EP3587666B1 - Verfahren und einrichtung zum verstärkten beheizen von fahrwegelementen - Google Patents
Verfahren und einrichtung zum verstärkten beheizen von fahrwegelementen Download PDFInfo
- Publication number
- EP3587666B1 EP3587666B1 EP19020404.0A EP19020404A EP3587666B1 EP 3587666 B1 EP3587666 B1 EP 3587666B1 EP 19020404 A EP19020404 A EP 19020404A EP 3587666 B1 EP3587666 B1 EP 3587666B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heating
- heating element
- track
- switching
- track element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 437
- 238000000034 method Methods 0.000 title claims description 29
- 238000004891 communication Methods 0.000 claims description 28
- 230000007613 environmental effect Effects 0.000 claims description 17
- 230000003213 activating effect Effects 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 230000008901 benefit Effects 0.000 description 10
- 238000012423 maintenance Methods 0.000 description 7
- 238000011835 investigation Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B7/00—Switches; Crossings
- E01B7/24—Heating of switches
Definitions
- the present invention relates to a method and a device for the increased heating of track elements, at least one main heating element being provided for regular heating on at least one track element.
- Track elements, in particular points, of rail-bound vehicles such as railways (mainline, branch lines, narrow-gauge railways) or trams are heated as required, especially in winter, to prevent the moving parts from freezing or blocking due to snow and ice, and thus to ensure operational safety .
- Known point heaters are based on systems with hot steam, gas heating or electrical energy.
- Generic methods and devices are from the prior art, for example DE 198 32 535 C2 such as DE 198 49 637 C1 known in itself.
- These well-known electric points heaters consist, among other things, of an electrical distribution with control and regulation devices for switching, controlling, regulating and monitoring each individual heating output, a weather-dependent control system that activates the heating in ice and snow, and electrical heating elements on the rails of the points, which are thereby heated and a Prevent the moving parts of the points from freezing.
- Snow and ice are detected by recording and evaluating air temperature and precipitation. If the actual rail temperature also falls below a parameterizable target rail temperature, for example +4 °C, the entire points heating is switched on and all points are heated up with a delay caused by the mass of the rails.
- the rail temperature is regulated to a specific target rail temperature via a rail temperature sensor on a guide switch.
- an energy management system which is designed for the optimal use of energy with a maximum connected load per switch.
- At least one active power ratio (La) is executed.
- the power ratio (La) is the ratio or the quotient of the number of switched-on or switched-off heating outlets to the total number of heating outlets in the electric points heating system. This takes place activating or deactivating the heating outlets of the electric point heating during each cycle time according to a specific power ratio.
- the specific active power ratio is adjusted depending on a comparison of the actual control deviation with a stored maximum control deviation.
- the disadvantage of this system is that when a stored maximum control deviation (XWmax) is exceeded, the at least one active power ratio is adjusted to 100%. As a result, there is no solution for safely heating the points in extreme weather and thus in the event of larger control deviations.
- zone heating to reduce the connected load which divides the switch into prioritized zones such as the tongue tip and non-prioritized zones such as the tongue root or the locking compartment.
- the disadvantage of this system is that it is designed exclusively to reduce the connected load that is called up at the same time and not to increase the availability of the points in winter.
- additional rail temperature sensors are required for controlling the individual zones. This is unfavorable for the maintenance of the systems, since additional sources of error result from additional temperature sensors and at the same time result in increased maintenance costs.
- US 2013/0220991 A1 describes a generic method with an electrically load-sharing heating system.
- the load sharing heating system and process is configured to allow for smooth electrical operation and energy savings.
- the system is configured to group the heating elements based on the heating element load curves and turn the groups on and off sequentially, allowing for efficient and smooth operation.
- the individual heating elements can be grouped in different compositions in order to achieve the goal of energy savings. This means that the heating elements are switched on and off one after the other in a group mode to save energy and are therefore permanently in operation. During this operation, the heating elements switch to an energy-saving mode in groups, depending on the recorded temperatures at the switches.
- the present invention is therefore based on the object of specifying a method for increased heating of track elements, preferably electrically heated points, without increasing the connected load and providing a corresponding device, whereby the relevant functional parts of track elements can be heated in a balanced manner using simple means, even in extreme weather and can be implemented without additional sensors.
- the invention advantageously leads to an optimal use of energy when heating track elements without having to increase the connected load, while at the same time balanced heating of the relevant functional parts while ensuring the function of all track elements.
- the effort required for installation and maintenance is kept low, since there is at least one secondary heating element (14) no additional elements need to be provided.
- no additional sensors are required for the control and regulation of the secondary heating elements (14), since the heating duration of the secondary heating elements (14) is determined on the basis of calculations.
- no additional sensors are required for the maintenance and function monitoring of the secondary heating elements (14), since the sensors for maintenance and function monitoring of the main heating elements (13) can be used during the heating pauses of the main heating elements (13).
- the present invention relates to a method for increased heating of track elements (12). At least one main heating element (13) for regular heating is provided on at least one track element (12) and at least one secondary heating element (14) on at least one functionally relevant component of the track element (12).
- “increased” means that a track element (12), or at least parts of it, is additionally heated compared to the regular heating operation known from the prior art.
- guideway elements are understood to mean devices, in particular movable devices, which can assume different and predeterminable states in rail traffic for the targeted handling of the traffic.
- Track elements include points, track closures, signals, special track sections or level crossing systems.
- guideway elements (12) are understood to mean, in particular, points (all types of points such as single points, slip points, double slip points, three-way points, etc.).
- Switches include a number of functional elements, above all the stock rails, the switch rails, the locking compartment linkage, the support lugs and the slide chairs including any existing roller devices.
- “Functionally relevant components” of the guideway element (12) are understood to mean, in particular, the movable switch points (switch rails), sliding chairs, roller devices, linkages, etc.
- the "main heating element” refers to a heating element which is attached to part of the guideway element (12) and can be switched ON and OFF regularly by means of a recorded control parameter (e.g. via a rail temperature sensor).
- the main heating element (13) is used for regular heating of the track element (12) under normal weather conditions.
- auxiliary heating element designates a heating element which is attached to another part of the guideway element (12) and can be switched ON and OFF depending on the main heating element (13) without its own control sensor.
- the secondary heating element (14) is only used during the natural or possibly forced heating breaks of the main heating element (13), in particular only under extreme weather conditions.
- an auxiliary heating element (14) does not have its own sensor. According to the invention, the sub-heater (14) can never be turned ON at the same time as the main heater (13).
- the method according to the invention initially comprises, in step a), the regular heating of a track element (12) by means of the at least one main heating element (13).
- This step a) aims to heat the at least one track element (12) in regular operation.
- step b) the at least one functionally relevant component of the track element (12) is then heated by means of the at least one auxiliary heating element (14) on the at least one track element (12).
- This heating takes place either during heating breaks in the at least one main heating element (13) or after the guideway element (12) has reached a target temperature in the area of the at least one main heating element (13) or when power reserves are available.
- this heating only takes place if the heat output required on the track element (12) is greater than the heat output of the at least one main heating element (13) installed on the track element (12).
- the heating preferably takes place during heating pauses of the at least one main heating element (13), it being possible for these heating pauses to be natural or forced. This is discussed further below.
- the heating can also take place if the regular heating of an area of the guideway element (12) has reached a target temperature of this guideway element (12). is reached in the area in which the at least one main heating element (13) is arranged. Furthermore, the heating can take place when power reserves are available in the system, for example because the at least one main heating element (13) is not being operated at full power, for example only to maintain a current temperature but not to increase it any further.
- control device (3) is provided for controlling at least one switching device (5) and for regulating the rail temperature of the at least one main heating element (13) and the at least one secondary heating element (14).
- step c1) a current absolute control deviation ⁇ abs is compared with a stored maximum control deviation ⁇ max. If the maximum control deviation ⁇ max is exceeded for at least one functionally relevant component of the guideway element (12), the heating of the at least one functionally relevant component of the guideway element (12) is then activated by means of at least one auxiliary heating element (14) on at least one of the guideway elements (12).
- step c2) the activation of the at least one functionally relevant component of the track element (12) by means of at least one auxiliary heating element (14) on at least one of the track elements (12) is activated by an additional switch (26) in the control device (3). This makes it possible to activate the heating manually or semi-automatically.
- step c3) the heating of the at least one functionally relevant component of the track element (12) is activated by means of at least one auxiliary heating element (14) on at least one of the track elements (12) when the ambient parameters that can be specified are not reached.
- the ambient parameters of a route element (12) that can be specified are the ambient temperature (air temperature), the presence of precipitation and its type (snow, rain, ice), wind, wind direction, air pressure, solar radiation, existing snow (that has already fallen in the past Snow).
- the specifiable environmental parameters can preferably by a Weather station or weather forecast come from. In this way, for example, the system reacts to rapidly changing environmental parameters, in particular a sharp drop in temperature, and activates the heating before the temperature of a functionally relevant component drops too much.
- the at least one auxiliary heating element (14) is provided on at least one of the track elements (12) according to the invention.
- This secondary heating element (14) is located in particular at a point on the track element (12) which is difficult to heat by the at least one main heating element (13).
- the main heating element (13) and the secondary heating element (14) are preferably not operated in parallel, but in particular alternately, in that the secondary heating element (14) is only activated during the heating breaks of the main heating element (13). Alternatives to this alternating operation have already been mentioned above.
- the heating pauses of the at least one main heating element (13) can be "natural” on the one hand, that is, the pauses that occur during regular operation.
- the heating pauses of the at least one main heating element (13) can be "forced", i.e. the heating of the at least one main heating element (13) is deliberately and controlled interrupted in order to heat the at least one secondary heating element (14) during this forced heating pause.
- the method according to the invention has the advantage that, when heating track elements (12), balanced heating of the relevant functional parts is made possible without having to increase the connected load, with optimal energy use also being achieved.
- the process is completely independent of the energy supplied and can be used for all types of driveway heating. This can be, for example, geothermal point heaters, gas point heaters, electric point heaters, etc.
- the calculated time is equal to 0. Furthermore, a possible undersupply of the track element (12) can be detected on the basis of the calculated time. This makes it possible to estimate the availability of the route element (12) under certain weather conditions on the basis of the calculated time.
- the system can issue a warning message before the start of heating of the secondary heating element (14), since snow would certainly cover the track element (12) during this long period of time.
- the above development can advantageously be supplemented such that after the on-time of the at least one auxiliary heating element (14) has elapsed, the activation of the heating is reassessed according to step c1) or step c2) or step c3).
- the advantage of this constant reassessment lies in the constant recalculation of the heating conditions and thus in an optimization of the energy consumption, since if the heating condition for the secondary heating element (14) is no longer applicable, this is also switched off again and energy is not required unnecessarily.
- the mass of the at least one functionally relevant component of the track element (12) heated by the at least one main heating element (13) can be compared to the mass of the at least one functionally relevant component of the track element ( 12) or in relation to the current ambient parameters of the at least one functionally relevant component of the track element (12) heated by the at least one auxiliary heating element (14).
- This calculation of the duty cycle results in a necessary heating duration of the at least one secondary heating element (14), the duty cycle being less than or greater than or equal to the heating pause of the at least one main heating element (13).
- parameters can also be set as to whether, in the case of calculating a longer required heating duration for the at least one secondary heating element (14) than the natural heating pause for the at least one main heating element (13), this heating pause is artificial, i.e. forced, and up to what maximum may and/or should be extended.
- the heat output of the at least one secondary heating element (14) can be greater than, less than or equal to that of the at least one main heating element (13).
- a preferred embodiment of the method according to the invention provides for an emergency control to be activated in the event of a loss of communication between a switching control (8) and a communication module (6) and thus the control device (3), in that a switching device (11) assumes a predefined emergency position.
- the advantage of this embodiment lies in the safety function due to the defined state that the switching device (11) assumes in the event of a fault.
- a defined heating of the track element (12) is carried out and a basic functionality of the track element (12) can be guaranteed.
- An alternative preferred embodiment to this embodiment provides that in the event of a fault within the switching control (8) an emergency control is activated (so-called watchdog) by the switching device (11) assuming a predefined emergency position.
- an emergency control is activated (so-called watchdog) by the switching device (11) assuming a predefined emergency position.
- the second aspect of the present invention relates to a first device for increased heating of track elements (12).
- This first device initially comprises a switching distributor (1) which has a control device (3) on which a switching device (5) for at least one main heating element (13) on the at least one track element (12) is provided for at least one track element (12). , wherein each switching device (5) has at least one heating outlet (7) for at least one guideway element (12).
- Switching distribution (1) in the sense of this document refers to an energy distribution with which the energy supply required for heating the main heating elements (13) and the secondary heating elements (14) is distributed to different heating outlets (7) and these are switched on or off accordingly.
- This can be, for example, electrical energy or, in the case of geothermal points heating systems, switching on the circulation of the heat-carrying fluid or, in the case of gas point heating systems, the gas supply to the burners.
- switching device (5) refers here to a device that can switch on and off the energy supply for heating the guideway elements (12). This can be, for example, control valves, load contactors, semiconductor switching devices or magnetic switches.
- the first device comprises an environmental parameter device (2) which is connected to the control device (3).
- This "Environmental Parameters Setup (2)" can be a weather station, which records the environmental parameters, but also additionally or alternatively a connection to a weather data provider or weather service.
- the first device also includes at least one energy distribution box (4) for the at least one track element (12), which is connected to the corresponding heating outlet (7) for this at least one track element (12) and supplies it with energy, and at least one temperature sensor (9) for at least one track element (12) which is connected to the control device (3).
- Energy distribution box (4) refers to a device for feeding in and distributing (electrical) energy to the at least one main heating element (13) and the at least one secondary heating element (14).
- the first device is characterized in that at least one auxiliary heating element (14) is also provided on at least one guideway element (12), the energy distribution box (4) also having a switching control (8) and a switching device (11), by means of which the energy supply of the corresponding heating outlet (7) can be switched between the main heating element (13) and the secondary heating element (14).
- Switching control (8) in the sense of the present invention denotes a device for controlling the switching device (11) including the monitoring of the respective switching positions.
- switching device (11) means a device for switching over or switching on the energy supply of the at least one main heating element (13) and the at least one secondary heating element (14).
- This switching device (11) can be, for example, a control valve, load contactor, semiconductor switching devices or magnetic switches.
- the first device according to the invention basically has the same advantages as the method according to the invention described above. Furthermore, the first device according to the invention enables reduced installation and maintenance costs, since apart from the at least one auxiliary heating element (14), essentially no additional elements have to be provided in order to ensure balanced heating of track elements without increasing the connected load.
- the third aspect of the present invention relates to a second device for increased heating of track elements (12), which is an alternative to the first device according to the invention.
- This second device initially comprises a switching distributor (1) which has a control device (3) on which at least one switching device (5) is provided for at least one main heating element (13) on at least one guideway element (12), the switching device (5) is connected to at least one communication module (6).
- the “communication module (6)” is a module for communication between the switching distribution (1) or the switching control (8) and the switching distribution and the energy distribution box (4) via a heating outlet/energy supply cable (7) of the guideway element (12). designated.
- the second device comprises an environmental parameter device (2), which is connected to the control device (3), and at least one energy distribution box (4) for the at least one track element (12), which is equipped with a corresponding heating outlet (7) for this guideway element (12) is connected and supplies it with energy.
- the second device comprises at least one temperature sensor (9) for at least one track element (12), which is connected to the control device (3).
- the second device is characterized in that at least one secondary heating element (14) is also provided on at least one guideway element (12), the energy distribution box (4) also having a switching control (8) and a switching device (11), by means of which the energy supply of the corresponding heating outlet (7) can be switched between the main heating element (13) and the secondary heating element (14).
- the second device according to the invention basically has the same advantages as the method according to the invention described above and the first device according to the invention described above.
- the main difference between the first device and the second device is that several communication modules (6) and several heating outlets (7) can be attached to a switching device (5). Each of these heating outlets (7) then supplies one or more energy distribution boxes (4) that in turn supply one or more main heating elements (13) and secondary heating elements (14) on one or more track elements (12).
- the first device also includes a communication module (6) for one or more heating outlets (7) for each guideway element (12), which is connected to the control device (3).
- the switching device (11) can advantageously be designed as a switching element or as at least two switch-on elements.
- first device according to the invention and the second device according to the invention can each further comprise a switch (26) for activating the increased heating.
- This variant has the advantage that the increased heating can be activated by manual intervention by an operator in the control. This can be used, for example, as a precaution or to melt any snow/ice residue that has not been detected by the sensors.
- the present invention is illustrated in particular with reference to an electrical points heating system.
- the present invention is not limited to an electrical system and can also be applied to systems with hot water steam, gas heating or geothermal energy.
- the present invention can also be applied to all the track elements 12 already mentioned above.
- the present invention is first based on the Figures 1 to 8 described.
- FIG 1 is a schematic representation of an electrical point heating system according to the prior art with three heating outlets 7, three points 12a and three heating elements 13 each. If the weather is appropriate, the heating request is generated by the weather station (environmental parameter device 2) in the control device 3 and all heating outlets 7 are switched on and off again at the same time.
- the rail temperature is regulated via at least one rail temperature sensor 9 during the heating request between two parameterizable target values, for example between +4.degree. C. and +7.degree.
- FIG 2 an arrangement for measuring points x1 to x9 for determining temporal temperature profiles on various components necessary for the availability of the switch 12a can be seen.
- the measuring point x1 is the position of a standard rail temperature sensor for rail temperature control. Furthermore, the position of the standardized main heating element 13 is shown in this figure.
- FIG 3 are corresponding for different measuring points figure 2 temporal temperature curves can be read.
- This switch 12a is standard equipment with a heating element 17 at the base of the stock rail 15 (see Fig figure 2 ).
- the temperature is regulated between + 3 °C and + 7 °C by means of a two-point control. It can be seen that the temperature at measuring point x6 does not rise above 0 °C for this example. This in turn means that snow deposits or freezing of rain at this point cannot be prevented with this type of heating.
- figure 3 to recognize the natural heating breaks caused by the two-point control.
- FIG 4 shows a schematic cross-section through a switch 12a comprising a stock rail 15 and a switch tongue 19 assigned to it and arranged to be displaceable on a slide chair 22.
- a switch 12a it is a conventional structure of a switch 12a, so that the other elements do not need to be discussed in detail.
- the stock rail 15 is equipped with heating elements 16, 24 such as heating rods on both sides of its web. Furthermore, heating elements 20, 26 can be attached on both sides of the tongue rail 19. Furthermore, for example, the slide chair 22, the stock rail head or the tongue rail head can be heated directly.
- FIG 5 is a point heating control with so-called. "Power heating” shown schematically according to a first specific embodiment.
- the switching control 8 and the switching device 5 are shown in the energy distribution box 4 .
- the main heating elements 13 or the secondary heating elements 14 can be supplied with energy alternately.
- the data transmission between the switching distributor 1 and the switching controller 8 is realized via a power supply cable of the respective heating outlet 7 .
- At least one communication module 6 per switching distribution board 1 and/or per heating outlet/power supply cable 7 is required for this.
- This communication module 6 ensures the data transmission between the switching distributor 1 and the switching controller 8 in the energy distribution box 4. This communication can take place offline (when the energy supply is switched off) or online (when the energy supply is switched on).
- figure 6 shows a point heating control with so-called "power heating” according to a second specific embodiment.
- a switching device 5 supplies several communication modules 6 and heating outlets/power supply cables 7 , which in turn supply several energy distribution boxes 4 .
- FIG 7 a standard switch 12a of the type EW54-500 including a standard switch assembly with main heating elements 13 on the inside of the stock rail 15 is shown. Furthermore, the heating of the locking compartments 27, which ensure the heating of the sliding linkage of the switch blade 19, is shown.
- auxiliary heating elements 14 shown for tongue rail heating, tongue tip heating, slide chair heating and support bracket heating.
- FIG 8 a time course of a power heating process (process for increased heating of roadway elements 12) is shown as an example. This shows that the points heating is in normal control mode.
- switch 26 for activating the power heating function is turned on. This can be done automatically, for example, by a parameterized weather condition (e.g. falling below the air temperature or exceeding a preset amount of precipitation or exceeding the maximum control deviation or manual activation).
- a parameterized weather condition e.g. falling below the air temperature or exceeding a preset amount of precipitation or exceeding the maximum control deviation or manual activation.
- the energy supply is switched over from the main heating elements 13 to the secondary heating elements 14, which are now heated for the time period t1 to t2.
- This switchover of the energy supply can take place under load, i.e. in the switched-on state, or without load, i.e. in the switched-off state, of the energy supply.
- the secondary heating elements 14 are heated for just as long as the main heating elements 13 and there is an additional heating pause in the time period t2 to t3, in which no heating is active. That is, the power supply is switched off by the switching device 5 in the switching distribution board 1.
- the power supply is switched over from the auxiliary heating elements 14 to the main heating elements 13.
- the main heating elements 13 are supplied with power.
- the energy supply is switched over from the main heating elements 13 to the secondary heating elements 14, which are now heated for the time period t4 to t5. It can be seen here that the auxiliary heating elements 14 heat longer than the main heating elements 13 .
- the energy supply is switched over from the secondary heating elements 14 to the main heating elements 13. In this case, there is no additional heating break.
- the main heating elements 13 are supplied with energy.
- the power supply is switched over from the main heating elements 13 to the secondary heating elements 14, which are now heated for the period t6 to t7. It can be seen here that the secondary heating elements 14 are heated for just as long as the main heating elements 13 in the previous heating period.
- the energy supply is switched over from the auxiliary heating elements 14 to the main heating elements 13. In this case, there is no additional heating pause.
- the main heating elements 13 are supplied with energy.
- the energy supply is switched over from the main heating elements 13 to the secondary heating elements 14, which are now heated for the time period t8 to t9. It can be seen here that the secondary heating elements 14 are heated for a shorter time than the main heating elements 13 in the previous heating period. In this case, too, there is no additional heating break.
- the power supply is switched over from the secondary heating elements 14 to the main heating elements 13. In this case, there is no additional heating break.
- the main heating elements 13 are supplied with energy.
- the energy supply is switched over from the main heating elements 13 to the secondary heating elements 14, which are now heated for the period t10 to t11. It can be seen here that the secondary heating elements 14 are heated for a shorter time than the main heating elements 13 in the previous heating period. In this case, too, there is no additional heating break.
- the energy supply is switched over from the auxiliary heating elements 14 to the main heating elements 13. In this case, there is no additional heating pause. In the period t11 to t13, the main heating elements 13 are supplied with energy.
- the switch for activating the power heating function is switched off. This can be done automatically, e.g. due to parameterized weather conditions (e.g. exceeding an air temperature or falling below a preset amount of precipitation or falling below the maximum control deviation or manual switch-off).
- This figure shows an environment parameter device 2 in the form of a weather station for detecting the current weather data. Additionally or alternatively, this current weather data can be provided by a weather forecast service. It is also possible to integrate future weather data into the device.
- control device 3 for evaluating the weather data, which activates or deactivates at least one switching device 5 .
- This at least one switching device 5 switches the power supply of the heating outlets/power supply cable 7 on or off to control the temperature of the standard switch 12a.
- the temperature is controlled using the values measured by the rail temperature sensor 9 .
- FIG. 5 the energy distribution box 4, the switching control 8 and the switching device 5 are shown. By means of these devices, either the main heating elements 13 or the secondary heating elements 14 can be supplied with energy alternately.
- the data transmission between the control device 3 in the switching distribution board 1 and the communication module 6 can be binary or bus-bound.
- the data transmission between the communication module 6 in the switching distributor 1 and the switching controller 8 in the energy distribution box 4 is realized via the heating outlet/energy supply cable 7 .
- At least one communication module 6 per switching distribution board 1 and/or per heating outlet/power supply cable 7 is required for this.
- This communication can be offline (when the power supply is off) or online (when the power supply is on). Furthermore, this communication can be binary or bus-bound.
- the control deviation is defined as the difference in the target temperature Tset for a specific measuring point or heating point (e.g. X6 in figure 2 ) and the current value of the temperature T0 at this measuring point or heating point as a function of the maximum heating-up time until the target temperature Tsoll is reached at this measuring point or heating point under the current and/or future environmental conditions.
- the maximum control deviation ⁇ max represents the maximum temperature difference for the current and/or future weather conditions, which can be bridged by the main heating elements 13 at the corresponding measuring point or heating point in the specified period of time
- Control deviation ⁇ max can be defined, for example, by means of comparison values and/or a referencing measurement run as part of the parameterization of the system.
- step a) and step b) of the above-described method according to the invention a maximum control deviation ⁇ max between a temperature T0 of track element 12 and a parameterizable setpoint temperature Tsoll of track element 12 is first determined, as well as the maximum control deviation in the Control device 3 are stored.
- the goal is thus pursued of sufficiently heating all components relevant to the function of a roadway element 12 by the at least one main heating element 13 in a parameterizable period of time.
- a referencing run can be carried out or references from comparable route elements can be used.
- the "temperature T0" designates the temperature of the respective route element at the time of the respective switching on of the main heating element.
- “configurable desired temperature Tsoll” is understood to mean that this temperature can be set to a specific value automatically or manually.
- a current temperature setpoint Ta for each track element 12 is then determined. This can be parameterized manually or calculated using mathematical equations as a function of parameters that can be specified and/or the current environmental parameters.
- the main difference between the parameterizable setpoint temperature Tsoll and the current temperature setpoint Ta is that the parameterized busbar temperature Tsoll is fixed and the current busbar temperature Ta is recalculated at each point in time.
- the current busbar temperature Ta calculated using any offsets or using mathematical equations can possibly correspond to the configured target temperature.
- the current temperature setpoint Ta can be determined in particular as a function of set parameters and/or of current and future weather conditions.
- a current absolute control deviation ⁇ abs between a current temperature T0a of the track element 12 and the parameterizable target temperature Tsoll of the guideway element 12 for at least one functionally relevant component of the guideway element 12 is provided.
- the current temperature T0a of the guideway element 12 is the temperature of a specific part, for example a rail, measured by means of a sensor or on site.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Control Of Resistance Heating (AREA)
- Road Repair (AREA)
- Road Paving Structures (AREA)
Description
- Die vorliegende Erfindung bezieht sich auf ein Verfahren und eine Einrichtung zum verstärkten Beheizen von Fahrwegelementen, wobei an zumindest einem Fahrwegelement zumindest ein Hauptheizelement zum regulären Beheizen vorgesehen ist.
- Fahrwegelemente, insbesondere Weichen, von schienengebundenen Fahrzeugen wie Eisenbahnen (Vollbahnen, Nebenbahnen, Schmalspurbahnen) oder Straßenbahnen werden bedarfsabhängig beheizt, um vor allem im Winter ein Einfrieren der beweglichen Teile bzw. deren Blockieren durch eingedrungenen Schnee und Eis zu verhindern und damit die Betriebssicherheit zu gewährleisten. Bekannte Weichenheizungen beruhen auf Systemen mit Heißwasserdampf, Gasbeheizung oder elektrischer Energie.
- Klimaforscher warnen schon seit vielen Jahren vor dem weltweiten Klimawandel, der in Deutschland vor allem zu weniger Schnee im Winter und ganzjährig zu höheren Durchschnittstemperaturen führen wird. Die Niederschlagsmenge wird nach diesen Prognosen im Winter um bis zu 30 % steigen, jedoch sinken die Tage mit mehr oder weniger geschlossener Schneedecke deutlich. Allerdings bedeutet dies nicht, dass Weichenheizungen zukünftig nicht mehr benötigt werden, denn obwohl die Winter im Allgemeinen milder und schneeärmer werden, sind gleichzeitig Wetterextreme wahrscheinlicher.
- Laut dem Deutschen Wetterdienst sind Hagelereignisse öfter zu erwarten, ebenso steigen Temperaturextreme im Winter um das bis zu 20-fache an. Das heißt, dass in Zukunft die meiste Zeit der Heizperiode Energie gespart werden kann, in Extremfällen aber auch die notwendige Leistung abrufbar sein muss, um den störungsfreien Betrieb aufrechtzuerhalten. Aus diesen Gründen werden in neuen Weichenheizungssteuerungen die Funktionen für ein verstärktes Beheizen der Weichen (auch als "Powerheizen" bezeichnet) notwendig.
- Gattungsgemäße Verfahren und Einrichtungen sind aus dem Stand der Technik, beispielsweise aus
DE 198 32 535 C2 sowieDE 198 49 637 C1 an sich bekannt. Diese bekannten elektrischen Weichenheizungen bestehen unter anderem aus einer elektrischen Verteilung mit Steuer- und Regeleinrichtungen zum Schalten, Steuern, Regeln und Überwachen jedes einzelnen Heizabganges, einer witterungsabhängigen Steuerung, die bei Eis und Schnee die Heizung aktiviert, und elektrischen Heizelementen an den Schienen der Weichen, die dadurch erwärmt werden und ein Festfrieren der beweglichen Teile der Weichen verhindern. Die Detektion von Schnee und Eis erfolgt über die Erfassung und Auswertung von Lufttemperatur und Niederschlag. Bei zusätzlichem Unterschreiten der Schienen-Isttemperatur unter eine parametrierbare Schienen-Solltemperatur, zum Beispiel + 4 °C, wird die gesamte Weichenheizung eingeschaltet und dadurch werden alle Weichen mit einer durch die Masse der Schienen bedingten Verzögerung erwärmt. Über einen Schienentemperatursensor an einer Führungsweiche erfolgt die Regelung der Schienentemperatur auf eine bestimmte Schienensolltemperatur. - Aus dem Untersuchungsbericht 06-P-3408-TZF92-UN-0780 der DB AG vom 12.12.2006 sind Versuche zum Heizverhalten von herkömmlichen elektrischen Weichenheizungen bekannt. Bei diesen Untersuchungen wurden an den Weichen wie im standardgemäßen Gebrauch Heizstäbe mit einer Heizleistung von 330 W/m mit Hilfe von Klemmbügeln am Fuß der Backenschienen befestigt. Die Temperaturregelung erfolgte wie in der Praxis üblich mittels eines Temperaturfühlers an der Unterseite der Backenschiene. Im Ergebnis dieser Untersuchungen war ein Temperaturabfall zwischen beheizter Backenschiene und abliegender unbeheizter Zungenschiene zu erkennen. Im Detail geht aus dieser Untersuchung hervor, dass für bestimmte Umgebungsbedingungen, z.B. - 5 °C, eine alleinige Beheizung der Backenschiene (Messpunkt X1) auf eine Schienen-Solltemperatur von z.B. + 7 °C die abliegende Zungenschiene (z.B. Messpunkt X6) nicht ausreichend beheizt wird, um Schnee an diesen Bereichen zu tauen. Des Weiteren geht aus diesen Untersuchungen hervor, dass bei handelsüblichen Weichenheizungen mit einer Zweipunktregelung durch das Abkühlen auf den unteren Schienentemperatursollwert Heizpausen entstehen, in denen keine elektrische Energie für das Beheizen der Backenschiene benötigt wird.
- Aus dem Patent
DE 195 02 125 C2 sind zusätzlich zu der handelsüblichen Heizstabbestückung am Fuß der Backenschiene verschiedene Anordnungen von Heizelementen an der Backenschiene, der beweglichen Zungenschiene und am Gleitstuhl bekannt. Durch diese zusätzlichen Bestückungen können offensichtlich gleichmäßigere Erwärmungen der für eine Funktion der Weiche notwendigen Weichenbestandteile erreicht werden. - Aus
DE 10 2016011 117A1 ist ein Energiemanagementsystem bekannt, welches auf den optimalen Energieeinsatz bei einer maximalen Anschlussleistung je Weiche ausgelegt ist. Dabei wird zumindest ein aktives Leistungsverhältnis (La) ausgeführt. Mit Leistungsverhältnis (La) wird das Verhältnis bzw. der Quotient aus der Anzahl eingeschalteter bzw. ausgeschalteter Heizabgänge zur gesamten Anzahl an Heizabgängen der elektrischen Weichenheizungsanlage bezeichnet. Dabei erfolgt während jeder Taktzeit entsprechend eines spezifischen Leistungsverhältnisses das Aktivieren bzw. Deaktivieren der Heizabgänge der elektrischen Weichenheizung. Die Anpassung des spezifischen aktiven Leistungsverhältnisses erfolgt in Abhängigkeit eines Vergleichs der tatsächlichen Regelabweichung mit einer gespeicherten maximalen Regelabweichung. Nachteilig ist in diesem System, dass bei Überschreiten einer gespeicherten maximalen Regelabweichung (XWmax) die Anpassung des zumindest einen aktiven Leistungsverhältnisses auf 100 % erfolgt. Dadurch ist keine Lösung zur sicheren Erwärmung der Weichen bei Wetterextremen und damit bei größeren Regelabweichungen vorhanden. - Aus den Fachartikeln "Energieeinsparung bei Weichenheizungen" aus der Zeitschrift "Signal + Draht", Ausgabe 12 aus dem Jahr 2017, und "Moderne Reglung für maximale Energieeffizienz bei elektrischer Weichenheizung" aus der Zeitschrift "Signal + Draht", Ausgabe 7+8 aus dem Jahr 2012, ist eine Zonenheizung zur Reduzierung der Anschlussleistung bekannt, welche die Weiche in priorisierte Zonen wie die Zungenspitze und nicht priorisierte Zonen wie die Zungenwurzel oder das Verschlussfach einteilt. Nachteilig an diesem System ist, dass es ausschließlich auf die Reduzierung der gleichzeitig abgerufenen Anschlussleistung und nicht auf eine Erhöhung der Verfügbarkeit der Weiche im Winter ausgelegt ist. Des Weiteren werden zum Beheizen der einzelnen Zonen zusätzliche Schienentemperaturfühler für die Regelung der einzelnen Zonen benötigt. Dies ist für die Instandhaltung der Anlagen ungünstig, da sich durch zusätzliche Temperatursensoren zusätzliche Fehlerquellen ergeben und gleichzeitig einen erhöhten Instandhaltungsaufwand hervorrufen.
-
US 2013/0220991 A1 beschreibt ein gattungsgemäßes Verfahren mit einem elektrisch lastverteilenden Heizsystem. Das lastverteilende Heizsystem und das entsprechende Verfahren sind so konfiguriert, dass ein reibungsloser elektrischer Betrieb und Energieeinsparungen ermöglicht werden. Das System ist konfiguriert, um die Heizelemente basierend auf den Lastkurven der Heizelemente zu gruppieren und die Gruppen nacheinander ein- und auszuschalten, was einen effizienten und reibungslosen Betrieb ermöglicht. Wie aus denFiguren 5 und6 deutlich wird, können die einzelnen Heizelemente in unterschiedlicher Zusammensetzung gruppiert werden, um so das Ziel der Energieeinsparungen zu erreichen. Das heißt, die Heizelemente werden zum Energiesparen über einen Gruppenmodus nacheinander ein- und ausgeschaltet und sind so dauerhaft in Betrieb. Während dieses Betriebes wechseln die Heizelemente gruppenweise in Abhängigkeit von erfassten Temperaturen an den Weichen in einen Energiesparmodus. - Die aus dem Stand der Technik bekannten Verfahren und Einrichtungen haben folglich teilweise einen sehr hohen technischen Installations- und Wartungs-Aufwand bei gleichzeitig ungleichmäßiger und/oder unzureichender Beheizung wesentlicher funktioneller Teile von Fahrwegelementen. Es besteht daher die Notwendigkeit, für die zukünftig vermehrt auftretenden Wetterextreme mehr Heizleistung sowie gleichzeitig eine ausgeglichenere Beheizung an den für die Funktion der Weiche relevanten Weichenbestandteilen zu erreichen, ohne den technischen Aufwand weiter zu erhöhen.
- Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum verstärkten Beheizen von Fahrwegelementen, vorzugsweise von elektrisch beheizten Weichen, ohne Erhöhung der Anschlussleistung anzugeben und eine entsprechende Einrichtung bereitzustellen, wodurch mit einfachen Mitteln eine ausgeglichene Beheizung der relevanten funktionellen Teile von Fahrwegelementen auch bei Wetterextremen und ohne zusätzliche Sensoren realisiert werden kann.
- Diese Aufgabe wird in einem ersten Aspekt der vorliegenden Erfindung durch ein Verfahren zum verstärkten Beheizen von Fahrwegelementen (12) gelöst, wobei an zumindest einem Fahrwegelement (12) zumindest ein Hauptheizelement (13) zum regulären Beheizen und an mindestens einer funktionsrelevanten Komponente des Fahrwegelements (12) zumindest ein Nebenheizelement (14) vorgesehen ist, wobei das Hauptheizelement (13) an einem Teil des Fahrwegelements (12) angebracht ist und regulär mittels eines erfassten Regelparameters, z.B. über einen Schienentemperaturfühler, EIN als auch AUS schaltbar ist, und wobei das Nebenheizelement (14) an einem anderen Teil des Fahrwegelements (12) angebracht ist und in Abhängigkeit des Hauptheizelements (13) ohne eigenen Regelungssensor EIN als auch AUS schaltbar ist, umfassend die Schritte
- a) reguläres Beheizen eines Fahrwegelements (12) mittels des zumindest einen Hauptheizelements (13),
- b) Beheizen der mindestens einen funktionsrelevanten Komponente des Fahrwegelements (12) mittels des zumindest einen Nebenheizelements (14) an dem zumindest einen Fahrwegelement (12) in Heizpausen des zumindest einen Hauptheizelements (13) oder nach Erreichen einer Solltemperatur des Fahrwegelements (12) im Bereich des zumindest einen Hauptheizelements (13) oder bei vorhandenen Leistungsreserven, wenn die an dem Fahrwegelement (12) erforderliche Heizleistung größer ist als die Heizleistung des zumindest einen an dem Fahrwegelement (12) installierten Hauptheizelements (13),
- wobei das Nebenheizelement (14) nie gleichzeitig mit dem Hauptheizelement (13) auf EIN geschaltet sein kann,
- wobei das Beheizen mittels des zumindest einen Nebenheizelements (14) aktiviert wird
- c1) bei Überschreiten einer maximalen Regelabweichung Δmax für die mindestens eine funktionsrelevante Komponente des Fahrwegelements (12), oder
- c2) mittels eines zusätzlichen Schalters (26) in einer Steuerungseinrichtung (3) oder
- c3) bei Unterschreiten eines vorgebbaren Umgebungsparameters.
- Die vorstehend genannte Aufgabe wird in einem zweiten Aspekt der vorliegenden Erfindung durch eine erste Einrichtung zum verstärkten Beheizen von Fahrwegelementen (12) gelöst, umfassend
- eine Schaltverteilung (1), die eine Steuerungseinrichtung (3) aufweist, an der für zumindest ein Fahrwegelement (12) ein Schaltgerät (5) für zumindest ein Hauptheizelement (13) an dem zumindest einen Fahrwegelement (12) vorgesehen ist, wobei jedes Schaltgerät (5) zumindest einen Heizabgang (7) für zumindest ein Fahrwegelement (12) aufweist,
wobei das Hauptheizelement (13) an einem Teil des Fahrwegelements (12) angebracht ist und regulär mittels eines erfassten Regelparameters (z.B. über einen Schienentemperaturfühler) EIN als auch AUS schaltbar ist, - eine Umgebungsparameter-Einrichtung (2), die mit der Steuerungseinrichtung (3) verbunden ist,
- zumindest einen Energie-Verteilkasten (4) für das zumindest eine Fahrwegelement (12), der mit dem entsprechenden Heizabgang (7) für dieses zumindest eine Fahrwegelement (12) verbunden ist und dieses mit Energie versorgt, und
- zumindest einen Temperatursensor (9) für mindestens ein Fahrwegelement (12), der mit der Steuerungseinrichtung (3) verbunden ist,
- dadurch gekennzeichnet, dass
- an zumindest einem Fahrwegelement (12) ferner zumindest ein Nebenheizelement (14) vorgesehen ist, wobei der Energie-Verteilkasten (4) ferner eine Schaltsteuerung (8) und eine Schalteinrichtung (11) aufweist, mittels derer die Energieversorgung des entsprechenden Heizabgangs (7) zwischen dem Hauptheizelement (13) und dem Nebenheizelement (14) umschaltbar ist,
- wobei das Nebenheizelement (14) an einem anderen Teil des Fahrwegelements (12) angebracht ist und in Abhängigkeit des Hauptheizelements (13) ohne eigenen Regelungssensor EIN als auch AUS schaltbar ist,
- wobei das Nebenheizelement (14) nur in Heizpausen des zumindest einen Hauptheizelements (13) beheizbar ist und wobei die Heizdauer der Nebenheizelemente (14) auf Basis von Berechnungen ermittelt wird.
- Die vorstehend genannte Aufgabe wird in einem dritten Aspekt der vorliegenden Erfindung durch eine zweite Einrichtung zum verstärkten Beheizen Fahrwegelementen (12) gelöst, umfassend
- eine Schaltverteilung (1), die eine Steuerungseinrichtung (3) aufweist, an der zumindest ein Schaltgerät (5) für zumindest ein Hauptheizelement (13) an zumindest einem Fahrwegelement (12) vorgesehen ist, wobei das Schaltgerät (5) mit zumindest einem Kommunikationsmodul (6) verbunden ist,
- wobei mit Kommunikationsmodul (6) ein Modul zu Kommunikation zwischen der Schaltverteilung (1) bzw. der Schaltsteuerung (8) und dem Energie-Verteilkasten (4) über einen Heizabgang/ Energieversorgungskabel (7) des Fahrwegelements (12) bezeichnet wird,
- wobei das Hauptheizelement (13) an einem Teil des Fahrwegelements (12) angebracht ist und regulär mittels eines erfassten Regelparameters (z.B. über einen Schienentemperaturfühler) EIN als auch AUS schaltbar ist,
- eine Umgebungsparameter-Einrichtung (2), die mit der Steuerungseinrichtung (3) verbunden ist,
- zumindest einen Energie-Verteilkasten (4) für das zumindest eine Fahrwegelement (12), der mit einem entsprechenden Heizabgang (7) für dieses Fahrwegelement (12) verbunden ist und dieses mit Energie versorgt, und
- zumindest einen Temperatursensor (9) für mindestens ein Fahrwegelement (12), der mit der Steuerungseinrichtung (3) verbunden ist,
- dadurch gekennzeichnet, dass
- an zumindest einem Fahrwegelement (12) ferner zumindest ein Nebenheizelement (14) vorgesehen ist, wobei der Energie-Verteilkasten (4) ferner eine Schaltsteuerung (8) und eine Schalteinrichtung (11) aufweist, mittels derer die Energieversorgung des entsprechenden Heizabgangs (7) zwischen dem Hauptheizelement (13) und dem Nebenheizelement (14) umschaltbar ist,
- wobei das Nebenheizelement (14) an einem anderen Teil des Fahrwegelements (12) angebracht ist und in Abhängigkeit des Hauptheizelements (13) ohne eigenen Regelungssensor EIN als auch AUS schaltbar ist,
- wobei das Nebenheizelement (14) nur in Heizpausen des zumindest einen Hauptheizelements (13) beheizbar ist und wobei die Heizdauer der Nebenheizelemente (14) auf Basis von Berechnungen ermittelt wird.
- Die Erfindung führt in vorteilhafter Weise zu einem optimalen Energieeinsatz bei der Beheizung von Fahrwegelementen, ohne die Anschlussleistung erhöhen zu müssen, bei gleichzeitig ausgeglichener Beheizung der relevanten funktionellen Teile mit Sicherstellung der Funktion aller Fahrwegelemente. Zudem wird der Installations- und Wartungs-Aufwand gering gehalten, da außer dem zumindest einen Nebenheizelement (14) keine zusätzlichen Elemente vorgesehen werden müssen. Weiterhin werden keine zusätzlichen Sensoren für die Steuerung und Reglung der Nebenheizelemente (14) benötigt, da die Heizdauer der Nebenheizelemente (14) auf Basis von Berechnungen ermittelt wird. Des Weiteren wird für die Wartungs- und Funktionsüberwachung der Nebenheizelemente (14) keine zusätzliche Sensorik benötig, da in den Heizpausen der Hauptheizelemente (13) die Sensoren der Wartungs- und Funktionsüberwachung der Hauptheizelemente (13) verwendet werden kann.
- Nachstehend wird die Erfindung im Detail beschrieben. Wenn in der Beschreibung des erfindungsgemäßen Verfahrens gegenständliche Merkmale genannt werden, so beziehen sich diese insbesondere auf die erfindungsgemäße Einrichtung. Ebenso beziehen sich Verfahrensmerkmale, die in der Beschreibung der erfindungsgemäßen Einrichtung angeführt werden, auf das erfindungsgemäße Verfahren.
- Im ersten Aspekt betrifft die vorliegende Erfindung ein Verfahren zum verstärkten Beheizen von Fahrwegelementen (12). Dabei ist an zumindest einem Fahrwegelement (12) zumindest ein Hauptheizelement (13) zum regulären Beheizen und an mindestens einer funktionsrelevanten Komponente des Fahrwegelements (12) zumindest ein Nebenheizelement (14) vorgesehen.
- "Verstärkt" bedeutet in diesem Zusammenhang, dass ein Fahrwegelement (12), zumindest aber Teile davon, gegenüber dem aus dem Stand der Technik bekannten regulären Heizbetrieb zusätzlich beheizt wird.
- Unter "Fahrwegelementen" werden im Sinne der vorliegenden Erfindung Einrichtungen, insbesondere bewegliche Einrichtungen, verstanden, die im Schienenverkehr zur gezielten Abwicklung des Verkehrs unterschiedliche und vorgebbare Zustände einnehmen können. Zu den Fahrwegelementen werden Weichen, Gleissperren, Signale, spezielle Gleisabschnitte oder Bahnübergangsanlagen gezählt. Als "Fahrwegelemente (12)" werden im Sinne der vorliegenden Erfindung insbesondere Weichen verstanden (alle Arten von Weichen wie einfache Weichen, Kreuzungsweichen, Doppelkreuzungsweichen, Dreiwegeweichen etc.). Weichen umfassen dabei eine Reihe von funktionellen Elementen, vor allem die Backenschienen, die Zungenschienen, das Verschlussfachgestänge, die Stützknaggen und die Gleitstühle inkl. ggf. vorhandener Rolleneinrichtungen.
- Unter "funktionsrelevante Komponente" des Fahrwegelements (12) werden insbesondere die beweglichen Weichenzungen (Zungenschiene), Gleitstühle, Rolleneinrichtungen, Gestänge usw. verstanden.
- Mit "Hauptheizelement" wird erfindungsgemäß ein Heizelement bezeichnet, welches an einem Teil des Fahrwegelements (12) angebracht ist und regulär mittels eines erfassten Regelparameters (z.B. über einen Schienentemperaturfühler) EIN als auch AUS schaltbar ist. Das Hauptheizelement (13) dient der regulären Beheizung des Fahrwegelements (12) bei normalen Wetterbedingungen.
- Demgegenüber wird mit "Nebenheizelement" erfindungsgemäß ein Heizelement bezeichnet, welches an einem anderen Teil des Fahrwegelements (12) angebracht ist und in Abhängigkeit des Hauptheizelements (13) ohne eigenen Regelungssensor EIN als auch AUS schaltbar ist. Dabei kommt das Nebenheizelement (14) ausschließlich in den natürlichen bzw. ggf. erzwungenen Heizpausen des Hauptheizelements (13) zum Einsatz, insbesondere nur bei extremen Witterungsbedingungen.
- Im Gegensatz zum bekannten Stand der Technik weist ein Nebenheizelement (14) keinen eigenen Sensor auf. Erfindungsgemäß kann das Nebenheizelement (14) nie gleichzeitig mit dem Hauptheizelement (13) auf EIN geschaltet sein.
- Das erfindungsgemäße Verfahren umfasst zunächst in Schritt a) das reguläre Beheizen eines Fahrwegelements (12) mittels des zumindest einen Hauptheizelements (13). Mit diesem Schritt a) wird das Ziel verfolgt, das zumindest eine Fahrwegelements (12) in einem regulären Betrieb zu beheizen.
- In Schritt b) wird dann die mindestens eine funktionsrelevante Komponente des Fahrwegelements (12) mittels des zumindest einen Nebenheizelements (14) an dem zumindest einen Fahrwegelement (12) beheizt. Dieses Beheizen erfolgt entweder in Heizpausen des zumindest einen Hauptheizelements (13) oder nach Erreichen einer Solltemperatur des Fahrwegelements (12) im Bereich des zumindest einen Hauptheizelements (13) oder bei vorhandenen Leistungsreserven. Dieses Beheizen erfolgt zudem nur, wenn die an dem Fahrwegelement (12) erforderliche Heizleistung größer ist als die Heizleistung des zumindest einen an dem Fahrwegelement (12) installierten Hauptheizelements (13).
- Erfindungsgemäß bevorzugt erfolgt das Beheizen in Heizpausen des zumindest einen Hauptheizelements (13), wobei diese Heizpausen natürlich oder erzwungen sein können. Darauf wird nachstehend noch eingegangen.
- Das Beheizen kann aber auch erfolgen, wenn durch das reguläre Beheizen eines Bereichs des Fahrwegelements (12) eine Solltemperatur dieses Fahrwegelements (12) in dem Bereich erreicht ist, in dem das zumindest einen Hauptheizelements (13) angeordnet ist. Ferner kann das Beheizen erfolgen, wenn Leistungsreserven im System vorhanden sind, beispielsweise weil das zumindest eine Hauptheizelement (13) nicht mit voller Leistung betrieben wird, um zum Beispiel eine aktuelle Temperatur nur zu halten, aber nicht weiter zu erhöhen.
- Das Beheizen mittels des zumindest einen Nebenheizelements (14) wird aktiviert
- c1) bei Überschreiten einer maximalen Regelabweichung Δmax für die mindestens eine funktionsrelevante Komponente des Fahrwegelements (12), oder
- c2) mittels eines zusätzlichen Schalters (26) in einer Steuerungseinrichtung (3) oder
- c3) bei Unterschreiten eines vorgebbaren Umgebungsparameters.
- Die "Steuerungseinrichtung (3)" ist dabei zum Steuern von zumindest einem Schaltgerät (5) und zum Regeln der Schienentemperatur des zumindest einen Hauptheizelements (13) und des zumindest einen Nebenheizelements (14) vorgesehen.
- In Schritt c1) wird insbesondere eine aktuelle absolute Regelabweichungen Δabs mit einer gespeicherten maximalen Regelabweichung Δmax verglichen. Bei Überschreiten der maximalen Regelabweichung Δmax für mindestens eine funktionsrelevante Komponente des Fahrwegelements (12) wird dann das Beheizen der mindestens einen funktionsrelevanten Komponente des Fahrwegelements (12) mittels zumindest eines Nebenheizelements (14) an zumindest einem der Fahrwegelemente (12) aktiviert.
- Alternativ erfolgt in Schritt c2) insbesondere das Aktivieren des Beheizens der mindestens einen funktionsrelevanten Komponente des Fahrwegelements (12) mittels zumindest eines Nebenheizelements (14) an zumindest einem der Fahrwegelemente (12) durch einen zusätzlichen Schalter (26) in der Steuerungseinrichtung (3). Hiermit besteht die Möglichkeit, auch manuell oder halbautomatisch das Beheizen zu aktivieren.
- Ebenfalls alternativ wird in Schritt c3) insbesondere das Beheizen der mindestens einen funktionsrelevanten Komponente des Fahrwegelements (12) mittels zumindest eines Nebenheizelements (14) an zumindest einem der Fahrwegelemente (12) durch Unterschreiten der vorgebbaren Umgebungsparameter aktiviert.
- Bei den vorgebbaren Umgebungsparametern eines Fahrwegelements (12) handelt es sich um die Umgebungstemperatur (Lufttemperatur), das Vorhandensein von Niederschlag und dessen Art (Schnee, Regen, Eis), Wind, Windrichtung, Luftdruck, Sonneneinstrahlung, vorhandener Schnee (bereits in der Vergangenheit gefallener Schnee). Die vorgebbaren Umgebungsparameter können dabei bevorzugt von einer Wetterstation oder Wettervorhersage stammen. Damit wird beispielsweise auf sich schnell ändernde Umgebungsparameter, insbesondere einen starken Temperaturabfall, reagiert und das Beheizen aktiviert, bevor die Temperatur einer funktionsrelevanten Komponente zu stark abfällt.
- Um die Fahrwegelemente ohne Erhöhung der Anschlussleistung optimal und ausgeglichen beheizen zu können, wird erfindungsgemäß zunächst das zumindest eine Nebenheizelement (14) an zumindest einem der Fahrwegelemente (12) vorgesehen. Dieses Nebenheizelement (14) befindet sich insbesondere an einer Stelle des Fahrwegelements (12), die von dem zumindest einen Hauptheizelement (13) nur schwer beheizt werden kann. Zudem werden Hauptheizelement (13) und Nebenheizelement (14) vorzugsweise nicht parallel zueinander betrieben, sondern insbesondere abwechselnd, indem das Nebenheizelement (14) nur in den Heizpausen des Hauptheizelements (13) aktiviert wird. Alternativen zu diesem abwechselnden Betrieb wurden vorstehend schon genannt.
- Die Heizpausen des zumindest einen Hauptheizelements (13) können dabei einerseits "natürlich" sein, das heißt, die Pausen, die während des regulären Betriebs entstehen. Andererseits können die Heizpausen des zumindest einen Hauptheizelements (13) "erzwungen" sein, das heißt, das Beheizen des zumindest einen Hauptheizelements (13) wird bewusst und gesteuert unterbrochen, um in dieser erzwungenen Heizpause das zumindest eine Nebenheizelement (14) zu beheizen.
- Das erfindungsgemäße Verfahren hat den Vorteil, dass bei der Beheizung von Fahrwegelementen (12), ohne die Anschlussleistung erhöhen zu müssen, eine ausgeglichene Beheizung der relevanten funktionellen Teile ermöglicht wird, wobei zudem ein optimaler Energieeinsatz erreicht wird. Dabei ist das Verfahren von der zugeführten Energie vollkommen unabhängig und kann für alle Arten von Fahrwegbeheizungen eingesetzt werden. Dies können beispielsweise geothermische Weichenheizungen, Gasweichenheizungen, elektrische Weichenheizungen usw. sein.
- In einer Weiterbildung des erfindungsgemäßen Verfahrens umfasst dieses parallel zu Schritt b) und/oder zu den Schritten c1) oder c2) oder c3) das Berechnen der Einschaltdauer des zumindest einen Nebenheizelements (14). Dabei erfolgt das Berechnen der Einschaltdauer des zumindest einen Nebenheizelements (14)
- in Abhängigkeit der jeweiligen aktuellen absoluten Regelabweichungen Δabs an der mindestens einen funktionsrelevanten Komponente des Fahrwegelements (12) und/oder
- auf Basis der Heizdauer des zumindest einen Hauptheizelements (13) und/oder
- auf Basis von aktuellen Umgebungsparametern und/oder
- auf Basis eines in der Steuerungseinrichtung (3) vorgegebenen parametrierbaren Verhältnisses der Heizdauer des zumindest einen Hauptheizelements (13) zu dem zumindest einen Nebenheizelement (14).
- Mit dieser Maßnahme erfolgt vorteilhafterweise eine doppelte Überwachung und ein unverhältnismäßiges Beheizen wird vermieden. Wenn keine thermische Unterversorgung der funktionsrelevanten Komponente des Fahrwegelements (12) vorhanden ist, ist die berechnete Zeit gleich 0. Weiterhin kann auf Basis der berechneten Zeit eine eventuelle Unterversorgung des Fahrwegelements (12) erkannt werden. Dadurch ist auf Basis der berechneten Zeit eine Abschätzung der Verfügbarkeit des Fahrwegelements (12) bei bestimmten Wetterbedingungen möglich.
- Sollte beispielsweise auf Grund der Berechnungen eine Heizzeit von mehreren Stunden ermittelt werden, kann die Anlage bereits vor Beginn des Heizens des Nebenheizelementes (14) eine Warnmeldung abgeben, da bei Schneefall das Fahrwegelement (12) in dieser langen Zeit sicherlich einschneien würde.
- Die vorstehende Weiterbildung kann vorteilhafterweise dahingehend ergänzt werden, dass nach Ablauf der Einschaltdauer des zumindest einen Nebenheizelements (14) das Aktivieren des Beheizens nach Schritt c1) oder Schritt c2) oder Schritt c3) neu bewertet wird. Der Vorteil dieser ständigen Neubewertung liegt in der ständigen Neuberechnung der Heizbedingungen und somit in einer Optimierung des Energieverbrauchs, da bei Wegfall der Heizbedingung für das Nebenheizelement (14) dieses auch wieder ausgeschaltet wird und nicht unnötig Energie benötigt wird.
- Ferner kann bei dem Berechnen der Einschaltdauer die Masse der durch das zumindest eine Hauptheizelement (13) erwärmten zumindest einen funktionsrelevanten Komponente des Fahrwegelements (12) in Relation zu der Masse der durch das zumindest eine Nebenheizelement (14) erwärmten zumindest einen funktionsrelevanten Komponente des Fahrwegelements (12) oder in Relation zu den aktuellen Umgebungsparametern der durch das zumindest eine Nebenheizelement (14) erwärmten zumindest einen funktionsrelevanten Komponente des Fahrwegelements (12) gesetzt werden.
- Aus diesem Berechnen der Einschaltdauer ergibt sich eine notwendige Heizdauer des zumindest einen Nebenheizelements (14), wobei die Einschaltdauer kleiner oder größer oder gleich der Heizpause des zumindest einen Hauptheizelements (13) ist.
- In diesem Zusammenhang kann zudem parametriert werden, ob im Falle des Berechnens einer längeren benötigten Heizdauer des zumindest einen Nebenheizelements (14) als die natürliche Heizpause des zumindest einen Hauptheizelements (13) ist, diese Heizpause künstlich, das heißt erzwungen, und bis zu welchem Maximum verlängert werden darf und/oder soll.
- Weiterhin kann in Abhängigkeit einer entsprechenden Parametrierung im Falle eines ungeregelten Beheizens des zumindest einen Hauptheizelements (13) eine berechnete und/oder parametrierte Zwangspause für die Beheizung des zumindest einen Nebenheizelements (14). Dabei kann die Heizleistung des zumindest einen Nebenheizelements (14) größer oder kleiner oder gleich jener des zumindest einen Hauptheizelements (13) sein.
- Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, für den Fall eines Kommunikationsverlustes zwischen einer Schaltsteuerung (8) und einem Kommunikationsmodul (6) und somit der Steuerungseinrichtung (3) eine Notfallsteuerung zu aktivieren, indem eine Schalteinrichtung (11) eine vordefinierte Notstellung einnimmt.
- Der Vorteil dieser Ausführungsform liegt in der Sicherungsfunktion durch den definierten Zustand, den die Schalteinrichtung (11) im Fehlerfall einnimmt. Somit wird im Fehlerfall ein definiertes Beheizen des Fahrwegelements (12) durchgeführt und eine Grundfunktionalität des Fahrwegelementes (12) kann gewährleistet werden.
- Ein zu dieser Ausführungsform alternative bevorzugte Ausführungsform sieht vor, für den Fall einer Störung innerhalb der Schaltsteuerung (8) eine Notfallsteuerung zu aktivieren wird (sog. Watchdog), indem die Schalteinrichtung (11) eine vordefinierte Notstellung einnimmt. Die Vorteile dieser Ausführungsform sind im Wesentlichen gleich den Vorteilen der vorangegangenen Ausführungsform.
- Insbesondere kann bei den vorstehenden alternativen Ausführungsformen die vordefinierte Notstellung umfassen
- alleiniges Beheizen des zumindest einen Hauptheizelements (13) und/oder
- zyklisches Umschalten des Beheizens des zumindest einen Hauptheizelements (13) und des zumindest einen Nebenheizelements (14) in vorgebbaren Zeitintervallen (z.B. alle 2 Minuten).
- Der Vorteil dieses Systems liegt darin, dass folgende beiden Varianten je nach Anlagenzustand zum Tragen kommen.
- Variante 1: Für den Fall eines Ausfalls eines Hauptheizelements (13) oder eines Nebenheizelements (14) kann auf das Umschalten verzichtet werden und das noch funktionstüchtige Heizelement zu 100 % mit Energie versorgt werden. Dies stellt eine Notversorgung im doppelten Sinne dar. Fällt beispielsweise das Hauptheizelement (13) aus, kann dauerhaft auf das Nebenheizelement (14) umgeschaltet und die Beheizung des Fahrwegelements (12) bei normalen Wetterbedingungen trotz des Ausfalls weiter betrieben werden.
- Variante 2: Im Regelfall werden Hautheizelement (13) und Nebenheizelement (14) zu je 50 % mit Energie versorgt. Dies führt zu einer ausgeglichenen Beizung zwischen den beheizten Fahrwegelementen (12).
- Der zweite Aspekt der vorliegenden Erfindung betrifft eine erste Einrichtung zum verstärkten Beheizen von Fahrwegelementen (12). Diese erste Einrichtung umfasst zunächst eine Schaltverteilung (1), die eine Steuerungseinrichtung (3) aufweist, an der für zumindest ein Fahrwegelement (12) ein Schaltgerät (5) für zumindest ein Hauptheizelement (13) an dem zumindest einen Fahrwegelement (12) vorgesehen ist, wobei jedes Schaltgerät (5) zumindest einen Heizabgang (7) für zumindest ein Fahrwegelement (12) aufweist.
- "Schaltverteilung (1)" bezeichnet im Sinne der vorliegenden eine Energieverteilung, mit der die für die Beheizung notwendige Energieversorgung der Hauptheizelemente (13) und der Nebenheizelemente (14) auf verschiedene Heizabgänge (7) verteilt und diese entsprechend zugeschaltet bzw. abgeschaltet werden.
- Dies kann zum Beispiel elektrische Energie oder bei geothermischen Weichenheizungen das Zuschalten der Zirkulation des wärmetragenden Fluids oder bei Gasweichenheizungen die Gasversorgung der Brenner sein.
- Mit "Schaltgerät (5)" wird vorliegend ein Gerät bezeichnet, welches die Energieversorgung der Beheizung der Fahrwegelemente (12) zuschalten und abschalten kann. Dies können beispielsweise Stellventile, Lastschütze, Halbleiterschaltgeräte oder Magnetschalter sein.
- Ferner umfasst die erste Einrichtung eine Umgebungsparameter-Einrichtung (2), die mit der Steuerungseinrichtung (3) verbunden ist. Diese "Umgebungsparameter-Einrichtung (2)" kann einerseits Wetterstation sein, welche die Umgebungsparameter erfasst, aber auch zusätzlich oder alternativ eine Anbindung an einen Wetterdaten-Anbieter bzw. Wetterdienst.
- Weiter umfasst die erste Einrichtung zumindest einen Energie-Verteilkasten (4) für das zumindest eine Fahrwegelement (12), der mit dem entsprechenden Heizabgang (7) für dieses zumindest eine Fahrwegelement (12) verbunden ist und dieses mit Energie versorgt, sowie zumindest einen Temperatursensor (9) für mindestens ein Fahrwegelement (12), der mit der Steuerungseinrichtung (3) verbunden ist.
- Mit "Energie-Verteilkasten (4)" wird vorliegend eine Einrichtung zur Einspeisung und Verteilung der (elektrischen) Energie auf das zumindest eine Hauptheizelement (13) und das zumindest eine Nebenheizelement (14) bezeichnet.
- Die erste Einrichtung zeichnet sich dadurch aus, dass an zumindest einem Fahrwegelement (12) ferner zumindest ein Nebenheizelement (14) vorgesehen ist, wobei der Energie-Verteilkasten (4) ferner eine Schaltsteuerung (8) und eine Schalteinrichtung (11) aufweist, mittels derer die Energieversorgung des entsprechenden Heizabgangs (7) zwischen dem Hauptheizelement (13) und dem Nebenheizelement (14) umschaltbar ist.
- "Schaltsteuerung (8)" bezeichnet im Sinne der vorliegenden Erfindung eine Einrichtung zum Steuern der Schalteinrichtung (11) einschließlich der Überwachung der jeweiligen Schaltstellungen.
- Unter "Schalteinrichtung (11)" wird vorliegend eine Einrichtung zum Umschalten oder Einschalten der Energieversorgung des zumindest ein Hauptheizelements (13) und des zumindest einen Nebenheizelements (14) verstanden. Diese Schalteinrichtung (11) kann beispielsweise ein Stellventil, Lastschütz, Halbleiterschaltgeräte oder Magnetschalter sein.
- Die erfindungsgemäße erste Einrichtung weist grundsätzlich die gleichen Vorteile wie das vorstehend beschrieben erfindungsgemäße Verfahren auf. Ferner ermöglicht die erfindungsgemäße erste Einrichtung einen verringerten Installations- und Wartungs-Aufwand, da außer dem zumindest einen Nebenheizelement (14) im Wesentlichen keine zusätzlichen Elemente vorgesehen werden müssen, um eine ausgeglichene Beheizung von Fahrwegelementen ohne Erhöhung der Anschlussleistung zu gewährleisten.
- Der dritte Aspekt der vorliegenden Erfindung betrifft eine zweite Einrichtung zum verstärkten Beheizen von Fahrwegelementen (12), welche eine Alternative der ersten Einrichtung gemäß der Erfindung ist. Diese zweite Einrichtung umfasst zunächst eine Schaltverteilung (1), die eine Steuerungseinrichtung (3) aufweist, an der zumindest ein Schaltgerät (5) für zumindest ein Hauptheizelement (13) an zumindest einem Fahrwegelement (12) vorgesehen ist, wobei das Schaltgerät (5) mit zumindest einem Kommunikationsmodul (6) verbunden ist
- Mit "Kommunikationsmodul (6)" wird vorliegend ein Modul zu Kommunikation zwischen der Schaltverteilung (1) bzw. der Schaltsteuerung (8) und dem Schaltverteilung und dem Energie-Verteilkasten (4) über einen Heizabgang/Energieversorgungskabel (7) des Fahrwegelements (12) bezeichnet.
- Ferner umfasst die zweite Einrichtung eine Umgebungsparameter-Einrichtung (2), die mit der Steuerungseinrichtung (3) verbunden ist, und zumindest einen Energie-Verteilkasten (4) für das zumindest eine Fahrwegelement (12), der mit einem entsprechenden Heizabgang (7) für dieses Fahrwegelement (12) verbunden ist und dieses mit Energie versorgt.
- Darüber hinaus umfasst die zweite Einrichtung zumindest einen Temperatursensor (9) für mindestens ein Fahrwegelement (12), der mit der Steuerungseinrichtung (3) verbunden ist.
- Die zweite Einrichtung zeichnet sich dadurch aus, dass an zumindest einem Fahrwegelement (12) ferner zumindest ein Nebenheizelement (14) vorgesehen ist, wobei der Energie-Verteilkasten (4) ferner eine Schaltsteuerung (8) und eine Schalteinrichtung (11) aufweist, mittels derer die Energieversorgung des entsprechenden Heizabgangs (7) zwischen dem Hauptheizelement (13) und dem Nebenheizelement (14) umschaltbar ist.
- Die erfindungsgemäße zweite Einrichtung weist grundsätzlich die gleichen Vorteile wie das vorstehend beschriebene erfindungsgemäße Verfahren und die vorstehend beschriebene erfindungsgemäße erste Einrichtung auf.
- Der Unterschied zwischen der ersten Einrichtung und der zweiten Einrichtung besteht im Wesentlichen darin, dass an einem Schaltgerät (5) mehrere Kommunikationsmodule (6) als auch mehrere Heizabgänge (7) angebracht sein können. Jeder dieser Heizabgänge (7) versorgt dann jeweils ein oder mehrere Energie-Verteilkästen (4), die wiederum ein oder mehrere Hauptheizelemente (13) und Nebenheizelemente (14) an einem oder mehreren Fahrwegelementen (12) versorgen.
- In einer Weiterbildung der ersten Einrichtung umfasst diese ferner ein Kommunikationsmodul (6) für einen oder mehrere Heizabgänge (7) für jedes Fahrwegelement (12), das mit der Steuerungseinrichtung (3) verbunden ist.
- Bei der erfindungsgemäßen ersten Einrichtung sowie der erfindungsgemäßen zweiten Einrichtung kann vorteilhafterweise die Schalteinrichtung (11) als ein Umschaltelement oder als zumindest zwei Einschaltelemente ausgeführt sein.
- Ferner können die erfindungsgemäße erste Einrichtung sowie die erfindungsgemäße zweite Einrichtung jeweils ferner einen Schalter (26) zum Aktivieren des verstärkten Beheizens umfassen. Diese Variante hat den Vorteil, dass das verstärkte Beheizen durch ein manuelles Eingreifen durch einen Bediener in die Steuerung aktiviert werden kann. Dies kann beispielsweise vorsorglich oder um eventuelle Schnee-/Eis-Reste, welche nicht von der Sensorik erfasst wurden, zu schmelzen, verwendet werden.
- Weitere Ziele, Merkmale, Vorteile und Anwendungsmöglichkeiten ergeben sich aus der nachfolgenden Beschreibung von die Erfindung nicht einschränkenden Ausführungsbeispielen anhand der Figuren. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, auch unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung. Es zeigen:
- Fig. 1
- eine schematische Darstellung einer elektrischen Weichenheizungsanlage nach dem Stand der Technik,
- Fig. 2
- eine schematische Darstellung einer Temperatur-Messpunktanordnung einer Weiche 12a mit abliegender Zungenschiene 19,
- Fig. 3
- ein Diagramm mit zeitlichen Temperaturverläufen bei einer Zweipunktreglung einer Weiche 12a mit abliegender Zungenschiene 19 bei einer Umgebungstemperatur von - 5 °C,
- Fig. 4
- eine schematische Schnittdarstellung einer Weiche 12a mit abliegender Zungenschiene 19,
- Fig. 5
- eine schematische Darstellung einer erfindergemäßen elektrischen Weichenheizungsanlage einschließlich der Funktion des verstärkten Beheizens von Fahrwegelementen 12 nach einer ersten speziellen Ausführungsform,
- Fig. 6
- eine schematische Darstellung einer erfindergemäßen elektrischen Weichenheizungsanlage einschließlich der Funktion des verstärkten Beheizens von Fahrwegelementen 12 nach einer zweiten speziellen Ausführungsform,
- Fig. 7
- eine schematische Darstellung eines Bestückungsbeispiels für Hauptheizelemente 13 und Nebenheizelemente 14 an einer Weiche 12a vom Typ EW54-500 und
- Fig. 8
- ein Diagramm eines Beispiels für einen zeitlichen Verlauf eines Vorgangs zum verstärkten Beheizen von Fahrwegelementen 12 (Powerheizen).
- In der nachstehenden Beschreibung wird die vorliegende Erfindung insbesondere anhand einer elektrischen Weichenheizungsanlage dargestellt. Die vorliegende Erfindung ist jedoch nicht auf ein elektrisches System begrenzt und lässt sich ebenso auf Systeme mit Heißwasserdampf, Gasbeheizung oder Geothermie anwenden. Zudem kann die vorliegende Erfindung neben den nachstehend beispielhaft dargestellten Weichen 12a auf alle vorstehend bereits genannten Fahrwegelemente 12 angewendet werden.
- Die vorliegende Erfindung wird zunächst anhand der
Figuren 1 bis 8 beschrieben. - In
Figur 1 ist schematisch eine elektrische Weichenheizungsanlage entsprechend dem Stand der Technik mit drei Heizabgängen 7, drei Weichen 12a und jeweils drei Heizelementen 13 darstellt. Bei entsprechender Witterung wird von der Wetterstation (Umgebungsparameter-Einrichtung 2) in der Steuerungseinrichtung 3 die Heizanforderung erzeugt und alle Heizabgänge 7 werden gleichzeitig eingeschaltet und wieder ausgeschaltet. Über mindestens einen Schienentemperatursensor 9 erfolgt die Regelung der Schienentemperatur während der Heizanforderung zwischen zwei parametrierbaren Sollwerten, z.B. zwischen + 4 °C und + 7 °C. - In
Figur 2 ist eine Anordnung für Messpunkte x1 bis x9 zur Ermittlung von zeitlichen Temperaturverläufen an verschiedenen für die Verfügbarkeit der Weiche 12a notwendigen Bestandteilen zu sehen. Dabei ist der Messpunkt x1 die Position eines standardmäßigen Schienentemperaturfühlers für die Regelung der Schienentemperatur. Des Weiteren wird in dieser Figur die Position des standardisierten Hauptheizelements 13 dargestellt. - In
Figur 3 sind für verschiedene Messpunkte entsprechendFigur 2 zeitliche Temperaturverläufe ablesbar. Bei dieser Weiche 12a handelt es sich um eine Standardbestückung mit einem Heizelement 17 am Fuß der Backenschiene 15 (sieheFigur 2 ). Die Temperatur wird mittels Zweipunktregelung zwischen + 3 °C und + 7 °C geregelt. Dabei ist erkennbar, dass für dieses Beispiel die Temperatur am Messpunkt x6 nicht über 0 °C ansteigt. Dies bedeutet wiederum, dass Schneeablagerungen bzw. ein Gefrieren von Regen an dieser Stelle mit dieser Art der Beheizung nicht verhindert werden kann. Weiterhin sind inFigur 3 die natürlichen Heizpausen, welche durch die Zweipunktreglung entstehen, zu erkennen. -
Figur 4 zeigt schematisch einen Querschnitt durch eine Weiche 12a umfassend eine Backenschiene 15 sowie eine dieser zugeordnet und auf einem Gleitstuhl 22 verschiebbar angeordnete Weichenzunge 19. Insoweit handelt es sich um einen üblichen Aufbau einer Weiche 12a, so dass auf die weiteren Elemente nicht weiter einzugehen ist. - Die Backenschiene 15 ist zu beiden Seiten ihres Steges mit Heizelementen 16, 24 wie beispielsweise Heizstäben ausgestattet. Weiterhin können beidseitig an der Zungenschiene 19 Heizelemente 20, 26 angebracht werden. Weiterhin kann zum Beispiel der Gleitstuhl 22, der Backenschienenkopf oder der Zungenschienenkopf direkt beheizt werden.
- In
Figur 5 ist schematisch eine Weichenheizungssteuerung mit sog. "Powerheizung" nach einer ersten speziellen Ausführungsform dargestellt. In dieser Figur ist im Energie-Verteilkasten 4 die Schaltsteuerung 8 sowie das Schaltgerät 5 dargestellt. Durch diese Einrichtungen können wechselseitig entweder die Hauptheizelemente 13 oder die Nebenheizelemente 14 mit Energie versorgt werden. Die Datenübertragung zwischen der Schaltverteilung 1 und der Schaltsteuerung 8 wird über ein Energieversorgungskabel des jeweiligen Heizabganges 7 realisiert. Hierzu ist mindestens ein Kommunikationsmodul 6 pro Schaltverteilung 1 und/oder pro Heizabgang/Energieversorgungskabel 7 notwendig. - Dieses Kommunikationsmodul 6 gewährleistet die Datenübertragung zwischen der Schaltverteilung 1 und der Schaltsteuerung 8 im Energie-Verteilkasten 4. Diese Kommunikation kann offline (im ausgeschalteten Zustand der Energieversorgung) oder online (im eingeschalteten Zustand der Energieversorgung) erfolgen.
- In
Figur 6 ist schematisch eine Weichenheizungssteuerung mit sog. "Powerheizung" nach einer zweiten speziellen Ausführungsform dargestellt. In dieser Variante werden beispielsweise von einem Schaltgerät 5 mehrere Kommunikationsmodule 6 sowie Heizabgänge/Energieversorgungskabel 7 versorgt, welche wiederum mehrere Energie-Verteilkästen 4 versorgen. - In
Figur 7 ist eine Standard-Weiche 12a vom Typ EW54-500 inkl. einer Standardweichenbestückung mit Hauptheizelementen 13 an den Innenseiten der Backenschiene 15 dargestellt. Des Weiteren ist die Beheizung der Verschlussfächer 27, welche die Beheizung der Schiebegestänge der Weichenzunge 19 sicherstellen, dargestellt. - Zusätzlich zu diesen Standard-Heizelementen sind in dieser
Figur 7 zusätzliche Nebenheizelemente 14 für Zungenschienenheizung, Zungenspitzen-Heizung, Gleitstuhl-Heizung und Stützknaggen-Heizung dargestellt. - In
Figur 8 ist exemplarisch ein zeitlicher Verlauf eines Powerheizvorgangs (Vorgang zum verstärkten Beheizen von Fahrwegelementen 12) dargestellt. In diesem ist erkennbar, dass sich die Weichenheizung im normalen Regelbetrieb befindet. Zum Zeitpunkt t0 wird der Schalter 26 für das Aktiveren der Powerheizfunktion eingeschaltet. Dies kann automatisch z.B. durch eine parametrierte Wetterbedingung (bspw. Unterschreiten Lufttemperatur oder Überschreiten einer voreingestellten Niederschlagsmenge oder Überschreiten der maximalen Regelabweichung oder Handeinschaltung) erfolgen. - Zum Zeitpunkt t1 erfolgt das Umschalten der Energieversorgung von den Hauptheizelementen 13 auf die Nebenheizelemente 14, welche nun für den Zeitraum t1 bis t2 beheizt werden. Diese Umschaltung der Energieversorgung kann unter Last, d.h. im zugeschalteten Zustand, oder lastfrei, d.h. im abgeschalteten Zustand, der Energieversorgung erfolgen. In diesem Fall sind die Nebenheizelement 14 genauso lange beheizt wie die Hauptheizelemente 13 und es existiert eine zusätzliche Heizpause im Zeitraum t2 bis t3, in der keine Heizung aktiv ist. D.h., die Energieversorgung ist durch das Schaltgerät 5 in der Schaltverteilung 1 abgeschaltet.
- Im Zeitpunkt t3 erfolgt die Umschaltung der Energieversorgung von den Nebenheizelementen 14 auf die Hauptheizelemente 13. Im Zeitraum t3 bis t4 werden die Hauptheizelemente 13 mit Energie versorgt. Zum Zeitpunkt t4 erfolgt das Umschalten der Energieversorgung von den Hauptheizelementen 13 auf die Nebenheizelemente 14, welche nun für den Zeitraum t4 bis t5 beheizt werden. Dabei ist zu erkennen, dass die Nebenheizelemente 14 länger als die Hauptheizelemente 13 heizen.
- Zum Zeitpunkt t5 erfolgt die Umschaltung der Energieversorgung von den Nebenheizelementen 14 auf die Hauptheizelemente 13. In diesem Fall ist keine zusätzliche Heizpause vorhanden. Im Zeitraum t5 bis t6 werden die Hauptheizelemente 13 mit Energie versorgt. Zum Zeitpunkt t6 erfolgt das Umschalten der Energieversorgung von den Hauptheizelementen 13 auf die Nebenheizelemente 14, welche nun für den Zeitraum t6 bis t7 beheizt werden. Dabei ist zu erkennen, dass die Nebenheizelemente 14 genau so lang beheizt werden wie die Hauptheizelemente 13 in der vorangegangenen Heizperiode.
- Zum Zeitpunkt t7 erfolgt die Umschaltung der Energieversorgung von den Nebenheizelementen 14 auf die Hauptheizelemente 13. In diesem Fall ist keine zusätzliche Heizpause vorhanden. Im Zeitraum t7 bis t8 werden die Hauptheizelemente 13 mit Energie versorgt. Zum Zeitpunkt t8 erfolgt das Umschalten der Energieversorgung von den Hauptheizelementen 13 auf die Nebenheizelemente 14, welche nun für den Zeitraum t8 bis t9 beheizt werden. Dabei ist zu erkennen, dass die Nebenheizelemente 14 kürzer beheizt werden als die Hauptheizelemente 13 in der vorangegangenen Heizperiode. Auch in diesem Fall existiert keine zusätzliche Heizpause.
- Zum Zeitpunkt t9 erfolgt die Umschaltung der Energieversorgung von den Nebenheizelementen 14 auf die Hauptheizelemente 13. In diesem Fall ist keine zusätzliche Heizpause vorhanden. Im Zeitraum t9 bis t10 werden die Hauptheizelemente 13 mit Energie versorgt. Zum Zeitpunkt t10 erfolgt beispielsweise eine Zwangsheizpause der Hauptheizelemente 13 und gleichzeitig das Umschalten der Energieversorgung von den Hauptheizelementen 13 auf die Nebenheizelemente 14, welche nun für den Zeitraum t10 bis t11 beheizt werden. Dabei ist zu erkennen, dass die Nebenheizelemente 14 kürzer beheizt werden als die Hauptheizelemente 13 in der vorangegangenen Heizperiode. Auch in diesem Fall existiert keine zusätzliche Heizpause.
- Zum Zeitpunkt t11 erfolgt die Umschaltung der Energieversorgung von den Nebenheizelementen 14 auf die Hauptheizelemente 13. In diesem Fall ist keine zusätzliche Heizpause vorhanden. Im Zeitraum t11 bis t13 werden die Hauptheizelemente 13 mit Energie versorgt. Im Zeitpunkt t12 wird der Schalter für das aktiveren der Powerheizfunktion ausgeschaltet. Dies kann automatisch z.B. durch parametrierte Wetterbedingung (bspw. Überschreiten einer Lufttemperatur oder Unterschreiten einer voreingestellten Niederschlagsmenge oder Unterschreiten der maximalen Regelabweichung oder Handausschaltung) erfolgen.
- Die vorliegende Erfindung wird nun anhand der
Figur 5 näher erläutert, welche exemplarisch eine erfindungsgemäße Einrichtung, d.h. eine elektrische Weichenheizungsanlage mit einer sog. "Powerheizung" nach einer ersten speziellen Ausführungsform dargestellt. - In dieser Figur ist eine Umgebungsparameter-Einrichtung 2 in Form einer Wetterstation zum Erfassen der aktuellen Wetterdaten dargestellt. Zusätzlich oder auch alternativ können diese aktuellen Wetterdaten durch einen Wetterprognosedienst bereitgestellt werden. Ferner ist die Einbindung von zukünftigen Wetterdaten in die Einrichtung möglich.
- Weiterhin ist eine Steuerungseinrichtung 3 zur Auswertung der Wetterdaten vorhanden, welche zumindest ein Schaltgerät 5 aktiviert bzw. deaktiviert. Dieses zumindest eine Schaltgerät 5 schaltet die Energieversorgung der Heizabgänge/ Energieversorgungskabel 7 zum Regeln der Temperatur der Standard-Weiche 12a ein bzw. aus. Die Temperaturregelung erfolgt anhand der durch den Schienentemperatursensor 9 gemessenen Werte.
- Weiterhin sind in
Figur 5 der Energie-Verteilkasten 4, die Schaltsteuerung 8 sowie das Schaltgerät 5 dargestellt. Durch diese Einrichtungen können wechselseitig entweder die Hauptheizelemente 13 oder die Nebenheizelemente 14 mit Energie versorgt werden. - Die Datenübertragung zwischen der Steuerungseinrichtung 3 in der Schaltverteilung 1 und dem Kommunikationsmodul 6 kann binär oder busgebunden erfolgen.
- Die Datenübertragung zwischen dem Kommunikationsmodul 6 in der Schaltverteilung 1 und der Schaltsteuerung 8 im Energie-Verteilkasten 4 wird über den Heizabgang/Energieversorgungskabel 7 realisiert. Hierzu ist mindestens ein Kommunikationsmodul 6 pro Schaltverteilung 1 und/oder pro Heizabgang/Energieversorgungskabel 7 notwendig. Diese Kommunikation kann offline (im ausgeschalteten Zustand der Energieversorgung) oder online (im eingeschalteten Zustand der Energieversorgung) erfolgen. Weiterhin kann diese Kommunikation binär oder busgebunden erfolgen.
- Die Regelabweichung definiert sich aus der Differenz der Solltemperatur Tsoll für einen spezifischen Messpunkt bzw. Heizpunkt (z.B. X6 in
Figur 2 ) und dem aktuellen Wert der Temperatur T0 an diesem Messpunkt bzw. Heizpunkt in Abhängigkeit der maximalen Aufheizdauer bis zum Erreichen der Solltemperatur Tsoll an diesem Messpunkt bzw. Heizpunkt bei den aktuellen und oder zukünftigen Umgebungsbedingen. - Dabei stellt die maximale Regelabweichung Δmax die für die aktuellen und/oder zukünftigen Wetterbedingungen maximale Temperaturdifferenz dar, welche in der vorgegebenen Zeitspanne durch die Hauptheizelemente 13 an dem entsprechenden Messpunkt bzw. Heizpunkt überbrückt werden kann, dar. Diese maximale Regelabweichung Δmax kann beispielsweise durch Vergleichswerte und/oder eine Referenzierungsmessfahrt im Rahmen der Parametrierung der Anlage definiert werden.
- Nachstehend wird eine besonders bevorzugte Ausführungsform dargestellt, bei welcher zwischen Schritt a) und Schritt b) des vorstehend beschriebenen erfindungsgemäßen Verfahrens zunächst eine maximalen Regelabweichung Δmax zwischen einer Temperatur T0 des Fahrwegelements 12 und einer parametrierbaren Solltemperatur Tsoll des Fahrwegelements 12 ermittelt sowie die maximale Regelabweichung in der Steuerungseinrichtung 3 gespeichert werden.
- Damit wird das Ziel verfolgt, alle für die Funktion eines Fahrwegelements 12 relevanten Bestandteile in einer parametrierbaren Zeitspanne ausreichend durch das zumindest eine Hauptheizelement 13 zu erwärmen. Hierzu kann beispielsweise eine Referenzierungsfahrt durchgeführt oder Referenzen aus vergleichbaren Fahrwegelements herangezogen werden.
- Die "Temperatur T0" bezeichnet dabei die Temperatur des jeweiligen Fahrwegeelementes zum Zeitpunkt des jeweiligen einschalten des Hauptheizelementes. Unter "parametrierbarer Solltemperatur Tsoll" wird erfindungsgemäß verstanden, dass diese Temperatur automatisch oder manuell auf einen bestimmten Wert festgesetzt werden kann.
- Anschließend wird ein aktueller Temperatursollwert Ta für jedes Fahrwegelement 12 ermittelt. Dieser kann manuell parametriert oder mittels mathematischen Gleichungen in Abhängigkeit von vorgebbaren Parametern und/oder den aktuellen Umgebungsparametern berechnet werden. Der Hauptunterschied zwischen dem parametrierbaren Solltemperatur Tsoll und dem aktuellen Temperatursollwert Ta besteht in darin, dass die parametrierte Schienentemperatur Tsoll fest eingestellt ist und die aktuelle Schienentemperatur Ta zu jedem Zeitpunkt neu berechnet wird. Dabei kann die durch eventuelle Offsets oder durch mathematische Gleichungen berechnete aktuellen Schienentemperatur Ta der parametrierten Solltemperatur unter Umständen entsprechen.
- Das Ermitteln des aktuellen Temperatursollwert Ta kann insbesondere in Abhängigkeit von eingestellten Parametern und/oder von aktuellen sowie zukünftigen Wetterbedingungen erfolgen.
- Abschließend ist das Ermitteln einer aktuellen absoluten Regelabweichungen Δabs zwischen einer aktuellen Temperatur T0a des Fahrwegelements 12 und der parametrierbaren Solltemperatur Tsoll des Fahrwegelements 12 für mindestens eine funktionsrelevante Komponente des Fahrwegelements 12 vorgesehen. Die aktuelle Temperatur T0a des Fahrwegelements 12 ist dabei die mittels eines Sensors or Ort gemessene Temperatur eines bestimmten Teils, beispielsweise einer Schiene.
-
- 1
- Schaltverteilung
- 2
- Umgebungsparameter-Einrichtung
- 3
- Steuerungseinrichtung
- 4
- Energie-Verteilkasten
- 5
- Schaltgerät
- 6
- Kommunikationsmodul
- 7
- Heizabgang/Energieversorgungskabel
- 8
- Schaltsteuerung
- 9
- Schienentemperatursensor
- 10
- Stromnetz
- 11
- Schalteinrichtung
- 12
- Fahrwegelement
- 12a
- Weiche
- 13
- Hauptheizelement
- 14
- Nebenheizelement
- 15
- Backenschiene
- 16
- Heizelement Backenschiene Steg innen
- 17
- Heizelement Backenschiene Fuß innen
- 18
- Heizelement Zungenschiene außen
- 19
- verschiebbar angeordnete Weichenzunge
- 20
- Heizelement Zungenschiene innen
- 21
- Fuß Zungenschienen
- 22
- Gleitstuhl
- 23
- Backenschienensteg
- 24
- Heizelement Backenschiene Steg außen
- 25
- Fuß Backenschiene
- 26
- Schalter
- 27
- Verschlussfach
- X1
- Messpunkt 1 Backenschiene Fuß unten
- X2
- Messpunkt 2 Backenschiene Fuß oben außen
- X3
- Messpunkt 3 Backenschiene Steg außen
- X4
- Messpunkt 4 Backenschiene Kopf
- X5
- Messpunkt 5 bei abliegender Zungenschiene
- X6
- Messpunkt 6 bei abliegender Zungenschiene
- X7
- Messpunkt 7 Zungenschiene Fuß
- X8
- Messpunkt 8 Zungenschiene Steg
- X9
- Messpunkt 9 Zungenschiene Kopf
- La
- Leistungsverhältnis
- XWmax
- maximalen Regelabweichung
Claims (12)
- Verfahren zum verstärkten Beheizen von Fahrwegelementen (12), wobei an zumindest einem Fahrwegelement (12) zumindest ein Hauptheizelement (13) zum regulären Beheizen und an mindestens einer funktionsrelevanten Komponente des Fahrwegelements (12) zumindest ein Nebenheizelement (14) vorgesehen ist, wobei das Hauptheizelement (13) an einem Teil des Fahrwegelements (12) angebracht ist und regulär mittels eines erfassten Regelparameters, z.B. über einen Schienentemperaturfühler, EIN als auch AUS schaltbar ist, und wobei das Nebenheizelement (14) an einem anderen Teil des Fahrwegelements (12) angebracht ist und in Abhängigkeit des Hauptheizelements (13) ohne eigenen Regelungssensor EIN als auch AUS schaltbar ist, umfassend die Schrittea) reguläres Beheizen eines Fahrwegelements (12) mittels des zumindest einen Hauptheizelements (13),b) Beheizen der mindestens einen funktionsrelevanten Komponente des Fahrwegelements (12) mittels des zumindest einen Nebenheizelements (14) an dem zumindest einen Fahrwegelement (12) in Heizpausen des zumindest einen Hauptheizelements (13) oder nach Erreichen einer Solltemperatur des Fahrwegelements (12) im Bereich des zumindest einen Hauptheizelements (13) oder bei vorhandenen Leistungsreserven, wenn die an dem Fahrwegelement (12) erforderliche Heizleistung größer ist als die Heizleistung des zumindest einen an dem Fahrwegelement (12) installierten Hauptheizelements (13),wobei das Nebenheizelement (14) nie gleichzeitig mit dem Hauptheizelement (13) auf EIN geschaltet sein kann,wobei das Beheizen mittels des zumindest einen Nebenheizelements (14) aktiviert wirdc1) bei Überschreiten einer maximalen Regelabweichung Δmax für die mindestens eine funktionsrelevante Komponente des Fahrwegelements (12), oderc2) mittels eines zusätzlichen Schalters (26) in einer Steuerungseinrichtung (3) oderc3) bei Unterschreiten eines vorgebbaren Umgebungsparameters.
- Verfahren nach Anspruch 1, ferner umfassend parallel zu Schritt b) und/oder zu den Schritten c1) oder c2) oder c3) das Berechnen der Einschaltdauer des zumindest einen Nebenheizelements (14),
wobei das Berechnen der Einschaltdauer des zumindest einen Nebenheizelements (14) erfolgt- in Abhängigkeit einer jeweiligen aktuellen absoluten Regelabweichungen Δabs an der mindestens einen funktionsrelevanten Komponente des Fahrwegelements (12) und/oder- auf Basis der Heizdauer des zumindest einen Hauptheizelements (13) und/oder- auf Basis von aktuellen Umgebungsparametern und/oder- auf Basis eines in der Steuerungseinrichtung (3) vorgegebenen parametrierbaren Verhältnisses der Heizdauer des zumindest einen Hauptheizelements (13) zu dem zumindest einen Nebenheizelement (14). - Verfahren nach Anspruch 2, wobei nach Ablauf der Einschaltdauer des zumindest einen Nebenheizelements (14) das Aktivieren des Beheizens nach Schritt c1) oder Schritt c2) oder Schritt c3) neu bewertet wird.
- Verfahren nach Anspruch 2 oder 3, wobei bei dem Berechnen der Einschaltdauer die Masse der durch das zumindest eine Hauptheizelement (13) erwärmten zumindest einen funktionsrelevanten Komponente des Fahrwegelements (12) in Relation zu der Masse der durch das zumindest eine Nebenheizelement (14) erwärmten zumindest einen funktionsrelevanten Komponente des Fahrwegelements (12) oder in Relation zu den aktuellen Umgebungsparametern der durch das zumindest eine Nebenheizelement (14) erwärmten zumindest einen funktionsrelevanten Komponente des Fahrwegelements (12) gesetzt wird.
- Verfahren nach einem der Ansprüche 1 bis 4, wobei für den Fall eines Kommunikationsverlustes zwischen einer Schaltsteuerung (8) und einem Kommunikationsmodul (6) und somit der Steuerungseinrichtung (3) eine Notfallsteuerung aktiviert wird, indem eine Schalteinrichtung (11) eine vordefinierte Notstellung einnimmt.
- Verfahren nach einem der Ansprüche 1 bis 4, wobei für den Fall einer Störung innerhalb der Schaltsteuerung (8) eine Notfallsteuerung aktiviert wird, indem die Schalteinrichtung (11) eine vordefinierte Notstellung einnimmt.
- Verfahren nach Anspruch 5 oder 6, wobei die vordefinierte Notstellung umfasst- alleiniges Beheizen des zumindest einen Hauptheizelements (13) und/oder- zyklisches Umschalten des Beheizens des zumindest einen Hauptheizelements (13) und des zumindest einen Nebenheizelements (14) in vorgebbaren Zeitintervallen.
- Einrichtung zum verstärkten Beheizen von Fahrwegelementen (12), umfassend- eine Schaltverteilung (1), die eine Steuerungseinrichtung (3) aufweist, an der für zumindest ein Fahrwegelement (12) ein Schaltgerät (5) für zumindest ein Hauptheizelement (13) an dem zumindest einen Fahrwegelement (12) vorgesehen ist, wobei jedes Schaltgerät (5) zumindest einen Heizabgang (7) für zumindest ein Fahrwegelement (12) aufweist,
wobei das Hauptheizelement (13) an einem Teil des Fahrwegelements (12) angebracht ist und regulär mittels eines erfassten Regelparameters, z.B. über einen Schienentemperaturfühler, EIN als auch AUS schaltbar ist,- eine Umgebungsparameter-Einrichtung (2), die mit der Steuerungseinrichtung (3) verbunden ist,- zumindest einen Energie-Verteilkasten (4) für das zumindest eine Fahrwegelement (12), der mit dem entsprechenden Heizabgang (7) für dieses zumindest eine Fahrwegelement (12) verbunden ist und dieses mit Energie versorgt, und- zumindest einen Temperatursensor (9) für mindestens ein Fahrwegelement (12), der mit der Steuerungseinrichtung (3) verbunden ist,dadurch gekennzeichnet, dassan zumindest einem Fahrwegelement (12) ferner zumindest ein Nebenheizelement (14) vorgesehen ist, wobei der Energie-Verteilkasten (4) ferner eine Schaltsteuerung (8) und eine Schalteinrichtung (11) aufweist, mittels derer die Energieversorgung des entsprechenden Heizabgangs (7) zwischen dem Hauptheizelement (13) und dem Nebenheizelement (14) umschaltbar ist, wobei das Nebenheizelement (14) an einem anderen Teil des Fahrwegelements (12) angebracht ist und in Abhängigkeit des Hauptheizelements (13) ohne eigenen Regelungssensor EIN als auch AUS schaltbar ist,wobei das Nebenheizelement (14) nur in Heizpausen des zumindest einen Hauptheizelements (13) beheizbar ist und wobei die Heizdauer der Nebenheizelemente (14) auf Basis von Berechnungen ermittelt wird. - Einrichtung zum verstärkten Beheizen von Fahrwegelementen (12), umfassend- eine Schaltverteilung (1), die eine Steuerungseinrichtung (3) aufweist, an der zumindest ein Schaltgerät (5) für zumindest ein Hauptheizelement (13) an zumindest einem Fahrwegelement (12) vorgesehen ist, wobei das Schaltgerät (5) mit zumindest einem Kommunikationsmodul (6) verbunden ist,wobei mit Kommunikationsmodul (6) ein Modul zu Kommunikation zwischen der Schaltverteilung (1) bzw. der Schaltsteuerung (8) und dem Energie-Verteilkasten (4) über einen Heizabgang/ Energieversorgungskabel (7) des Fahrwegelements (12) bezeichnet wird,wobei das Hauptheizelement (13) an einem Teil des Fahrwegelements (12) angebracht ist und regulär mittels eines erfassten Regelparameters, z.B. über einen Schienentemperaturfühler, EIN als auch AUS schaltbar ist,- eine Umgebungsparameter-Einrichtung (2), die mit der Steuerungseinrichtung (3) verbunden ist,- zumindest einen Energie-Verteilkasten (4) für das zumindest eine Fahrwegelement (12), der mit einem entsprechenden Heizabgang (7) für dieses Fahrwegelement (12) verbunden ist und dieses mit Energie versorgt, und- zumindest einen Temperatursensor (9) für mindestens ein Fahrwegelement (12), der mit der Steuerungseinrichtung (3) verbunden ist,dadurch gekennzeichnet, dassan zumindest einem Fahrwegelement (12) ferner zumindest ein Nebenheizelement (14) vorgesehen ist, wobei der Energie-Verteilkasten (4) ferner eine Schaltsteuerung (8) und eine Schalteinrichtung (11) aufweist, mittels derer die Energieversorgung des entsprechenden Heizabgangs (7) zwischen dem Hauptheizelement (13) und dem Nebenheizelement (14) umschaltbar ist,wobei das Nebenheizelement (14) an einem anderen Teil des Fahrwegelements (12) angebracht ist und in Abhängigkeit des Hauptheizelements (13) ohne eigenen Regelungssensor EIN als auch AUS schaltbar ist,wobei das Nebenheizelement (14) nur in Heizpausen des zumindest einen Hauptheizelements (13) beheizbar ist und wobei die Heizdauer der Nebenheizelemente (14) auf Basis von Berechnungen ermittelt wird.
- Einrichtung nach Anspruch 8, ferner umfassend ein Kommunikationsmodul (6) für einen oder mehrere Heizabgänge (7) für jedes Fahrwegelement (12), das mit der Steuerungseinrichtung (3) verbunden ist, wobei mit Kommunikationsmodul (6) ein Modul zu Kommunikation zwischen der Schaltverteilung (1) bzw. der Schaltsteuerung (8) und dem Energie-Verteilkasten (4) über einen Heizabgang/ Energieversorgungskabel (7) des Fahrwegelements (12) bezeichnet wird.
- Einrichtung nach einem der Ansprüche 8 bis 10, wobei die Schalteinrichtung (11) als ein Umschaltelement oder als zumindest zwei Einschaltelemente ausgeführt ist.
- Einrichtung nach einem der Ansprüche 8 bis 11, ferner umfassend ein Schalter (26) zum Aktivieren des verstärkten Beheizens.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018005033.6A DE102018005033A1 (de) | 2018-06-26 | 2018-06-26 | Verfahren und Einrichtung zum verstärkten Beheizen von Fahrwegelementen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3587666A1 EP3587666A1 (de) | 2020-01-01 |
EP3587666B1 true EP3587666B1 (de) | 2022-08-31 |
Family
ID=67070524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19020404.0A Active EP3587666B1 (de) | 2018-06-26 | 2019-06-25 | Verfahren und einrichtung zum verstärkten beheizen von fahrwegelementen |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3587666B1 (de) |
DE (1) | DE102018005033A1 (de) |
DK (1) | DK3587666T3 (de) |
ES (1) | ES2928816T3 (de) |
PL (1) | PL3587666T3 (de) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1036889B (de) * | 1956-10-27 | 1958-08-21 | Siemens Ag | Elektrische Weichenheizung |
DE4325002A1 (de) * | 1993-07-26 | 1995-02-02 | Butzbacher Weichenbau Gmbh | Anordnung zum Erwärmen von Gleisabschnitten |
DE19502125C2 (de) | 1995-01-24 | 2000-03-23 | Butzbacher Weichenbau Gmbh | Heizelementanordnung |
DE19832535C2 (de) | 1998-07-20 | 2002-10-10 | Ean Elektroschaltanlagen Gmbh | Einrichtung zur Regelung und Überwachung von Weichenheizungen |
DE19849637C1 (de) | 1998-10-28 | 2000-10-05 | Esa Elektroschaltanlagen Grimm | Einrichtung zur zentralen Steuerung, Überwachung und Diagnose von Weichenheizungen |
WO2010115436A1 (de) * | 2009-04-07 | 2010-10-14 | Ean Elektroschaltanlagen Gmbh | Verfahren und einrichtung zum energiemanagement für elektrische weichenheizungen |
US9353486B2 (en) * | 2011-08-16 | 2016-05-31 | Railway Equipment Company, Inc. | Load balanced track switch heating |
DE102016011117A1 (de) | 2016-09-17 | 2018-03-22 | Ean Elektroschaltanlagen Gmbh | Verfahren und Einrichtung zum Energiemanagement einer elektrischen Weichenheizungsanlage |
-
2018
- 2018-06-26 DE DE102018005033.6A patent/DE102018005033A1/de not_active Withdrawn
-
2019
- 2019-06-25 ES ES19020404T patent/ES2928816T3/es active Active
- 2019-06-25 EP EP19020404.0A patent/EP3587666B1/de active Active
- 2019-06-25 DK DK19020404.0T patent/DK3587666T3/da active
- 2019-06-25 PL PL19020404.0T patent/PL3587666T3/pl unknown
Also Published As
Publication number | Publication date |
---|---|
ES2928816T3 (es) | 2022-11-23 |
DE102018005033A1 (de) | 2020-01-02 |
EP3587666A1 (de) | 2020-01-01 |
PL3587666T3 (pl) | 2023-01-02 |
DK3587666T3 (da) | 2022-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3513001B1 (de) | Verfahren und einrichtung zum energiemanagement einer elektrischen weichenheizungsanlage | |
EP2659136B1 (de) | Windpark und verfahren zum betreiben eines windparks | |
EP3056379B1 (de) | Verfahren zur steuerung oder regelung einer betriebsvorrichtung | |
DE102014112458B4 (de) | Verfahren zur Steuerung einer Kühlvorrichtung zur Lebensdauererhöhung Abwärme erzeugender Komponenten und Kühlvorrichtung | |
EP0282886A2 (de) | Verfahren zum Steuern der Vorlauftemperatur einer Anlage zur Übertragung von Wärmeenergie | |
DE2843929B2 (de) | Anordnung zur Steuerung der Raumtemperatur | |
EP2998573A1 (de) | Verfahren zum Betreiben einer Windenergieanlage mit einer Rotorblattheizeinrichtung | |
EP3447403A1 (de) | Betriebsverfahren für wärmegewinnungsanlagen, luft/flüssigkeit-wärmetauschereinheit und wärmegewinnungsanlage | |
EP3186129B1 (de) | Verfahren zum betreiben eines fahrzeugs | |
WO2021105205A1 (de) | Brennstoffzellensystem, verfahren zum betreiben eines brennstoffzellensystems, fahrzeug, klimasystem | |
EP3412978B1 (de) | Verfahren zur steuerung eines heiz- und/oder kühlsystems | |
EP1764563B1 (de) | Solarregler und Verfahren zum Regeln einer Solarkollektoranlage | |
EP3486479B1 (de) | Verfahren zum betrieb eines windparks und windpark | |
EP2265762A1 (de) | Verfahren und einrichtung zum energiemanagement für elektrische weichenheizungen | |
EP3587666B1 (de) | Verfahren und einrichtung zum verstärkten beheizen von fahrwegelementen | |
EP3059512A1 (de) | Lüftungsanlage | |
EP3204830B1 (de) | System und verfahren zur wetterdatengestützten temperierung von eisenbahnweichen | |
DE102013220300A1 (de) | Steuerung einer Anlage mit gleichartigen Anlagenteilen | |
DE112014006875T5 (de) | Optimale Steuerung von Luftkornpressoren in einem Lokomotivengespann | |
DE102008003672A1 (de) | Elektrische Transformator-Einheit | |
EP0076398A2 (de) | Verfahren zum Regeln der Vor- bzw. Rücklauftemperatur einer Warmwasser-Heizanlage | |
EP3303935B1 (de) | Vorrichtung und verfahren zum steuern einer heizungs- und/oder kühlanlage | |
EP1240413A1 (de) | Industrielle anlage und betriebsmittelcontainer | |
DE102014221962A1 (de) | Verfahren und Vorrichtung zum Beheizen einer im Zusammenhang mit einer Brennkraftmaschine stehenden Bereitstellungseinrichtung | |
EP2105341A1 (de) | Energieversorgungseinrichtung für ein Fahrzeug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200521 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200804 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220325 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1515365 Country of ref document: AT Kind code of ref document: T Effective date: 20220915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019005458 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20221019 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2928816 Country of ref document: ES Kind code of ref document: T3 Effective date: 20221123 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20220831 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221231 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019005458 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230719 Year of fee payment: 5 Ref country code: CH Payment date: 20230702 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230625 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230625 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240617 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240620 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240619 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240613 Year of fee payment: 6 Ref country code: AT Payment date: 20240617 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20240618 Year of fee payment: 6 Ref country code: FR Payment date: 20240621 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240614 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240613 Year of fee payment: 6 Ref country code: SE Payment date: 20240620 Year of fee payment: 6 |