EP3624932A1 - Procédé de préparation de capsules biodégradables et capsules obtenues - Google Patents

Procédé de préparation de capsules biodégradables et capsules obtenues

Info

Publication number
EP3624932A1
EP3624932A1 EP18722633.7A EP18722633A EP3624932A1 EP 3624932 A1 EP3624932 A1 EP 3624932A1 EP 18722633 A EP18722633 A EP 18722633A EP 3624932 A1 EP3624932 A1 EP 3624932A1
Authority
EP
European Patent Office
Prior art keywords
composition
emulsion
poly
microcapsules
μηι
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18722633.7A
Other languages
German (de)
English (en)
Inventor
Damien DEMOULIN
Todor KHRISTOV
Jamie WALTERS
Alicia SADAOUI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calyxia SAS
Original Assignee
Calyxia SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calyxia SAS filed Critical Calyxia SAS
Publication of EP3624932A1 publication Critical patent/EP3624932A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure

Definitions

  • the present invention relates to a process for preparing biodegradable capsules. It also relates to the capsules as obtained and compositions containing them.
  • active ingredients are added to the formulated products in order to confer interesting application properties or increase their performance.
  • the encapsulation of the active ingredients represents a very interesting way to overcome the limitation of performance or stability of the formulated products that contain them while benefiting from the effect of the active ingredient at the time of use of this formulated product.
  • microcapsules have the ability to be biodegradable is of paramount importance.
  • microcapsules have an envelope formed of an uncrosslinked material such as a hydrogel or a thermoplastic polymer. If this hydrogel or thermoplastic polymer is formed of materials known to be biodegradable, then the envelope of the microcapsules formed with this material will be deemed to be biodegradable.
  • the main biodegradable materials used for this type of capsules belong to the family of polyesters, in particular polyhydroxyalkanoates (for example polylactic acid or polyglycolic acid), or polysaccharides (for example alginate, starch or dextran).
  • polyhydroxyalkanoates for example polylactic acid or polyglycolic acid
  • polysaccharides for example alginate, starch or dextran
  • microcapsules have an envelope resulting from the reaction of monomers which react chemically with each other and form a crosslinked material through which diffusion is greatly slowed down, thus improving the performance of the capsules.
  • This category includes urea and formaldehyde capsules, which are widely used, but which unfortunately are not biodegradable.
  • capsules formed of a crosslinked envelope that are both biodegradable and with very good retention and protection properties of the active ingredients they contain.
  • the present invention therefore aims to provide a method for encapsulating active ingredients avoiding the aforementioned problems of leakage of said active ingredients, and the capsules obtained by this method.
  • the present invention also aims to provide capsules containing at least one active ingredient and having excellent biodegradability properties.
  • the present invention relates to a method for preparing solid microcapsules comprising the following steps:
  • composition C1 comprising at least one active agent, in a polymeric composition C2, the compositions C1 and C2 being immiscible with one another,
  • the viscosity of the composition C2 being between 500 mPa.s and 100 000 mPa.s at 25 ° C., and preferably being greater than the viscosity of the composition C1,
  • composition C2 comprising:
  • composition C1 dispersed in composition C2
  • E1 optionally at least one photoinitiator or a crosslinking catalyst, whereby an emulsion (E1) comprising drops of composition C1 dispersed in composition C2 is obtained;
  • the viscosity of the composition C3 being between 500 mPa.s and 100 000 mPa.s at 25 ° C, and preferably being greater than the viscosity of the emulsion (E1),
  • microcapsules and “capsules” are used indifferently.
  • the method of the invention therefore makes it possible to prepare solid microcapsules comprising a core and a solid envelope completely encapsulating at its periphery the heart, in which the core is a composition C1 comprising at least one active ingredient.
  • the solid microcapsules obtained by the process of the invention are formed of a core containing at least one active ingredient (composition C1) and a solid envelope (obtained from composition C2) completely encapsulating at its periphery said core.
  • microcapsules obtained by the method of the invention in view of the choice of specific monomers and polymers in the composition C2, have the ability to be biodegradable.
  • Biodegradability is defined here as the ability to be degraded in a natural environment, as defined in OECD standards: OECD 301 (Easy Biodegradability), ie OECD 301A (Dissolved Organic Carbon Disappearance Test (COD)), OECD 301B (C0 2 Release Test), OECD 301C (Modified MITI Test (I)), OECD 301D (Closed Bottle Test), OECD 301 E (Modified OECD Screening Test), OECD 301 F (Manometric Respirometry Test), or OECD 304A (Intrinsic Biodegradability in Soil), OECD 306 (Biodegradability in seawater) and OECD 310 (Immediate biodegradability - release of C0 2 in tightly closed flasks).
  • OECD 301 Esy Biodegradability
  • ie OECD 301A Dissolved Organic Carbon Disappearance Test (COD)
  • the method of the invention also has the advantage of not requiring the use of surfactants or emulsifiers which could accelerate and make uncontrolled the release of active ingredients to the outside of the capsule; and / or react with the components of the formulated product in which the capsules are intended to be incorporated.
  • the method of the invention consists in producing a double emulsion composed of droplets containing at least one active agent, wrapped in a crosslinkable liquid phase. These double drops are then rendered monodisperse in size before being converted by crosslinking or polymerization in rigid capsules.
  • the preparation involves 4 steps described below in detail.
  • Step a) of the process according to the invention consists in preparing a first emulsion (E1).
  • the first emulsion consists of a dispersion of droplets of the composition C1 (containing at least one active ingredient) in a C1-immiscible polymeric composition C2, created by dropwise addition of C1 to C2 with stirring.
  • a composition C1 is added to a crosslinkable polymeric composition C2, this step being carried out with stirring, which means that the composition C2 is stirred, typically mechanically, while the composition C1 is added, and this in order to emulsify the mixture of compositions C1 and C2.
  • composition C1 is at a temperature of between 0 ° C. and 100 ° C., preferably between 10 ° C. and 80 ° C., and preferably between 15 ° C. and 60 ° C.
  • composition C2 is at a temperature of between 0 ° C. and 100 ° C., preferably between 10 ° C. and 80 ° C., and preferably between 15 ° C. and 60 ° C.
  • the compositions C1 and C2 are not miscible with each other, which means that the amount (by weight) of the composition C1 capable of being solubilized in the composition C2 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C2, and that the amount (by weight) of the composition C2 capable of to be solubilized in composition C1 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C1.
  • composition C1 comes into contact with the composition C2 with stirring, the latter is dispersed in the form of drops, called simple drops.
  • compositions C1 and C2 also makes it possible to avoid the migration of the active ingredient from composition C1 to composition C2.
  • composition C2 is stirred to form an emulsion comprising drops of composition C1 dispersed in composition C2.
  • This emulsion is also called “simple emulsion” or emulsion C1-in-C2.
  • any type of stirrer usually used to form emulsions such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer or a homogenizer may be used.
  • a mechanical stirrer such as, for example, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer or a homogenizer may be used.
  • an ultrasonic homogenizer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer or a homogenizer
  • a membrane homogenizer such as, for example, a membrane homogenizer or a homogenizer.
  • the composition C1 comprises at least one active ingredient A.
  • This composition C1 serves as a carrier for the active ingredient A in the process of the invention, within the drops formed during the process of the invention and the solid capsules obtained.
  • the composition C1 is monophasic, that is to say it is the pure active A or a solution comprising the active A in solubilized form .
  • the active agent is solubilized in composition C1.
  • the composition C1 typically consists of a solution of the active ingredient A in an aqueous solution, or an organic solvent, or a mixture of organic solvents, the active ingredient A being present in a mass content of between 1% and 99%. %, relative to the total mass of the composition C1.
  • the active agent A may be present in a mass content ranging from 5% to 95%, from 10% to 90%, from 20% to 80%, from 30% to 70%, or from 40% to 60%, relative to to the total mass of the composition C1.
  • the composition C1 consists of the asset A.
  • the composition C1 is a biphasic composition, which means that the active agent is dispersed, either in liquid form or in solid form, in the composition C1 and is not totally solubilized in said composition C1.
  • the active agent is dispersed in the form of solid particles in the composition C1.
  • the composition C1 can consist of a dispersion of solid particles of the active agent in an organic solvent or in a mixture of organic solvents.
  • the composition C1 may consist of a dispersion of solid particles of the active agent in an aqueous phase, which comprises water and optionally hydrophilic organic solvents.
  • the asset used is for example:
  • a crosslinking agent such as a crosslinking agent, a hardener, an organic or metal catalyst (such as an organometallic or inorganometallic complex of platinum, palladium, titanium, molybdenum, copper, zinc) used to polymerize polymer and elastomer formulations; rubber, paint, adhesive, seal, mortar, varnish or coating;
  • an organic or metal catalyst such as an organometallic or inorganometallic complex of platinum, palladium, titanium, molybdenum, copper, zinc
  • a dye or a pigment for formulations of elastomers for formulations of elastomers, paint, coating, adhesive, seal, mortar, or paper;
  • fragrance as defined by the International Fragrance Association (IFRA) molecule list and available on the website www.ifraorg.org
  • detergents such as detergents, home care products, cosmetics and personal care products, textiles, paints, coatings;
  • an anti-discoloration agent such as an ammonium derivative
  • an antifoaming agent such as an alcohol ethoxylate, an alkylbenzene sulfonate, a polyethylene ethoxylate, an alkylethoxysulfate or alkylsulfate
  • a brightening agent also called a color activator (such as a stilbene derivative, a coumarin derivative, a pyrazoline derivative, a benzoxazole derivative or a naphthalimide derivative) for detergents, detergents, cosmetics and personal care products
  • a color activator such as a stilbene derivative, a coumarin derivative, a pyrazoline derivative, a benzoxazole derivative or a naphthalimide derivative
  • a biologically active compound such as an enzyme, a vitamin, a protein, a plant extract, an emollient, a disinfectant, an antibacterial agent, an anti-UV agent, a drug for cosmetic and personal care products , to textiles.
  • biologically active compounds include: vitamins A, B, C, D and E, para-aminobenzoic acid, alpha hydroxy acids (such as glycolic acid, lactic acid, malic acid, tartaric acid or citric acid), camphor, ceramides, polyphenols (such as flavonoids, phenolic acid, ellagic acid, tocopherol, ubiquinol), hydroquinone, hyaluronic acid, isopropyl isostearate, isopropyl palmitate, oxybenzone, panthenol, proline, retinol, retinyl palmitate, salicylic acid, sorbic acid, sorbitol, triclosan, tyrosine;
  • a disinfecting agent for paints and coatings
  • a fertilizer, herbicide, insecticide, pesticide, fungicide, repellent or disinfectant for agrochemicals a flame retardant, also known as a flame retardant, (such as a brominated polyol such as tetrabromobisphenol A, a halogenated or non-halogenated organophosphorus compound, a chlorinated compound, an aluminum trihydrate, an antimony oxide, a zinc borate red phosphorus, melamine, or magnesium dihydroxide) for use in plastic materials, coatings, paints and textiles;
  • a flame retardant also known as a flame retardant, (such as a brominated polyol such as tetrabromobisphenol A, a halogenated or non-halogenated organophosphorus compound, a chlorinated compound, an aluminum trihydrate, an antimony oxide, a zinc borate red phosphorus, melamine, or magnesium dihydroxide) for use in plastic materials, coatings, paints and textiles;
  • phase change materials capable of absorbing or returning heat when they undergo a phase change, intended for the storage of 'energy.
  • PCMs phase change materials
  • Examples of PCM and their applications are described in Farid et al., Energy Conversion and Management, 2004, 45 (9-10), 1597-1615.
  • composition C2 is intended to form the future solid envelope of
  • the volume fraction of C1 in C2 can vary from 0.1 to 0.6 in order to control the thickness of the envelope of the capsules obtained at the end of the process.
  • the ratio between the volume of composition C1 and the volume of composition C2 varies between 1: 10 and 10: 1.
  • this ratio is between 1: 3 and 5: 1, preferably between 1: 3 and 3: 1.
  • the viscosity of the composition C2 at 25 ° C is between 1000 mPa.s and 50,000 mPa.s, preferably between 2000 mPa.s and 25,000 mPa.s, and for example between 3000 mPa. s and 15,000 mPa.s.
  • the viscosity of the composition C2 is greater than the viscosity of the composition C1.
  • the viscosity is measured using a Haake Rheostress TM 600 rheometer equipped with a cone of 60 mm diameter and 2 degrees angle, and a temperature control cell set at 25 ° C. The value of the viscosity is read for a shear rate of 10 s -1 .
  • the destabilization kinetics of the drops of the emulsion (E1) is significantly slow, which allows the envelope of the microcapsules to be polymerized during step d) before the emulsion is destabilized. .
  • the polymerization once completed, then provides a thermodynamic stabilization.
  • the relatively high viscosity of the composition C2 ensures the stability of the emulsion (E1) obtained at the end of step a).
  • the interfacial tension between compositions C1 and C2 is low.
  • these interfacial tensions vary between 0 mN / m and 50 mN / m, preferably between 0 mN / m and 20 mN / m.
  • the low interfacial tension between the compositions C1 and C2 also advantageously makes it possible to ensure the stability of the emulsion (E1) obtained at the end of step a).
  • composition C2 contains at least one monomer or polymer as defined below, at least one crosslinking agent, and optionally at least one photoinitiator or crosslinking catalyst, thus making it crosslinkable.
  • the composition C2 comprises from 50% to 99% by weight of monomer or polymer as defined below, or a mixture of monomers or polymers as defined below, relative to the total weight of the composition C2.
  • the composition C2 comprises from 1% to 20% by weight of crosslinking agent or of a mixture of crosslinking agents, relative to the total weight of the composition C2.
  • the composition C2 comprises from 0.1% to 5% by weight of photoinitiator or a mixture of photoinitiators, relative to the total weight of the composition C2.
  • the composition C2 comprises from 0.001% to 20% by weight of crosslinking agent relative to the weight of said composition C2.
  • the term “monomer” or “polymer” denotes any base unit suitable for the formation of a solid material by polymerization, either alone or in combination with other monomers or polymers.
  • the term “polymer” also includes oligomers.
  • These monomers are chosen from monomers comprising at least one reactive functional group chosen from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate and carboxylate functions.
  • the monomers or polymers used in the composition C2 are chosen from aliphatic or aromatic esters or polyesters, anhydrides or polyanhydrides, saccharides or polysaccharides, ethers or polyethers, amides or polyamides, and carbonates or polycarbonates, said polymers bearing, in addition to at least one reactive functional group selected from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate, and carboxylate functions.
  • the monomers or polymers used in the composition C2 are chosen from aliphatic or aromatic esters or polyesters, anhydrides or polyanhydrides, saccharides or polysaccharides, ethers or polyethers, amides or polyamides, and carbonates or polycarbonates, said polymers additionally bearing at least one reactive functional group selected from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate, and carboxylate functions, said monomers or polymers listed above do not carrying no other reactive function different from acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate, and carboxylate functions.
  • the monomers or polymers used in the composition C2 do not carry a urethane function.
  • the monomers or polymers used in the composition C2 are chosen from aliphatic or aromatic esters or polyesters, anhydrides or polyanhydrides, saccharides or polysaccharides, ethers or polyethers, amides or polyamides, and carbonates or polycarbonates, said polymers additionally bearing at least one reactive functional group selected from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate, and carboxylate functions, said non-functional monomers or polymers urethane.
  • the monomers or polymers used in the composition C2 are chosen from aliphatic or aromatic esters or polyesters, anhydrides or polyanhydrides, saccharides or polysaccharides, ethers or polyethers, amides or polyamides, and carbonates or polycarbonates, said polymers further bearing a single reactive function selected from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate, and carboxylate functions.
  • the monomers or polymers of the composition C2 do not carry a function other than those listed above, and therefore in particular do not carry a urethane function.
  • Examples of such monomers or polymers include, but are not limited to, the following compounds and mixtures thereof:
  • polyglycolides PGA
  • polylactides PLA
  • poly (lactide-co-clycolide) PLGA
  • poly (ortho esters) such as polycaprolactone (PCL) polydiaxanone, poly (ethylene succinate), poly (butylene succinate) (PBS), poly (ethylene adipate), poly (butylene adipate), poly (ethylene sebacate), poly (butylene sebacate), poly (valero lactone) (PVL), poly (decalactone), polyhydroxyvalerate, poly (beta-malic acid), poly-3-hydroxybutyrate (PHB), poly-3-hydroxy-butyrate-co-3- hydroxyvalerate (P-3HB-3HV), poly-3-hydroxybutyrate-co-4-hydroxybutyrate (P-3HB-4HB), poly-3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate (P- 3HB-3HV-4
  • anhydrides or polyanhydrides such as those derived from polysebacic acid, polyadipic acid, polyterephthalic acid, poly (bis (p-carboxyphenoxy) alkane acid, or more broadly polyanhydrides described as example in Advanced Drug Delivery Reviews 54 (2002) 889-910, further carrying at least one reactive function selected from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate and carboxylate functions;
  • saccharides and polysaccharides especially comprising carrageenans, dextrans and cyclodextrins, for example hyaluronic acid, agarose, chitosan, chitin, alginate, starch, cellulose and its derivatives such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, methyl hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose or methyl hydroxypropyl cellulose, additionally carrying at least one reactive function selected from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate and carboxylate functions;
  • ethers and polyethers especially comprising polyethylene glycols, also bearing at least one reactive functional group chosen from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate and carboxylate; and
  • the family of amides and polyamides especially comprising the poly (ester amide) or polyphthalamide, also bearing at least one reactive functional group selected from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate and carboxylate.
  • the monomers or polymers used in the composition C2 are chosen from aliphatic or aromatic esters or polyesters also bearing at least one reactive functional group chosen from the group consisting of acrylate, methacrylate, vinyl ether, N-vinyl ether and epoxy functional groups. siloxane, amine, lactone, phosphate, and carboxylate, said monomers or polymers not carrying urethane function.
  • the monomers or polymers used in the composition C2 are not aliphatic or aromatic esters or polyesters bearing at least one urethane function.
  • crosslinking agent is meant a compound carrying at least two reactive functional groups capable of crosslinking a monomer or a polymer, or a mixture of monomers or polymers, during its polymerization.
  • the crosslinking agent may be chosen from molecules carrying at least two identical or different functions chosen from the group consisting of the functions acrylate, methacrylate, vinyl ether, N-vinyl ether, epoxy, siloxane, amine, lactone, phosphate and carboxylate.
  • crosslinking agent there may be mentioned in particular:
  • diacrylates such as 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,4-butanediol dimethacrylate, 1, 3-butanediol dimethacrylate, 1,10-decanediol dimethacrylate, bis (2-methacryloxyethyl) N, N'-1,9-nonylene biscarbamate, 1,4-butanediol diacrylate, 1,5-pentanediol dimethacrylate, allyl methacrylate, N, N'-methylenebisacrylamide, 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane, tetraethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, triethylene glycol dim
  • multifunctional acrylates such as dipentaerythritol pentaacrylate, 1,1,1-trimethylolpropane triacrylate, 1,1,1-trimethylolpropane trimethacrylate, ethylenediamine tetramethacrylate, pentaerythritol triacrylate or pentaerythritol tetraacrylate; and
  • acrylates which also have another reactive function, such as propargyl methacrylate, N-acryloxysuccinimide, N- (2-hydroxypropyl) methacrylamide, N- (t-BOC-aminopropyl) methacrylamide, monoacryloxyethyl phosphate, acrylic anhydride 2- (tert-butylamino) ethyl methacrylate, ⁇ , ⁇ -diallylacrylamide or glycidyl methacrylate.
  • another reactive function such as propargyl methacrylate, N-acryloxysuccinimide, N- (2-hydroxypropyl) methacrylamide, N- (t-BOC-aminopropyl) methacrylamide, monoacryloxyethyl phosphate, acrylic anhydride 2- (tert-butylamino) ethyl methacrylate, ⁇ , ⁇ -diallylacrylamide or glycidyl methacrylate.
  • the composition C2 comprises from 0.001% to 20% by weight of crosslinking agent (s) relative to the total weight of said composition.
  • photoinitiator is meant a compound capable of fragmenting under the effect of light radiation.
  • photoinitiators which can be used according to the present invention are known in the art and are described, for example in "Photoinitiators in the crosslinking of coatings", G. Li Bassi, Double Liaison - Chemistry of Paints, No. 361, November 1985, p. 34-41; "Industrial applications of photoinduced polymerization", Henri Strub, L'Actualéclairage Chimique, February 2000, p.5-13; and "Photopolymers: theoretical considerations and reaction of taking", Marc, JM Abadie, Double Liaison - Chemistry of the Paintings, n ° 435-436, 1992, p.28-34.
  • These photoinitiators include:
  • ⁇ -hydroxyketones such as 2-hydroxy-2-methyl-1-phenyl-1-propanone, sold for example under the names DAROCUR® 1 173 and 4265, IRGACURE® 184, 2959, and 500 by the company BASF, and ADDITOL® CPK by CYTEC;
  • ⁇ -aminoketones especially 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, sold, for example, under the names Irgacure® 907 and 369 by the company BASF;
  • acylphosphine oxides such as, for example, bis-acylphosphine oxides (BAPO) sold for example under the names IRGACURE® 819, 1700, and 1800, DAROCUR® 4265, LUCIRIN® TPO, and LUCIRIN® TPO-L by the company BASF.
  • BAPO bis-acylphosphine oxides
  • aromatic ketones such as benzophenone, phenylglyoxylates, such as the methyl ester of phenylglyoxylic acid, oxime esters, such as [1- (4-phenylsulfanylbenzoyl) heptylideneamino] benzoate, sulphonium salts, iodonium salts and oxime sulphonates.
  • composition C2 may further comprise an additional monomer or polymer capable of improving the properties of the microcapsule casing and / or of giving new properties to the microcapsule casing.
  • additional monomers or polymers there may be mentioned monomers or polymers bearing a group sensitive to pH, temperature, UV or IR. These additional monomers or polymers can induce the rupture of the solid microcapsules and subsequently the release of their contents, after stimulation via, for example, pH, temperature, UV or IR.
  • These additional monomers or polymers may be chosen from monomers or polymers bearing at least one of the following groups:
  • a group that is sensitive to pH such as primary, secondary or tertiary amines, carboxylic acids, phosphate, sulphate, nitrate or carbonate groups;
  • UV-sensitive or UV-cleavable group such as azobenzene, spiropyran, 2-diazo-1, 2-naphthoquinone, o-nitrobenzyl, thiol, or 6-nitro-veratroyloxycarbonyl, for example poly (ethylene) oxide) -block-poly (2-nitrobenzylmethacrylate), and other block copolymers, as described in particular in Liu et al., Polymer Chemistry 2013, 4, 3431-3443;
  • an IR-sensitive or IR-cleavable group such as o-nitrobenzyl or 2-diazo-1,2-naphthoquinone, for example the polymers described in Liu et al., Polymer Chemistry 2013, 4, 3431-3443;
  • a group sensitive to hydrolysis such as poly (lactic acid), poly (glycolic acid), poly (lactic-co-glycolic acid), polycaprolactone, polyhydroxybutyrate, chitosan, dextran, agarose, cellulose and derivatives thereof; and
  • Step b) of the process according to the invention consists in preparing a second emulsion (E2).
  • the second emulsion consists of a dispersion of droplets of the first emulsion in a composition C3 immiscible with C2, created by dropwise addition of the emulsion (E1) in C3 with stirring.
  • the emulsion (E1) is at a temperature between 15 ° C and 60 ° C.
  • the composition C3 is at a temperature between 15 ° C and 60 ° C.
  • the compositions C2 and C3 are not miscible with each other, which means that the amount (by weight) of the C2 composition capable of being solubilized in the composition C3 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C3, and that the amount (in weight) of the composition C3 capable of being solubilized in the composition C2 is less than or equal to 5%, preferably less than 1%, and preferably less than 0.5%, relative to the total weight of composition C2.
  • a double drop formed during step b) corresponds to a single drop of composition C1 as described above, surrounded by a composition envelope C2 which completely encapsulates said single drop.
  • the double drop formed during step b) may also comprise at least two simple drops of composition C1, said simple drops being surrounded by a composition envelope C2 which completely encapsulates said single drops.
  • said double drops comprise a heart consisting of one or more single drops of composition C1, and a layer of composition C2 surrounding said heart.
  • the resulting emulsion (E2) is generally a double polydisperse emulsion (C1-in-C2-in-C3 emulsion or C1 / C2 / C3 emulsion), which means that the double drops do not have a distinct size distribution in the emulsion (E2).
  • compositions C2 and C3 make it possible to avoid mixing between the layer of composition C2 and the composition C3 and thus ensures the stability of the emulsion (E2).
  • compositions C2 and C3 also makes it possible to prevent the water-soluble substance of the composition C1 from migrating from the heart of the drops to the composition C3.
  • step b) it is possible to use any type of stirrer usually used to form emulsions, such as, for example, a mechanical stirrer with a pale color, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer with a pale color such as, for example, a mechanical stirrer with a pale color, a static emulsifier, an ultrasonic homogenizer, a membrane homogenizer, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • the viscosity of the composition C3 at 25 ° C is higher than the viscosity of the emulsion (E1) at 25 ° C.
  • the viscosity of the composition C3 at 25 ° C is between 500 mPa.s and 100,000 mPa.s.
  • the viscosity of the composition C3 at 25 ° C. is between 3,000 mPa.s and 100,000 mPa.s, preferably between 5,000 mPa.s and 80,000 mPa.s, for example between 7,000 mPa.s. and 70,000 mPa.s.
  • the destabilization rate of the double drops of the emulsion (E2) is significantly slow compared to the duration of the process of the invention. , which then provides a kinetic stabilization of the emulsions (E2) and then (E3) until the polymerization of the capsule shell is completed.
  • the capsules once polymerized are thermodynamically stable.
  • the very high viscosity of the composition C3 ensures the stability of the emulsion (E2) obtained at the end of step b).
  • a low surface tension between C3 and the first emulsion and a high viscosity of the system advantageously ensure the kinetic stability of the double emulsion (E2), preventing it from being out of phase for the duration of the manufacturing process.
  • the interfacial tension between compositions C2 and C3 is low.
  • the low interfacial tension between the compositions C2 and C3 also advantageously makes it possible to ensure the stability of the emulsion (E2) obtained at the end of step b).
  • the volume fraction of the first emulsion in C3 can be varied from 0.05 to 0.5 in order, on the one hand, to improve the production yield and, on the other hand, to vary the mean diameter of the capsules.
  • the size distribution of the second emulsion is relatively wide.
  • the ratio between the emulsion volume (E1) and the composition volume C3 varies between 1: 10 and 10: 1.
  • this ratio is between 1: 9 and 3: 1, preferably between 1: 9 and 1: 1.
  • the composition C3 further comprises at least one connected polymer, preferably with a molecular weight greater than 5000 g. mol "1 , and / or at least one polymer of molecular weight greater than 5,000 g. mol " 1 , and / or solid particles such as silicates.
  • the composition C3 comprises at least one connected polymer, preferably with a molecular weight greater than 5,000 g. mol "1, preferably between 10 000 g. mol” 1 and 500 000 g. mol “1 , for example between 50,000 g mol -1 and 300,000 g. mol "1 .
  • branched polymer (or branched polymer) is meant a polymer having at least one branch point between its two end groups, a branch point (also called branch point) being a point of a chain on which is fixed a side chain also called branch or hanging chain.
  • branched polymers there may be mentioned for example graft polymers, comb, or star polymers or dendrimers.
  • the composition C3 comprises at least one polymer with a molecular weight greater than 5,000 g. mol "1, preferably between 10 000 g. mol” 1 and 500 000 g. mol "1 , for example between 50,000 g mol -1 and 300,000 g. mol "1 .
  • composition C3 As a polymer that can be used in the composition C3, mention may be made of the following compounds, used alone or mixed together:
  • cellulose derivatives such as cellulose ethers: methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, methylhydroxyethyl cellulose, ethylhydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose or methylhydroxypropyl cellulose;
  • polyacrylates also called carbomers
  • PAA polyacrylic acid
  • PMAA polymethacrylic acid
  • HPEMA poly (hydroxyethyl methacrylate)
  • pHPMA poly (N-2-hydroxypropyl methacrylate)
  • PIPAM polyacrylamides
  • PIPAM poly (N-isopropylacrylamide)
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • poly (ethylene glycol), poly (propylene glycol) and their derivatives such as poly (ethylene glycol) acrylate / methacrylate, poly (ethylene glycol) diacrylate / dimethacrylate, polypropylene carbonate;
  • polysaccharides such as carrageenans, carob gum or tara gums, dextran, xanthan gums, chitosan, agarose, hyaluronic acids, gellan gum, guar gum, gum arabic, gum tragacanth, diuretic gum, oat gum, karaya gum, ghatti gum, curdian gum, pectin, konjac gum, starch;
  • protein derivatives such as gelatin, collagen, fibrin, polylysine, albumin, casein;
  • silicone derivatives such as polydimethylsiloxane (also called dimethicone), alkyl silicones, aryl silicones, alkyl aryl silicones, polyethylene glycol dimethicones, polypropylene glycol dimethicone;
  • waxes such as diester waxes (alkanediol diesters, hydroxyl acid diesters), triester waxes (triacylglycerols, triesters of alkane-1,2-diol, ⁇ -hydroxy acid and fatty acid, esters of hydroxymalonic acid, fatty acid and alcohol, triesters of hydroxyl acids, fatty acid and fatty alcohol, triesters of fatty acid, hydroxyl acid and diol) and polyester waxes (polyesters of acids bold).
  • diester waxes alkanediol diesters, hydroxyl acid diesters
  • triester waxes triacylglycerols, triesters of alkane-1,2-diol, ⁇ -hydroxy acid and fatty acid, esters of hydroxymalonic acid, fatty acid and alcohol, triesters of hydroxyl acids, fatty acid and fatty alcohol, triesters of fatty acid, hydroxyl acid and diol
  • polyester waxes
  • fatty acid esters which may be used as waxes in the context of the invention are, for example, cetyl palmitate, cetyl octanoate, cetyl laurate, cetyl lactate, cetyl isononanoate and stearate.
  • fatty acids which can be used as waxes such as cerotic acid, palmitic acid, stearic acid, dihydroxystearic acid, behenic acid, lignoceric acid, arachidic acid, myristic acid, lauric acid, tridecyclic acid, pentadecyclic acid, margaric acid, nonadecyclic acid, henicosylic acid, tricosylic acid, pentacosylic acid, heptacosylic acid, montanic acid or nonacosylic acid; fatty acid salts, in particular fatty acid aluminum salts, such as aluminum stearate, hydroxyl aluminum bis (2-ethylhexanoate);
  • castor oil and its derivatives especially modified hydrogenated castor oil or compounds obtained by esterification of castor oil with fatty alcohols;
  • styrenic polymers such as styrene butadiene
  • polyolefins such as polyisobutene.
  • the composition C3 comprises solid particles such as clays, silicas and silicates.
  • clays and silicates belonging in particular to the category of phyllosilicates also known as layered silicas.
  • silicates also known as layered silicas.
  • the fumed synthetic silicas can also be used.
  • the clays, silicates and silicas mentioned above can advantageously be modified by organic molecules such as polyethers, ethoxylated amides, quaternary ammonium salts, long-chain diamines, long-chain esters, polyethylene glycols, polypropylene glycols.
  • These particles can be used alone or mixed together.
  • the composition C3 comprises at least one polymer with a molecular weight greater than 5,000 g. mol- 1 and solid particles Any mixture of the compounds mentioned above may be used.
  • Step c) of the process according to the invention consists in refining the size of the drops of the second emulsion (E2).
  • This step may consist in applying a homogeneous controlled shear to the emulsion (E2), said shear rate applied being between 10 s -1 and 100,000 s -1 .
  • the double polydisperse drops obtained in step b) are subjected to a size refinement consisting of shearing them capable of breaking them into new double drops of homogeneous and controlled diameters.
  • this fragmentation step is carried out using a Couette type high-shear cell according to a process described in patent application EP 15 306 428.2.
  • step c) the second emulsion (E2), obtained at the end of step b), consisting of polydisperse double droplets dispersed in a continuous phase, is subjected to a shear in a mixer, which applies a homogeneous controlled shear.
  • step c) consists of applying homogenous controlled shear to the emulsion (E2), said shear rate applied being between 1000 s -1 and 100,000 s -1 .
  • the shear rate is said to be controlled and homogeneous, regardless of the duration, when it passes to an identical maximum value for all parts of the emulsion, at a given instant that may vary. from one point of the emulsion to another.
  • the exact configuration of the mixer is not essential according to the invention, as long as the entire emulsion has been subjected to the same maximum shear out of this device.
  • Mixers adapted to perform step c) are described in particular in US 5,938,581.
  • the second emulsion can undergo homogeneous controlled shear as it flows through a cell formed by:
  • the shear rate applied to the second emulsion is between 1,000 s -1 and 100,000 s -1 , preferably between 1,000 s -1 and 50,000 s -1 , and preferably between 2,000 s "1 and 20,000 s " 1 .
  • the second emulsion is introduced into the mixer and is then subjected to shear resulting in the formation of the third emulsion.
  • the third emulsion (E3) is chemically identical to the second emulsion (E2) but consists of monodisperse double drops while the emulsion (E2) consists of double polydisperse drops.
  • the third emulsion (E3) typically consists of a dispersion of double drops comprising a core consisting of one or more drops of composition C1 and a layer of composition C2 encapsulating said core, said double drops being dispersed in composition C3.
  • the difference between the second emulsion and the third emulsion is the size variance of the double drops: the drops of the second emulsion are polydisperse in size while the drops of the third emulsion are monodisperse, thanks to the fragmentation mechanism described above.
  • the second emulsion is introduced continuously into the mixer, which means that the quantity of double emulsion (E2) introduced at the mixer inlet is the same as the quantity of third emulsion ( E3) at the mixer outlet.
  • the size of the drops of the emulsion (E3) corresponds essentially to the size of the drops of the solid microcapsules after polymerization, it is possible to adjust the size of the microcapsules and the thickness of the envelope by adjusting the speed of the shear during step c), with a strong correlation between droplet size decrease and shear rate increase. This makes it possible to adjust the resulting dimensions of the microcapsules by varying the shear rate applied during step c).
  • the mixer implemented during step c) is a Couette type mixer, comprising two concentric cylinders, an outer cylinder of inner radius R 0 and an inner cylinder of outer radius R , the cylinder external being fixed and the inner cylinder being rotated with an angular velocity ⁇ .
  • a Couette type mixer adapted for the process of the invention may be provided by T.S.R. France.
  • the angular velocity ⁇ of the internal rotating cylinder of the Couette type mixer is greater than or equal to 30 rad.s -1 .
  • the angular velocity ⁇ of the inner rotating cylinder of the Couette type mixer is about 70 rad.s -1 .
  • the distance d between the two concentric cylinders is equal to 100 ⁇ .
  • the second emulsion is introduced at the inlet of the mixer, typically via a pump, and is directed towards the space between the two concentric cylinders, the outer cylinder being fixed and the inner cylinder being rotated at an angular velocity ⁇ .
  • R 0 is the internal radius of the fixed outer cylinder
  • - R is the outer radius of the inner cylinder in rotation.
  • the step c) consists in applying to the emulsion (E2) a shear rate of less than 1000 s "1 .
  • the fragmentation step c) can be carried out using any type of mixer usually used to form emulsions with a shear rate of less than 1000 s -1 , in which case the viscosity of the composition C3 is greater than 2,000 mPa.s, namely under conditions such as those described in the patent application FR 16 61787.
  • the emulsion (E2) consisting of polydisperse drops dispersed in a continuous phase, is subjected to shear, for example in a mixer, at a low shear rate, to be less than 1,000 s "1 .
  • the shear rate applied in step c) is, for example, between 10 s -1 and 1000 s -1 .
  • the shear rate applied in step c) is strictly less than 1000 s -1 .
  • the emulsion drops (E2) can be efficiently fragmented into fine and monodisperse emulsion drops (E3) only if a high shear stress is applied thereto.
  • the shear stress ⁇ applied to a drop of emulsion (E2) is defined as the tangential force per unit area of drop resulting from the macroscopic shear applied to the emulsion during its stirring during step d).
  • the high viscosity of the composition C3 makes it possible to apply a very high shear stress to the emulsion drops (E2) in the mixer, even if the shear rate is low and the shear inhomogeneous.
  • step c) it is possible to use any type of stirrer usually used to form emulsions, such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a homogenizer membrane, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a homogenizer membrane, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a mechanical stirrer such as, for example, a mechanical stirrer, a static emulsifier, an ultrasonic homogenizer, a homogenizer membrane, a high pressure homogenizer, a colloid mill, a high shear disperser or a high speed homogenizer.
  • a simple emulsifier such as a mechanical stirrer with pale or a static emulsifier is used to implement step c). Indeed, this is possible because this embodiment requires neither controlled shear nor shear greater than 1,000 s -1 .
  • Step d) of the process of the invention consists of the crosslinking and therefore the formation of the shell of the solid microcapsules according to the invention.
  • This step makes it possible both to achieve the expected retention performance of the capsules and to ensure their thermodynamic stability, permanently preventing any destabilizing mechanism such as coalescence or ripening.
  • step d) is a photopolymerization step of exposing the emulsion (E3) to a light source capable of initiating the photopolymerization of the composition C2, in particular to a UV light source emitting preferably in the wavelength range of between 100 nm and 400 nm, and in particular for a duration of less than 15 minutes.
  • a light source capable of initiating the photopolymerization of the composition C2
  • a UV light source emitting preferably in the wavelength range of between 100 nm and 400 nm, and in particular for a duration of less than 15 minutes.
  • step d) consists in subjecting the emulsion (E3) to photopolymerization, which will allow the photopolymerization of the composition C2. This step will make it possible to obtain microcapsules encapsulating the water-soluble substance as defined above.
  • step d) consists in exposing the emulsion (E3) to a light source capable of initiating the photopolymerization of the composition C2.
  • the light source is a source of UV light.
  • the UV light source emits in the wavelength range of between 100 nm and 400 nm.
  • the emulsion (E3) is exposed to a light source for less than 15 minutes, and preferably for 5 to 10 minutes.
  • step d the envelope of the aforementioned double drops, consisting of photocrosslinkable composition C2, is cross-linked and thus converted into a viscoelastic polymeric envelope, encapsulating and protecting the water-soluble substance from being released in the absence of mechanical triggering. .
  • step d) is a polymerization step, without exposure to a light source, the duration of this polymerization step d) being preferably between 8 hours and 100 hours and / or this step d) is carried out at a temperature between 20 ° C and 80 ° C.
  • the polymerization is initiated for example by exposure to heat (thermal initiation), or simply by contacting the monomers, polymers and crosslinking agents with each other, or with a catalyst.
  • the polymerization time is then generally greater than several hours.
  • step d) of polymerization of the composition C2 is carried out for a period of between 8 hours and 100 hours, at a temperature between 20 ° C and 80 ° C.
  • composition obtained at the end of step d), comprising solid microcapsules dispersed in the composition C3, is ready for use and can be used without any additional step of post-treatment of the capsules is required.
  • the thickness of the envelope of the microcapsules thus obtained is typically between 0.1 ⁇ m and 20 ⁇ m, preferably between 0.2 ⁇ m and 8 ⁇ m, and preferably between 0.2 ⁇ m and 5 ⁇ m.
  • the solid microcapsules obtained at the end of step d) are devoid of surfactant.
  • the method of the invention has the advantage of not requiring a surfactant, in any of the steps described.
  • the process of the invention thus makes it possible to reduce the presence of additives which could modify the properties of the final product obtained after release of the active ingredient.
  • the present invention also relates to a series (or set) of solid microcapsules, obtainable by the method as defined above, in which each microcapsule comprises:
  • a core comprising a composition C1 as defined above, and
  • the solid microcapsules obtained by the process of the invention are formed of a core containing at least one active ingredient (composition C1) and a solid envelope (obtained from composition C2) completely encapsulating at its periphery said core.
  • the process of the invention makes it possible to obtain monodisperse particles.
  • the series of solid microcapsules mentioned above is formed of a population of monodisperse particles in size.
  • the standard deviation of the diameter distribution of the microcapsules is less than 50%, in particular less than 25%, or less than 1 ⁇ m.
  • the size distribution of the solid microcapsules can be measured by light scattering technique using a Mastersizer 3000 (Malvern Instruments) equipped with a Hydro SV cell.
  • the aforementioned solid microcapsules comprise a solid envelope entirely composed of crosslinked polymer (obtained from composition C2).
  • the present invention therefore also relates to solid microcapsules comprising a core and a solid envelope completely encapsulating at its periphery the heart, in which the core is a composition C1 as defined above, and wherein said solid envelope is made of crosslinked polymer.
  • the diameter of said microcapsule being between 1 ⁇ and 30 ⁇ and the thickness of the rigid envelope being between 0.1 ⁇ and 20 ⁇ , preferably between 0.2 ⁇ and 8 ⁇ , and preferably between 0.2 ⁇ and 5 ⁇ .
  • the present invention also relates to a composition comprising a series of solid microcapsules as defined above.
  • a mechanical stirrer (Ika Eurostar 20) equipped with a deflocculating stirring propeller is used to carry out all the stirring steps.
  • composition C1 is stirred at 1000 rpm until complete homogenization and then left to stand for one hour at room temperature.
  • the composition C1 is then added dropwise to the composition C 2 with stirring at 2000 rpm with a ratio of 3: 7.
  • the first emulsion (E1) is thus obtained.
  • composition C3 is stirred at 1000 rpm until complete homogenization and then left to stand for one hour at room temperature.
  • the first emulsion (E1) is then added dropwise to the composition C3 with stirring at 1000 rpm. This gives the second emulsion (E2).
  • the second polydisperse emulsion (E2) obtained in the previous step is stirred at 1000 rpm for 10 minutes.
  • a monodisperse emulsion (E3) is thus obtained.
  • the second monodisperse emulsion (E3), obtained in the previous step, is irradiated for 10 minutes with the aid of a UV light source (Dymax LightBox ECE 2000) having a maximum light intensity of 0.1 W / cm 2 at a wavelength of 365 nm.
  • a UV light source Dymax LightBox ECE 2000
  • microcapsules obtained have a good size distribution, namely an average size of 15 ⁇ and their size distribution has a standard deviation of 6.1 ⁇ or 41%.
  • the microcapsules are washed by means of several centrifugation - redispersion steps in order to completely eliminate the alginate.
  • a soil sample is taken and purified in order to extract the bacterial content which is then placed in a liquid culture medium containing the microcapsules according to the invention as sole source of carbon.
  • the microcapsules are imaged under an optical microscope and a scanning electron microscope.
  • a biofilm is observed on the microcapsules, indicating the proliferation of bacteria from the carbon source that represents the envelope. Traces of erosion and fractures are observed on the microcapsule envelope, confirming a bacterial digestion of the microcapsules.
  • a mechanical stirrer (Ika Eurostar 20) equipped with a deflocculating stirring propeller is used to carry out all the stirring steps.
  • compositions C1 and C2 are stirred at 2000 rpm until complete homogenization.
  • the composition C1 is then added dropwise to the composition C 2 with stirring at 2000 rpm with a ratio of 5: 5.
  • the first emulsion (E1) is thus obtained.
  • composition C3 is stirred at 3500 rpm until complete homogenization and then allowed to stand for one hour at room temperature.
  • the first emulsion (E1) is then added to the composition C3 and then stirred at 2,000 rpm. This gives the second emulsion (E2).
  • the second polydisperse emulsion (E2) obtained in the previous step is stirred at 2000 rpm for 3 minutes.
  • a monodisperse emulsion (E3) is thus obtained.
  • the second monodisperse emulsion (E3), obtained in the previous step, is irradiated for 10 minutes with the aid of a UV light source (Dymax LightBox ECE 2000) having a maximum light intensity of 0.1 W / cm 2 at a wavelength of 365 nm.
  • a UV light source Dymax LightBox ECE 2000
  • microcapsules obtained have a good size distribution, namely an average size of 5 ⁇ and their size distribution has a standard deviation of 1 ⁇ or 20%.
  • the microcapsules are washed by means of several centrifugation - redispersion steps in order to completely eliminate the alginate.
  • BioDScreen® analysis was performed to determine the aerobic biodegradability of the microcapsules.
  • the BioDScreen® (Scanae) method is a microplate screnning method using fluorescence detection.
  • BioDScreen® is based on the use of a bioreactant, derived from resazurin, that is sensitive to the metabolic activity of bacteria; this reagent is reduced in a fluorescent form proportional to the bacterial degradation of the sample.
  • the biodegradability rates correspond to an analysis of the biodegradability under the BioDScreen®-A method over 10 days of incubation at 30 ° C, with an inoculum from the purification plant.
  • Example 2 Manufacture of Biodegradable Solid Polyepoxy Capsules According to the Invention
  • a mechanical stirrer (Ika Eurostar 20) equipped with a deflocculating stirring propeller is used to carry out all the stirring steps.
  • compositions C1 and C2 are stirred at 2000 rpm until complete homogenization.
  • the composition C1 is then added dropwise to the composition C 2 with stirring at 2000 rpm with a ratio of 5: 5.
  • the first emulsion (E1) is thus obtained.
  • composition C3 is stirred at 3500 rpm until complete homogenization and then allowed to stand for one hour at room temperature.
  • the first emulsion (E1) is then added to the composition C3 and then stirred at 2,000 rpm. This gives the second emulsion (E2).
  • the second polydisperse emulsion (E2) obtained in the previous step is stirred at 2000 rpm for 3 minutes.
  • a monodisperse emulsion (E3) is thus obtained.
  • the second monodisperse emulsion (E3), obtained in the previous step, is irradiated for 10 minutes with the aid of a UV light source (Dymax LightBox ECE 2000) having a maximum light intensity of 0.1 W / cm 2 at a wavelength of 365 nm.
  • a UV light source Dymax LightBox ECE 2000
  • microcapsules obtained have a good size distribution, namely an average size of 8 ⁇ and their size distribution has a standard deviation of 1, 4 ⁇ or 18%.
  • the microcapsules are washed by means of several centrifugation - redispersion steps in order to completely eliminate the alginate.
  • a BioDScreen® (Scanae) analysis was performed to determine the aerobic biodegradability of the microcapsules, according to the indications mentioned above in Example 2.
  • the rate of biodegradability at 10 days of incubation is 31% with a standard deviation of 3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

La présente invention concerne un procédé de préparation de microcapsules solides, comprenant les étapes suivantes : a) l'addition sous agitation d'une composition C1 dans une composition polymérique C2 comprenant au moins un ester ou polyester aliphatique ou aromatique, portant en outre au moins une fonction choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, amine, lactone, phosphate, carboxylate, et de leurs mélanges, ce par quoi on obtient une émulsion (E1) comprenant des gouttes de composition C1 dispersées dans la composition C2; b) l'addition sous agitation de l'émulsion (E1) dans une composition C3, ce par quoi on obtient une émulsion double (E2) comprenant des gouttes dispersées dans la composition C3; c) l'application d'un cisaillement à l'émulsion (E2), ce par quoi on obtient une émulsion double (E3) comprenant des gouttes de taille contrôlée dispersées dans la composition C3; et d) la polymérisation de la composition C2, ce par quoi on obtient des microcapsules solides dispersées dans la composition C3.

Description

PROCÉDÉ DE PRÉPARATION DE CAPSULES BIODÉGRADABLES ET CAPSULES OBTENUES
La présente invention a pour objet un procédé de préparation de capsules biodégradables. Elle a également pour objet les capsules telles qu'obtenues ainsi que des compositions les contenant.
De nombreux composés, appelés principes actifs, sont ajoutés aux produits formulés afin de leur conférer des propriétés d'application intéressantes ou augmenter leurs performances.
Cependant, dans de nombreux cas, ces substances réagissent négativement avec d'autres composants du produit formulé, ce qui a des conséquences néfastes sur la stabilité ainsi qu'une diminution des performances.
L'encapsulation des principes actifs représente un moyen très intéressant pour pallier à la limitation de performance ou de stabilité des produits formulés qui les contiennent tout en bénéficiant de l'effet du principe actif au moment de l'utilisation de ce produit formulé.
Cependant, le devenir des microcapsules après avoir libéré leur contenu reste une préoccupation majeure puisqu'elles deviennent alors un déchet susceptible de s'accumuler dans l'environnement. Pour cette raison, le développement de microcapsules ayant la faculté d'être biodégradables a une importance capitale.
De très nombreuses capsules ont été développées afin d'isoler des principes actifs dans les produits formulés. Ces capsules résultent de procédés de fabrication tels que l'atomisation (spray-drying), la polymérisation interfaciale, la précipitation interfaciale ou l'évaporation de solvant parmi de nombreux autres.
Certaines de ces microcapsules ont une enveloppe formée d'un matériau non réticulé tel qu'un hydrogel ou un polymère thermoplastique. Si cet hydrogel ou ce polymère thermoplastique est formé de matériaux connus pour être biodégradables, alors l'enveloppe des microcapsules formée avec ce matériau sera réputée être biodégradable. Les principaux matériaux biodégradables utilisés pour ce type de capsules font partie de la famille des polyesters, en particulier des polyhydroxyalcanoates (par exemple l'acide polylactique ou l'acide polyglycolique), ou des polysaccharides (par exemple l'alginate, l'amidon ou le dextran). Cependant, la diffusion à travers l'enveloppe de ce type de capsule est relativement rapide, limitant ainsi leurs performances. En effet, le composé encapsulé peut rapidement fuir à l'extérieur de la capsule ou à l'inverse des espèces chimiques dégradant le composé encapsulé peuvent rapidement entrer dans la capsule.
D'autres de ces microcapsules ont une enveloppe résultant de la réaction de monomères qui réagissent entre eux chimiquement et forment un matériau réticulé à travers lequel la diffusion est fortement ralentie, améliorant ainsi les performances des capsules. On peut citer dans cette catégorie les capsules formées d'urée et de formaldéhyde, très largement utilisées, mais qui ne sont malheureusement pas biodégradables.
Il existe donc un besoin technique de formation de capsules formées d'une enveloppe réticulée qui soient à la fois biodégradables et avec de très bonnes propriétés de rétention et de protection des principes actifs qu'elles contiennent.
La présente invention a donc pour but de fournir un procédé permettant d'encapsuler des principes actifs en évitant les problèmes susmentionnés de fuite desdits principes actifs, ainsi que les capsules obtenues par ce procédé.
La présente invention a également pour but de fournir des capsules contenant au moins un principe actif et présentant d'excellentes propriétés de biodégradabilité.
Ainsi, la présente invention concerne un procédé de préparation de microcapsules solides comprenant les étapes suivantes :
a) l'addition sous agitation d'une composition C1 , comprenant au moins un actif, dans une composition polymérique C2, les compositions C1 et C2 n'étant pas miscibles l'une dans l'autre,
la viscosité de la composition C2 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de la composition C1 ,
la composition C2 comprenant :
- au moins un monomère ou polymère choisi dans le groupe constitué des esters ou polyesters aliphatiques ou aromatiques, des anhydrides ou polyanhydrides, des saccharides ou polysaccharides, des éthers ou polyéthers, des amides ou polyamides et des carbonates ou polycarbonates, portant en outre au moins une fonction choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate, carboxylate, et de leurs mélanges, - au moins un agent réticulant, et
- éventuellement au moins un photoinitiateur ou un catalyseur de réticulation, ce par quoi on obtient une émulsion (E1 ) comprenant des gouttes de composition C1 dispersées dans la composition C2 ;
b) l'addition sous agitation de l'émulsion (E1 ) dans une composition C3, les compositions C2 et C3 n'étant pas miscibles l'une dans l'autre,
la viscosité de la composition C3 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de l'émulsion (E1 ),
ce par quoi on obtient une émulsion double (E2) comprenant des gouttes dispersées dans la composition C3 ;
c) l'application d'un cisaillement à l'émulsion (E2),
ce par quoi on obtient une émulsion double (E3) comprenant des gouttes de taille contrôlée dispersées dans la composition C3 ; et
d) la polymérisation de la composition C2, ce par quoi on obtient des microcapsules solides dispersées dans la composition C3.
Dans la présente demande, les termes « microcapsules » et « capsules » sont utilisés de façon indifférente.
Le procédé de l'invention permet donc de préparer des microcapsules solides comprenant un cœur et une enveloppe solide encapsulant totalement à sa périphérie le cœur, dans laquelle le cœur est une composition C1 comprenant au moins un actif.
De préférence, les microcapsules solides obtenues par le procédé de l'invention sont formées d'un cœur contenant au moins un actif (composition C1 ) et une enveloppe solide (obtenue de la composition C2) encapsulant totalement à sa périphérie ledit cœur.
Dans la recherche de microcapsules performantes en termes de rétention et de protection, les inventeurs ont constaté de façon surprenante et inattendue qu'il était possible à partir de matériaux non biodégradables d'obtenir, sous certaines conditions, des microcapsules biodégradables.
Ainsi, les microcapsules obtenues par le procédé de l'invention, au vu du choix de monomères et polymères spécifiques dans la composition C2, ont la faculté d'être biodégradables.
La biodégradabilité est définie ici comme la faculté d'être dégradé dans un milieu naturel, tel que défini dans les normes de l'OCDE : OECD 301 (Biodégradabilité facile), à savoir OECD 301 A (Essai de disparition du Carbone Organique Dissous (COD)), OECD 301 B (Essai de dégagement du C02), OECD 301 C (Essai MITI modifié (I)), OECD 301 D (Essai en flacon fermé), OECD 301 E (Essai de screening modifié de l'OCDE), OECD 301 F (Essai de respirométrie manométrique), ou encore OECD 304A (Biodégradabilité intrinsèque dans le sol), OECD 306 (Biodégradabilité dans l'eau de mer) et OECD 310 (Biodégradabilité immédiate - dégagement de C02 dans des flacons hermétiquement clos).
Le procédé de l'invention présente en outre l'avantage de ne pas nécessiter l'utilisation de tensioactifs ou d'émulsifiants qui pourraient accélérer et rendre incontrôlée la libération des principes actifs vers l'extérieur de la capsule ; et/ou réagir avec les composants du produit formulé dans lequel les capsules sont destinées à être incorporées.
Le procédé de l'invention consiste à réaliser une double émulsion composée de gouttelettes contenant au moins un actif, enveloppées d'une phase liquide réticulable. Ces doubles gouttes sont ensuite rendues monodisperses en taille avant d'être transformées par réticulation ou polymérisation en capsules rigides. La préparation implique 4 étapes décrites ci-après de façon détaillée.
Etape a)
L'étape a) du procédé selon l'invention consiste à préparer une première émulsion (E1 ).
La première émulsion consiste en une dispersion de gouttelettes de la composition C1 (contenant au moins un actif) dans une composition polymérique C2 immiscible avec C1 , créée par addition goutte à goutte de C1 dans C2 sous agitation.
Pendant l'étape a), une composition C1 est ajoutée à une composition polymérique réticulable C2, cette étape étant effectuée sous agitation, ce qui signifie que la composition C2 est agitée, typiquement de façon mécanique, tandis que la composition C1 est ajoutée, et ce afin d'émulsifier le mélange des compositions C1 et C2.
L'addition de la composition C1 dans la composition C2 est typiquement effectuée goutte à goutte. Pendant l'étape a), la composition C1 est à une température comprise entre 0°C et 100°C, de préférence entre 10°C et 80°C, et préférentiellement entre 15°C et 60°C. Pendant l'étape a), la composition C2 est à une température comprise entre 0°C et 100°C, de préférence entre 10°C et 80°C, et préférentiellement entre 15°C et 60°C.
Dans les conditions d'addition de l'étape a), les compositions C1 et C2 ne sont pas miscibles l'une dans l'autre, ce qui signifie que la quantité (en poids) de la composition C1 capable d'être solubilisée dans la composition C2 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C2, et que la quantité (en poids) de la composition C2 capable d'être solubilisée dans la composition C1 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C1 .
Ainsi, lorsque la composition C1 entre en contact avec la composition C2 sous agitation, celle-ci est dispersée sous la forme de gouttes, dites gouttes simples.
L'immiscibilité entre les compositions C1 et C2 permet également d'éviter la migration de l'actif de la composition C1 vers la composition C2.
La composition C2 est agitée de manière à former une émulsion comprenant des gouttes de composition C1 dispersées dans la composition C2. Cette émulsion est aussi appelée « émulsion simple » ou émulsion C1 -dans-C2.
Pour mettre en œuvre l'étape a), on peut utiliser tout type d'agitateur usuellement utilisé pour former des émulsions, comme par exemple un agitateur mécanique à pâles, un émulseur statique, un homogénéisateur à ultrasons, un homogénéisateur à membrane, un homogénéisateur à haute pression, un moulin colloïdal, un disperseur à haut pouvoir de cisaillement ou un homogénéisateur à haute vitesse.
Composition C1
La composition C1 comprend au moins un actif A. Cette composition C1 sert de véhicule à l'actif A dans le procédé de l'invention, au sein des gouttes formées lors du procédé de l'invention et des capsules solides obtenues. Selon une première variante du procédé de l'invention, la composition C1 est monophasique, c'est-à-dire qu'il s'agit de l'actif A pur ou bien d'une solution comprenant l'actif A sous forme solubilisée.
Selon un mode de réalisation, l'actif est solubilisé dans la composition C1 .
Selon cette variante, la composition C1 consiste typiquement en une solution de l'actif A dans une solution aqueuse, ou un solvant organique, ou un mélange de solvants organiques, l'actif A étant présent selon une teneur massique comprise de 1 % à 99%, par rapport à la masse totale de la composition C1 . L'actif A peut être présent selon une teneur massique comprise de 5% à 95%, de 10% à 90%, de 20% à 80%, de 30% à 70%, ou de 40% à 60%, par rapport à la masse totale de la composition C1 .
Selon un mode de réalisation, la composition C1 consiste en l'actif A.
Selon un autre mode de réalisation de l'invention, la composition C1 est une composition biphasique, ce qui signifie que l'actif est dispersé, soit sous forme liquide soit sous forme solide, dans la composition C1 et n'est pas totalement solubilisé dans ladite composition C1 .
Selon un mode de réalisation, l'actif est dispersé sous la forme de particules solides dans la composition C1 .
Selon ce mode de réalisation, la composition C1 peut consister en une dispersion de particules solides de l'actif dans un solvant organique ou dans un mélange de solvants organiques.
Selon ce mode de réalisation, la composition C1 peut consister en une dispersion de particules solides de l'actif dans une phase aqueuse, qui comprend de l'eau et éventuellement des solvants organiques hydrophiles.
L'actif utilisé est par exemple :
- un réticulant, un durcisseur, un catalyseur organique ou métallique (tel qu'un complexe organométallique ou inorganométallique de platine, de palladium, de titane, de molybdène, de cuivre, de zinc) utilisé pour polymériser des formulations de polymère, d'élastomère, de caoutchouc, de peinture, d'adhésif, de joint, de mortier, de vernis ou de revêtement ;
- un colorant ou un pigment destiné aux formulations d'élastomères, de peinture, de revêtement, d'adhésif, de joint, de mortier, ou de papier ;
- un parfum (au sens de la liste de molécule établie par l'International Fragrance Association (IFRA) et disponible sur le site internet www.ifraorg.org) destiné aux produits de détergence comme les lessives, aux produits de soin de la maison, aux produits cosmétiques et de soin de la personne, aux textiles, aux peintures, aux revêtements ;
un arôme, une vitamine, un acide aminé, une protéine, un lipide, un probiotique, un antioxydant, un correcteur de pH, un préservateur pour les composés alimentaires et l'alimentation animale ;
un adoucissant, un conditionnant pour les produits de détergence, les lessives, les cosmétiques et les produits de soin de la personne. A ce titre, les actifs utilisables sont par exemple énumérés dans les brevets US 6 335 315 et US 5 877 145 ;
un agent anti altération de couleur (tel qu'un dérivé d'ammonium), un agent antimousse (tel qu'un éthoxylate d'alcool, un sulfonate d'alkylbenzène, un éthoxylate de polyéthylène, un alkyléthoxysulfate ou alkylsulfate) destiné aux produits de détergence et aux lessives et aux produits de soin de la maison ; un agent azurant, aussi appelé activateur de couleur (tel qu'un dérivé de stilbène, un dérivé de coumarine, un dérivé de pyrazoline, un dérivé de benzoxazole ou un dérivé de naphtalimide) destiné aux produits de détergence, aux lessives, aux cosmétiques et aux produits de soin de la personne ;
un composé biologiquement actif tel qu'une enzyme, une vitamine, une protéine, un extrait végétal, un agent émollient, un agent désinfectant, un agent antibactérien, un agent anti-UV, un médicament destiné aux produits cosmétiques et de soin de la personne, aux textiles. Parmi ces composés biologiquement actifs on peut citer : les vitamines A, B, C, D et E, l'acide para aminobenzoïque, les acides alpha hydroxylés (comme l'acide glycolique, l'acide lactique, l'acide malique, l'acide tartrique ou l'acide citrique), le camphre, les céramides, les polyphénols (comme les flavonoïdes, l'acide phénolique, l'acide ellagique, le tocophérol, l'ubiquinol), l'hydroquinone, l'acide hyaluronique, l'isopropyl isostéarate, l'isopropyl palmitate, l'oxybenzone, le panthenol, la proline, le rétinol, le rétinyl palmitate, l'acide salicylique, l'acide sorbique, le sorbitol, le triclosan, la tyrosine ;
un agent désinfectant, un agent antibactérien, un agent anti-UV, destiné aux peintures et revêtements ;
un fertilisant, un herbicide, un insecticide, un pesticide, un fongicide, un repoussant ou un désinfectant destiné aux produits agrochimiques ; un agent ignifuge, aussi appelé retardateur de flamme, (tel qu'un polyol bromé comme le tétrabromobisphénol A, un composé organophosphoré halogéné ou non halogéné, un composé chloré, un trihydrate d'aluminium, un oxyde d'antimoine, un borate de zinc, un phosphore rouge, un mélamine, ou un dihydroxyde de magnésium) destiné aux matériaux plastiques, aux revêtement, aux peintures et aux textiles ;
- un cristal photonique ou un photochromophore destiné aux peintures, aux revêtements et aux matériaux polymères formant les écrans incurvés et souples ;
- un produit connu par l'homme de l'art sous le nom de matériaux à changement de phase (PCM pour Phase Change Materials) capables d'absorber ou restituer de la chaleur lorsqu'ils subissent un changement de phase, destinés au stockage d'énergie. Des exemples de PCM et de leurs applications sont décrits dans "A review on phase change energy storage: materials and applications", Farid et al., Energy Conversion and Management, 2004, 45(9- 10), 1597-1615. Comme exemples de PCM, on peut citer les sels fondus de phosphate d'aluminium, le carbonate d'ammonium, le chlorure d'ammonium, le carbonate de césium, le sulfate de césium, le citrate de calcium, le chlorure de calcium, l'hydroxyde de calcium, l'oxyde de calcium, le phosphate de calcium, le saccharate de calcium, le sulfate de calcium, le phosphate de cérium, le phosphate de fer, le carbonate de lithium, le sulfate de lithium, le chlorure de magnésium, le sulfate de magnésium, le chlorure de manganèse, le nitrate de manganèse, le sulfate de manganèse, l'acétate de potassium, le carbonate de potassium, le chlorure de potassium, le phosphate de potassium, le carbonate de rubidium, le sulfate de rubidium, le tétraborate de disodium, l'acétate de sodium, le bicarbonate de sodium, le bisulfate de sodium, le citrate de sodium, le chlorure de sodium, l'hydroxyde de sodium, le nitrate de sodium, le percarbonate de sodium, le persulfate de sodium, le phosphate de sodium, le propionate de sodium, le sélénite de sodium, le silicate de sodium, le sulfate de sodium, le tellurate de sodium, le thiosulfate de sodium, l'hydrophosphate de strontium, l'acétate de zinc, le chlorure de zinc, le thiosulfate de sodium, les cires hydrocarbonées paraff iniques, les polyéthylène glycols.
Composition C2
La composition C2 est destinée à former la future enveloppe solide des La fraction volumique de C1 dans C2 peut varier de 0,1 à 0,6 afin de contrôler l'épaisseur de l'enveloppe des capsules obtenues au terme du procédé.
Selon un mode de réalisation, le ratio entre le volume de composition C1 et le volume de composition C2 varie entre 1 :10 et 10:1 . De préférence, ce ratio est compris entre 1 :3 et 5:1 , préférentiellement entre 1 :3 et 3:1 .
De préférence, la viscosité de la composition C2 à 25°C est comprise entre 1 000 mPa.s et 50 000 mPa.s, préférentiellement entre 2 000 mPa.s et 25 000 mPa.s, et par exemple entre 3 000 mPa.s et 15 000 mPa.s.
De préférence, la viscosité de la composition C2 est supérieure à la viscosité de la composition C1 .
La viscosité est mesurée au moyen d'un rhéomètre Haake Rheostress™ 600 équipé d'un cône de diamètre 60 mm et d'angle 2 degrés, et d'une cellule de régulation en température réglée à 25°C. La valeur de la viscosité est lue pour une vitesse de cisaillement égale à 10 s"1.
Selon ce mode de réalisation, la cinétique de déstabilisation des gouttes de l'émulsion (E1 ) est significativement lente, ce qui permet à l'enveloppe des microcapsules d'être polymérisée pendant l'étape d) avant que l'émulsion ne se déstabilise. La polymérisation, une fois achevée, fournit alors une stabilisation thermodynamique. Ainsi, la viscosité relativement élevée de la composition C2 assure la stabilité de l'émulsion (E1 ) obtenue à l'issue de l'étape a).
De préférence, la tension interfaciale entre les compositions C1 et C2 est faible. Typiquement, ces tensions interfaciales varient entre 0 mN/m et 50 mN/m, de préférence entre 0 mN/m et 20 mN/m.
La faible tension interfaciale entre les compositions C1 et C2 permet également de façon avantageuse d'assurer la stabilité de l'émulsion (E1 ) obtenue à l'issue de l'étape a).
La composition C2 contient au moins un monomère ou polymère tel que défini ci-dessous, au moins un agent réticulant, et éventuellement au moins un photoinitiateur ou catalyseur de réticulation, la rendant ainsi réticulable.
Selon un mode de réalisation, la composition C2 comprend de 50% à 99% en poids de monomère ou de polymère tel que défini ci-dessous, ou un mélange de monomères ou polymères tels que définis ci-dessous, par rapport au poids total de la composition C2.
Selon un mode de réalisation, la composition C2 comprend de 1 % à 20% en poids d'agent réticulant ou d'un mélange d'agents réticulants, par rapport au poids total de la composition C2.
Selon un mode de réalisation, la composition C2 comprend de 0,1 % à 5% en poids de photoinitiateur ou d'un mélange de photoinitiateurs, par rapport au poids total de la composition C2.
Selon un mode de réalisation, la composition C2 comprend de 0,001 % à 20% en poids d'agent réticulant par rapport au poids de ladite composition C2.
Selon l'invention, le terme « monomère » ou « polymère » désigne toute unité de base adaptée pour la formation d'un matériau solide par polymérisation, soit seul soit en combinaison avec d'autres monomères ou polymères. Le terme « polymère » englobe également les oligomères.
Ces monomères sont choisis parmi les monomères comprenant au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate et carboxylate.
Les monomères ou polymères utilisés dans la composition C2 sont choisis parmi les esters ou polyesters aliphatiques ou aromatiques, les anhydrides ou polyanhydrides, les saccharides ou polysaccharides, les éthers ou polyéthers, les amides ou polyamides, et les carbonates ou polycarbonates, lesdits polymères portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate, et carboxylate.
De préférence, les monomères ou polymères utilisés dans la composition C2 sont choisis parmi les esters ou polyesters aliphatiques ou aromatiques, les anhydrides ou polyanhydrides, les saccharides ou polysaccharides, les éthers ou polyéthers, les amides ou polyamides, et les carbonates ou polycarbonates, lesdits polymères portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate, et carboxylate, lesdits monomères ou polymères listés ci-dessus ne portant pas d'autre fonction réactive différente des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate, et carboxylate.
Selon un mode de réalisation, les monomères ou polymères utilisés dans la composition C2 ne portent pas de fonction uréthane.
De préférence, les monomères ou polymères utilisés dans la composition C2 sont choisis parmi les esters ou polyesters aliphatiques ou aromatiques, les anhydrides ou polyanhydrides, les saccharides ou polysaccharides, les éthers ou polyéthers, les amides ou polyamides, et les carbonates ou polycarbonates, lesdits polymères portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate, et carboxylate, lesdits monomères ou polymères ne portant pas de fonction uréthane.
De préférence, les monomères ou polymères utilisés dans la composition C2 sont choisis parmi les esters ou polyesters aliphatiques ou aromatiques, les anhydrides ou polyanhydrides, les saccharides ou polysaccharides, les éthers ou polyéthers, les amides ou polyamides, et les carbonates ou polycarbonates, lesdits polymères portant en outre une fonction réactive unique choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate, et carboxylate. Ainsi, selon ce mode de réalisation, les monomères ou polymères de la composition C2 ne portent pas de fonction autre que celles listées ci-dessus, et donc en particulier ne portent pas de fonction uréthane.
Parmi les exemples de tels monomères ou polymères, on peut citer, mais de façon non limitative, les composés suivants et leurs mélanges :
la famille des esters et polyesters aliphatiques ou aromatiques comprenant notamment les polyglycolides (PGA), les polylactides (PLA), les poly(lactide-co-clycolide) (PLGA), les poly(ortho esters) comme par exemple la polycaprolactone (PCL), la polydiaxanone, le poly(éthylène succinate), le poly(butylène succinate) (PBS), le poly(éthylène adipate), le poly(butylène adipate), le poly(éthylène sébacate), le poly(butylène sébacate), la poly(valéro lactone) (PVL), la poly(décalactone), le polyhydroxyvalérate, le poly(acide beta-malique), le poly-3- hydroxybutyrate (PHB), le poly-3-hydroxy-butyrate-co-3-hydroxyvalérate (P-3HB- 3HV), le poly-3-hydroxybutyrate-co-4-hydroxybutyrate (P-3HB-4HB), le poly-3- hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate (P-3HB-3HV-4HB), le poly (3-hydroxy valérate), le poly (3-hydroxypropionate), le poly (3- hydroxycaproate), le poly (3-hydroxyoctanoate), le poly (3-hydroxydécanoate), le poly (3-hydroxyundécanoate), le poly (3-hydroxydodécanoate), le poly (3- hydroxybutyrate-co-3-hydroxy valérate), le poly(3-hydroxybutyrate-co-3- hydroxydecanoate), le poly(3-hydroxybutyrate-co-3-hydroxypropionate), le poly(3- hydroxybutyrate-co-3-hydroxyoctanoate), le poly(3-hydroxyheptanoate), le poly(3- hydroxyhexanoate), le poly(2-hydroxybutyrate), le poly(3-hydroxybutyrate-co-4- hydroxybutyrate), le poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), le poly(3- hydroxybutyrate-co-3-hydroxyhexanoate), le poly(4-hydroxybutyrate), le poly(4- hydroxybutyrate-co-2-hydroxybutyrate), le poly(4-hydroxypropionate), le poly(4- hydroxyvalérate), le poly(5-hydroxybutyrate), le poly(5-hydroxyvalérate), le poly(6- hydroxyhexanoate), le poly(alkylène alkanoate), le poly(alkylène dicarboxylate), le poly(butylène adipate), le poly(butylène adipate-co-téréphthalate), le poly(butylène carbonate), le poly(butylène pimelate), le poly(butylène succinate), le poly(butylène succinate-co-adipate), le poly(butylène succinate-co- carbonate), le poly(butylène sébacate), le poly(butylène sébacate-co-téréphthalate), le poly(butylène succinate- co-téréphthalate), le poly(butylène succinate-co-lactate), le poly(cyclohexène carbonate), le polydiaxanone, le poly(ethylène azélate), le poly(ethylène carbonate), le poly(ethylène décaméthylate), le poly(éthylène furanoate), le poly(éthylène oxalate), le poly(éthylène succinate), le poly(éthylène succinate-co-adipate), le poly(éthylène sébacate), le poly(éthylène succinate-co-téréphthalate), le poly(éthylène subérate), le poly(hexaméthylène sébacate), le poly(glycolide-co- caprolactone), le poly(lactide-co-epsilon-caprolactone), le polymandélide, le poly (B- malic acid), le poly(b-propiolactone), le poly(propylène succinate), le poly(tétraméthylène adipate-co-téréphthalate), le poly(tétraméthylène carbonate), le poly(triméthylène carbonate), le poly(tétraméthylène succinate)-co-(tetraméthylène carbonate), le poly(triméthylène adipate), le poly(méthylène adipate-co- terephthalate), le poly(tétraméthylène adipate), le poly(tétraméthyl glycolide), le poly(butylène succinate), le poly(valéro lactone), portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate et carboxylate ;
la famille des anhydrides ou polyanhydrides comme ceux dérivés de l'acide polysébacique, de l'acide polyadipique, de l'acide polytéréphtalique, de l'acide poly(bis(p-carboxyphénoxy)alkane, ou plus largement des polyanhydrides décrits à titre d'exemple dans Advanced Drug Delivery Reviews 54 (2002) 889-910, portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate et carboxylate ;
la famille des saccharides et des polysaccharides, comprenant notamment les carraghénanes, les dextrans, les cyclodextrines, comme par exemple l'acide hyaluronique, l'agarose, le chitosan, la chitine, l'alginate, l'amidon, le cellulose and ses dérivés tels que le méthyl cellulose, l'éthyl cellulose, l'hydroxyéthyl cellulose, le méthylhydroxyéthyl cellulose, l'éthylhydroxyéthyl cellulose, le carboxyméthyl cellulose, l'hydroxypropyl cellulose ou le méthylhydroxypropyl cellulose, portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N- vinyl éther, époxy, siloxane, aminé, lactone, phosphate et carboxylate ;
la famille des éthers et polyéthers, comprenant notamment les polyéthylène glycols, portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate et carboxylate ; et
la famille des amides et polyamides, comprenant notamment les poly(ester amide) ou le polyphthalamide, portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate et carboxylate.
De préférence, les monomères ou polymères utilisés dans la composition C2 sont choisis parmi les esters ou polyesters aliphatiques ou aromatiques portant en outre au moins une fonction réactive choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate, et carboxylate, lesdits monomères ou polymères ne portant pas de fonction uréthane.
De préférence, les monomères ou polymères utilisés dans la composition C2 ne sont pas des esters ou polyesters aliphatiques ou aromatiques portant au moins une fonction uréthane.
Par « agent réticulant », on entend un composé porteur d'au moins deux fonctions réactives susceptibles de réticuler un monomère ou un polymère, ou un mélange de monomères ou de polymères, lors de sa polymérisation.
L'agent réticulant peut être choisi parmi des molécules portant au moins deux fonctions identiques ou différentes choisies dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate et carboxylate.
A titre d'agent réticulant, on peut notamment citer :
- les diacrylates, comme le 1 ,6-hexanediol diacrylate, le 1 ,6-hexanediol diméthacrylate, le polyéthylène glycol diacrylate, le polyéthylène glycol diméthacrylate, le 1 ,9-nonanediol diméthacrylate, le 1 ,4-butanediol diméthacrylate, le 1 ,3-butanediol diméthacrylate, le 1 ,10-décanediol diméthacrylate, le bis(2- méthacryloxyéthyl) N,N'-1 ,9-nonylène biscarbamate, le 1 ,4-butanediol diacrylate, le 1 ,5-pentanediol diméthacrylate, l'allyl méthacrylate, le N,N'-méthylènebisacrylamide, le 2,2-bis[4-(2-hydroxy-3-méthacryloxypropoxy)phényl]propane, le tétraéthylène glycol diacrylate, le diéthylène glycol diacrylate, le triéthylène glycol diacrylate, le triéthylène glycol diméthacrylate, le polyéthylène glycol diglycidyl éther, le N,N- diallylacrylamide ou le glycidyl méthacrylate ;
- les acrylates multifonctionnels comme le dipentaérythritol pentaacrylate, le 1 ,1 ,1 - triméthylolpropane triacrylate, le 1 ,1 ,1 -triméthylolpropane triméthacrylate, l'éthylènediamine tétraméthacrylate, le pentaérythritol triacrylate ou le pentaérythritol tétraacrylate ; et
- les acrylates possédant également une autre fonction réactive, comme le propargyl méthacrylate, le N-acryloxysuccinimide, le N-(2- Hydroxypropyl)méthacrylamide, le N-(t-BOC-aminopropyl)methacrylamide, le monoacryloxyéthyl phosphate, l'anhydride acrylique, le 2-(tert-butylamino)ethyl méthacrylate, le Ν,Ν-diallylacrylamide ou le glycidyl méthacrylate.
Selon un mode de réalisation, la composition C2 comprend de 0,001 % à 20% en poids d'agent(s) réticulant(s) par rapport au poids total de ladite composition.
Par « photoinitiateur », on entend un composé capable de se fragmenter sous l'effet d'un rayonnement lumineux.
Les photoinitiateurs utilisables selon la présente invention sont connus dans la technique et sont décrits, par exemple dans "Les photoinitiateurs dans la réticulation des revêtements", G. Li Bassi, Double Liaison - Chimie des Peintures, n°361 , novembre 1985, p.34-41 ; "Applications industrielles de la polymérisation photoinduite", Henri Strub, L'Actualité Chimique, février 2000, p.5-13 ; et "Photopolymères : considérations théoriques et réaction de prise", Marc, J.M. Abadie, Double Liaison - Chimie des Peintures, n°435-436, 1992, p.28-34. Ces photoinitiateurs englobent :
les α-hydroxycétones, comme la 2-hydroxy-2-méthyl-1 -phényl-1 -propanone, commercialisées par exemple sous les dénominations DAROCUR® 1 173 et 4265, IRGACURE® 184, 2959, et 500 par la société BASF, et ADDITOL® CPK par la société CYTEC ;
les α-aminocétones, notamment la 2-benzyl-2-diméthylamino-1 -(4- morpholinophényl)-butanone-1 , commercialisées par exemple sous les dénominations IRGACURE® 907 et 369 par la société BASF ;
- les cétones aromatiques commercialisées par exemple sous la dénomination ESACURE® TZT par LAMBERTI ; ou encore les thioxanthones commercialisées par exemple sous la dénomination ESACURE® ITX par LAMBERTI, et les quinones. Ces cétones aromatiques nécessitent le plus souvent la présence d'un composé donneur d'hydrogène tel que les aminés tertiaires et notamment les alcanolamines. On peut notamment citer l'aminé tertiaire ESACURE® EDB commercialisée par la société LAMBERTI.
- les dérivés α-dicarbonyles dont le représentant le plus courant est le benzyldiméthylcétal commercialisé sous la dénomination IRGACURE® 651 par BASF. D'autres produits commerciaux sont commercialisés par la société LAMBERTI sous la dénomination ESACURE® KB1 , et
- les oxydes d'acylphosphine, tels que par exemple les oxydes de bis- acylphosphine (BAPO) commercialisés par exemple sous les dénominations IRGACURE® 819, 1700, et 1800, DAROCUR® 4265, LUCIRIN® TPO, et LUCIRIN® TPO-L par la société BASF.
Parmi les photoinitiateurs, on peut également mentionner les cétones aromatiques comme la benzophénone, les phénylglyoxylates, comme l'ester méthylique de l'acide phényl glyoxylique, les esters d'oxime, comme le [1 -(4- phénylsulfanylbenzoyl)heptylidèneamino]benzoate, les sels de sulfonium, les sels d'iodonium et les oxime sulfonates.
Selon un mode de réalisation, la composition C2 peut en outre comprendre un monomère ou un polymère additionnel capable d'améliorer les propriétés de l'enveloppe des microcapsules et/ou de donner de nouvelles propriétés à l'enveloppe des microcapsules.
Parmi ces monomères ou polymères additionnels, on peut citer les monomères ou polymères portant un groupe sensible au pH, à la température, aux UV ou aux IR. Ces monomères ou polymères additionnels peuvent induire la rupture des microcapsules solides et par la suite la libération de leur contenu, après une stimulation via par exemple le pH, la température, les UV ou les IR.
Ces monomères ou polymères additionnels peuvent être choisis parmi les monomères ou polymères portant au moins l'un des groupes suivants :
- un groupe sensible au pH comme les aminés primaires, secondaires ou tertiaires, les acides carboxyliques, les groupes phosphate, sulfate, nitrate, ou carbonate ;
- un groupe sensible aux UV ou clivable par UV (ou groupe photochromique) comme les groupes azobenzène, spiropyrane, 2-diazo-1 ,2-naphthoquinone, o- nitrobenzylé, thiol, ou 6-nitro-veratroyloxycarbonyle, par exemple poly(éthylène oxyde)-bloc-poly(2-nitrobenzylméthacrylate), et d'autres copolymères à blocs, comme décrit notamment dans Liu et al., Polymer Chemistry 2013, 4, 3431 -3443 ;
- un groupe sensible aux IR ou clivable par IR comme le o-nitrobenzyle ou le 2-diazo-1 ,2-naphthoquinone, par exemple les polymères décrits dans Liu et al., Polymer Chemistry 2013, 4, 3431 -3443 ;
- un groupe sensible à l'hydrolyse, comme le poly(acide lactique), le poly(acide glycolique), l'acide poly(lactique-co-glycolique), la polycaprolactone, le polyhydroxybutyrate, le chitosan, le dextran, l'agarose, le cellulose et les dérivés de ces composés ; et
- un groupe sensible à la température comme le poly(N-isopropylacrylamide). Etape b)
L'étape b) du procédé selon l'invention consiste à préparer une deuxième émulsion (E2).
La deuxième émulsion consiste en une dispersion de gouttelettes de la première émulsion dans une composition C3 immiscible avec C2, créée par addition goutte à goutte de l'émulsion (E1 ) dans C3 sous agitation.
Pendant l'étape b), l'émulsion (E1 ) est à une température comprise entre 15°C et 60°C. Pendant l'étape b), la composition C3 est à une température comprise entre 15°C et 60°C.
Dans les conditions d'addition de l'étape b), les compositions C2 et C3 ne sont pas miscibles l'une dans l'autre, ce qui signifie que la quantité (en poids) de la composition C2 capable d'être solubilisée dans la composition C3 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C3, et que la quantité (en poids) de la composition C3 capable d'être solubilisée dans la composition C2 est inférieure ou égale à 5%, de préférence inférieure à 1 %, et préférentiellement inférieure à 0,5%, par rapport au poids total de composition C2.
Ainsi, lorsque l'émulsion (E1 ) entre en contact avec la composition C3 sous agitation, celle-ci est dispersée sous la forme de gouttes, dites gouttes doubles, la dispersion de ces gouttes d'émulsion (E1 ) dans la phase continue C3 étant appelée émulsion (E2).
Typiquement, une goutte double formée pendant l'étape b) correspond à une goutte simple de composition C1 telle que décrite ci-dessus, entourée par une enveloppe de composition C2 qui encapsule totalement ladite goutte simple.
La goutte double formée pendant l'étape b) peut également comprendre au moins deux gouttes simples de composition C1 , lesdites gouttes simples étant entourées par une enveloppe de composition C2 qui encapsule totalement lesdites gouttes simples.
Ainsi, lesdites gouttes doubles comprennent un cœur constitué d'une ou plusieurs gouttes simples de composition C1 , et une couche de composition C2 entourant ledit cœur.
L'émulsion (E2) résultante est généralement une émulsion double polydisperse (émulsion C1 -dans-C2-dans-C3 ou émulsion C1/C2/C3), ce qui signifie que les gouttes doubles n'ont pas une nette distribution de taille dans l'émulsion (E2).
L'immiscibilité entre les compositions C2 et C3 permet d'éviter le mélange entre la couche de composition C2 et la composition C3 et assure ainsi la stabilité de l'émulsion (E2).
L'immiscibilité entre les compositions C2 et C3 permet également d'empêcher la substance hydrosoluble de la composition C1 de migrer du cœur des gouttes vers la composition C3.
Pour mettre en œuvre l'étape b), on peut utiliser tout type d'agitateur usuellement utilisé pour former des émulsions, comme par exemple un agitateur mécanique à pâles, un émulseur statique, un homogénéisateur à ultrasons, un homogénéisateur à membrane, un homogénéisateur à haute pression, un moulin colloïdal, un disperseur à haut pouvoir de cisaillement ou un homogénéisateur à haute vitesse.
Composition C3
Selon un mode de réalisation, la viscosité de la composition C3 à 25°C est supérieure à la viscosité de l'émulsion (E1 ) à 25°C.
Selon l'invention, la viscosité de la composition C3 à 25°C est comprise entre 500 mPa.s et 100 000 mPa.s.
De préférence, la viscosité de la composition C3 à 25°C est comprise entre 3 000 mPa.s et 100 000 mPa.s, préférentiellement entre 5 000 mPa.s et 80 000 mPa.s, par exemple entre 7 000 mPa.s et 70 000 mPa.s.
Selon ce mode de réalisation, étant donné la viscosité très élevée de la phase continue formée par la composition C3, la vitesse de déstabilisation des gouttes doubles de l'émulsion (E2) est significativement lente par rapport à la durée du procédé de l'invention, ce qui fournit alors une stabilisation cinétique des émulsions (E2) puis (E3) jusqu'à ce que la polymérisation de l'enveloppe des capsules ne soit achevée. Les capsules une fois polymérisées sont stables thermodynamiquement.
Ainsi, la viscosité très élevée de la composition C3 assure la stabilité de l'émulsion (E2) obtenue à l'issue de l'étape b).
Une faible tension de surface entre C3 et la première émulsion ainsi qu'une haute viscosité du système permettent d'assurer avantageusement la stabilité cinétique de la double émulsion (E2), l'empêchant de se déphaser pendant la durée du procédé de fabrication.
De préférence, la tension interfaciale entre les compositions C2 et C3 est faible. La faible tension interfaciale entre les compositions C2 et C3 permet également de façon avantageuse d'assurer la stabilité de l'émulsion (E2) obtenue à l'issue de l'étape b).
La fraction volumique de première émulsion dans C3 peut être variée de 0,05 à 0,5 afin d'une part d'améliorer le rendement de production et d'autre part de faire varier le diamètre moyen des capsules. A la fin de cette étape, la distribution de taille de la seconde émulsion est relativement large. Selon un mode de réalisation, le ratio entre le volume d'émulsion (E1 ) et le volume de composition C3 varie entre 1 :10 et 10:1 . De préférence, ce ratio est compris entre 1 :9 et 3:1 , préférentiellement entre 1 :9 et 1 :1 .
Selon un mode de réalisation, la composition C3 comprend en outre au moins un polymère branché, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , et/ou au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 , et/ou des particules solides telles que des silicates.
Selon un mode de réalisation, la composition C3 comprend au moins un polymère branché, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , préférentiellement entre 10 000 g. mol"1 et 500 000 g. mol"1 , par exemple entre 50 000 g. mol"1 et 300 000 g. mol"1.
Par « polymère branché » (ou polymère ramifié), on entend un polymère présentant au moins un point de ramification entre ses deux groupes terminaux, un point de ramification (aussi appelé point de branchement) étant un point d'une chaîne sur lequel est fixée une chaîne latérale aussi appelée branche ou chaîne pendante.
Parmi les polymères branchés, on peut par exemple citer les polymères greffés, en peigne ou encore les polymères en étoile ou les dendrimères.
Selon un mode de réalisation, la composition C3 comprend au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 , préférentiellement entre 10 000 g. mol"1 et 500 000 g. mol"1 , par exemple entre 50 000 g. mol"1 et 300 000 g. mol"1.
A titre de polymère utilisable dans la composition C3, on peut citer les composés suivants, utilisés seuls ou bien mélangés entre eux :
- les dérivés de cellulose, tels que les éthers de cellulose : le méthyl cellulose, l'éthyl cellulose, l'hydroxyéthyl cellulose, le méthylhydroxyéthyl cellulose, l'éthylhydroxyéthyl cellulose, le carboxyméthyl cellulose, l'hydroxypropyl cellulose ou le méthylhydroxypropyl cellulose ;
- les polyacrylates (encore appelés carbomères), tels que l'acide polyacrylique (PAA), l'acide polyméthacrylique (PMAA), le poly(hydroxyéthyl méthacrylate) (pHEMA), le poly(N-2-hydroxypropyl méthacrylate) (pHPMA) ; les polyacrylamides tels que le poly(N-isopropylacrylamide) (PNIPAM) ;
le polyvinylpyrrolidone (PVP) et ses dérivés ;
l'alcool polyvinylique (PVA) et ses dérivés ;
le poly(éthylène glycol), le poly(propylène glycol) et leurs dérivés, tels que le poly(éthylène glycol) acrylate/méthacrylate, le poly(éthylène glycol) diacrylate/diméthacrylate, le polypropylène carbonate ;
les polysaccharides tels que les carraghénanes, les gommes de caroube ou gommes tara, le dextran, les gommes xanthanes, le chitosane, l'agarose, les acides hyaluroniques, la gomme gellane, la gomme de guar, la gomme arabique, la gomme adragante, la gomme diutane, la gomme d'avoine, la gomme karaya, la gomme ghatti, la gomme curdian, la pectine, la gomme konjac, l'amidon ;
les dérivés protéinés tels que la gélatine, le collagène, la fibrine, la polylysine, l'albumine, la caséine ;
les dérivés de silicone tels que le polydimethylsiloxane (aussi appelé diméthicone), les alkyl silicones, les aryl silicones, les alkyl aryl silicones, les polyéthylène glycol diméthicones, les polypropylène glycol diméthicone ;
les cires, telles que les cires diester (diesters d'alcanediol, diesters d'hydroxylacides), les cires triester (triacylglycérols, triesters d'alcane-1 ,2-diol, de ω-hydroxy acide et d'acide gras, esters d'acide hydroxymalonique, d'acide gras et d'alcool, triesters d'hydroxylacides, d'acide gras et d'alcool gras, triesters d'acide gras, d'hydroxylacide et de diol) et les cires polyesters (polyesters d'acides gras). Les esters d'acides gras utilisables à titre de cires dans le cadre de l'invention sont par exemple le palmitate de cétyle, l'octanoate de cétyle, le laurate de cétyle, le lactate de cétyle, l'isononanoate de cétyle, le stéarate de cétyle, le stéarate de stéaryle, le stéarate de myristyle, le myristate de cétyle, le stéarate d'isocétyle, le trimyristate de glycéryle, le tripalmitate de glycéryle, le monostéarate de glycéryle ou le palmitate de glycéryle et de cétyle ;
les acides gras utilisables comme cires tels que l'acide cérotique, l'acide palmitique, l'acide stéarique, l'acide dihydroxystéarique, l'acide béhénique, l'acide lignocérique, l'acide arachidique, l'acide myristique, l'acide laurique, l'acide tridécyclique, l'acide pentadécyclique, l'acide margarique, l'acide nonadécyclique, l'acide hénéicosylique, l'acide tricosylique, l'acide pentacosylique, l'acide heptacosylique, l'acide montanique ou l'acide nonacosylique ; - les sels d'acide gras notamment les sels d'aluminium d'acide gras tels que l'aluminium stéarate, l'hydroxyl aluminium bis(2-éthylhexanoate) ;
- l'huile de jojoba isomérisée ;
- l'huile de tournesol hydrogénée ;
- l'huile de coprah hydrogénée ;
l'huile de lanoline hydrogénée ;
l'huile de ricin et ses dérivés, notamment l'huile de ricin hydrogénée modifiée ou les composés obtenus par estérification d'huile de ricin avec des alcools gras ;
- les polyuréthanes et leurs dérivés ;
- les polymères styréniques tels que le styrène butadiène ; et
- les polyoléfines telles que le polyisobutène.
Selon un mode de réalisation, la composition C3 comprend des particules solides telles que des argiles, des silices et des silicates.
A titre de particules solides utilisables dans la composition C3, on peut citer les argiles et silicates appartenant notamment à la catégorie des phyllosilicates (encore appelées silices en feuillets). A titre d'exemple de silicate utilisable dans le cadre de l'invention, on peut citer la Bentonite, l'Hectorite, l'Attapulgite, la Sepiolite, la Montmorillonite, la Saponite, la Sauconite, la Nontronite, la Kaolinite, le Talc, la Sepiolite, la Craie. Les silices synthétiques pyrogénées peuvent également être utilisées. Les argiles, silicates et silices citées précédemment peuvent avantageusement être modifiées par des molécules organiques telles que des polyéthers, des amides éthoxylées, des sels d'ammonium quaternaires, des diamines à longue chaîne, des esters à longue chaîne, des polyéthylène glycols, des polypropylène glycols.
Ces particules peuvent être utilisées seules ou mélangées entre elles.
Selon un mode de réalisation, la composition C3 comprend au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 et des particules solides. Tout mélange des composés cités précédemment peut être utilisé.
Etape c)
L'étape c) du procédé selon l'invention consiste à affiner la taille des gouttes de la deuxième émulsion (E2). Cette étape peut consister à appliquer un cisaillement contrôlé homogène à l'émulsion (E2), ladite vitesse de cisaillement appliquée étant comprise entre 10 s"1 et 100 000 s"1.
Selon un mode de réalisation, les doubles gouttes polydisperses obtenues à l'étape b) sont soumises à un affinage en taille consistant à leur faire subir un cisaillement capable de les fragmenter en nouvelles doubles gouttes de diamètres homogènes et contrôlés. De préférence, cette étape de fragmentation est effectuée à l'aide d'une cellule à haut cisaillement de type Couette selon un procédé décrit dans la demande de brevet EP 15 306 428.2.
Selon un mode de réalisation, dans l'étape c), la deuxième émulsion (E2), obtenue à l'issue de l'étape b), consistant en des doubles gouttes polydisperses dispersées dans une phase continue, est soumise à un cisaillement dans un mélangeur, qui applique un cisaillement contrôlé homogène.
Ainsi, selon ce mode de réalisation, l'étape c) consiste à appliquer un cisaillement contrôlé homogène à l'émulsion (E2), ladite vitesse de cisaillement appliquée étant comprise entre 1 000 s"1 et 100 000 s"1.
Selon ce mode de réalisation, dans un mélangeur, la vitesse de cisaillement est dite contrôlée et homogène, indépendamment de la durée, lorsqu'elle passe à une valeur maximale identique pour toutes les parties de l'émulsion, à un instant donné qui peut varier d'un point de l'émulsion à un autre. La configuration exacte du mélangeur n'est pas essentielle selon l'invention, du moment que l'émulsion entière a été soumise au même cisaillement maximal en sortant de ce dispositif. Les mélangeurs adaptés pour effectuer l'étape c) sont notamment décrits dans le document US 5 938 581 .
La deuxième émulsion peut subir un cisaillement contrôlé homogène lorsqu'elle circule à travers une cellule formée par :
- deux cylindres rotatifs concentriques (également appelé mélangeur de type Couette) ;
- deux disques rotatifs parallèles ; ou
- deux plaques oscillantes parallèles. Selon ce mode de réalisation, la vitesse de cisaillement appliquée à la deuxième émulsion est comprise entre 1 000 s"1 et 100 000 s"1 , de préférence entre 1 000 s"1 et 50 000 s"1 , et préférentiellement entre 2 000 s"1 et 20 000 s"1.
Selon ce mode de réalisation, pendant l'étape c), la deuxième émulsion est introduite dans le mélangeur et est ensuite soumise à un cisaillement qui résulte en la formation de la troisième émulsion. La troisième émulsion (E3) est chimiquement identique à la deuxième émulsion (E2) mais consiste en des gouttes doubles monodisperses alors que l'émulsion (E2) consiste en des gouttes doubles polydisperses. La troisième émulsion (E3) consiste typiquement en une dispersion de gouttes doubles comprenant un cœur constitué d'une ou plusieurs gouttes de composition C1 et d'une couche de composition C2 encapsulant ledit cœur, lesdites gouttes doubles étant dispersées dans la composition C3.
La différence entre la deuxième émulsion et la troisième émulsion est la variance de taille des gouttes doubles : les gouttes de la deuxième émulsion sont polydisperses en taille alors que les gouttes de la troisième émulsion sont monodisperses, grâce au mécanisme de fragmentation décrit ci-dessus.
De préférence, selon ce mode de réalisation, la deuxième émulsion est introduite de façon continue dans le mélangeur ce qui signifie que la quantité d'émulsion double (E2) introduite à l'entrée du mélangeur est la même que la quantité de troisième émulsion (E3) à la sortie du mélangeur.
Etant donné que la taille des gouttes de l'émulsion (E3) correspond essentiellement à la taille des gouttes des microcapsules solides après polymérisation, il est possible d'ajuster la taille des microcapsules et l'épaisseur de l'enveloppe en ajustant la vitesse de cisaillement pendant l'étape c), avec une forte corrélation entre la diminution de la taille des gouttes et l'augmentation de la vitesse de cisaillement. Ceci permet d'ajuster les dimensions résultantes des microcapsules en faisant varier la vitesse de cisaillement appliquée pendant l'étape c).
Selon un mode de réalisation préféré, le mélangeur mis en œuvre pendant l'étape c) est un mélangeur de type Couette, comprenant deux cylindres concentriques, un cylindre externe de rayon interne R0 et un cylindre interne de rayon externe R,, le cylindre externe étant fixe et le cylindre interne étant en rotation avec une vitesse angulaire ω.
Un mélangeur de type Couette adapté pour le procédé de l'invention peut être fourni par la société T.S.R. France.
Selon un mode de réalisation, la vitesse angulaire ω du cylindre interne en rotation du mélangeur de type Couette est supérieure ou égale à 30 rad.s"1. Par exemple, la vitesse angulaire ω du cylindre interne en rotation du mélangeur de type Couette est d'environ 70 rad.s"1.
Les dimensions du cylindre externe fixe du mélangeur de type Couette peuvent être choisies pour moduler l'espace (d = R0 - R,) entre le cylindre interne en rotation et le cylindre externe fixe.
Selon un mode de réalisation, l'espace (d = R0 - R,) entre les deux cylindres concentriques du mélangeur de type Couette est compris entre 50 μηι et 1 000 μηι, de préférence entre 100 μηι et 500 μηι, par exemple entre 200 μηι et 400 μηι.
Par exemple, la distance d entre les deux cylindres concentriques est égale à 100 μηι.
Selon ce mode de réalisation, pendant l'étape c), la deuxième émulsion est introduite à l'entrée du mélangeur, typiquement via une pompe, et est dirigée vers l'espace entre les deux cylindres concentriques, le cylindre externe étant fixe et le cylindre interne étant en rotation à une vitesse angulaire ω.
Lorsque l'émulsion double est dans l'espace entre les deux cylindres, la vitesse de cisaillement appliquée à ladite émulsion est donnée par l'équation suivante :
Y = (R0 - Ri)
dans laquelle :
- ω est la vitesse angulaire du cylindre interne en rotation,
- R0 est le rayon interne du cylindre externe fixe, et
- R, est le rayon externe du cylindre interne en rotation.
Selon un autre mode de réalisation, lorsque la viscosité de la composition C3 est supérieure à 2 000 mPa.s à 25°C, l'étape c) consiste à appliquer à l'émulsion (E2) une vitesse de cisaillement inférieure à 1 000 s"1.
Selon ce mode de réalisation, l'étape de fragmentation c) peut être effectuée à l'aide de tout type de mélangeur usuellement utilisé pour former des émulsions avec une vitesse de cisaillement inférieure à 1 000 s"1 , auquel cas la viscosité de la composition C3 est supérieure à 2 000 mPa.s, à savoir dans des conditions telles que celles décrites dans la demande de brevet FR 16 61787.
Les caractéristiques géométriques des doubles gouttes formées à la fin de cette étape dicteront celles des futures capsules. Selon ce mode de réalisation, dans l'étape c), l'émulsion (E2), constituée de gouttes polydisperses dispersées dans une phase continue, est soumise à un cisaillement, par exemple dans un mélangeur, à une faible vitesse de cisaillement, à savoir inférieure à 1 000 s"1.
Selon ce mode de réalisation, la vitesse de cisaillement appliquée à l'étape c) est par exemple comprise entre 10 s"1 et 1 000 s"1.
De préférence, la vitesse de cisaillement appliquée à l'étape c) est strictement inférieure à 1 000 s"1.
Selon ce mode de réalisation, les gouttes d'émulsion (E2) ne peuvent être fragmentées efficacement en des gouttes fines et monodisperses d'émulsion (E3) que si une contrainte de cisaillement élevée leur est appliquée.
La contrainte de cisaillement σ appliquée à une goutte d'émulsion (E2) est définie comme la force tangentielle par unité de surface de goutte résultant du cisaillement macroscopique appliqué à l'émulsion lors de son agitation au cours de l'étape d).
La contrainte de cisaillement σ (exprimée en Pa), la viscosité de la composition C3 η (exprimée en Pa s) et la vitesse de cisaillement γ (exprimée en s"1) appliquée à l'émulsion (E2) lors de son agitation au cours de l'étape d) sont reliées par l'équation suivante :
σ = ηγ
Ainsi, selon ce mode de réalisation, la viscosité élevée de la composition C3 permet d'appliquer une très haute contrainte de cisaillement aux gouttes d'émulsion (E2) dans le mélangeur, même si la vitesse de cisaillement est faible et le cisaillement inhomogène.
Pour mettre en œuvre l'étape c) selon ce mode de réalisation, on peut utiliser tout type d'agitateur usuellement utilisé pour former des émulsions, comme par exemple un agitateur mécanique à pâles, un émulseur statique, un homogénéisateur à ultrasons, un homogénéisateur à membrane, un homogénéisateur à haute pression, un moulin colloïdal, un disperseur à haut pouvoir de cisaillement ou un homogénéisateur à haute vitesse.
Selon un mode de réalisation préféré, on utilise un émulseur simple tel qu'un agitateur mécanique à pâles ou un émulseur statique pour mettre en œuvre l'étape c). En effet, ceci est possible car ce mode de réalisation ne requiert ni un cisaillement contrôlé ni un cisaillement plus grand que 1 000 s"1. Etape d)
L'étape d) du procédé de l'invention consiste en la réticulation et donc la formation de l'enveloppe des microcapsules solides selon l'invention.
Cette étape permet à la fois d'atteindre les performances attendues de rétention des capsules et d'assurer leur stabilité thermodynamique, en empêchant définitivement tout mécanisme de déstabilisation comme la coalescence ou le mûrissement.
Selon un mode de réalisation, lorsque la composition C2 comprend un photoinitiateur, l'étape d) est une étape de photopolymérisation consistant à exposer l'émulsion (E3) à une source de lumière apte à initier la photopolymérisation de la composition C2, notamment à une source de lumière UV émettant de préférence dans la gamme de longueur d'onde comprise entre 100 nm et 400 nm, et ce en particulier pendant une durée inférieure à 15 minutes.
Selon ce mode de réalisation, l'étape d) consiste à soumettre l'émulsion (E3) à une photopolymérisation, ce qui va permettre la photopolymérisation de la composition C2. Cette étape va permettre d'obtenir des microcapsules encapsulant la substance hydrosoluble tel que définie ci-dessus.
Selon un mode de réalisation, l'étape d) consiste à exposer l'émulsion (E3) à une source de lumière apte à initier la photopolymérisation de la composition C2.
De préférence, la source de lumière est une source de lumière UV.
Selon un mode de réalisation, la source de lumière UV émet dans la gamme de longueur d'onde comprise entre 100 nm et 400 nm.
Selon un mode de réalisation, l'émulsion (E3) est exposée à une source de lumière pendant une durée inférieure à 15 minutes, et de préférence pendant 5 à 10 minutes.
Pendant l'étape d), l'enveloppe des gouttes doubles susmentionnées, constituée de composition C2 photoréticulable, est réticulée et ainsi convertie en une enveloppe polymérique viscoélastique, encapsulant et protégeant la substance hydrosoluble de sa libération en l'absence d'un déclenchement mécanique.
Selon un autre mode de réalisation, lorsque la composition C2 ne comprend pas de photoinitiateur, l'étape d) est une étape de polymérisation, sans exposition à une source de lumière, la durée de cette étape d) de polymérisation étant de préférence comprise entre 8 heures et 100 heures et/ou cette étape d) est réalisée à une température comprise entre 20°C et 80°C.
Selon ce mode de réalisation, la polymérisation est initiée par exemple par exposition à la chaleur (initiation thermique), ou par la simple mise en contact des monomères, polymères et agents réticulants entre eux, ou avec un catalyseur. Le temps de polymérisation est alors généralement supérieur à plusieurs heures.
De préférence, l'étape d) de polymérisation de la composition C2 est effectuée pendant une durée comprise entre 8 heures et 100 heures, à une température comprise entre 20°C et 80°C.
La composition obtenue à l'issue de l'étape d), comprenant des microcapsules solides dispersées dans la composition C3, est prête à l'emploi et peut être utilisée sans qu'aucune étape supplémentaire de post-traitement des capsules ne soit requise.
L'épaisseur de l'enveloppe des microcapsules ainsi obtenues est typiquement comprise entre 0,1 μηι et 20 μηι, de préférence entre 0,2 μηι et 8 μηι, et préférentiellement entre 0,2 μηι et 5 μηι.
Selon un mode de réalisation, les microcapsules solides obtenues à l'issue de l'étape d) sont dépourvues de tensioactif.
Le procédé de l'invention présente l'avantage de ne pas nécessiter de tensioactif, dans aucune des étapes décrites. Le procédé de l'invention permet ainsi de réduire la présence d'additifs qui pourraient modifier les propriétés du produit final obtenu après libération de l'actif.
La présente invention concerne également une série (ou ensemble) de microcapsules solides, susceptible d'être obtenue selon le procédé tel que défini ci- dessus, dans laquelle chaque microcapsule comprend :
- un cœur comprenant une composition C1 telle que définie ci-dessus, et
- une enveloppe solide encapsulant totalement à sa périphérie le cœur, dans laquelle le diamètre moyen desdites microcapsules est compris entre 1 μηι et 30 μηι, l'épaisseur de l'enveloppe rigide est comprise entre 0,1 μηι et 20 μηι, de préférence entre 0,2 μηι et 8 μηι, et préférentiellement entre 0,2 μηι et 5 μηι, et l'écart type de la distribution du diamètre des microcapsules est inférieur à 50%, en particulier inférieur à 25%, ou inférieur à 1 μηι. De préférence, les microcapsules solides obtenues par le procédé de l'invention sont formées d'un cœur contenant au moins un actif (composition C1 ) et une enveloppe solide (obtenue de la composition C2) encapsulant totalement à sa périphérie ledit cœur.
Comme indiqué ci-dessus, le procédé de l'invention permet d'obtenir des particules monodisperses. Aussi, la série de microcapsules solides susmentionnée est formée d'une population de particules monodisperses en taille. Ainsi, l'écart type de la distribution du diamètre des microcapsules est inférieur à 50%, en particulier inférieur à 25%, ou inférieur à 1 μηι.
La distribution de taille des microcapsules solides peut être mesurée par technique de diffusion de la lumière à l'aide d'un Mastersizer 3000 (Malvern Instruments) équipé d'une cellule de meure Hydro SV.
Selon un mode de réalisation, les microcapsules solides susmentionnées comprennent une enveloppe solide entièrement composée de polymère réticulé (obtenu à partir de la composition C2).
Comme indiqué ci-dessus, le procédé de l'invention permet d'obtenir des microcapsules solides. La présente invention concerne donc également des microcapsules solides comprenant un cœur et une enveloppe solide encapsulant totalement à sa périphérie le cœur, dans laquelle le cœur est une composition C1 telle que définie ci-dessus, et dans laquelle ladite enveloppe solide est constituée de polymère réticulé,
le diamètre de ladite microcapsule étant compris entre 1 μηι et 30 μηι et l'épaisseur de l'enveloppe rigide étant comprise entre 0,1 μηι et 20 μηι, de préférence entre 0,2 μηι et 8 μηι, et préférentiellement entre 0,2 μηι et 5 μηι.
La présente invention concerne également une composition comprenant une série de microcapsules solides telle que définie ci-dessus.
Les expressions « compris entre ... et ... », « compris de ... à ... » et « allant de ... à ... » doivent se comprendre bornes incluses, sauf si le contraire est spécifié.
Les exemples qui suivent illustrent la présente invention sans en limiter la portée. EXEMPLES
Exemple 1 : Fabrication de capsules solides biodégradables selon l'invention
Un agitateur mécanique (Ika Eurostar 20) équipé d'une hélice d'agitation de type défloculeuse est utilisé pour réaliser toutes les étapes d'agitation.
Etape a) : Préparation de la première émulsion (El)
La composition C1 est placée sous agitation à 1 000 tpm jusqu'à complète homogénéisation puis laissée à reposer une heure à température ambiante. La composition C1 est ensuite ajoutée goutte à goutte à la composition C2 sous agitation à 2 000 tpm avec un ratio 3:7. On obtient ainsi la première émulsion (E1 ).
Etape b) : Préparation de la seconde émulsion (E2)
La composition C3 est placée sous agitation à 1 000 tpm jusqu'à complète homogénéisation puis laissée à reposer une heure à température ambiante. La première émulsion (E1 ) est ensuite ajoutée goutte à goutte à la composition C3 sous agitation à 1 000 tpm. On obtient ainsi la deuxième émulsion (E2).
Etape c) : Affinage en taille de la seconde émulsion
La seconde émulsion polydisperse (E2) obtenue à l'étape précédente est agitée à 1 000 tpm pendant 10 minutes. On obtient ainsi une émulsion monodisperse (E3).
Etape d) : Réticulation de l'enveloppe des capsules
La seconde émulsion monodisperse (E3), obtenue à l'étape précédente, est irradiée pendant 10 minutes à l'aide d'une source de lumière UV (Dymax LightBox ECE 2000) ayant une intensité lumineuse maximale de 0,1 W/cm2 à une longueur d'onde de 365 nm.
Les microcapsules obtenues présentent une bonne distribution de taille, à savoir une taille moyenne de 15 μηι et leur distribution de taille présente un écart- type de 6,1 μηι soit 41 %.
Pour les essais de biodégradation, les microcapsules sont lavées au moyen de plusieurs étapes de centrifugation - redispersion afin d'éliminer complètement l'alginate. Un échantillon de sol est prélevé et purifié afin d'en extraire le contenu bactérien qui est ensuite placé dans un milieu de culture liquide contenant les microcapsules selon l'invention comme unique source de carbone. Après 5 jours d'incubation à température ambiante, les microcapsules sont imagées au microscope optique ainsi qu'au microscope électronique à balayage. Un biofilm est observé sur les microcapsules, indiquant la prolifération de bactéries à partir de la source carbonée que représente l'enveloppe. Des traces d'érosion et des fractures sont observées sur l'enveloppe des microcapsules, confirmant une digestion bactérienne des microcapsules. Exemple 2 : Fabrication de capsules polyester solides biodégradables selon l'invention
Un agitateur mécanique (Ika Eurostar 20) équipé d'une hélice d'agitation de type défloculeuse est utilisé pour réaliser toutes les étapes d'agitation.
Etape a) : Préparation de la première émulsion (El)
Les compositions C1 et C2 sont placées sous agitation à 2 000 tpm jusqu'à complète homogénéisation. La composition C1 est ensuite ajoutée goutte à goutte à la composition C2 sous agitation à 2 000 tpm avec un ratio 5:5. On obtient ainsi la première émulsion (E1 ).
Etape b) : Préparation de la seconde émulsion (E2)
La composition C3 est placée sous agitation à 3 500 tpm jusqu'à complète homogénéisation puis laissée à reposer une heure à température ambiante. La première émulsion (E1 ) est ensuite ajoutée à la composition C3 puis agitée à 2 000 tpm. On obtient ainsi la deuxième émulsion (E2). Etape c) : Affinage en taille de la seconde émulsion
La seconde émulsion polydisperse (E2) obtenue à l'étape précédente est agitée à 2 000 tpm pendant 3 minutes. On obtient ainsi une émulsion monodisperse (E3).
Etape d) : Réticulation de l'enveloppe des capsules
La seconde émulsion monodisperse (E3), obtenue à l'étape précédente, est irradiée pendant 10 minutes à l'aide d'une source de lumière UV (Dymax LightBox ECE 2000) ayant une intensité lumineuse maximale de 0,1 W/cm2 à une longueur d'onde de 365 nm.
Les microcapsules obtenues présentent une bonne distribution de taille, à savoir une taille moyenne de 5 μηι et leur distribution de taille présente un écart- type de 1 μηι soit 20%.
Pour les essais de biodégradation, les microcapsules sont lavées au moyen de plusieurs étapes de centrifugation - redispersion afin d'éliminer complètement l'alginate.
Une analyse BioDScreen® a été réalisée afin de déterminer la biodégradabilité aérobie des microcapsules. La méthode BioDScreen® (Scanae) est une méthode de screnning au format microplaque utilisant une détection par fluorescence.
BioDScreen® est basée sur l'utilisation d'un bioréactif, dérivé de la résazurin, sensible à l'activité métabolique de bactéries ; ce réactif est réduit sous une forme fluorescente proportionnelle à la dégradation bactérienne de l'échantillon.
Les taux de biodégradabilité correspondent à une analyse de la biodégradabilité sous méthode BioDScreen®-A sur 10 jours d'incubation à 30°C, avec un inoculum issu de station d'épuration.
Dans l'exemple 2, le taux de biodégradabilité à 10 jours d'incubation est de 45% avec un écart-type de 3% et une phase plateau atteinte au bout de 4h. Exemple 3 : Fabrication de capsules polyepoxy solides biodégradables selon l'invention
Un agitateur mécanique (Ika Eurostar 20) équipé d'une hélice d'agitation de type défloculeuse est utilisé pour réaliser toutes les étapes d'agitation.
Etape a) : Préparation de la première émulsion (El)
Les compositions C1 et C2 sont placées sous agitation à 2 000 tpm jusqu'à complète homogénéisation. La composition C1 est ensuite ajoutée goutte à goutte à la composition C2 sous agitation à 2 000 tpm avec un ratio 5:5. On obtient ainsi la première émulsion (E1 ).
Etape b) : Préparation de la seconde émulsion (E2)
La composition C3 est placée sous agitation à 3 500 tpm jusqu'à complète homogénéisation puis laissée à reposer une heure à température ambiante. La première émulsion (E1 ) est ensuite ajoutée à la composition C3 puis agitée à 2 000 tpm. On obtient ainsi la deuxième émulsion (E2). Etape c) : Affinage en taille de la seconde émulsion
La seconde émulsion polydisperse (E2) obtenue à l'étape précédente est agitée à 2 000 tpm pendant 3 minutes. On obtient ainsi une émulsion monodisperse (E3).
Etape d) : Réticulation de l'enveloppe des capsules
La seconde émulsion monodisperse (E3), obtenue à l'étape précédente, est irradiée pendant 10 minutes à l'aide d'une source de lumière UV (Dymax LightBox ECE 2000) ayant une intensité lumineuse maximale de 0,1 W/cm2 à une longueur d'onde de 365 nm.
Les microcapsules obtenues présentent une bonne distribution de taille, à savoir une taille moyenne de 8 μηι et leur distribution de taille présente un écart- type de 1 ,4 μηι soit 18%.
Pour les essais de biodégradation, les microcapsules sont lavées au moyen de plusieurs étapes de centrifugation - redispersion afin d'éliminer complètement l'alginate. Une analyse BioDScreen® (Scanae) a été réalisée afin de déterminer la biodégradabilité aérobie des microcapsules, selon les indications mentionnées ci- dessus dans l'exemple 2.
Le taux de biodégradabilité à 10 jours d'incubation est de 31 % avec un écart- type de 3%.

Claims

REVENDICATIONS
1. Procédé de préparation de microcapsules solides comprenant les étapes suivantes :
a) l'addition sous agitation d'une composition C1 , comprenant au moins un actif, dans une composition polymérique C2, les compositions C1 et C2 n'étant pas miscibles l'une dans l'autre,
la viscosité de la composition C2 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de la composition C1 ,
la composition C2 comprenant :
- au moins un monomère ou polymère choisi dans le groupe constitué des esters ou polyesters aliphatiques ou aromatiques, des anhydrides ou polyanhydrides, des saccharides ou polysaccharides, des éthers ou polyéthers, des amides ou polyamides et des carbonates ou polycarbonates, portant en outre au moins une fonction choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate, carboxylate, et de leurs mélanges,
- au moins un agent réticulant, et
- éventuellement au moins un photoinitiateur ou un catalyseur de réticulation, ce par quoi on obtient une émulsion (E1 ) comprenant des gouttes de composition C1 dispersées dans la composition C2 ;
b) l'addition sous agitation de l'émulsion (E1 ) dans une composition C3, les compositions C2 et C3 n'étant pas miscibles l'une dans l'autre,
la viscosité de la composition C3 étant comprise entre 500 mPa.s et 100 000 mPa.s à 25°C, et étant de préférence supérieure à la viscosité de l'émulsion (E1 ),
ce par quoi on obtient une émulsion double (E2) comprenant des gouttes dispersées dans la composition C3 ;
c) l'application d'un cisaillement à l'émulsion (E2),
ce par quoi on obtient une émulsion double (E3) comprenant des gouttes de taille contrôlée dispersées dans la composition C3 ; et
d) la polymérisation de la composition C2, ce par quoi on obtient des microcapsules solides dispersées dans la composition C3.
2. Procédé selon la revendication 1 , dans lequel la composition C2 comprend au moins un monomère ou polymère choisi dans le groupe constitué des esters ou polyesters aliphatiques ou aromatiques, portant en outre au moins une fonction choisie dans le groupe constitué des fonctions acrylate, méthacrylate, vinyl éther, N-vinyl éther, époxy, siloxane, aminé, lactone, phosphate, carboxylate, et de leurs mélanges.
3. Procédé selon la revendication 1 ou 2, dans lequel la composition C2 comprend de 0,001 % à 20% en poids d'agent(s) réticulant(s) par rapport au poids total de ladite composition.
4. Procédé de préparation selon l'une quelconque des revendications 1 à
3, dans lequel l'étape c) consiste à appliquer un cisaillement contrôlé homogène à l'émulsion (E2), ladite vitesse de cisaillement appliquée étant comprise entre
1 000 s"1 et 100 000 s"1.
5. Procédé de préparation selon l'une quelconque des revendications 1 à
4, dans lequel, lorsque la viscosité de la composition C3 est supérieure à
2 000 mPa.s à 25°C, l'étape c) consiste à appliquer à l'émulsion (E2) une vitesse de cisaillement inférieure à 1 000 s"1.
6. Procédé de préparation selon l'une quelconque des revendications 1 à
5, dans lequel, lorsque la composition C2 comprend un photoinitiateur, l'étape d) est une étape de photopolymérisation consistant à exposer l'émulsion (E3) à une source de lumière apte à initier la photopolymérisation de la composition C2, notamment à une source de lumière UV émettant de préférence dans la gamme de longueur d'onde comprise entre 100 nm et 400 nm, et ce en particulier pendant une durée inférieure à 15 minutes.
7. Procédé de préparation selon l'une quelconque des revendications 1 à 5, dans lequel, lorsque la composition C2 ne comprend pas de photoinitiateur, l'étape d) est une étape de polymérisation, sans exposition à une source de lumière, la durée de cette étape d) de polymérisation étant de préférence comprise entre 8 heures et 100 heures et/ou cette étape d) étant réalisée à une température comprise entre 20°C et 80°C.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel la composition C3 comprend en outre au moins un polymère branché, de préférence de poids moléculaire supérieur à 5 000 g. mol"1 , et/ou au moins un polymère de poids moléculaire supérieur à 5 000 g. mol"1 , et/ou des particules solides telles que des silicates.
9. Série de microcapsules solides, susceptible d'être obtenue selon le procédé selon l'une des revendications 1 à 8, dans laquelle chaque microcapsule comprend :
- un cœur comprenant une composition C1 selon la revendication 1 , et
- une enveloppe solide encapsulant totalement à sa périphérie le cœur, dans laquelle le diamètre moyen desdites microcapsules est compris entre 1 μηι et 30 μηι, l'épaisseur de l'enveloppe rigide est comprise entre 0,1 μηι et 20 μηι et l'écart-type de la distribution du diamètre des microcapsules est inférieur à 50%, en particulier inférieur à 25%, ou inférieur à 1 μηι.
10. Composition comprenant une série de microcapsules solides selon la revendication 9.
EP18722633.7A 2017-05-15 2018-05-15 Procédé de préparation de capsules biodégradables et capsules obtenues Pending EP3624932A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1754259A FR3066116B1 (fr) 2017-05-15 2017-05-15 Procede de preparation de capsules biodegradables et capsules obtenues
PCT/EP2018/062585 WO2018210857A1 (fr) 2017-05-15 2018-05-15 Procédé de préparation de capsules biodégradables et capsules obtenues

Publications (1)

Publication Number Publication Date
EP3624932A1 true EP3624932A1 (fr) 2020-03-25

Family

ID=59699811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18722633.7A Pending EP3624932A1 (fr) 2017-05-15 2018-05-15 Procédé de préparation de capsules biodégradables et capsules obtenues

Country Status (7)

Country Link
US (1) US11845053B2 (fr)
EP (1) EP3624932A1 (fr)
JP (2) JP2020520794A (fr)
KR (2) KR20240019382A (fr)
CN (1) CN110785224A (fr)
FR (1) FR3066116B1 (fr)
WO (1) WO2018210857A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021022970A2 (pt) 2019-05-16 2022-02-01 Centre Nat Rech Scient Método para a preparação de microcápsulas biodegradáveis e microcápsulas obtidas desta maneira
WO2021070149A2 (fr) * 2019-10-11 2021-04-15 College Of The North Atlantic In Qatar Microencapsulation/nanoencapsulation photochimique rapide sans mercure dans des conditions ambiantes
JP2022171207A (ja) 2021-04-30 2022-11-11 パナソニックIpマネジメント株式会社 分解速度が調節された複合樹脂成形体およびその製造方法
GB202110132D0 (en) 2021-07-14 2021-08-25 Cpl Aromas Ltd Microcapsules and methods for preparing microcapsules
CN113846518B (zh) * 2021-09-20 2023-02-17 河南中烟工业有限责任公司 一种提升卷烟感官品质的卷烟纸及其制备方法
CN114057940B (zh) * 2021-12-02 2023-11-03 中山大学 一种可生物降解的卡波类核壳结构聚合物微球及其制备方法和应用
CN115850065A (zh) * 2022-10-14 2023-03-28 东莞理工学院 一种以硫酸氢钠为催化剂催化聚3-羟基丁酸酯降解制备r-3-羟基丁酸酯的方法
WO2024089135A1 (fr) * 2022-10-27 2024-05-02 Calyxia Sas Procédé de fabrication de microcapsules et microcapsules
WO2024160917A1 (fr) * 2023-01-31 2024-08-08 Calyxia Microcapsules contenant des ingrédients agrochimiques
WO2024160920A1 (fr) * 2023-01-31 2024-08-08 Calyxia Microcapsules de clomazone

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR006355A1 (es) 1996-03-22 1999-08-25 Procter & Gamble Activo suavizante biodegradable y composicion que lo contiene
FR2747321B1 (fr) 1996-04-16 1998-07-10 Centre Nat Rech Scient Procede de preparation d'une emulsion
WO1998017756A1 (fr) 1996-10-21 1998-04-30 The Procter & Gamble Company Composition d'assouplissant de textile concentree
JP2001181612A (ja) * 1999-12-24 2001-07-03 Sekisui Chem Co Ltd 蓄熱用マイクロカプセル
CN101528339B (zh) * 2006-10-17 2013-03-27 巴斯夫欧洲公司 微胶囊
US20100180995A1 (en) * 2006-10-24 2010-07-22 Hiroyuki Teratani Heat-expandable microspheres and hollow fine particles and method for producing the same as well as tire/rim assembly
AU2010261875B2 (en) * 2009-06-15 2016-02-11 Basf Se Microcapsules having highly branched polymers as cross-linking agents
US20140106032A1 (en) * 2011-06-07 2014-04-17 Firmenich Sa Core-shell capsules
US10206884B2 (en) * 2013-12-20 2019-02-19 Fresenius Kabi Deutschland Gmbh Microcapsules with polymeric coating comprising a lipid and an active agent
CA2966914A1 (fr) * 2014-11-24 2016-06-02 The Procter & Gamble Company Systemes pour l'encapsulation d'agents actifs dans des gouttelettes et autres compartiments
FR3031914B1 (fr) * 2015-01-27 2019-06-07 Calyxia Procede d'encapsulation
EP3144058A1 (fr) 2015-09-16 2017-03-22 Calyxia Procédé servant à préparer des microcapsules par émulsion double
EP3144059A1 (fr) * 2015-09-16 2017-03-22 Total Marketing Services Procédé servant à préparer des microcapsules par émulsion double
FR3064188B1 (fr) * 2017-03-21 2023-03-03 Capsum Procede de preparation de capsules comprenant au moins un compose volatile et capsules obtenues

Also Published As

Publication number Publication date
US20200164332A1 (en) 2020-05-28
US11845053B2 (en) 2023-12-19
KR20240019382A (ko) 2024-02-14
FR3066116A1 (fr) 2018-11-16
CN110785224A (zh) 2020-02-11
JP2023095871A (ja) 2023-07-06
FR3066116B1 (fr) 2020-02-14
KR20200044724A (ko) 2020-04-29
JP2020520794A (ja) 2020-07-16
WO2018210857A1 (fr) 2018-11-22

Similar Documents

Publication Publication Date Title
EP3624932A1 (fr) Procédé de préparation de capsules biodégradables et capsules obtenues
EP3548529B1 (fr) Procédé de préparation de microcapsules de taille contrôlée comprenant une étape de photopolymérisation
WO2018172431A1 (fr) Procédé de préparation de capsules avec des propriétés de rétention améliorées et capsules obtenues
WO2019076911A1 (fr) Procédé de préparation de capsules sensibles au ph ou au rayonnement uv et capsules obtenues
FR3091878A1 (fr) Compositions de produits d’entretien avec des propriétés olfactives améliorées
CN110475607B (zh) 制备含至少一种水溶性或亲水性物质的胶囊的方法以及由该方法得到的胶囊
WO2018172434A2 (fr) Procédé de préparation de capsules comprenant au moins une substance hydrosoluble ou hydrophile et capsules obtenues
EP3914683A1 (fr) Compositions de detergence avec des propriétés olfactives améliorées
FR3064192A1 (fr) Procede de preparation de capsules comprenant au moins un compose volatile et capsules obtenues
FR3059665B1 (fr) Procede de preparation de microcapsules et de microparticules de taille controlee.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WALTERS, JAMIE

Inventor name: KHRISTOV, TODOR

Inventor name: SADAOUI, ALICIA

Inventor name: DEMOULIN, DAMIEN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210205

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509