'une phase liquide réticulable. Ces doubles gouttes sont ensuite rendues monodisperses en taille avant d'être transformées par réticulation ou polymérisation en capsules rigides. La préparation implique 5 étapes décrites ci-après de façon détaillée.
Etape a)
L'étape a) du procédé selon l'invention consiste à préparer une composition C1 comprenant au moins une particule solide hydrophobe contenant au moins un composé volatile liphophile.
Le cœur des microcapsules de l'invention peut être préparé de deux façons différentes selon que l'on souhaite qu'il soit composé d'une seule ou de plusieurs particules, c'est-à-dire selon la nature de C1 (C1 a ou C1 b). Selon un mode de réalisation, lorsque la composition C1 est une composition C1 a, l'étape a) comprend une étape de chauffage du ou des matériaux hydrophobes à une température supérieure à Tm, suivie d'une étape d'addition du ou des composés volatiles lipophiles, et d'une étape de mélange de l'ensemble à une température supérieure à Tm.
Ainsi, si l'on ne souhaite qu'une seule particule dans le cœur, pour obtenir une composition C1 a, le matériau hydrophobe ou le mélange de matériaux hydrophobes destiné à former les particules est chauffé au-dessus de Tm. Les composés volatiles sont ensuite ajoutés et le mélange formé est agité tout en maintenant la température au-dessus de Tm.
Selon un autre mode de réalisation, lorsque la composition C1 est une composition C1 b, l'étape a) comprend en outre une étape de dispersion de la composition C1 a dans une phase hydrophile comprenant optionnellement en outre au moins un agent dispersant et/ou au moins un agent gélifiant, suivie d'une étape de refroidissement de la dispersion ainsi obtenue à une température inférieure à Tm, ce par quoi on obtient des particules solides hydrophobes dispersées dans ladite phase hydrophile.
Ainsi, si l'on souhaite plusieurs particules dans le cœur des microcapsules, le mélange C1 a est dispersé dans une phase hydrophile non miscible avec C1 a, de préférence en présence d'au moins un agent dispersant et/ou au moins un agent gélifiant tels que décrits ci-après. L'émulsion obtenue est ensuite refroidie en- dessous de Tm afin de rendre solides les particules de composés volatiles.
Composition C1
La composition C1 selon l'invention comprend au moins une particule solide hydrophobe, ladite particule contenant au moins un composé volatile lipophile et au moins un matériau hydrophobe, solide à température ambiante et liquide à une température supérieure à Tm.
Selon un mode de réalisation, la composition C1 comprend une particule solide hydrophobe unique. Celle-ci est nommée C1 a.
Selon un autre mode de réalisation, la composition C1 comprend plusieurs particules solides hydrophobes qui sont alors dispersées dans une phase hydrophile. Une telle composition est nommée C1 b. La composition C1 b correspond donc à la dispersion d'une composition C1 a dans une phase hydrophile. Comme indiqué ci-dessus, la ou les particule(s) solide(s) hydrophobe(s) selon l'invention contiennent un ou plusieurs composés volatiles lipophiles et un ou plusieurs matériaux hydrophobes, solides à température ambiante et liquides à une température supérieure à Tm,
Composé volatile lipophile
La composition C1 selon l'invention comprend au moins un composé volatile lipophile. Elle peut également comprendre un mélange de plusieurs composés volatiles.
Par « composé volatile », on entend un composé susceptible de s'évaporer en moins d'une heure, à température ambiante (25°C) et pression atmosphérique (760 mm Hg). Un composé volatile selon l'invention est donc liquide à température ambiante, ayant notamment une pression de vapeur non nulle, à température ambiante et pression atmosphérique, en particulier ayant une pression de vapeur allant de 0,13 Pa à 40 000 Pa (10~3 à 300 mm de Hg), et de préférence allant de 1 ,3 Pa à 13 000 Pa (0,01 à 100 mm de Hg), et préférentiellement allant de 1 ,3 Pa à
1 300 Pa (0,01 à 10 mm de Hg). La vitesse d'évaporation d'un composé volatile conforme à l'invention peut être notamment évaluée au moyen du protocole décrit dans la demande internationale WO2006/013413, et plus particulièrement au moyen du protocole décrit ci-après.
On introduit dans un cristallisoir (diamètre : 7 cm) placé sur une balance se trouvant dans une enceinte d'environ 0,3 m3 régulée en température (25°C) et en hygrométrie (humidité relative 50%) 15 g de composé volatile à tester.
On laisse le liquide s'évaporer librement, sans l'agiter, en assurant une ventilation par un ventilateur (PAPST-MOTOREN, référence 8550 N, tournant à
2 700 tours/minute) disposé en position verticale au-dessus du cristallisoir contenant le composé volatile, les pales étant dirigées vers le cristallisoir, à une distance de 20 cm par rapport au fond du cristallisoir.
On mesure à intervalles de temps réguliers la masse de composé volatile restante dans le cristallisoir.
On obtient alors le profil d'évaporation du composé volatile en traçant la courbe de la quantité de produit évaporé (en mg/cm2) en fonction du temps (en min). Puis on calcule la vitesse d'évaporation qui correspond à la tangente à l'origine de la courbe obtenue. Les vitesses d'évaporation sont exprimées en mg de composé volatile évaporé par unité de surface (cm2) et par unité de temps (minute).
Dans le cadre de la présente invention, les composés volatiles sont lipophiles, qui sont ainsi miscibles dans le matériau hydrophobe, en particulier les cires/beurres et immiscibles dans la phase hydrophile, lorsque présente, dans laquelle les particules sont suspendues. Selon l'invention, le composé volatile lipophile peut être un composé unique ou un mélange comprenant tout composé volatile lipophile utilisable au sens de l'invention.
Selon un mode de réalisation, les composés volatiles lipophiles sont choisis parmi les agents parfumants, les flavonoïdes, les acides gras polyinsaturés, et leurs mélanges.
Selon l'invention, le composé volatile lipophile peut être sous la forme d'un mélange. Ainsi, le composé volatile lipophile selon l'invention peut comprendre un agent parfumant unique (ou parfum unique) ou un mélange de plusieurs agents parfumants (ou mélange de plusieurs parfums).
Parmi les agents parfumants, on peut notamment citer tout type de parfum ou de fragrance, ces termes étant utilisés ici de façon indifférente. Ces parfums ou fragrances sont bien connus de l'homme du métier et incluent notamment ceux mentionnés, par exemple, dans S. Arctander, Perfume and Flavor Chemicals (Montclair, N.J., 1969), S. Arctander, Perfume and Flavor Materials of Natural Origin (Elizabeth, N.J., 1960), dans la liste de l'International Fragrance Association (IFRA http://www.ifraorg.org/en/ingredients) et dans "Flavor and Fragrance Materials", 1991 (Allured Publishing Co. Wheaton, III. USA).
Les parfums utilisés dans le cadre de la présente invention peuvent comprendre les produits naturels comme les extraits, les huiles essentielles, les absolus, les résinoïdes, les résines, les concrètes, etc .. ainsi que les substances basiques de synthèse comme les hydrocarbures, les alcools, les aldéhydes, les cétones, les éthers, les acides, les esters, les acétals, les cétals, les nitriles, etc ., y compris les composés, saturés et insaturés, les composés aliphatiques, alicycliques et hétérocycliques.
Selon un mode de réalisation, l'agent parfumant comprend moins de 10%, voire moins de 7,5%, en poids de composé(s) avec un ClogP inférieur à 2,1 , par rapport au poids total dudit agent parfumant. Selon un mode de réalisation, l'agent parfumant ne comprend pas de composé avec un ClogP inférieur à 2,1 . Selon un autre mode de réalisation, les composés volatiles lipophiles sont choisis parmi les solvants organiques tels que les hydrocarbures aliphatiques saturés et insaturés, halogénés et non halogénés, linéaires, ramifiés et cycliques ; les hydrocarbures aromatiques halogénés et non halogénés ; les alcools ; les glycols tels que l'éthylène glycol, le propylène glycol et leurs dérivés ; les cétones telles que l'acétone, la butanone ou la méthylisobutylcétone ; les esters ; les éthers linéaires et cycliques, aliphatiques et aromatiques, tels que le méthyl t- butyléther ou le tétrahydrofurane ; les éthers de glycol tels que l'éthylène glycol monométhyl éther, l'éthylène glycol monoéthyl éther, l'éthylène glycol monoéthyl éther acétate, l'éthylène glycol monobutyl éther, le diéthylène glycol monométhyl éther, le diéthylène glycol monobutyl éther, le diéthylène glycol monobutyl éther acétate, le diéthylène glycol monoéthyl éther, le diéthylène glycol monophényl éther, le diéthylène glycol diméthyl éther, le propylène glycol monométhyl éther, le dipropylène glycol monométhyl éther, le tripropylène glycol monométhyl éther, le propylène glycol monométhyl éther acétate, le propylène glycol monoéthyl éther acétate, et le propylène glycol monobutyl éther.
Selon un autre mode de réalisation, les composés volatiles lipophiles sont choisis parmi les agents ignifuges ou retardateurs de flamme tels que les composés bromés, par exemple les décabromodiphényléthers, les hexabromocyclododécanes, les oligomères d'époxyde bromés ; les composés phosphorés, par exemple les alkyl phosphates, les aryl phosphates, les bisaryl phosphates ; les chloroparaffines à courte et moyenne chaîne (contenant jusqu'à environ 25 atomes de carbone).
Selon un mode de réalisation, la teneur en poids de composés volatiles est comprise entre 50% et 99%, de préférence entre 70% et 98%, par rapport au poids de la composition C1 a.
Selon un mode de réalisation, lorsque la composition C1 est une composition C1 b, la composition C1 a représente entre 20% et 70 % du poids de C1 b. Le poids de composés volatiles représente alors entre 10% et 69,3% du poids de C1 b, de préférence entre 14% et 68,6%.
Selon un mode de réalisation, le cœur des capsules (formée par la composition C1 a ou C1 b) représente entre 20% et 70% du poids des capsules. Le poids de composés volatiles représente donc entre 10% et 69,3% (de préférence entre 14% et 68,6%) du poids des capsules pour des capsules dont le cœur est formé par une composition C1 a (une seule particule), ou entre 2% et 48,5% (de préférence entre 2,8% et 48%) du poids des capsules pour des capsules dont le cœur est formé par une composition C1 b (dispersion de plusieurs particules).
Matériau hydrophobe
Les particules hydrophobes de la composition C1 selon l'invention contiennent au moins un matériau hydrophobe.
Selon un mode de réalisation, ledit matériau hydrophobe est un composé solide à température ambiante et liquide à une température T supérieure à Tm. De préférence, Tm est comprise entre 30°C et 80°C, et préférentiellement entre 35°C et 55°C.
Selon un mode de réalisation, le ou les matériaux hydrophobes sont choisis parmi les cires, les beurres ou corps gras pâteux, et leurs mélanges.
Cire(s)
Par « cire », on entend au sens de l'invention, un composé lipophile, solide à température ambiante (25°C), à changement d'état solide/liquide réversible, ayant un point de fusion supérieur ou égal à 30°C pouvant aller jusqu'à 120°C, de préférence 80°C.
Le protocole de mesure de ce point de fusion est décrit plus loin.
Les cires susceptibles d'être utilisées selon l'invention peuvent être choisies parmi les cires, solides, déformables ou non à température ambiante, d'origine animale, végétale, minérale ou de synthèse et leurs mélanges.
On peut notamment utiliser les cires hydrocarbonées comme la cire d'abeilles, la cire de lanoline, et les cires d'insectes de Chine; la cire de riz, la cire de Carnauba, la cire de Candellila, la cire d'Ouricurry, la cire d'Alfa, la cire de fibres de liège, la cire de canne à sucre, la cire du Japon et la cire de sumac; la cire de montan, les cires microcristallines, les paraffines et l'ozokérite; les cires de polyéthylène, les cires obtenues par la synthèse de Fisher-Tropsch et les copolymères cireux ainsi que leurs esters.
On peut notamment citer les cires polyvinyl éther, les cires basées sur du cétyl palmitate, les cires de type ester de glycérol et d'acides gras, les cires de copolymères éthylène, les cires de polyéthylène oxydée, les cires homopolymères éthylène, les cires de polyéthylène, les cires polyéther, les cires copolymères éthylène/vinyl acétate et les cires polypropylène, les cires commercialisées sous les dénominations Kahlwax®2039 (nom INCI : Candelilla cera) et Kahlwax®6607 (nom INCI : Helianthus Annuus Seed Wax) par la société Kahl Wachsraffinerie, Casid HSA (nom INCI : Hydroxystearic Acid) par la société SACI CFPA, Performa®260 (nom INCI : Synthetic wax) et Performa®103 (nom INCI : Synthetic wax) par la société New Phase, et AJK-CE2046 (nom INCI : Cetearyl alcohol, dibutyl lauroyl glutamide, dibutyl ethylhaxanoyl glutamide) par la société Kokyu Alcohol Kogyo.
On peut aussi citer les cires obtenues par hydrogénation catalytique d'huiles animales ou végétales ayant des chaînes grasses, linéaires ou ramifiées, en C8-C32.
Parmi celles-ci, on peut notamment citer l'huile de jojoba hydrogénée, l'huile de tournesol hydrogénée, l'huile de ricin hydrogénée, l'huile de coprah hydrogénée et l'huile de lanoline hydrogénée, le tétrastéarate de di-(triméthylol-1 ,1 ,1 propane) vendu sous la dénomination « HEST 2T-4S » par la société HETERENE, le tétrabéhénate de di-(triméthylol-1 ,1 ,1 propane) vendue sous la dénomination HEST 2T-4B par la société HETERENE.
On peut également utiliser les cires obtenues par transestérification et hydrogénation d'huiles végétales, telles que l'huile de ricin ou d'olive, comme les cires vendues sous les dénominations de Phytowax ricin 16L64® et 22L73® et Phytowax Olive 18L57 par la société SOPHIM. De telles cires sont décrites dans la demande FR-A- 2792190.
A titre de cire au sens de l'invention, on peut également citer les hydrocarbures (n-alcanes, alcanes ramifiés, oléfines, alcanes cycliques, isoprénoïdes), les cétones (monocétones, β-dicétones), les alcools secondaires, les alcanediols (alcane-1 ,2-diols, alcane-2,3-diols, alcane-a,oo-diols), les acides (acide alcénoïque et acide alcanoïque), les cires esters (esters d'alcool primaire et esters d'alcool secondaire), les cires diesters (diesters d'alcanediol, diesters d'hydroxylacides), les cires triesters (triacylglycérols, triesters de alcane-1 ,2-diol, de ω-hydroxy acide et d'acide gras, esters d'acide hydroxymalonique, d'acide gras et d'alcool, triesters d'hydroxylacides, d'acide gras et d'alcool gras, triesters d'acide gras, d'hydroxylacide et de diol) et les cires polyesters (polyesters d'acides gras). On peut par exemple citer le n-octacosane, le n-heptacosane, le n-hexacosane, le n-pentacosane, le n-tétracosane, le n-tricosane, le n-docosane, le n-hénéicosane, le n-eicosane, le n-nonadécane, l'alcool myristylique, l'alcool pentadécylique, l'alcool cétylique, l'alcool palmitoléylique, l'alcool heptadécylique, l'alcool stéarylique, l'alcool nonadécylique, l'alcool arachidylique, l'alcool hénéicosylique, l'alcool béhénylique, l'alcool érucylique, l'alcool lignocérylique, l'alcool cérylique, le 1 -heptacosanol, l'alcool montanylique, l'alcool cluytylique, le 1 -octacosanol, le 1 -nonacosanol, l'alcool myricylique, l'alcool melissylique, le 1 -triacontanol et le 1 -dotriacontanol.
Les acides gras utilisables à titre de cires dans le cadre de l'invention sont par exemple l'acide cérotique, l'acide palmitique, l'acide stéarique, l'acide béhénique, l'acide lignocérique, l'acide arachidique, l'acide myristique, l'acide laurique, l'acide tridécyclique, l'acide pentadécyclique, l'acide margarique, l'acide nonadécyclique, l'acide hénéicosylique, l'acide tricosylique, l'acide pentacosylique, l'acide heptacosylique, l'acide montanique, et l'acide nonacosylique.
Les esters d'acides gras utilisables à titre de cires dans le cadre de l'invention sont par exemple le palmitate de cétyle, le l'octanoate de cétyle, le laurate de cétyle, le lactate de cétyle, l'isononanoate de cétyle, le stéarate de cétyle, le stéarate de stéaryle, le stéarate de myristyle, le myristate de cétyle, le stéarate d'isocétyle, le trimyristate de glycéryle, le tripalmitate de glycéryle, le monostéarate de glycéryle et le palmitate de glycéryle et de cétyle.
On peut aussi utiliser des cires siliconées qui peuvent être avantageusement des polysiloxanes substitués, de préférence à bas point de fusion.
Parmi les cires de silicones commerciales de ce type, on peut citer notamment celles vendues sous les dénominations Abilwax 9800, 9801 ou 9810 (GOLDSCHMIDT), KF910 et KF7002 (SHIN ETSU), ou 176-1 1 18-3 et 176-1 1481 (GENERAL ELECTRIC).
Les cires de silicone utilisables peuvent également être des alkyl ou alcoxydiméthicones tels que les produits commerciaux suivants : Abilwax 2428, 2434 et 2440 (GOLDSCHMIDT), ou VP 1622 et VP 1621 (WACKER), ainsi que les (C2o-C6o) alkyldiméthicones, en particulier les (C30-C45) alkyldiméthicones comme la cire siliconée vendue sous la dénomination SF-1642 par la société GE-Bayer Silicones.
On peut également utiliser des cires hydrocarbonées modifiées par des groupements siliconés ou fluorés comme par exemple : siliconyl candelilla, siliconyl beeswax et Fluorobeeswax de Koster Keunen.
Les cires peuvent également être choisies parmi les cires fluorées.
Beurre(s) ou corps gras pâteux
Par « beurre » (également appelé « corps gras pâteux ») au sens de la présente invention, on entend un composé gras lipophile à changement d'état solide/liquide réversible et comportant à la température de 25°C une fraction liquide et une fraction solide, et à pression atmosphérique (760 mm Hg). En d'autres termes, la température de fusion commençante du composé pâteux peut être inférieure à 25°C. La fraction liquide du composé pâteux mesurée à 25°C peut représenter de 9% à 97% en poids du composé. Cette fraction liquide à 25°C représente de préférence entre 15% et 85%, de préférence encore entre 40% et 85% en poids. De préférence, le ou les beurres présentent une température de fin de fusion inférieure à 60°C. De préférence, le ou les beurres présentent une dureté inférieure ou égale à 6 MPa.
De préférence, les beurres ou corps gras pâteux présentent à l'état solide une organisation cristalline anisotrope, visible par observations aux rayons X.
Au sens de l'invention, la température de fusion correspond à la température du pic le plus endothermique observé en analyse thermique (DSC) telle que décrite dans la norme ISO 1 1357-3 ; 1999. Le point de fusion d'un pâteux ou d'une cire peut être mesuré à l'aide d'un calorimètre à balayage différentiel (DSC), par exemple le calorimètre vendu sous la dénomination "DSC Q2000" par la société TA Instruments.
Concernant la mesure de la température de fusion et la détermination de la température de fin de fusion, les protocoles de préparation des échantillons et de mesure sont les suivants : Un échantillon de 5 mg de corps gras pâteux (ou beurre) ou de cire préalablement chauffé à 80°C et prélevés sous agitation magnétique à l'aide d'une spatule également chauffée est placé dans une capsule hermétique en aluminium, ou creuset. Deux essais sont réalisés pour s'assurer de la reproductibilité des résultats.
Les mesures sont réalisées sur le calorimètre mentionné ci-dessus. Le four est soumis à un balayage d'azote. Le refroidissement est assuré par l'échangeur thermique RCS 90. L'échantillon est ensuite soumis au protocole suivant en étant tout d'abord mis en température à 20°C, puis soumis à une première montée en température allant de 20°C à 80°C, à la vitesse de chauffe de 5°C/minute, puis est refroidi de 80°C à -80°C à une vitesse de refroidissement de 5°C/minute et enfin soumis à une deuxième montée en température allant de -80°C à 80°C à une vitesse de chauffe de 5°C/minute. Pendant la deuxième montée en température, on mesure la variation de la différence de puissance absorbée par le creuset vide et par le creuset contenant l'échantillon de beurre en fonction de la température. Le point de fusion du composé est la valeur de la température correspondant au sommet du pic de la courbe représentant la variation de la différence de puissance absorbée en fonction de la température. La température de fin de fusion correspond à la température à laquelle 95% de l'échantillon a fondu.
La fraction liquide en poids du beurre (ou corps gras pâteux) à 25°C est égale au rapport de l'enthalpie de fusion consommée à 25°C sur l'enthalpie de fusion du beurre. L'enthalpie de fusion du beurre ou composé pâteux est l'enthalpie consommée par le composé pour passer de l'état solide à l'état liquide.
Le beurre est dit à l'état solide lorsque l'intégralité de sa masse est sous forme solide cristalline. Le beurre est dit à l'état liquide lorsque l'intégralité de sa masse est sous forme liquide. L'enthalpie de fusion du beurre est égale à l'intégrale de l'ensemble de la courbe de fusion obtenue à l'aide du calorimètre suscité, avec une montée en température de 5°C ou 10°C par minute, selon la norme ISO 1 1357- 3:1999. L'enthalpie de fusion du beurre est la quantité d'énergie nécessaire pour faire passer le composé de l'état solide à l'état liquide. Elle est exprimée en J/g.
L'enthalpie de fusion consommée à 25°C est la quantité d'énergie absorbée par l'échantillon pour passer de l'état solide à l'état qu'il présente à 25°C constitué d'une fraction liquide et d'une fraction solide. La fraction liquide du beurre mesurée à 32°C représente de préférence de 30% à 100% en poids du composé, de préférence de 50% à 100%, de préférence encore de 60% à 100% en poids du composé. Lorsque la fraction liquide du beurre mesurée à 32°C est égale à 100%, la température de la fin de la plage de fusion du composé pâteux est inférieure ou égale à 32°C. La fraction liquide du beurre mesurée à 32°C est égale au rapport de l'enthalpie de fusion consommée à 32°C sur l'enthalpie de fusion du beurre. L'enthalpie de fusion consommée à 32°C est calculée de la même façon que l'enthalpie de fusion consommée à 23°C.
Concernant la mesure de la dureté, les protocoles de préparation des échantillons et de mesure sont les suivants : le beurre est placé dans un moule de 75 mm de diamètre qui est rempli à environ 75% de sa hauteur. Afin de s'affranchir du passé thermique et de contrôler la cristallisation, le moule est placé à l'étuve programmable Vôtsch VC0018 où il est tout d'abord mis en température à 80°C pendant 60 minutes, puis refroidi de 80°C à 0°C à une vitesse de refroidissement de 5°C/minute, puis laissé à la température stabilisée de 0°C pendant 60 minutes, puis soumis à une montée en température allant de 0°C à 20°C, à une vitesse de chauffe de 5°C/minute, puis laissé à la température stabilisée de 20°C pendant 180 minutes. La mesure de la force de compression est réalisée avec le texturomètre TA/TX2i de Swantech. Le mobile utilisé est choisi selon la texture : - mobile cylindrique en acier de 2 mm de diamètre pour les matières premières très rigides ; - mobile cylindrique en acier de 12 mm de diamètre pour les matières premières peu rigides. La mesure comporte 3 étapes : une 1 ère étape après détection automatique de la surface de l'échantillon où le mobile se déplace à la vitesse de mesure de 0,1 mm/s, et pénètre dans le beurre à une profondeur de pénétration de 0,3 mm, le logiciel note la valeur de la force maximale atteinte ; une 2ème étape dite de relaxation ou le mobile reste à cette position pendant une seconde et où on note la force après 1 seconde de relaxation ; enfin une 3ème étape dite de retrait ou le mobile revient à sa position initiale à la vitesse de 1 mm/s et on note l'énergie de retrait de la sonde (force négative).
La valeur de la dureté mesurée lors de la première étape correspond à la force de compression maximale mesurée en Newton divisée par la surface du cylindre du texturomètre exprimée en mm2 en contact avec le beurre ou l'émulsion selon l'invention. La valeur de dureté obtenue est exprimée en méga-pascals ou MPa.
Le corps gras pâteux ou beurre peut être choisi parmi les composés synthétiques et les composés d'origine végétale. Un corps gras pâteux peut être obtenu par synthèse à partir de produits de départ d'origine végétale.
Le corps gras pâteux est avantageusement choisi parmi :
- la lanoline et ses dérivés tels que l'alcool de lanoline, les lanolines oxyéthylénées, la lanoline acétylée, les esters de lanoline tels que le lanolate d'isopropyle, les lanolines oxypropylénées,
- les composés siliconés polymères ou non-polymères comme les polydiméthysiloxanes de masses moléculaires élevées, les polydiméthysiloxanes à chaînes latérales du type alkyle ou alcoxy ayant de 8 à 24 atomes de carbone, notamment les stéaryl diméthicones,
- les composés fluorés polymères ou non-polymères,
- les polymères vinyliques, notamment
- les homopolymères d'oléfines,
- les copolymères d'oléfines,
- les homopolymères et copolymères de diènes hydrogénés,
- les oligomères linéaires ou ramifiés, homo ou copolymères de (méth)acrylates d'alkyle ayant de préférence un groupement alkyle en C8-C30,
- les oligomères homo et copolymères d'esters vinyliques ayant des groupements alkyles en C8-C30,
- les oligomères homo et copolymères de vinyléthers ayant des groupements alkyles en C8-C3o, - les polyéthers liposolubles résultant de la polyéthérification entre un ou plusieurs diols en C2-Ci 0o, de préférence en C2-C5o,
- les esters et les polyesters, et
- leurs mélanges.
Selon un mode préféré de l'invention, le ou les beurres particuliers sont d'origine végétale tels que ceux décrits dans Ullmann's Encyclopedia of Industrial Chemistry (« Fats and Fatty Oils», A. Thomas, publié le 15/06/2000, D01 : 10.1002/14356007.a10_173, point 13.2.2.2F. Shea Butter, Bornéo Tallow, and Related Fats (Vegetable Butters)).
On peut citer plus particulièrement les triglycérides en C10-C18 (nom INCI : C10-18 Triglycérides) comportant à la température de 25°C et à pression atmosphérique (760 mm Hg) une fraction liquide et une fraction solide, le beurre de karité, le beurre de Karité Nilotica (Butyrospermum parkii), le beurre de Galam, (Butyrospermum parkii), le beurre ou graisse de Bornéo ou tengkawang tallow) (Shorea stenoptera), beurre de Shorea, beurre d'Illipé , beurre de Madhuca ou Bassia Madhuca longifolia, beurre de mowrah (Madhuca Latifolia), beurre de Katiau (Madhuca mottleyana), le beurre de Phulwara (M. butyracea), le beurre de mangue (Mangifera indica), le beurre de Murumuru (Astrocatyum murumuru), le beurre de Kokum (Garcinia Indica), le beurre d'Ucuuba (Virola sebifera), le beurre de Tucuma, le beurre de Painya (Kpangnan) (Pentadesma butyracea), le beurre de café (Coffea arabica), le beurre d'abricot (Prunus Armeniaca), le beurre de Macadamia (Macadamia Temifolia), le beurre de pépin de raisin (Vitis vinifera), le beurre d'avocat (Persea gratissima), le beurre d'olives (Olea europaea), le beurre d'amande douce (Prunus amygdalus dulcis), le beurre de cacao (Theobroma cacao) et le beurre de tournesol, le beurre sous le nom INCI Astrocaryum Murumuru Seed Butter, le beurre sous le nom INCI Theobroma Grandiflorum Seed Butter, et le beurre sous le nom INCI Irvingia Gabonensis Kernel Butter, les esters de jojoba (mélange de cire et d'huile de jojoba hydrogénée)(nom INCI : Jojoba esters) et les esters éthyliques de beurre de karité (nom INCI : Shea butter ethyl esters), et leurs mélanges.
Selon un mode de réalisation, lorsque la composition C1 est une composition C1 a, la teneur en poids de matériaux hydrophobes est comprise entre 1 % et 50%, de préférence entre 2% et 30%, par rapport au poids de composition C1 a. Selon un mode de réalisation, lorsque la composition C1 est une composition C1 b, la composition C1 a représente entre 20% et 70 % du poids de C1 b. La teneur en poids de matériaux hydrophobes est donc comprise entre 0,2% et 35%, de préférence entre 0,4% et 21 %, par rapport au poids de composition C1 b.
Phase hydrophile
Lorsque la composition C1 est une composition C1 b, celle-ci comprend une phase hydrophile dans laquelle sont dispersées les particules solides hydrophobes susmentionnées.
Selon un mode de réalisation, la phase hydrophile de C1 b comprend au moins un agent dispersant et/ou au moins un agent gélifiant.
De préférence, ladite phase hydrophile contient entre 1 % et 10%, de préférence entre 2% et 6%, en poids d'un ou plusieurs agents gélifiants et entre 1 % et 10%, de préférence entre 1 % et 4%, en poids d'un ou plusieurs agent(s) dispersant(s) par rapport au poids de ladite phase hydrophile.
Agent dispersant
La phase hydrophile susmentionnée peut en outre comprendre au moins un agent dispersant, différent de l'agent gélifiant ci-après. L'agent dispersant est de préférence choisi dans le groupe constitué des polyacrylates ; des esters de sucre / polysaccharide et d'acide(s) gras, en particulier des esters de dextrine et d'acide(s) gras, des esters d'inuline et d'acide(s) gras ou des esters de glycérol et d'acide(s) gras ; des polyamides ; des polyéthers et polyesters de silicone ; des alcools éthoxylés ; et de leurs mélanges.
Selon un mode de réalisation, l'agent dispersant est un tensioactif qui peut être choisi dans le groupe constitué des tensioactifs non ioniques, des tensioactifs anioniques, des tensioactifs amphotères ou zwitterioniques et leurs mélanges, de préférence des tensioactifs non ioniques.
A titre de tensioactifs pouvant être utilisés dans la présente invention, on peut citer ceux décrits dans la demande EP 1 764 084.
De préférence, un tensioactif pouvant être utilisé dans la présente invention est un tensioactif non ionique choisi parmi les esters d'acide gras de sorbitan et leurs dérivés oxyéthylénés, comme le monostéarate de sorbitan (nom CTFA : Sorbitan stéarate) vendu par la société ICI sous la dénomination Span 60, le monopalmitate de sorbitan (nom CTFA : Sorbitan palmitate) vendu par la société ICI sous la dénomination Span 40, les stéarates, palmitates et oléates de sorbitan oxyéthylénés (nom CTFA : Polysorbate) vendus par la société ICI sous les dénominations Tween, notamment le Polysorbate 60 (Tween 60), le Polysorbate 65 (Tween 65), le Polysorbate 80 (Tween 80).
Agent gélifiant
La phase hydrophile susmentionnée peut en outre comprendre au moins un agent gélifiant, différent de l'agent dispersant décrit ci-dessus.
L'agent gélifiant contribue à augmenter la viscosité de la phase hydrophile, et donc de la composition C1 b, ce qui permet d'assurer avantageusement la stabilité cinétique de la composition C1 b, prévenant ainsi le risque de déphasage pendant la durée du procédé de fabrication. Egalement, la viscosité relativement élevée de la composition C1 b assure la stabilité de l'émulsion (E1 ) obtenue à l'issue de l'étape b).
Selon un mode de réalisation, l'agent gélifiant est choisi parmi les polymères branchés, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , les polymères de poids moléculaire supérieur à 5 000 g. mol"1 , et leurs mélanges. Ces agents gélifiants sont décrits plus en détails ci-après.
Selon un mode de réalisation, l'agent gélifiant est un polymère branché, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , préférentiellement entre 10 000 g. mol"1 et 500 000 g. mol"1 , par exemple entre 50 000 g. mol"1 et 300 000 g. mol"1.
Selon un mode de réalisation, l'agent gélifiant est un polymère de poids moléculaire supérieur à 5 000 g. mol"1 , préférentiellement entre 10 000 g. mol"1 et 500 000 g. mol"1 , par exemple entre 50 000 g. mol"1 et 300 000 g. mol"1.
Selon un autre mode de réalisation, l'agent gélifiant est choisi parmi les dérivés de cellulose, les polyacrylates, les polyuréthanes et leurs dérivés, les polyéthers et leurs dérivés, les polyacrylamides, le polyvinylpyrrolidone (PVP) et ses dérivés, l'alcool polyvinylique (PVA) et ses dérivés, le poly(éthylène glycol), le poly(propylène glycol) et leurs dérivés, les polysaccharides, les dérivés protéinés, les sels d'acide gras, les dérivés du glycérol, les dérivés du glycoluril et leurs mélanges. Ces agents gélifiants sont décrits plus en détail ci-après. Bien entendu, l'homme du métier choisira des agents gélifiants hydrophiles ou hydrosolubles compte tenu de leur mise en œuvre dans la phase hydrophile. Cette sélection relève des connaissances générales de l'homme du métier.
Selon un mode de réalisation, la phase hydrophile représente entre 30% et 80% en poids par rapport au poids de C1 b. Le cœur des capsules représente entre 20% et 70% du poids des capsules. La phase hydrophile représente donc de préférence entre 6% et 56% du poids des capsules.
Selon un mode de réalisation, la composition C1 b comprend de 30% à 80% en poids de phase hydrophile et de 20% à 70% en poids de particules hydrophobes par rapport au poids total de la composition C1 b.
Etape b)
L'étape b) du procédé selon l'invention consiste à préparer une première émulsion (E1 ).
La première émulsion consiste en une dispersion de gouttelettes de la composition C1 a (respectivement C1 b) dans une composition polymérique C2 immiscible avec C1 a (respectivement C1 b), créée par addition goutte à goutte de C1 a (respectivement C1 b) dans C2 sous agitation.
Pendant l'étape b), tout en tenant compte du paramètre Tm, la composition C1 est à une température comprise entre 0°C et 100°C, de préférence entre 10°C et 80°C, et préférentiellement entre 15°C et 60°C. Pendant l'étape b), tout en tenant compte du paramètre Tm, la composition C2 est à une température comprise entre 0°C et 100°C, de préférence entre 10°C et 80°C, et préférentiellement entre 15°C et 60°C.
Dans les conditions d'addition de l'étape b), les compositions C1 et C2 ne sont pas miscibles l'une dans l'autre, ce qui signifie que la quantité (en poids) de la composition C1 capable d'être solubilisée dans la composition C2 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C2, et que la quantité (en poids) de la composition C2 capable d'être solubilisée dans la composition C1 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C1 . Ainsi, lorsque la composition C1 entre en contact avec la composition C2 sous agitation, celle-ci est dispersée sous la forme de gouttes, dites gouttes simples.
La composition C2 est agitée de manière à former une émulsion comprenant des gouttes de composition C1 dispersées dans la composition C2. Cette émulsion est aussi appelée « émulsion simple » ou émulsion C1 -dans-C2.
Pour mettre en œuvre l'étape b), on peut utiliser tout type d'agitateur usuellement utilisé pour former des émulsions, comme par exemple un agitateur mécanique à pâles, un émulseur statique, un homogénéisateur à ultrasons, un homogénéisateur à membrane, un homogénéisateur à haute pression, un moulin colloïdal, un disperseur à haut pouvoir de cisaillement ou un homogénéisateur à haute vitesse.
La composition C1 est telle que définie précédemment.
Pour obtenir des capsules contenant une seule particule, on choisira d'ajouter C1 a dans C2 à une température supérieure à Tm. En d'autres termes, dans cette variante de réalisation, le cœur des gouttes de la première émulsion est entièrement formé de C1 a ou d'une seule particule solide hydrophobe.
Pour obtenir des capsules contenant plusieurs particules, on choisira d'ajouter C1 b dans C2 à une température inférieure à Tm.
Composition C2
La composition C2 est destinée à former la future enveloppe solide des microcapsules.
La fraction volumique de C1 dans C2 peut varier de 0,1 à 0,7 afin de contrôler l'épaisseur de l'enveloppe des capsules obtenues au terme du procédé.
Selon un mode de réalisation, le ratio entre le volume de composition C1 et le volume de composition C2 varie entre 1 :10 et 10:1 . De préférence, ce ratio est compris entre 1 :3 et 5:1 , préférentiellement entre 1 :3 et 3:1 .
Selon ce mode de réalisation, la cinétique de déstabilisation des gouttes de l'émulsion (E1 ) est significativement lente, ce qui permet à l'enveloppe des microcapsules d'être polymérisée pendant l'étape e) avant que l'émulsion ne se déstabilise. La polymérisation, une fois achevée, fournit alors une stabilisation thermodynamique. Ainsi, la viscosité relativement élevée de la composition C2 assure la stabilité de l'émulsion (E1 ) obtenue à l'issue de l'étape b). De préférence, la viscosité de la composition C2 à 25°C est comprise entre 1 000 mPa.s et 50 000 mPa.s, préférentiellement entre 2 000 mPa.s et 25 000 mPa.s, et par exemple entre 3 000 mPa.s et 15 000 mPa.s.
De préférence, la viscosité de la composition C2 est supérieure à la viscosité de la composition C1 .
La viscosité est mesurée au moyen d'un rhéomètre Haake Rheostress™ 600 équipé d'un cône de diamètre 60 mm et d'angle 2 degrés, et d'une cellule de régulation en température réglée à 25°C. La valeur de la viscosité est lue pour une vitesse de cisaillement égale à 10 s"1.
De préférence, la tension interfaciale entre les compositions C1 et C2 est faible. Typiquement, ces tensions interfaciales varient entre 0 mN/m et 50 mN/m, de préférence entre 0 mN/m et 20 mN/m.
La faible tension interfaciale entre les compositions C1 et C2 permet également de façon avantageuse d'assurer la stabilité de l'émulsion (E1 ) obtenue à l'issue de l'étape b).
La composition C2 contient au moins un monomère ou polymère, au moins un agent réticulant, et éventuellement au moins un (photo)initiateur ou catalyseur de réticulation, la rendant ainsi réticulable.
Selon un mode de réalisation, la composition C2 comprend de 50% à 99% en poids de monomère ou de polymère, ou un mélange de monomères ou polymères, par rapport au poids total de la composition C2.
Selon un mode de réalisation, la composition C2 comprend de 1 % à 20% en poids d'agent réticulant ou d'un mélange d'agents réticulants, par rapport au poids total de la composition C2.
Selon un mode de réalisation, la composition C2 comprend de 0,1 % à 5% en poids de photoinitiateur ou d'un mélange de photoinitiateurs, par rapport au poids total de la composition C2.
Selon un mode de réalisation, la composition C2 comprend de 0,001 % à 70% en poids d'agent réticulant par rapport au poids de ladite composition C2. Selon l'invention, le terme « monomère » ou « polymère » désigne toute unité de base adaptée pour la formation d'un matériau solide par polymérisation, soit seul soit en combinaison avec d'autres monomères ou polymères.
Ces monomères peuvent être choisis parmi les monomères comprenant au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, mercaptoester, thiolène, siloxane, époxy, oxétane, uréthane, isocyanate et peroxyde.
En particulier, les monomères peuvent être choisis parmi les monomères portant au moins une des fonctions réactives susmentionnées et portant en outre au moins une fonction choisie dans le groupe constitué des fonctions alkylamines primaires, secondaires et tertiaires, des fonctions aminés quaternaires, des fonctions sulfate, sulfonate, phophate, phosphonate, carboxylate, hydroxyle, halogène, et leurs mélanges.
Les polymères utilisés dans la composition C2 peuvent être choisis parmi les polyéthers, polyesters, polyuréthanes, polyurées, polyéthylène glycols, polypropylène glycols, polyamides, polyacétals, polyimides, polyoléfines, polysulfures et les polydiméthylsiloxanes, lesdits polymères portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, mercaptoester, thiolène, siloxane, époxy, oxétane, uréthane, isocyanate et peroxyde.
Parmi les exemples de tels polymères, on peut citer, mais de façon non limitative, les polymères suivants : poly(2-(1 -naphthyloxy)-éthyl acrylate), poly(2-(2- naphthyloxy)-éthyl acrylate), poly(2-(2-naphthyloxy)-éthyl méthacrylate), polysorbitol diméthacrylate, polyacrylamide, poly((2-(1 -naphthyloxy) éthanol), poly(2-(2- naphthyloxy) éthanol), poly(1 -chloro-2,3-époxypropane), poly(n-butyl isocyanate), poly(N- vinyl carbazole), poly(N-vinyl pyrrolidone), poly(p-benzamide), poly(p- chlorostyrène), poly(p-méthyl styrène), poly(p-phénylène oxyde), poly(p-phénylène sulfure), poly(N-(méthacryloxyéthyl)succinimide), polybenzimidazol, polybutadiène, polybutylène téréphthalate, polychloral, polychloro trifluoro éthylène, polyéther imide, polyéther cétone, polyéther sulfone, polyhydridosilsesquioxane, poly(m- phénylène isophthalamide), poly(méthyl 2-acrylamido-2-méthoxyacéate), poly(2- acrylamido-2-méthylpropanesulfonique acide), poly-mono-butyl maléate, polybutylméthacrylate, poly(N-tert-butylméthacrylamide), poly(N-n- butylméthacrylamide), polycyclohexylméthacrylamide, poly(m-xylènebisacrylamide 2,3-diméthyl-1 ,3-butadiène,N,N-diméthylméthacrylamide), poly(n-butyl méthacrylate), poly(cyclohexyl méthacrylate), polyisobutyl méthacrylate, poly(4- cyclohexylstyrène), polycyclol acrylate, polycyclol méthacrylate, polydiéthyl éthoxyméthylènemalonate, poly(2,2,2-trifluoroéthyl méthacrylate), poly(1 ,1 ,1 - triméthylolpropane triméthacrylate), polyméthacrylate, poly(N,N-diméthylaniline, dihydrazide), poly(dihydrazine isophthalique), polyacide isophthalique, polydiméthyl benzilketal, épichlorohydrine, poly(éthyl-3,3-diéthoxyacrylate), poly(éthyl-3,3- diméthylacrylate), poly(éthyl vinylcétone), poly(vinyl éthylcétone), poly(penten-3- one), polyformaldéhyde poly(diallyl acétal), polyfumaronitrile, polyglycéryl propoxy triacrylate, polyglycéryl triméthacrylate, polyglycidoxypropyltriméthoxysilane, polyglycidyl acrylate, poly(n-heptyl acrylate), poly(n-heptyl ester d'acide acrylique), poly(n-heptyl méthacrylate), poly(3-hydroxypropionitrile), poly(2-hydroxypropyl acrylate), poly(2-hydroxypropyl méthacrylate), poly(N-
(méthacryloxyéthyl)phthalimide), poly(1 ,9-nonanediol diacrylate), poly(1 ,9- nonanediol diméthacrylate), poly(N-(n-propyl) acrylamide), poly(acide ortho- phthalique), poly(acide iso-phthalique), poly(acide 1 ,4-benzenedicarboxylique), poly(acide 1 ,3-benzenedicarboxylique), poly(acide phthalique), poly(mono-2- acryloxyéthyl ester), polyacide téréphthalique, polyanhydride phthalique, polyéthylène glycol diacrylate, polyéthylène glycol méthacrylate, polyéthylène glycol diméthacrylate, poly(isopropyl acrylate), polysorbitol pentaacrylate, polyvinyl bromoacétate, polychloroprène, poly(di-n-hexyl silylène), poly(di-n-propyl siloxane), polydiméthyl silylène, polydiphényl siloxane, polyvinyl propionate, polyvinyl triacétoxysilane, polyvinyl tris-tert-butoxysilane, polyvinyl butyral, polyalcool vinylique, polyacétate de vinyle, polyéthylène co-vinyl acétate, poly(bisphénol-A polysulfone), poly(1 ,3-dioxepane), poly(1 ,3-dioxolane), poly(1 ,4-phénylène vinylène), poly(2,6-diméthyl-1 A-phénylène oxyde), poly(acide 4-hydroxybenzoique), poly(4-méthyl pentène-1 ), poly(4-vinyl pyridine), polyméthylacrylonitrile, polyméthylphénylsiloxane, polyméthylsilméthylène, polyméthylsilsesquioxane, poly(phénylsilsesquioxane), poly(pyromellitimide-1 .4-diphényl éther), polytétrahydrofurane, polythiophène, poly(triméthylène oxyde), polyacrylonitrile, polyéther sulfone, polyéthylène-co-vinyl acétate, poly(perfluoréthylène propylène), poly(perfluoralkoxyl alcane), ou poly(styrène-acrylonitrile).
Par « agent réticulant », on entend un composé porteur d'au moins deux fonctions réactives susceptibles de réticuler un monomère ou un polymère, ou un mélange de monomères ou de polymères, lors de sa polymérisation. L'agent réticulant peut être choisi parmi des molécules portant au moins deux fonctions choisies dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, mercaptoester, thiolène, siloxane, époxy, oxétane, uréthane, isocyanate et peroxyde.
A titre d'agent réticulant, on peut notamment citer :
- les diacrylates, comme le 1 ,6-hexanediol diacrylate, le 1 ,6-hexanediol diméthacrylate, le polyéthylène glycol diméthacrylate, le 1 ,9-nonanediol diméthacrylate, le 1 ,4-butanediol diméthacrylate, le 2,2-bis(4-méthacryloxyphényl) propane, le 1 ,3-butanediol diméthacrylate, le 1 ,10-décanediol diméthacrylate, le bis(2-méthacryloxyéthyl) N,N'-1 ,9-nonylène biscarbamate, le 1 ,4-butanediol diacrylate, l'éthylène glycol diacrylate, le 1 ,5-pentanediol diméthacrylate, le 1 ,4- Phénylène diacrylate, l'allyl méthacrylate, le Ν,Ν'-méthylènebisacrylamide, le 2,2- bis[4-(2-hydroxy-3-méthacryloxypropoxy)phényl]propane, le tétraéthylène glycol diacrylate, l'éthylène glycol diméthacrylate, le diéthylène glycol diacrylate, le triéthylène glycol diacrylate, le triéthylène glycol diméthacrylate, le polyéthylène glycol diglycidyl éther, le Ν,Ν-diallylacrylamide, le 2,2-bis[4-(2-acryloxyéthoxy) phényl]propane, le glycidyl méthacrylate ;
- les acrylates multifonctionnels comme le dipentaérythritol pentaacrylate, le 1 ,1 ,1 - triméthylolpropane triacrylate, le 1 ,1 ,1 -triméthylolpropane triméthacrylate, l'éthylènediamine tétraméthacrylate, le pentaérythritol triacrylate, le pentaérythritol tétraacrylate ;
- les acrylates possédant également une autres fonction réactive, comme le propargyl méthacrylate, le 2-Cyanoéthyl acrylate, le tricyclodécane diméthanol diacrylate, l'hydroxypropyl méthacrylate, le N-acryloxysuccinimide, le N-(2- Hydroxypropyl)méthacrylamide, le N-(3-aminopropyl)méthacrylamide hydrochloride, le N-(t-BOC-aminopropyl)methacrylamide, le 2-aminoéthyl méthacrylate hydrochloride, le monoacryloxyéthyl phosphate, le o-nitrobenzyl méthacrylate, l'anhydride acrylique, le 2-(tert-butylamino)ethyl méthacrylate, le N,N- diallylacrylamide, le glycidyl méthacrylate, le 2-hydroxyéthyl acrylate, le 4-(2- acryloxyaéhoxy)-2-hydroxybenzophenone, le N-(Phthalimidométhyl)acrylamide, le cinnamyl méthacrylate.
Par « photoinitiateur », on entend un composé capable de se fragmenter sous l'effet d'un rayonnement lumineux.
Les photoinitiateurs utilisables selon la présente invention sont connus dans la technique et sont décrits, par exemple dans "Les photoinitiateurs dans la réticulation des revêtements", G. Li Bassi, Double Liaison - Chimie des Peintures, n°361 , novembre 1985, p.34-41 ; "Applications industrielles de la polymérisation photoinduite", Henri Strub, L'Actualité Chimique, février 2000, p.5-13 ; et "Photopolymères : considérations théoriques et réaction de prise", Marc, J.M. Abadie, Double Liaison - Chimie des Peintures, n°435-436, 1992, p.28-34.
Ces photoinitiateurs englobent :
- les α-hydroxycétones, comme la 2-hydroxy-2-méthyl-1 -phényl-1 - propanone, commercialisées par exemple sous les dénominations DAROCUR® 1 173 et 4265, IRGACURE® 184, 2959, et 500 par la société BASF, et ADDITOL® CPK par la société CYTEC ;
- les α-aminocétones, notamment la 2-benzyl-2-diméthylamino-1 -(4- morpholinophényl)-butanone-1 , commercialisées par exemple sous les dénominations IRGACURE® 907 et 369 par la société BASF ;
- les cétones aromatiques commercialisées par exemple sous la dénomination ESACURE® TZT par LAMBERTI ; ou encore les thioxanthones commercialisées par exemple sous la dénomination ESACURE® ITX par LAMBERTI, et les quinones. Ces cétones aromatiques nécessitent le plus souvent la présence d'un composé donneur d'hydrogène tel que les aminés tertiaires et notamment les alcanolamines. On peut notamment citer l'aminé tertiaire ESACURE® EDB commercialisée par la société LAMBERTI.
- les dérivés α-dicarbonyles dont le représentant le plus courant est le benzyldiméthylcétal commercialisé sous la dénomination IRGACURE® 651 par BASF. D'autres produits commerciaux sont commercialisés par la société LAMBERTI sous la dénomination ESACURE® KB1 , et
- les oxydes d'acylphosphine, tels que par exemple les oxydes de bis- acylphosphine (BAPO) commercialisés par exemple sous les dénominations IRGACURE® 819, 1700, et 1800, DAROCUR® 4265, LUCIRIN® TPO, et LUCIRIN® TPO-L par la société BASF.
Parmi les photoinitiateurs, on peut également mentionner les cétones aromatiques comme la benzophénone, les phénylglyoxylates, comme l'ester méthylique de l'acide phényl glyoxylique, les esters d'oxime, comme le [1 -(4- phénylsulfanylbenzoyl)heptylidèneamino]benzoate, les sels de sulfonium, les sels d'iodonium et les oxime sulfonates.
Selon un mode de réalisation, la composition C2 peut en outre comprendre un monomère ou un polymère additionnel capable d'améliorer les propriétés de l'enveloppe des microcapsules et/ou de donner de nouvelles propriétés à l'enveloppe des microcapsules.
Parmi ces monomères ou polymères additionnels, on peut citer les monomères ou polymères portant un groupe sensible au pH, à la température, aux UV ou aux IR.
Ces monomères ou polymères additionnels peuvent induire la rupture des microcapsules solides et par la suite la libération de leur contenu, après une stimulation via le pH, la température, les UV ou les IR.
Ces monomères ou polymères additionnels peuvent être choisis parmi les monomères ou polymères portant au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, mercaptoester, thiolène, siloxane, époxy, oxétane, uréthane, isocyanate et peroxyde, et portant également l'un des groupes suivants :
- un groupe hydrophobe tel qu'un groupe fluoré, par exemple le trifluoroéthyl méthacrylate, le trifluoroéthyl acrylate, le tétrafluoropropyl méthacrylate, le pentafluoropropyl acrylate, le hexafluorobutyl acrylate, ou le fluorophényl isocyanate ;
- un groupe sensible au pH comme les aminés primaires, secondaires ou tertiaires, les acides carboxyliques, les groupes phosphate, sulfate, nitrate, ou carbonate ;
- un groupe sensible aux UV ou clivable par UV (ou groupe photochromique) comme les groupes azobenzène, spiropyrane, 2-diazo-1 ,2-naphthoquinone, o- nitrobenzylé, thiol, ou 6-nitro-veratroyloxycarbonyle, par exemple poly(éthylène oxyde)-bloc-poly(2-nitrobenzylméthacrylate), et d'autres copolymères à blocs, comme décrit notamment dans Liu et al., Polymer Chemistry 2013, 4, 3431 -3443 ;
- un groupe sensible aux IR ou clivable par IR comme le o-nitrobenzyle ou le 2-diazo-1 ,2-naphthoquinone, par exemple les polymères décrits dans Liu et al., Polymer Chemistry 2013, 4, 3431 -3443 ; et
- un groupe sensible à la température comme le poly(N-isopropylacrylamide).
Etape c)
L'étape c) du procédé selon l'invention consiste à préparer une deuxième émulsion (E2).
La deuxième émulsion consiste en une dispersion de gouttelettes de la première émulsion dans une composition C3 immiscible avec C2, créée par addition goutte à goutte de la première émulsion dans C3 sous agitation. Comme indiqué ci-dessus, pour obtenir des capsules contenant une seule particule (lorsque la composition C1 est une composition C1 a), la préparation de la deuxième émulsion est réalisée à une température supérieure à Tm. Pour obtenir des capsules contenant plusieurs particules (lorsque la composition C1 est une composition C1 b), la préparation de la deuxième émulsion est réalisée à une température inférieure à Tm.
Dans les conditions d'addition de l'étape c), les compositions C2 et C3 ne sont pas miscibles l'une dans l'autre, ce qui signifie que la quantité (en poids) de la composition C2 capable d'être solubilisée dans la composition C3 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C3, et que la quantité (en poids) de la composition C3 capable d'être solubilisée dans la composition C2 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C2.
Ainsi, lorsque l'émulsion (E1 ) entre en contact avec la composition C3 sous agitation, celle-ci est dispersée sous la forme de gouttes, dites gouttes doubles, la dispersion de ces gouttes d'émulsion (E1 ) dans la phase continue C3 étant appelée émulsion (E2).
Typiquement, une goutte double formée pendant l'étape c) correspond à une goutte simple de composition C1 telle que décrite ci-dessus, entourée par une enveloppe de composition C2 qui encapsule totalement ladite goutte simple.
La goutte double formée pendant l'étape c) peut également comprendre au moins deux gouttes simples de composition C1 , lesdites gouttes simples étant entourées par une enveloppe de composition C2 qui encapsule totalement lesdites gouttes simples.
Ainsi, lesdites gouttes doubles comprennent un cœur constitué d'une ou plusieurs gouttes simples de composition C1 , et une couche de composition C2 entourant ledit cœur.
L'émulsion (E2) résultante est généralement une émulsion double polydisperse (émulsion C1 -dans-C2-dans-C3 ou émulsion C1/C2/C3), ce qui signifie que les gouttes doubles n'ont pas une nette distribution de taille dans l'émulsion (E2). L'immiscibilité entre les compositions C2 et C3 permet d'éviter le mélange entre la couche de composition C2 et la composition C3 et assure ainsi la stabilité de l'émulsion (E2).
L'immiscibilité entre les compositions C2 et C3 permet également d'empêcher le composé volatile de la composition C1 de migrer du cœur des gouttes vers la composition C3.
Pour mettre en œuvre l'étape c), on peut utiliser tout type d'agitateur usuellement utilisé pour former des émulsions, comme par exemple un agitateur mécanique à pâles, un émulseur statique, un homogénéisateur à ultrasons, un homogénéisateur à membrane, un homogénéisateur à haute pression, un moulin colloïdal, un disperseur à haut pouvoir de cisaillement ou un homogénéisateur à haute vitesse.
Composition C3
Selon un mode de réalisation, la viscosité de la composition C3 à 25°C est supérieure à la viscosité de l'émulsion (E1 ) à 25°C.
Selon l'invention, la viscosité de la composition C3 à 25°C est comprise entre 500 mPa.s et 100 000 mPa.s.
De préférence, la viscosité de la composition C3 à 25°C est comprise entre 3 000 mPa.s et 100 000 mPa.s, préférentiellement entre 5 000 mPa.s et 80 000 mPa.s, par exemple entre 7 000 mPa.s et 70 000 mPa.s.
Selon ce mode de réalisation, étant donné la viscosité très élevée de la phase continue formée par la composition C3, la vitesse de déstabilisation des gouttes doubles de l'émulsion (E2) est significativement lente par rapport à la durée du procédé de l'invention, ce qui fournit alors une stabilisation cinétique des émulsions (E2) puis (E3) jusqu'à ce que la polymérisation de l'enveloppe des capsules ne soit achevée. Les capsules une fois polymérisées sont stables thermodynamiquement.
Ainsi, la viscosité très élevée de la composition C3 assure la stabilité de l'émulsion (E2) obtenue à l'issue de l'étape b).
Une haute viscosité du système permet d'assurer avantageusement la stabilité cinétique de la double émulsion (E2), l'empêchant de se déphaser pendant la durée du procédé de fabrication. De préférence, la tension interfaciale entre les compositions C2 et C3 est faible. La faible tension interfaciale entre les compositions C2 et C3 permet également de façon avantageuse d'assurer la stabilité de l'émulsion (E2) obtenue à l'issue de l'étape c).
La fraction volumique de première émulsion (E1 ) dans C3 peut être variée de 0,05 à 0,5 afin d'une part d'améliorer le rendement de production et d'autre part de faire varier le diamètre moyen des capsules. A la fin de cette étape, la distribution de taille de la seconde émulsion est relativement large.
Selon un mode de réalisation, le ratio entre le volume d'émulsion (E1 ) et le volume de composition C3 varie entre 1 :10 et 10:1 . De préférence, ce ratio est compris entre 1 :9 et 3:1 , préférentiellement entre 1 :9 et 1 :1 .
Selon un mode de réalisation, la composition C3 peut en outre comprendre au moins un agent gélifiant tel que décrit précédemment.
Selon un mode de réalisation, la composition C3 comprend en outre au moins un polymère branché, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , et/ou au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 , et/ou des particules solides telles que des silicates.
Selon un mode de réalisation, la composition C3 comprend au moins un polymère branché utilisable comme agent gélifiant, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , préférentiellement entre 10 000 g. mol"1 et 500 000 g. mol"1 , par exemple entre 50 000 g. mol"1 et 300 000 g. mol"1.
Par « polymère branché » (ou polymère ramifié), on entend un polymère présentant au moins un point de ramification entre ses deux groupes terminaux, un point de ramification (aussi appelé point de branchement) étant un point d'une chaîne sur lequel est fixée une chaîne latérale aussi appelée branche ou chaîne pendante.
Parmi les polymères branchés, on peut par exemple citer les polymères greffés, en peigne ou encore les polymères en étoile ou les dendrimères.
Selon un mode de réalisation, la composition C3 comprend au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 , préférentiellement entre 10 000 g. mol"1 et 500 000 g. mol"1 , par exemple entre 50 000 g. mol"1 et 300 000 g. mol"1 utilisable comme agent gélifiant.
A titre de polymère utilisable comme agent gélifiant, on peut citer les composés suivants, utilisés seuls ou bien mélangés entre eux :
- les dérivés de cellulose, tels que les éthers de cellulose : le méthyl cellulose, l'éthyl cellulose, l'hydroxyéthyl cellulose, le méthylhydroxyéthyl cellulose, l'éthylhydroxyéthyl cellulose, le carboxyméthyl cellulose, l'hydroxypropyl cellulose ou le méthylhydroxypropyl cellulose ;
- les polyacrylates (encore appelés carbomères), tels que l'acide polyacrylique (PAA), l'acide polyméthacrylique (PMAA), le poly(hydroxyéthyl méthacrylate) (pHEMA), le poly(N-2-hydroxypropyl méthacrylate) (pHPMA) ;
- les polyacrylamides tels que le poly(N-isopropylacrylamide) (PNIPAM) ;
le polyvinylpyrrolidone (PVP) et ses dérivés ;
- l'alcool polyvinylique (PVA) et ses dérivés ;
- le poly(éthylène glycol), le poly(propylène glycol) et leurs dérivés, tels que le poly(éthylène glycol) acrylate/méthacrylate, le poly(éthylène glycol) diacrylate/diméthacrylate, le polypropylène carbonate ;
- les polysaccharides tels que les carraghénanes, les gommes de caroube ou gommes tara, le dextran, les gommes xanthanes, le chitosane, l'agarose, les acides hyaluroniques, la gomme gellane, la gomme de guar, la gomme arabique, la gomme adragante, la gomme diutane, la gomme d'avoine, la gomme karaya, la gomme ghatti, la gomme curdian, la pectine, la gomme konjac, l'amidon ;
- les dérivés protéinés tels que la gélatine, le collagène, la fibrine, la polylysine, l'albumine, la caséine ;
- les dérivés de silicone tels que le polydimethylsiloxane (aussi appelé diméthicone), les alkyl silicones, les aryl silicones, les alkyl aryl silicones, les polyéthylène glycol diméthicones, les polypropylène glycol diméthicone ;
- les cires, telles que les cires diester (diesters d'alcanediol, diesters d'hydroxylacides), les cires triester (triacylglycérols, triesters d'alcane-1 ,2-diol, de ω-hydroxy acide et d'acide gras, esters d'acide hydroxymalonique, d'acide gras et d'alcool, triesters d'hydroxylacides, d'acide gras et d'alcool gras, triesters d'acide gras, d'hydroxylacide et de diol) et les cires polyesters (polyesters d'acides gras). Les esters d'acides gras utilisables à titre de cires dans le cadre de l'invention sont par exemple le palmitate de cétyle, l'octanoate de cétyle, le laurate de cétyle, le lactate de cétyle, l'isononanoate de cétyle, le stéarate de cétyle, le stéarate de stéaryle, le stéarate de myristyle, le myristate de cétyle, le stéarate d'isocétyle, le trimyristate de glycéryle, le tripalmitate de glycéryle, le monostéarate de glycéryle ou le palmitate de glycéryle et de cétyle ;
- les acides gras utilisables comme cires tels que l'acide cérotique, l'acide palmitique, l'acide stéarique, l'acide dihydroxystéarique, l'acide béhénique, l'acide lignocérique, l'acide arachidique, l'acide myristique, l'acide laurique, l'acide tridécyclique, l'acide pentadécyclique, l'acide margarique, l'acide nonadécyclique, l'acide hénéicosylique, l'acide tricosylique, l'acide pentacosylique, l'acide heptacosylique, l'acide montanique ou l'acide nonacosylique ;
- les sels d'acide gras notamment les sels d'aluminium d'acide gras tels que l'aluminium stéarate, l'hydroxyl aluminium bis(2-éthylhexanoate) ;
- l'huile de jojoba isomérisée ;
- l'huile de tournesol hydrogénée ;
- l'huile de coprah hydrogénée ;
l'huile de lanoline hydrogénée ;
l'huile de ricin et ses dérivés, notamment l'huile de ricin hydrogénée modifiée ou les composés obtenus par estérification d'huile de ricin avec des alcools gras ;
- les polyuréthanes et leurs dérivés ;
- les polymères styréniques tels que le styrène butadiène ;
les polyoléfines telles que le polyisobutène.
Selon un mode de réalisation, la composition C3 comprend des particules solides telles que des argiles, des silices et des silicates utilisables comme agent gélifiant.
A titre de particules solides utilisables comme agent gélifiant, on peut citer les argiles et silicates appartenant notamment à la catégorie des phyllosilicates (encore appelées silices en feuillets). A titre d'exemple de silicate utilisable dans le cadre de l'invention, on peut citer la Bentonite, l'Hectorite, l'Attapulgite, la Sepiolite, la Montmorillonite, la Saponite, la Sauconite, la Nontronite, la Kaolinite, le Talc, la Sepiolite, la Craie. Les silices synthétiques pyrogénées peuvent également être utilisées. Les argiles, silicates et silices citées précédemment peuvent avantageusement être modifiées par des molécules organiques telles que des polyéthers, des amides éthoxylées, des sels d'ammonium quaternaires, des diamines à longue chaîne, des esters à longue chaîne, des polyéthylène glycols, des polypropylène glycols.
Ces particules peuvent être utilisées seules ou mélangées entre elles.
Selon un mode de réalisation, la composition C3 comprend au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 et des particules solides. Tout mélange des composés cités précédemment peut être utilisé.
Etape d)
L'étape d) du procédé selon l'invention consiste à affiner la taille des gouttes de la deuxième émulsion (E2).
Pour obtenir des capsules contenant une seule particule (lorsque la composition C1 est une composition C1 a), l'affinage en taille est réalisé à une température supérieure à Tm. La seconde émulsion monodisperse est alors laissée refroidir en-dessous jusqu'à une température inférieure à Tm.
Pour obtenir des capsules contenant plusieurs particules (lorsque la composition C1 est une composition C1 b), l'affinage en taille est réalisé à une température inférieure à Tm.
L'étape d) peut consister à appliquer un cisaillement contrôlé homogène à l'émulsion (E2), ladite vitesse de cisaillement appliquée étant comprise entre 10 s"1 et 100 000 s"1.
Selon un mode de réalisation, les doubles gouttes polydisperses obtenues à l'étape c) sont soumises à un affinage en taille consistant à leur faire subir un cisaillement capable de les fragmenter en nouvelles doubles gouttes de diamètres homogènes et contrôlés. De préférence, cette étape de fragmentation est effectuée à l'aide d'une cellule à haut cisaillement de type Couette selon un procédé décrit dans la demande de brevet EP 15 306 428.2.
Selon un mode de réalisation, dans l'étape d), la deuxième émulsion (E2), obtenue à l'issue de l'étape c), consistant en des doubles gouttes polydisperses dispersées dans une phase continue, est soumise à un cisaillement dans un mélangeur, qui applique un cisaillement contrôlé homogène. Ainsi, selon ce mode de réalisation, l'étape d) consiste à appliquer un cisaillement contrôlé homogène à l'émulsion (E2), ladite vitesse de cisaillement appliquée étant comprise entre 1 000 s"1 et 100 000 s"1.
Selon ce mode de réalisation, dans un mélangeur, la vitesse de cisaillement est dite contrôlée et homogène, indépendamment de la durée, lorsqu'elle passe à une valeur maximale identique pour toutes les parties de l'émulsion, à un instant donné qui peut varier d'un point de l'émulsion à un autre. La configuration exacte du mélangeur n'est pas essentielle selon l'invention, du moment que l'émulsion entière a été soumise au même cisaillement maximal en sortant de ce dispositif. Les mélangeurs adaptés pour effectuer l'étape d) sont notamment décrits dans le document US 5 938 581 .
La deuxième émulsion peut subir un cisaillement contrôlé homogène lorsqu'elle circule à travers une cellule formée par :
- deux cylindres rotatifs concentriques (également appelé mélangeur de type Couette) ;
- deux disques rotatifs parallèles ; ou
- deux plaques oscillantes parallèles.
Selon ce mode de réalisation, la vitesse de cisaillement appliquée à la deuxième émulsion est comprise entre 1 000 s"1 et 100 000 s"1 , de préférence entre 1 000 s"1 et 50 000 s"1 , et préférentiellement entre 2 000 s"1 et 20 000 s"1.
Selon ce mode de réalisation, pendant l'étape d), la deuxième émulsion est introduite dans le mélangeur et est ensuite soumise à un cisaillement qui résulte en la formation de la troisième émulsion. La troisième émulsion (E3) est chimiquement identique à la deuxième émulsion (E2) mais consiste en des gouttes doubles monodisperses alors que l'émulsion (E2) consiste en des gouttes doubles polydisperses. La troisième émulsion (E3) consiste typiquement en une dispersion de gouttes doubles comprenant un cœur constitué d'une ou plusieurs gouttes de composition C1 et d'une couche de composition C2 encapsulant ledit cœur, lesdites gouttes doubles étant dispersées dans la composition C3.
La différence entre la deuxième émulsion et la troisième émulsion est la variance de taille des gouttes doubles : les gouttes de la deuxième émulsion sont polydisperses en taille alors que les gouttes de la troisième émulsion sont monodisperses, grâce au mécanisme de fragmentation décrit ci-dessus. De préférence, selon ce mode de réalisation, la deuxième émulsion est introduite de façon continue dans le mélangeur ce qui signifie que la quantité d'émulsion double (E2) introduite à l'entrée du mélangeur est la même que la quantité de troisième émulsion (E3) à la sortie du mélangeur.
Etant donné que la taille des gouttes de l'émulsion (E3) correspond essentiellement à la taille des gouttes des microcapsules solides après polymérisation, il est possible d'ajuster la taille des microcapsules et l'épaisseur de l'enveloppe en ajustant la vitesse de cisaillement pendant l'étape d), avec une forte corrélation entre la diminution de la taille des gouttes et l'augmentation de la vitesse de cisaillement. Ceci permet d'ajuster les dimensions résultantes des microcapsules en faisant varier la vitesse de cisaillement appliquée pendant l'étape d).
Selon un mode de réalisation préféré, le mélangeur mis en œuvre pendant l'étape d) est un mélangeur de type Couette, comprenant deux cylindres concentriques, un cylindre externe de rayon interne R0 et un cylindre interne de rayon externe R,, le cylindre externe étant fixe et le cylindre interne étant en rotation avec une vitesse angulaire ω.
Un mélangeur de type Couette adapté pour le procédé de l'invention peut être fourni par la société T.S.R. France.
Selon un mode de réalisation, la vitesse angulaire ω du cylindre interne en rotation du mélangeur de type Couette est supérieure ou égale à 30 rad.s 1.
Par exemple, la vitesse angulaire ω du cylindre interne en rotation du mélangeur de type Couette est d'environ 70 rad.s"1.
Les dimensions du cylindre externe fixe du mélangeur de type Couette peuvent être choisies pour moduler l'espace (d = R0 - R,) entre le cylindre interne en rotation et le cylindre externe fixe.
Selon un mode de réalisation, l'espace (d = R0 - R,) entre les deux cylindres concentriques du mélangeur de type Couette est compris entre 50 μηι et 1 000 μηι, de préférence entre 100 μηι et 500 μηι, par exemple entre 200 μηι et 400 μηι.
Par exemple, la distance d entre les deux cylindres concentriques est égale à 100 μπι.
Selon ce mode de réalisation, pendant l'étape d), la deuxième émulsion est introduite à l'entrée du mélangeur, typiquement via une pompe, et est dirigée vers l'espace entre les deux cylindres concentriques, le cylindre externe étant fixe et le cylindre interne étant en rotation à une vitesse angulaire ω. Lorsque l'émulsion double est dans l'espace entre les deux cylindres, la vitesse de cisaillement appliquée à ladite émulsion est donnée par l'équation suivante :
dans laquelle :
- ω est la vitesse angulaire du cylindre interne en rotation,
- R0 est le rayon interne du cylindre externe fixe, et
- R, est le rayon externe du cylindre interne en rotation.
Selon un autre mode de réalisation, lorsque la viscosité de la composition C3 est supérieure à 2 000 mPa.s à 25°C, l'étape d) consiste à appliquer à l'émulsion (E2) une vitesse de cisaillement inférieure à 1 000 s"1.
Selon ce mode de réalisation, l'étape de fragmentation d) peut être effectuée à l'aide de tout type de mélangeur usuellement utilisé pour former des émulsions avec une vitesse de cisaillement inférieure à 1 000 s"1 , auquel cas la viscosité de la composition C3 est supérieure à 2 000 mPa.s, à savoir dans des conditions telles que celles décrites dans la demande de brevet FR 16 61787.
Les caractéristiques géométriques des doubles gouttes formées à la fin de cette étape dicteront celles des futures capsules.
Selon ce mode de réalisation, dans l'étape d), l'émulsion (E2), constituée de gouttes polydisperses dispersées dans une phase continue, est soumise à un cisaillement, par exemple dans un mélangeur, à une faible vitesse de cisaillement, à savoir inférieure à 1 000 s"1.
Selon ce mode de réalisation, la vitesse de cisaillement appliquée à l'étape d) est par exemple comprise entre 10 s"1 et 1 000 s"1.
De préférence, la vitesse de cisaillement appliquée à l'étape d) est strictement inférieure à 1 000 s"1.
Selon ce mode de réalisation, les gouttes d'émulsion (E2) ne peuvent être fragmentées efficacement en des gouttes fines et monodisperses d'émulsion (E3) que si une contrainte de cisaillement élevée leur est appliquée.
La contrainte de cisaillement σ appliquée à une goutte d'émulsion (E2) est définie comme la force tangentielle par unité de surface de goutte résultant du cisaillement macroscopique appliqué à l'émulsion lors de son agitation au cours de l'étape d).
La contrainte de cisaillement σ (exprimée en Pa), la viscosité de la composition C3 η (exprimée en Pa s) et la vitesse de cisaillement γ (exprimée en s"1) appliquée à l'émulsion (E2) lors de son agitation au cours de l'étape d) sont reliées par l'équation suivante :
σ = ηγ
Ainsi, selon ce mode de réalisation, la viscosité élevée de la composition C3 permet d'appliquer une très haute contrainte de cisaillement aux gouttes d'émulsion (E2) dans le mélangeur, même si la vitesse de cisaillement est faible et le cisaillement inhomogène.
Pour mettre en œuvre l'étape d) selon ce mode de réalisation, on peut utiliser tout type d'agitateur usuellement utilisé pour former des émulsions, comme par exemple un agitateur mécanique à pâles, un émulseur statique, un homogénéisateur à ultrasons, un homogénéisateur à membrane, un homogénéisateur à haute pression, un moulin colloïdal, un disperseur à haut pouvoir de cisaillement ou un homogénéisateur à haute vitesse.
Selon un mode de réalisation préféré, on utilise un émulseur simple tel qu'un agitateur mécanique à pâles ou un émulseur statique pour mettre en œuvre l'étape d). En effet, ceci est possible car ce mode de réalisation ne requiert ni un cisaillement contrôlé ni un cisaillement plus grand que 1 000 s"1.
Etape e)
L'étape e) du procédé de l'invention consiste en la réticulation et donc la formation de l'enveloppe des microcapsules solides selon l'invention.
Cette étape permet à la fois d'atteindre les performances attendues de protection et de rétention des capsules et d'assurer leur stabilité thermodynamique, en empêchant définitivement tout mécanisme de déstabilisation comme la coalescence ou le mûrissement.
Selon un mode de réalisation, lorsque la composition C2 comprend un photoinitiateur, l'étape e) est une étape de photopolymérisation consistant à exposer l'émulsion (E3) à une source de lumière apte à initier la photopolymérisation de la composition C2, notamment à une source de lumière UV émettant de préférence dans la gamme de longueur d'onde comprise entre 100 nm et 400 nm, et ce en particulier pendant une durée inférieure à 15 minutes. Selon ce mode de réalisation, l'étape e) consiste à soumettre l'émulsion (E3) à une photopolymérisation, ce qui va permettre la photopolymérisation de la composition C2. Cette étape va permettre d'obtenir des microcapsules encapsulant le composé volatile tel que défini ci-dessus.
Selon un mode de réalisation, l'étape e) consiste à exposer l'émulsion (E3) à une source de lumière apte à initier la photopolymérisation de la composition C2.
De préférence, la source de lumière est une source de lumière UV.
Selon un mode de réalisation, la source de lumière UV émet dans la gamme de longueur d'onde comprise entre 100 nm et 400 nm.
Selon un mode de réalisation, l'émulsion (E3) est exposée à une source de lumière pendant une durée inférieure à 15 minutes, et de préférence pendant 5 à 10 minutes.
Pendant l'étape e), l'enveloppe des gouttes doubles susmentionnées, constituée de composition C2 photoréticulable, est réticulée et ainsi convertie en une enveloppe polymérique viscoélastique, encapsulant et protégeant le(s) composé(s) volatile(s) de sa(leur) libération en l'absence d'un déclenchement mécanique.
Selon un autre mode de réalisation, lorsque la composition C2 ne comprend pas de photoinitiateur, l'étape e) est une étape de polymérisation, sans exposition à une source de lumière, la durée de cette étape e) de polymérisation étant de préférence comprise entre 8 heures et 100 heures et/ou cette étape e) étant réalisée à une température comprise entre 20°C et 80°C.
Selon ce mode de réalisation, la polymérisation est initiée par exemple par exposition à la chaleur (initiation thermique), ou par la simple mise en contact des monomères, polymères et agents réticulants entre eux, ou avec un catalyseur. Le temps de polymérisation est alors généralement supérieur à plusieurs heures.
De préférence, l'étape e) de polymérisation de la composition C2 est effectuée pendant une durée comprise entre 8 heures et 100 heures, à une température comprise entre 20°C et 80°C.
La composition obtenue à l'issue de l'étape e), comprenant des microcapsules solides dispersées dans la composition C3, est prête à l'emploi et peut être utilisée sans qu'aucune étape supplémentaire de post-traitement des capsules ne soit requise.
L'épaisseur de l'enveloppe des microcapsules ainsi obtenues est typiquement comprise entre 0,1 μηι et 20 μηι, de préférence entre 0,2 μηι et 10 μηι, préférentiellement entre 0,2 μηι et 8 μηι.
Selon un mode de réalisation, les microcapsules solides obtenues à l'issue de l'étape e) sont dépourvues de tensioactif au niveau de l'interface entre l'enveloppe solide et le milieu extérieur (ou phase continue) notamment représenté par la composition C3.
Le procédé de l'invention présente l'avantage de ne pas nécessiter de tensioactif, dans aucune des étapes b) à e) de formation de l'enveloppe des microcapsules solides. Le procédé de l'invention permet ainsi de réduire la présence d'additifs qui pourraient modifier les propriétés du produit final obtenu après libération du composé volatile.
La présente invention concerne également une série (ou ensemble) de microcapsules solides, susceptible d'être obtenue selon le procédé tel que défini ci- dessus, dans laquelle chaque microcapsule comprend :
- un cœur comprenant une composition C1 telle que définie ci-dessus, et
- une enveloppe solide encapsulant totalement à sa périphérie le cœur, dans laquelle le diamètre moyen desdites microcapsules est compris entre 1 μηι et 30 μηι, l'épaisseur de l'enveloppe rigide est comprise entre 0,1 μηι et 20 μηι et l'écart type de la distribution du diamètre des microcapsules est inférieur à 50%, en particulier inférieur à 25%, ou inférieur à 1 μηι.
Comme indiqué ci-dessus, le procédé de l'invention permet d'obtenir des particules monodisperses. Aussi, la série de microcapsules solides susmentionnée est formée d'une population de particules monodisperses en taille. Ainsi, l'écart type de la distribution du diamètre des microcapsules est inférieur à 50%, en particulier inférieur à 25%, ou inférieur à 1 μηι.
La distribution de taille des microcapsules solides peut être mesurée par technique de diffusion de la lumière à l'aide d'un Mastersizer 3000 (Malvern Instruments) équipé d'une cellule de meure Hydro SV. Selon un mode de réalisation, les microcapsules solides susmentionnées comprennent une enveloppe solide entièrement composés de polymère réticulé (obtenu à partir de la composition C2).
Comme indiqué ci-dessus, le procédé de l'invention permet d'obtenir des microcapsules solides. La présente invention concerne donc également des microcapsules solides comprenant un cœur et une enveloppe rigide encapsulant totalement à sa périphérie le cœur, le cœur étant une composition C1 et ladite enveloppe rigide étant constituée de polymère réticulé,
le diamètre de ladite capsule étant compris entre 1 μηι et 30 μηι et l'épaisseur de l'enveloppe rigide étant comprise entre 0,1 μηι et 20 μηι,
et dans laquelle la composition C1 est :
- soit une composition C1 a comprenant une particule solide hydrophobe unique,
- soit une composition C1 b comprenant plusieurs particules solides hydrophobes dispersées dans une phase hydrophile,
lesdites particules solides hydrophobes contenant un ou plusieurs composés volatiles lipophiles et un ou plusieurs matériaux hydrophobes, solides à température ambiante et liquides à une température supérieure à Tm, Tm étant compris entre 30°C et 80°C.
La présente invention concerne également une composition comprenant une série de microcapsules solides telle que définie ci-dessus.
Selon une variante de réalisation, la composition comprend au moins une double population de microcapsules solides selon l'invention qui diffèrent l'une de l'autre au moins au niveau de la composition C1 , en particulier au niveau de l'agent parfumant. Ce mode de réalisation est avantageux en ce qu'il permet notamment d'encapsuler de manière stable et efficace des composés volatiles incompatibles lorsque présents au sein d'une même solution.
Les capsules de l'invention peuvent avantageusement être utilisées afin de protéger les principes actifs utilisés dans les formulations de polymère, d'élastomère, de caoutchouc, de peinture, d'adhésif, de joint, de mortier, de papier, de vernis ou de revêtement ; dans les produits de chimie de synthèse ; dans les lessives, les produits de détergence, de soin du linge et de soin de la maison ; dans les produits agrochimiques tels que les fertilisants, les herbicides, les insecticides, les fongicides ou les pesticides ; les textiles ; les produits de pétrochimie tels que les lubrifiants, les carburants, les bitumes, les fluides de forage et de stimulation des puits.
La présente invention concerne également un procédé de libération d'un composé volatile, comprenant une étape d'application d'une contrainte de cisaillement mécanique à une composition comprenant une série de microcapsules solides telle que définie ci-dessus.
Les expressions « compris entre ... et ... », « compris de ... à ... » et « allant de ... à ... » doivent se comprendre bornes incluses, sauf si le contraire est spécifié.
Les exemples qui suivent illustrent la présente invention sans en limiter la portée.
EXEMPLES
Exemple 1 : Fabrication de capsules solides selon l'invention
Un agitateur mécanique (Ika Eurostar 20) équipé d'une hélice d'agitation de type défloculeuse est utilisé pour réaliser toutes les étapes d'agitation.
Etape a) : Création du cœur des capsules (dispersion de particules - composition C1b)
Figure imgf000041_0001
La composition C1 a est placée dans un bain thermostaté à 35°C et agitée à 500 tpm jusqu'à complète dissolution de la cire. La composition B est placée dans un bain thermostaté à 35°C et agitée à 200 tpm jusqu'à complète homogénéisation. La composition C1 a est ensuite ajoutée à la composition B goutte à goutte sous agitation à 2 000 tpm, toujours à 35°C. Le mélange est laissé sous agitation à 2 000 tpm pendant 5 minutes puis soumise à sonication (Vibra-cell 75042, Sonics) pendant 20 minutes (puise 5s/2s) à amplitude 30%. Si la température dépasse 35°C pendant la sonication, le mélange est refroidi par de la glace.
Après refroidissement, 1 ,05 g de gélifiant polyéthylène glycol modifié (Aculyn 44N, Dow) sont ajoutés au mélange sous agitation à 500 tpm jusqu'à gélification. On obtient ainsi la composition C1 b. Etape b) : Préparation de la première émulsion (E1)
Figure imgf000042_0001
La composition C1 est ajoutée goutte à goutte à la composition C2 sous agitation à 2 000 tpm, à une température Tb = 20°C. On obtient ainsi la première émulsion (E1 ).
Etape c) : Préparation de la deuxième émulsion (E2)
Figure imgf000042_0002
La composition C3 est placée sous agitation à 1 000 tpm jusqu'à complète homogénéisation. La première émulsion (E1 ) est ensuite ajoutée goutte à goutte à la composition C3 sous agitation à 1 200 tpm, à une température Tc = 20°C. On obtient ainsi la deuxième émulsion (E2).
Etape d) : Affinage en taille de la deuxième émulsion
La deuxième émulsion polydisperse obtenue à l'étape précédente est agitée à 1 200 tpm pendant 10 minutes, à une température Td = 20°C. On obtient ainsi une émulsion monodisperse (E3). Etape e) : Réticulation de l'enveloppe des capsules
La seconde émulsion monodisperse (E3) obtenue à l'étape précédente est irradiée pendant 15 minutes à l'aide d'une source de lumière UV (Dymax LightBox ECE 2000) ayant une intensité lumineuse maximale de 0,1 W/cm2 à une longueur d'onde de 365 nm.
Les microcapsules solides selon l'exemple 1 présentent une bonne distribution de taille, à savoir une taille moyenne de 2,4 μηι et un écart-type de 1 ,1 μηι, soit 46%. Par ailleurs, la qualité d'encapsulation du composé volatile lipophile, à savoir le solvant organique, avec les microcapsules selon l'exemple 1 a été suivie pendant 30 jours à température ambiante.
On constate l'absence de changement de coloration ni d'émanation d'odeur, en particulier du solvant organique encapsulé et ce, même après agitation. On ne constate également aucune séparation de phase dans la suspension de capsules, indiquant l'absence de fuite du solvant organique, immiscible avec la composition C3.
Les microcapsules solides selon l'exemple 1 s'avèrent donc particulièrement adaptée pour encapsuler de manière efficace un composé volatile lipophile, en particulier un solvant organique.
Exemple 2 : Fabrication de capsules solides selon l'invention
Un agitateur mécanique (Ika Eurostar 20) équipé d'une hélice d'agitation de type défloculeuse est utilisé pour réaliser toutes les étapes d'agitation.
Etape a) : Création du cœur des capsules (dispersion de particules - composition C1b)
Masse (g) %
Beta-ionone (4-(2,6,6-Trimethyl-1 - cyclohexenyl)-3-buten-2-one, Sigma 2 40
Composition Aldrich)
C1 a
Cire de triglycérides saturés
8 10
(Suppocire DM wax, Gattefossé)
Dispersant
Composition 0.8 4
(Tween 80, Sigma Aldrich)
B
Eau déionisée 9.2 46
Total 20 100 La composition C1 a est placée dans un bain thermostaté à 35°C et agitée à 500 tpm jusqu'à complète dissolution de la cire. La composition B est placée dans un bain thermostaté à 35°C et agitée à 200 tpm jusqu'à complète homogénéisation. La composition C1 a est ensuite ajoutée à la composition B goutte à goutte sous agitation à 2 000 tpm toujours à 35°C. Il est ensuite soumis à haute agitation à l'aide d'une tige d'émulsification pendant 5 min (19G, Ultra-Turrax®, IKA) puis à sonication pendant 3 minutes (Vibra-cell 75042, Sonics, puise 5s/2s) à amplitude 30%. Si la température dépasse 35°C pendant la sonication, le mélange est refroidi par de la glace.
Après refroidissement, 0,4 g de polyéthylène glycol modifié (Aculyn 44N, Dow) sont ajoutés au mélange sous agitation à 500 tpm jusqu'à gélification. On obtient ainsi la composition C1 b.
Etape b) : Préparation de la première émulsion (El)
Figure imgf000044_0002
La composition C1 est ajoutée goutte à goutte à la composition C2 sous agitation à 2 000 tpm, à une température Tb = 20°C. On obtient ainsi la première émulsion (E1 ).
Etape c) : Préparation de la deuxième émulsion (E2)
Figure imgf000044_0001
La composition C3 est placée sous agitation à 2 000 tpm jusqu'à complète homogénéisation. La première émulsion (E1 ) est ensuite ajoutée goutte à goutte à la composition C3 sous agitation à 2000 tpm pendant 1 minute, à une température Tc = 20°C. On obtient ainsi la deuxième émulsion (E2).
Etape d) : Affinage en taille de la deuxième émulsion
La deuxième émulsion polydisperse obtenue à l'étape précédente est agitée à 1 200 tpm pendant 10 minutes, à une température Td = 20°C. On obtient ainsi une émulsion monodisperse (E3).
Etape e) : Réticulation de l'enveloppe des capsules
La seconde émulsion monodisperse (E3) obtenue à l'étape précédente est irradiée pendant 15 minutes à l'aide d'une source de lumière UV (Dymax LightBox ECE 2000) ayant une intensité lumineuse maximale de 0,1 W/cm2 à une longueur d'onde de 365 nm.
Les microcapsules solides selon l'exemple 2 présentent une bonne distribution de taille, à savoir une taille moyenne de 10 μηι et un écart-type de 3,7 μηι soit 37%.
Par ailleurs, la qualité d'encapsulation du composé volatile lipophile, à savoir la beta-ionone, a été évaluée par chromatographie en phase liquide haute performance (HPLC).
Les microcapsules ont été séparées de leur phase continue par centrifugation à 2000 tpm pendant 20 min. Puis le surnageant a été analysé par HPLC pour quantifier la quantité de beta-ionone présente et remonter ainsi à l'efficacité d'encapsulation. Une quantité de beta-ionone non-encapsulée de 0,5% +/- 0,2% a été déterminée. Ainsi, les capsules selon l'invention sont capable de retenir efficacement 99,5% +/- 0,2% de la beta-ionone encapsulée initialement.
Les microcapsules solides selon l'exemple 2 s'avèrent donc particulièrement adaptées pour encapsuler de manière efficace un composé volatile lipophile, en particulier une molécule odorante comme la beta-ionone.

Claims

REVENDICATIONS
1. Procédé de préparation de microcapsules solides comprenant les étapes suivantes :
a) la préparation d'une composition C1 , qui est soit une composition C1 a, comprenant une particule solide hydrophobe unique, soit une composition C1 b comprenant plusieurs particules solides hydrophobes dispersées dans une phase hydrophile,
la/les particule(s) solide(s) hydrophobe(s) contenant un ou plusieurs composés volatiles lipophiles et un ou plusieurs matériaux hydrophobes, solides à température ambiante et liquides à une température supérieure à Tm,
b) l'addition sous agitation de la composition C1 dans une composition polymérique C2 à une température Tb, les compositions C1 et C2 n'étant pas miscibles l'une dans l'autre,
la température Tb étant supérieure à Tm lorsque la composition C1 est une composition C1 a et la température Tb étant inférieure à Tm lorsque la composition C1 est une composition C1 b,
la composition C2 comprenant au moins un monomère ou polymère, au moins un agent réticulant, et éventuellement au moins un (photo)initiateur ou catalyseur de réticulation,
la viscosité de la composition C2 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de la composition C1 ,
ce par quoi on obtient une émulsion (E1 ) comprenant des gouttes de composition C1 a ou C1 b dispersées dans la composition C2 ;
c) l'addition sous agitation de l'émulsion (E1 ) dans une composition C3 à une température Tc, les compositions C2 et C3 n'étant pas miscibles l'une dans l'autre,
la température Tc étant supérieure à Tm lorsque l'émulsion (E1 ) comprend des gouttes de composition C1 a dispersées dans la composition C2 et la température Tc étant inférieure à Tm lorsque l'émulsion (E1 ) comprend des gouttes de composition C1 b dispersées dans la composition C2,
la viscosité de la composition C3 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de l'émulsion (E1 ), ce par quoi on obtient une émulsion double (E2) comprenant des gouttes dispersées dans la composition C3 ;
d) l'application d'un cisaillement à l'émulsion (E2), à une température Td, la température Td étant supérieure à Tm lorsque la composition C1 de l'étape a) est une composition C1 a et la température Td étant inférieure à Tm lorsque la composition C1 de l'étape a) est une composition C1 b,
ce par quoi on obtient une émulsion double (E3) comprenant des gouttes de taille contrôlée dispersées dans la composition C3 ; et
e) la polymérisation de la composition C2, ce par quoi on obtient des microcapsules solides dispersées dans la composition C3.
2. Procédé de préparation selon la revendication 1 , dans lequel le ou les matériaux hydrophobes sont choisis parmi les cires, les beurres ou corps gras pâteux, et leurs mélanges.
3. Procédé de préparation selon la revendication 1 ou 2, dans lequel les composés volatiles lipophiles sont choisis parmi les agents parfumants, les flavonoïdes, les acides gras insaturés, les solvants organiques, les agents ignifuges et leurs mélanges.
4. Procédé de préparation selon l'une quelconque des revendications 1 à 3, dans lequel la phase hydrophile de C1 b comprend au moins un agent dispersant et au moins un agent gélifiant.
5. Procédé de préparation selon la revendication 4, dans lequel l'agent gélifiant est choisi parmi les polymères branchés, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , les polymères de poids moléculaire supérieur à 5 000 g. mol"1 , et leurs mélanges.
6. Procédé de préparation selon la revendication 4, dans lequel l'agent dispersant est choisi dans le groupe constitué des tensioactifs, en particulier des tensioactifs non ioniques ; des polyacrylates ; des esters de sucre / polysaccharide et d'acide(s) gras, en particulier des esters de dextrine et d'acide(s) gras, des esters d'inuline et d'acide(s) gras ou des esters de glycérol et d'acide(s) gras ; des polyamides ; des polyéthers et polyesters de silicone ; des alcools éthoxylés ; et de leurs mélanges.
7. Procédé de préparation selon l'une quelconque des revendications 1 à 6, dans lequel, lorsque la composition C1 est une composition C1 a, l'étape a) comprend une étape de chauffage du ou des matériaux hydrophobes à une température supérieure à Tm, suivie d'une étape d'addition du ou des composés volatiles lipophiles, et d'une étape de mélange de l'ensemble à une température supérieure à Tm.
8. Procédé de préparation selon l'une quelconque des revendications 1 à 6, dans lequel, lorsque la composition C1 est une composition C1 b, l'étape a) comprend en outre une étape de dispersion de la composition C1 a dans la phase hydrophile, suivie d'une étape de refroidissement de la dispersion ainsi obtenue à une température inférieure à Tm, ce par quoi on obtient des particules solides hydrophobes dispersées dans ladite phase hydrophile.
9. Procédé de préparation selon l'une quelconque des revendications 1 à 8, dans lequel l'étape d) consiste à appliquer un cisaillement contrôlé homogène à l'émulsion (E2), ladite vitesse de cisaillement appliquée étant comprise entre
1 000 s"1 et 100 000 s"1.
10. Procédé de préparation selon l'une quelconque des revendications 1 à 8, dans lequel, lorsque la viscosité de la composition C3 est supérieure à
2 000 mPa.s à 25°C, l'étape d) consiste à appliquer à l'émulsion (E2) une vitesse de cisaillement inférieure à 1 000 s"1.
11. Procédé de préparation selon l'une quelconque des revendications 1 à 10, dans lequel, lorsque la composition C2 comprend un photoinitiateur, l'étape e) est une étape de photopolymérisation consistant à exposer l'émulsion (E3) à une source de lumière apte à initier la photopolymérisation de la composition C2, notamment à une source de lumière UV émettant de préférence dans la gamme de longueur d'onde comprise entre 100 nm et 400 nm, et ce en particulier pendant une durée inférieure à 15 minutes.
12. Procédé de préparation selon l'une quelconque des revendications 1 à 10, dans lequel, lorsque la composition C2 ne comprend pas de photoinitiateur, l'étape e) est une étape de polymérisation, sans exposition à une source de lumière, la durée de cette étape de polymérisation étant de préférence comprise entre 8 heures et 100 heures et/ou cette étape e) étant réalisée à une température comprise entre 20°C et 80°C.
13. Série de microcapsules solides, susceptible d'être obtenue selon le procédé selon l'une des revendications 1 à 12, dans laquelle chaque microcapsule comprend :
- un cœur comprenant une composition C1 telle que définie selon l'une quelconque des revendications 1 à 8, et
- une enveloppe solide encapsulant totalement à sa périphérie le cœur, dans laquelle le diamètre moyen desdites microcapsules est compris entre 1 μηι et 30 μηι, l'épaisseur de l'enveloppe rigide est comprise entre 0,1 μηι et 20 μηι et l'écart type de la distribution du diamètre des microcapsules est inférieur à 50%, de préférence inférieur à 25%, ou inférieur à 1 μηι.
14. Composition comprenant une série de microcapsules solides selon la revendication 13.
15. Procédé de libération d'un composé volatile, comprenant une étape d'application d'une contrainte de cisaillement mécanique à une composition comprenant une série de microcapsules solides selon la revendication 14.
PCT/EP2018/057216 2017-03-21 2018-03-21 Procédé de préparation de capsules comprenant au moins un composé volatile et capsules obtenues WO2018172433A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/496,057 US20210113984A1 (en) 2017-03-21 2018-03-21 Method for preparing capsules comprising at least one volatile compound and capsules obtained therefrom
CN201880020511.6A CN110831693A (zh) 2017-03-21 2018-03-21 制备包含至少一种挥发性化合物的胶囊的方法和由该方法得到的胶囊
EP18711369.1A EP3600643A1 (fr) 2017-03-21 2018-03-21 Procédé de préparation de capsules comprenant au moins un composé volatile et capsules obtenues
JP2019552456A JP7258770B2 (ja) 2017-03-21 2018-03-21 少なくとも1種の揮発性化合物を含むカプセルを製造する方法およびその方法から得られるカプセル
KR1020197030797A KR102528482B1 (ko) 2017-03-21 2018-03-21 하나 이상의 휘발성 화합물을 포함하는 캡슐을 제조하는 방법 및 이로부터 수득된 캡슐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1752332 2017-03-21
FR1752332A FR3064192B1 (fr) 2017-03-21 2017-03-21 Procede de preparation de capsules comprenant au moins un compose volatile et capsules obtenues

Publications (1)

Publication Number Publication Date
WO2018172433A1 true WO2018172433A1 (fr) 2018-09-27

Family

ID=59381386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/057216 WO2018172433A1 (fr) 2017-03-21 2018-03-21 Procédé de préparation de capsules comprenant au moins un composé volatile et capsules obtenues

Country Status (7)

Country Link
US (1) US20210113984A1 (fr)
EP (1) EP3600643A1 (fr)
JP (1) JP7258770B2 (fr)
KR (1) KR102528482B1 (fr)
CN (1) CN110831693A (fr)
FR (1) FR3064192B1 (fr)
WO (1) WO2018172433A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3091877A1 (fr) * 2019-01-22 2020-07-24 Calyxia Compositions de detergence avec des propriétés olfactives améliorées
FR3091878A1 (fr) * 2019-01-22 2020-07-24 Calyxia Compositions de produits d’entretien avec des propriétés olfactives améliorées

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024089135A1 (fr) 2022-10-27 2024-05-02 Calyxia Sas Procédé de fabrication de microcapsules et microcapsules

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938581A (en) 1996-04-16 1999-08-17 Centre National De La Recherche Scientifique (C.N.R.S.) Emulsion manufacturing process
FR2792190A1 (fr) 1999-04-16 2000-10-20 Sophim Procede de fabrication d'un emollient non gras a base de cires-esters
FR2867075A1 (fr) * 2004-03-03 2005-09-09 Ethypharm Sa Procede de preparation de microspheres biodegradables calibrees
WO2006013413A1 (fr) 2004-07-28 2006-02-09 L'oreal Composition cosmétique comportant un trisiloxane alkyle linéaire volatile
EP1764084A1 (fr) 2005-09-20 2007-03-21 L'oreal Composition démaquillante
US20090099024A1 (en) * 2006-03-30 2009-04-16 Victor Casana Giner Microcapsules With Acetylene Carbamide-Polyurea Polymers and Formulations Thereof for Controlled Release
US20090289216A1 (en) * 2006-10-17 2009-11-26 Basf Se Microcapsules
US20120076843A1 (en) * 2009-06-15 2012-03-29 Base Se Microcapsules having highly branched polymers as cross-linking agents
US20160144329A1 (en) * 2014-11-24 2016-05-26 The Procter & Gamble Company Systems for Encapsulation of Actives within Droplets and other Compartments

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10139171A1 (de) * 2001-08-16 2003-02-27 Basf Ag Verwendung von Mikrokapseln in Gipskartonplatten
GB0526416D0 (en) * 2005-12-23 2006-02-08 Syngenta Ltd Formulation
EP1844653B1 (fr) * 2006-03-30 2017-07-26 GAT Microencapsulation GmbH Nouvelles formulations agrochimiques contenant des microcapsules
ES2386241T3 (es) * 2008-01-15 2012-08-14 Basf Se Microcápsulas que contienen fragancia con un comportamiento de liberación mejorado
RU2639909C2 (ru) * 2012-08-28 2017-12-25 Живодан Са Система носителя для отдушки
EP3124112A1 (fr) * 2015-07-30 2017-02-01 DWI - Leibniz-Institut für Interaktive Materialien e.V. Procédé pour l'encapsulation de substances dans des capsules à base de silice et produits ainsi obtenus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938581A (en) 1996-04-16 1999-08-17 Centre National De La Recherche Scientifique (C.N.R.S.) Emulsion manufacturing process
FR2792190A1 (fr) 1999-04-16 2000-10-20 Sophim Procede de fabrication d'un emollient non gras a base de cires-esters
FR2867075A1 (fr) * 2004-03-03 2005-09-09 Ethypharm Sa Procede de preparation de microspheres biodegradables calibrees
WO2006013413A1 (fr) 2004-07-28 2006-02-09 L'oreal Composition cosmétique comportant un trisiloxane alkyle linéaire volatile
EP1764084A1 (fr) 2005-09-20 2007-03-21 L'oreal Composition démaquillante
US20090099024A1 (en) * 2006-03-30 2009-04-16 Victor Casana Giner Microcapsules With Acetylene Carbamide-Polyurea Polymers and Formulations Thereof for Controlled Release
US20090289216A1 (en) * 2006-10-17 2009-11-26 Basf Se Microcapsules
US20120076843A1 (en) * 2009-06-15 2012-03-29 Base Se Microcapsules having highly branched polymers as cross-linking agents
US20160144329A1 (en) * 2014-11-24 2016-05-26 The Procter & Gamble Company Systems for Encapsulation of Actives within Droplets and other Compartments

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Flavor and Fragrance Materials", 1991, ALLURED PUBLISHING CO.
A. THOMAS: "Ullmann's Encyclopedia of Industrial Chemistry", 15 June 2000, article "Fats and Fatty Oils"
G. LI BASSI: "Les photoinitiateurs dans la réticulation des revêtements", DOUBLE LIAISON - CHIMIE DES PEINTURES, November 1985 (1985-11-01), pages 34 - 41
HENRI STRUB: "Applications industrielles de la polymérisation photoinduite", L'ACTUALITÉ CHIMIQUE, February 2000 (2000-02-01), pages 5 - 13
LIU ET AL., POLYMER CHEMISTRY, vol. 4, 2013, pages 3431 - 3443
MARC, J.M. ABADIE: "Photopolymères : considérations théoriques et réaction de prise", DOUBLE LIAISON - CHIMIE DES PEINTURES, 1992, pages 28 - 34
S. ARCTANDER, PERFUME AND FLAVOR CHEMICALS, 1969
S. ARCTANDER: "Perfume and Flavor Materials of Natural Origin", 1960, INTERNATIONAL FRAGRANCE ASSOCIATION

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3091877A1 (fr) * 2019-01-22 2020-07-24 Calyxia Compositions de detergence avec des propriétés olfactives améliorées
FR3091878A1 (fr) * 2019-01-22 2020-07-24 Calyxia Compositions de produits d’entretien avec des propriétés olfactives améliorées
WO2020152222A1 (fr) * 2019-01-22 2020-07-30 Calyxia Compositions de produits d'entretien avec des propriétés olfactives améliorées
WO2020152216A1 (fr) * 2019-01-22 2020-07-30 Calyxia Compositions de detergence avec des propriétés olfactives améliorées
CN113383062A (zh) * 2019-01-22 2021-09-10 卡莉西亚公司 具有改进的嗅觉性能的护理产品组合物
CN113383063A (zh) * 2019-01-22 2021-09-10 卡莉西亚公司 具有改进的嗅觉特性的洗涤剂组合物
US20220106540A1 (en) * 2019-01-22 2022-04-07 Calyxia Care product compositions having improved olfactory properties

Also Published As

Publication number Publication date
EP3600643A1 (fr) 2020-02-05
KR102528482B1 (ko) 2023-05-03
FR3064192A1 (fr) 2018-09-28
FR3064192B1 (fr) 2019-04-26
US20210113984A1 (en) 2021-04-22
CN110831693A (zh) 2020-02-21
JP2020514044A (ja) 2020-05-21
KR20190127881A (ko) 2019-11-13
JP7258770B2 (ja) 2023-04-17

Similar Documents

Publication Publication Date Title
EP3548529B1 (fr) Procédé de préparation de microcapsules de taille contrôlée comprenant une étape de photopolymérisation
WO2018172434A2 (fr) Procédé de préparation de capsules comprenant au moins une substance hydrosoluble ou hydrophile et capsules obtenues
EP3600642A1 (fr) Procédé de préparation de capsules avec des propriétés de rétention améliorées et capsules obtenues
CA2769566C (fr) Materiau coeur ecorce, son procede de preparation et utilisation pour la delivrance thermostimulee de substances d'interet
FR3066116A1 (fr) Procede de preparation de capsules biodegradables et capsules obtenues
WO2018172433A1 (fr) Procédé de préparation de capsules comprenant au moins un composé volatile et capsules obtenues
WO2018172430A2 (fr) Procédé de préparation de capsules comprenant au moins un composé volatile et capsules obtenues
EP3600641A1 (fr) Procédé de préparation de capsules comprenant au moins une substance hydrosoluble ou hydrophile et capsules obtenues
FR3059665B1 (fr) Procede de preparation de microcapsules et de microparticules de taille controlee.
WO2019076911A1 (fr) Procédé de préparation de capsules sensibles au ph ou au rayonnement uv et capsules obtenues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18711369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030797

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018711369

Country of ref document: EP

Effective date: 20191021