EP3585927B1 - Tissu textile et vêtements de travail fabriqués à partir de ce tissu - Google Patents
Tissu textile et vêtements de travail fabriqués à partir de ce tissu Download PDFInfo
- Publication number
- EP3585927B1 EP3585927B1 EP18705409.3A EP18705409A EP3585927B1 EP 3585927 B1 EP3585927 B1 EP 3585927B1 EP 18705409 A EP18705409 A EP 18705409A EP 3585927 B1 EP3585927 B1 EP 3585927B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- staple fibers
- textile fabric
- aramid
- poly
- lactic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004744 fabric Substances 0.000 title claims description 108
- 239000004753 textile Substances 0.000 title claims description 87
- 239000000835 fiber Substances 0.000 claims description 226
- 229920003235 aromatic polyamide Polymers 0.000 claims description 94
- 239000000203 mixture Substances 0.000 claims description 67
- 239000004760 aramid Substances 0.000 claims description 56
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 45
- 239000004626 polylactic acid Substances 0.000 claims description 42
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 229920001432 poly(L-lactide) Polymers 0.000 claims description 9
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 claims description 7
- 229940022769 d- lactic acid Drugs 0.000 claims description 7
- 238000010276 construction Methods 0.000 claims description 6
- 238000010042 air jet spinning Methods 0.000 claims description 3
- 238000007378 ring spinning Methods 0.000 claims description 3
- 229920003366 poly(p-phenylene terephthalamide) Polymers 0.000 claims description 2
- 239000002759 woven fabric Substances 0.000 description 51
- 230000000052 comparative effect Effects 0.000 description 36
- 238000005299 abrasion Methods 0.000 description 16
- 238000005520 cutting process Methods 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 7
- 229920000784 Nomex Polymers 0.000 description 6
- 239000004763 nomex Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 229940113088 dimethylacetamide Drugs 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229920003367 Teijinconex Polymers 0.000 description 3
- 229920000561 Twaron Polymers 0.000 description 3
- 150000004984 aromatic diamines Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 239000004765 teijinconex Substances 0.000 description 3
- 239000004762 twaron Substances 0.000 description 3
- 229920000271 Kevlar® Polymers 0.000 description 2
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 2
- 241000209149 Zea Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 239000002361 compost Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- -1 dicarboxylic acid halide Chemical class 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000011872 intimate mixture Substances 0.000 description 2
- 239000004761 kevlar Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 206010006802 Burns second degree Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920001494 Technora Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000004790 ingeo Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- QZUPTXGVPYNUIT-UHFFFAOYSA-N isophthalamide Chemical compound NC(=O)C1=CC=CC(C(N)=O)=C1 QZUPTXGVPYNUIT-UHFFFAOYSA-N 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000007383 open-end spinning Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004950 technora Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/04—Blended or other yarns or threads containing components made from different materials
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/443—Heat-resistant, fireproof or flame-retardant yarns or threads
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/04—Blended or other yarns or threads containing components made from different materials
- D02G3/047—Blended or other yarns or threads containing components made from different materials including aramid fibres
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
- D10B2331/021—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
- D10B2331/041—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET] derived from hydroxy-carboxylic acids, e.g. lactones
Definitions
- the present invention pertains to a textile fabric and workwear manufactured thereof.
- Textile fabrics are known. This type of fabrics should especially be heat protective and should also exhibit sufficient mechanical properties, for example sufficient tear strength.
- US 2011/0138523 A1 describes a heat, flame and electric arc protective for use as single layer of a protective garment for a wearer, the fabric comprising: interwoven warp and weft yarn wherein the warp and weft yarn comprises a blend of 8 to 33 wt.-% meta-aramid staple fibers, 65 to 90 wt.-% para-aramid staple fibers, and 2 wt.-% anti-static staple fibers, the weft yarn and warp yarn being identical and comprising the side of the fabric facing away from a wearer and the side of the fabric facing the wearer, wherein the fabric provides ablative thermal protection on both sides.
- a fabric with a twill K 2/ 1Z construction and with a grammage of 230 g/m 2 exhibits a tear resistance of the warp to be 67.87 N and of the weft to be 34.4 N, measured using the ISO 13937-1:2000 test procedure.
- EP 1740746 B1 describes a heat and flame resistant fabric for use as single or outer layer of protective garments.
- This fabric comprises fibers with a blend of 60 to 90 wt.-% of meta-aramid staple fibers and 5 to 40 wt.-% of para-aramid fibers.
- This fabric does not comprise polylactide staple fibers.
- WO 02/40755 A2 describes a fire resistant corespun yarn comprising a core of high temperature resistant continuous inorganic filaments and a first and a second sheath of staple fibers.
- the first sheath comprises natural and synthetic staple fibers with at least one fire retardant fiber.
- the staple fibers of the second sheath are selected from natural staple fibers or synthetic staple fibers.
- WO 02/40755 A2 is silent about a blend of meta-aramid staple fibers and para-aramid staple fibers with poly lactic acid staple fibers.
- a staple fiber composition DuPont TM Nomex ® IIIA is known consisting of 93 % Nomex ® m-aramid staple fibers, 5 % Kevlar ® p-aramid staple fibers, and 2 % antistatic staple fibers. According to an internet presentation of DuPont a fabric made of the staple fiber composition DuPont TM Nomex ® IIIA meets the NFPA 1975 standard for firefighters' station wear and is resistant to abrasion and tears.
- the problem underlying the present invention is to provide a fabric which exhibits higher tear strength and higher wear comfort in garments, especially workwear made thereof.
- a textile fabric comprising a staple fiber yarn made of a staple fiber blend, wherein the blend comprises meta-aramid staple fibers, para-aramid staple fibers, and poly lactic acid staple fibers.
- the textile fabric according to the invention exhibits a higher resistance against abrasion and tear than a comparative textile fabric made from a staple fiber yarn which was manufactured from a staple fiber mixture consisting of meta-aramid staple fibers, para-aramid staple fibers and antistatic staple fibers. So, a garment comprising the textile fabric according to the invention can be worn for a longer time before it becomes damaged.
- the higher values for resistance to abrasion and tear of the textile fabric according to the invention can be obtained with a lower grammage of the textile fabric, if compared with the grammage of a comparative textile fabric made of a staple fiber yarn which was manufactured from a staple fiber mixture consisting of meta-aramid staple fibers, para-aramid staple fibers and antistatic staple fibers. So, a garment comprising the textile fabric according to the invention can be worn with a higher wear comfort than a garment comprising the comparative textile fabric.
- a garment comprising the textile fabric according to the invention wherein the grammage of the textile fabric is increased to the value of the grammage of the comparative textile fabric, can be worn with the same wear comfort as the garment comprising the comparative textile fabric but for an even longer time, because the resistance of the garment with the textile fabric of the invention to abrasion and tear is even more increased.
- the textile fabric according to the present invention surprisingly fulfills the minimum requirements in terms of radiant heat, convective heat, and contact heat.
- the poly lactic acid component of the textile fabric can be fully recycled, because poly lactic acid is fully biodegradable resulting in compost.
- the compost can be used as substrate to grow corn.
- the corn can be fermented to lactic acid which can be polymerized to poly lactic acid from which poly lactic acid staple fibers can be manufactured. Therefore, the textile fabric according to the invention contains a renewable component.
- staple fibers means fibers of limited length obtained from cutting or breaking a filament yarn.
- metal-aramid staple fibers means staple fibers obtained from cutting or breaking a meta-aramid filament yarn
- metal-aramid means a polymer obtained by the polycondensation of a meta-oriented aromatic diamine and a meta-oriented dicarboxylic acid halide, wherein said polymer exhibits recurring units having amide bonds, and preferably at least 85 % of said amide bonds are located in the meta-oriented positions of the aromatic ring.
- para-aramid staple fibers means staple fibers obtained from cutting or breaking a para-aramid filament yarn
- para-aramid means a polymer obtained by the polycondensation of a para-oriented aromatic diamine and a para-oriented dicarboxylic acid halide of which recurring units have amide bonds, and preferably at least 65 %, more preferably at least 95 % and even more preferably at least 99 %, and most preferred 100 % of said amide bonds are located in the para-oriented positions of the aromatic ring.
- aramid staple fibers means staple fibers obtained from cutting or breaking an aramid filament yarn.
- the term aramid means a polymer, wherein aromatic moieties are connected to one another by amide bonds. Usually aramid are synthesized by poly-condensation of aromatic diamines with aromatic dihalides.
- Aramid includes meta-aramid, para-aramid and aramid-copolymers such as copolymer [co-poly-(paraphenylene/3,4'-oxydiphenylene terephthalamide)] (Technora ® ).
- poly lactic acid staple fibers means staple fibers obtained from cutting or breaking a poly lactic acid filament yarn
- poly lactic acid means a polymer having lactide recurring units and, therefore, is also called “polylactide”.
- staple fiber blend means an intimate mixture of the meta-aramid staple fibers, the para-aramid staple fibers, and the poly lactic acid staple fibers so that in each volume element of the staple fiber blend the same weight ratio of para-aramid staple fibers to meta-aramid staple fibers to poly lactic acid staple fibers is present.
- Said intimate mixture may for example be obtained by intermingling the meta-aramid staple fibers, the para-aramid staple fibers, and the poly lactic acid staple fibers in air.
- staple fiber yarn means a yarn which has been manufactured from the staple fiber blend of the meta-aramid staple fibers, the para-aramid staple fibers, and the poly lactic acid staple fibers, by any known method to produce a staple fiber yarn, for example by ring spinning, or by open-end spinning such as air-jet spinning.
- textile fabric means a blend of staple fibers spun to yarns which are arranged in a certain fabric structure.
- the blend comprises at most 95 % of aramid staple fibers, preferably at most 90 % of aramid staple fibers, more preferably at most 80 % of aramid staple fibers, or at most 70 % of aramid staple fibers with respect to a weight of the blend.
- the blend comprises at least 40 % of meta-aramid staple fibers, preferably at least 50 % meta-aramid staple fibers and more preferably at least 60 % of meta-aramid staple fibers with respect to a weight of the blend.
- the blend comprises at most 85 % of meta-aramid staple fibers, more preferably at most 75 % meta-aramid staple fibers or at most 65 % of meta-aramid staple fibers with respect to a weight of the blend.
- the blend comprises at least 10 % of para-aramid staple fibers, preferably at least 20 % para-aramid staple fibers and more preferably at least 30 % of para-aramid staple fibers with respect to a weight of the blend.
- the blend comprises at most 50 % of para-aramid staple fibers, more preferably at most 40 % para-aramid staple fibers or at most 35 % of para-aramid staple fibers with respect to a weight of the blend.
- the blend comprises at least 10 % of poly lactic acid staple fibers, preferably at least 15 % poly lactic acid staple fibers and more preferably at least 20 % of poly lactic acid staple fibers with respect to a weight of the blend.
- the blend comprises at most 35 % of poly lactic acid staple fibers, more preferably at most 30 % poly lactic acid staple fibers or at most 25 % of poly lactic acid staple fibers with respect to a weight of the blend.
- the term "staple fibers” means fibers of limited length obtained from cutting or breaking a filament yarn. If the staple fibers are obtained by breaking, the staple fibers exhibit a length distribution which is characteristic for the breaking technology which was applied, e.g., stretch-breaking.
- the staple fibers are obtained by cutting a filament yarn into a unitary length which is preset in the used cutting device. This results in staple fibers which have a unitary length.
- the meta-aramid staple fibers have a unitary length of 30 to 140 mm
- the para-aramid staple fibers have a unitary length of 30 to 140 mm
- the poly lactic acid staple fibers have a unitary length of 30 to 140 mm.
- the meta-aramid staple fibers have a unitary length of 30 to 130 mm
- the para-aramid staple fibers have a unitary length of 30 to 130 mm
- the poly lactic acid staple fibers have a unitary length of 30 to 130 mm.
- the meta-aramid staple fibers have a unitary length of 30 to 120 mm
- the para-aramid staple fibers have a unitary length of 30 to 120 mm
- the poly lactic acid staple fibers have a unitary length of 30 to 120 mm.
- the meta-aramid staple fibers have a linear density of 0.8 to 7 dtex
- the para-aramid staple fibers have a linear density of 0.8 to 7 dtex
- the poly lactic acid staple fibers have a linear density of 0.8 to 7 dtex.
- the meta-aramid staple fibers have a linear density of 0.8 to 6 dtex
- the para-aramid staple fibers have a linear density of 0.8 to 6 dtex
- the poly lactic acid staple fibers have a linear density of 0.8 to 6 dtex.
- the meta-aramid staple fibers have a linear density of 0.8 to 5 dtex
- the para-aramid staple fibers have a linear density of 0.8 to 5 dtex
- the poly lactic acid staple fibers have a linear density of 0.8 to 5 dtex.
- the blend additionally comprises up to 5 wt.-%, preferably from 0 to 4 wt.-% and most preferred from 0 to 3 wt.-% of antistatic staple fibers with respect to a weight of the blend.
- the antistatic staple fibers comprise polyester, carbon or steel or mixtures thereof as the antistatic fiber forming polymer.
- the antistatic staple fibers have a length of 30 to 140 mm, and a linear density of 0.8 to 7 dtex.
- the antistatic staple fibers have a length of 30 to 130 mm and a linear density of 0.8 to 6 dtex.
- the antistatic staple fibers have a length of 30 to 120 mm and a linear density of 0.8 to 5 dtex.
- the meta-aramid staple fibers comprised by the staple fiber blend exhibit a crimp with a crimp value which preferably ranges from 2 to 13 crimps per cm, more preferably from 3 to 10 crimps per cm.
- the para-aramid staple fibers comprised by the staple fiber blend exhibit a crimp with a crimp value which preferably ranges from 2 to 13 crimps per cm, more preferably from 3 to 10 crimps per cm.
- the poly lactic acid staple fibers comprised by the staple fiber blend exhibit a crimp with a crimp value which preferably ranges from 3 to 13 crimps per cm, more preferably from 5 to 10 crimps per cm.
- the staple fibers comprised by the staple fiber blend including aramid staple fibers, exhibit a crimp value of 2 to 13 crimps per cm, preferably a crimp value of 3 to 10 crimps per cm and poly lactic acid staple fibers, exhibit a crimp value of 3 to 13 crimps per cm, preferably a crimp value of 4 to 10 crimps per cm.
- the meta-aramid staple fibers are poly(meta-phenylene isophthalamide) staple fibers which preferably have been spun from a solution comprising poly(metaphenylene isophthalamide) in dimethyl acetamide
- the para-aramid staple fibers are poly-(p-phenylene terephthalamide) staple fibers or poly(p-phenylene-3,4'-oxydiphenylene terephthalamide) staple fibers
- the poly lactic acid staple fibers are poly-L-lactic acids staple fibers or poly-D-lactic acid staple fibers or staple fibers made of a racemic mixture of poly-L-lactic acid and poly-D-lactic acid or staple fibers made of a stereo complex of poly-L-lactic acid and poly-D-lactic acid .
- Stereo complex formation of polylactides occurs due to non-covalent interactions of enantiomeric chains of poly-L-lactic acid (PLLA) and poly-D-lactic acid (PDLA) and results in higher thermal stability.
- PLLA poly-L-lactic acid
- PDLA poly-D-lactic acid
- the PLLA and PDLA are arranged alternatively in the stereo complex to form a crystal structure.
- the yarn is manufactured from the blend by ring spinning or air jet spinning.
- the textile fabric according to the present invention may in principle be any network of fibers which are arranged in a certain fabric structure and which is suited to form a garment.
- the textile fabric according to the present invention is a woven or knitted textile fabric.
- the textile fabric according to the present invention has a twill or plain weave construction.
- the textile fabric according to the invention has a twill or plain weave construction comprises at least one warp system and at least one weft system, and the at least one warp system and the at least one weft system comprise yarns with the same blend of staple fibers or yarns with different blends of staple fibers.
- the textile fabric according to the present invention has a grammage of 50 to 400 g/m 2 , more preferred 80 to 380 g/m 2 , and most preferred 100 to 350 g/m 2 .
- the advantageous properties of the textile fabric according to the present invention transform themselves to a garment which is manufactured using said textile fabric.
- a garment comprises at least one textile fabric according to the invention. Due to the improved abrasion resistance and pilling resistance, such garments are especially suited for workwear. Therefore, the use of said textile fabric to manufacture workwear is also part of the present invention.
- An intimate staple fiber blend consisting of
- step a From the staple fiber blend which resulted in step a) two Nm 40/1 staple fiber yarns were manufactured. Said two Nm 40/1 staple fiber yarns were twisted to result in a Nm 40/2 twisted staple fiber yarn.
- a woven fabric was manufactured having the construction 2/ 1 Z according to DIN EN ISO 7211-1, i.e., a twill weave exhibiting two lifts and one lowering in Z-direction, wherein both the warp threads and the weft threads consist of the staple fiber yarn which resulted in step b).
- the textile fabric consists of warp threads with a thread density of 191 threads/10 cm and of weft threads with a thread density of 182 threads/10 cm. The thread density was determined according to DIN EN ISO 1049-2.
- the grammage of the woven fabric amounts to 202 g/m 2 and was determined according to DIN EN ISO 12127.
- a comparative staple fiber blend obtained from DuPont (USA) under the trade name Nomex ® IIIA was provided consisting of
- step a From the Nomex ® IIIA staple fiber mixture provided in step a) one Nm 60/1 staple fiber yarn and one Nm 60/1 staple fiber yarn were manufactured. Said two staple fiber yarns were twisted to result in a comparative Nm 60/2 twisted staple fiber yarn.
- a comparative textile fabric was manufactured having the construction 2/ 1 Z according to DIN EN ISO 7211-1, i.e., a twill weave exhibiting two lifts and one lowering in Z-direction, wherein both the warp threads and the weft threads consist of the comparative twisted staple fiber yarn which resulted in step b).
- the textile fabric consists of warp threads with a thread density of 386 threads/10 cm and of weft threads with a thread density of 244 threads/10 cm.
- the thread density was determined according to DIN EN ISO 1049-2.
- the grammage of the comparative textile fabric amounts to 225 g/m 2 and was determined according to DIN EN ISO 12127.
- a comparative staple fiber blend consisting of
- the manufacturing process b) of the staple fiber yarns of CE 2 and the manufacturing process c) of the woven fabric of CE 2 is performed as for Comparative Example 1 (CE1).
- the value of threads/10cm of the woven fabric amounts to 188 warp-threads and 199 weft-threads and was determined according to DIN EN ISO 1049-2.
- the grammage of the woven fabric amounts to 204 g/m 2 and was determined according to DIN EN ISO 12127.
- a comparative staple fiber blend consisting of
- the manufacturing process b) of the staple fiber yarns of CE 3 and the manufacturing process c) of the woven fabric of CE 3 is performed as for Comparative Example 1 (CE1).
- the value of threads/10cm of the woven fabric amounts to 188 warp-threads and 179 weft-threads and was determined according to DIN EN ISO 1049-2.
- the grammage of the woven fabric amounts to 204 g/m 2 and was determined according to DIN EN ISO 12127.
- Example 1 For the purpose of clarity the staple fiber blend compositions of example 1 and of the comparative examples (CE1 to CE3) are shown in table 1.
- Table 1 Example 1, acc. to the invention CE1 CE2 CE3 para-aramid staple fibers [%] 25 5 60 40 meta-aramid staple fibers [%] 65 93 40 60 poly lactic acid staple fibers [%] 10 antistatic staple fibers 2
- the properties of the woven fabric and of the comparative woven fabrics were determined as follows:
- the abrasion resistance of the woven fabric according to the invention (120 000 cycles) is 33 % to 42 % higher than the abrasion resistance of the comparative woven fabric (70 000 to 80 000 cycles).
- the warp tear resistance i.e., the warp tear strength of the woven fabric according to the invention (72.2 N) is 33 % higher than the warp tear strength of the comparative woven fabric (54.4 N), and the weft tear strength of the woven fabric according to the invention (75.9 N) is 39 % higher than the weft tear strength of the comparative woven fabric (54.7 N).
- the higher resistances against tear and abrasion of the woven fabric according to the invention are obtained with a fabric grammage of 202 g/m 2 , i.e., with a fabric grammage that is 10 % lower than the fabric grammage of the comparative woven fabric (225 g/m 2 ).
- the woven fabric according to the invention contains 10 wt.-% of poly lactic acid which is not intrinsically heat and flame resistant, the woven fabric according to the invention exhibits
- Example 1 In Experiment 2 three woven fabrics (Example 1 according to the invention and Comparative Example 2 and 3) are tested to compare their properties.
- CE3 is a comparative example similar to Example 1. It contains a similar amount of para-aramid staple fibers and meta-aramid staple fibers, but no poly lactic acid staple fibers. The results are shown in table 3. Table 3 Example 1 acc.
- the abrasion resistance of the Example 1 according to the invention shows with 120 000 cycles a 50 % to 100 % higher value than the comparative woven fabrics (CE2: 60 000; CE3: 80 000 cycles).
- the pilling resistance of Example 1 according to the invention is at least one level higher than the pilling resistance of CE2 and CE3 and at a higher number of cycles the difference between Example 1 and CE2 and CE3 becomes more apparent. In case of 5000 and 7000 cycles the difference is two levels.
- Example 1 shows that the Example 1 with poly lactic acid staple fibers has a better pilling resistance and abrasion resistance.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Woven Fabrics (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Professional, Industrial, Or Sporting Protective Garments (AREA)
- Knitting Of Fabric (AREA)
- Details Of Garments (AREA)
Claims (14)
- Tissu textile comprenant un fil de fibres discontinues composé d'un mélange de fibres discontinues, dans lequel le mélange comprend des fibres discontinues méta-aramides, des fibres discontinues para-aramides, et des fibres discontinues d'acide polylactique.
- Tissu textile selon la revendication 1, dans lequel le mélange comprend- 30 à 90 % en poids des fibres discontinues méta-aramides,- 5 à 60 % en poids des fibres discontinues para-aramides, et- 5 à 40 % en poids des fibres discontinues d'acide polylactiquepar rapport à un poids du mélange.
- Tissu textile selon la revendication 1 ou 2, dans lequel les fibres discontinues méta-aramides présentent une longueur unitaire de 30 à 140 mm, les fibres discontinues para-aramides présentent une longueur unitaire de 30 à 140 mm, et les fibres discontinues d'acide polylactique présentent une longueur unitaire de 30 à 140 mm.
- Tissu textile selon une ou plusieurs des revendications 1 à 3, dans lequel les fibres discontinues méta-aramides présentent un titre de fil de 0,8 à 7 dtex, les fibres discontinues para-aramides présentent un titre de fil de 0,8 à 7 dtex, et les fibres discontinues d'acide polylactique présentent un titre de fil de 0,8 à 7 dtex.
- Tissu textile selon la revendication 1 à 4, dans lequel le mélange comprend en outre jusqu'à 5 % en poids de fibres discontinues antistatiques par rapport à un poids du mélange.
- Tissu textile selon la revendication 5, dans lequel les fibres discontinues antistatiques présentent une longueur de 30 à 140 mm, et un titre de fil de 0,8 à 7 dtex.
- Tissu textile selon une ou plusieurs des revendications 1 à 6, dans lequel les fibres discontinues méta-aramides sont des fibres discontinues de poly(méta-phénylène isophtalamide), les fibres discontinues para-aramides sont des fibres discontinues de poly-(p-phénylène téréphtalamide) ou des fibres discontinues de poly(p-phénylène-3,4'-oxydiphénylène téréphtalamide), et les fibres discontinues d'acide polylactique sont des fibres discontinues d'acide poly-L-lactique ou des fibres discontinues d'acide poly-D-lactique ou des fibres discontinues composées d'un racémique d'acide poly-L-lactique et d'acide poly-D-lactique ou des fibres discontinues composées d'un stéréo-complexe d'acide poly-L-lactique et d'acide poly-D-lactique.
- Tissu textile selon une ou plusieurs des revendications 1 à 7, dans lequel le fil est fabriqué à partir du mélange par filature à anneaux ou filature à jet d'air.
- Tissu textile selon une ou plusieurs des revendications 1 à 8, dans lequel le tissu textile est un tissu textile tissé ou tricoté.
- Tissu textile selon la revendication 9, dans lequel le tissu textile est un tissu textile tissé présentant une construction en sergé ou unie.
- Tissu textile selon une ou plusieurs des revendications 1 à 10, dans lequel le tissu textile présente un grammage de 50 à 350 g/m2.
- Tissu textile selon une ou plusieurs des revendications 1 à 11, dans lequel le mélange comprend au plus 95 % de fibres discontinues aramides, de préférence au plus 90 % de fibres discontinues aramides, plus préférentiellement au plus 80 % de fibres discontinues aramides, ou au plus 70 % ou fibres discontinues aramides par rapport à un poids du mélange.
- Vêtement comprenant au moins un tissu textile selon une ou plusieurs des revendications 1 à 12.
- Utilisation du tissu textile selon une ou plusieurs des revendications 1 à 12 pour fabriquer des vêtements de travail.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17158046 | 2017-02-27 | ||
PCT/EP2018/054117 WO2018153844A1 (fr) | 2017-02-27 | 2018-02-20 | Géotextile et vêtement de travail fabriqué à partir de celui-ci |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3585927A1 EP3585927A1 (fr) | 2020-01-01 |
EP3585927B1 true EP3585927B1 (fr) | 2023-05-17 |
Family
ID=58231375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18705409.3A Active EP3585927B1 (fr) | 2017-02-27 | 2018-02-20 | Tissu textile et vêtements de travail fabriqués à partir de ce tissu |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3585927B1 (fr) |
JP (1) | JP7044798B2 (fr) |
KR (2) | KR20190117668A (fr) |
CN (1) | CN110446805B (fr) |
ES (1) | ES2948636T3 (fr) |
RU (1) | RU2753284C2 (fr) |
WO (1) | WO2018153844A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11359309B2 (en) | 2018-12-21 | 2022-06-14 | Target Brands, Inc. | Ring spun yarn and method |
CN114051543B (zh) * | 2019-12-20 | 2023-09-29 | 株式会社村田制作所 | 细纱、以及具备细纱的纱线和布 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07173716A (ja) * | 1993-10-28 | 1995-07-11 | Toray Ind Inc | 高強度生分解性ポリラクトンアミドモノフィラメント及びその製造法 |
JP2001011749A (ja) | 1999-04-27 | 2001-01-16 | Kanebo Ltd | 形態安定性繊維構造物 |
JP4363700B2 (ja) * | 1999-05-21 | 2009-11-11 | 東レ株式会社 | 複合紡績糸およびそれを用いてなる布帛 |
US6410140B1 (en) * | 1999-09-28 | 2002-06-25 | Basf Corporation | Fire resistant corespun yarn and fabric comprising same |
JP2002069796A (ja) | 2000-09-05 | 2002-03-08 | Unitika Textiles Ltd | ポリ乳酸系織編物 |
JP4434544B2 (ja) | 2002-01-11 | 2010-03-17 | ユニチカトレーディング株式会社 | 精紡交撚糸の製造方法 |
DE10248999B3 (de) * | 2002-10-21 | 2004-05-06 | Theodolf Fritsche Gmbh & Co. | Mehrschichtiges, atmungsaktives textiles Flächengebilde |
US7348059B2 (en) | 2004-03-18 | 2008-03-25 | E. I. Du Pont De Nemours And Company | Modacrylic/aramid fiber blends for arc and flame protection and reduced shrinkage |
DE202004005008U1 (de) | 2004-03-30 | 2004-06-24 | E.I. Du Pont De Nemours And Company, Wilmington | Textiles Flächengebilde für Schutzbekleidung |
JP5173199B2 (ja) * | 2006-01-16 | 2013-03-27 | 株式会社アイ・ティー・オー | 創傷治癒用高分子組成物 |
CN101126179B (zh) * | 2007-09-25 | 2011-05-04 | 江西师范大学 | 超细聚合物纤维高速气吹静电纺丝复合制备方法及装置 |
JP2011058124A (ja) | 2009-09-10 | 2011-03-24 | Teijin Fibers Ltd | ポリ乳酸極細繊維 |
US20110138523A1 (en) * | 2009-12-14 | 2011-06-16 | Layson Jr Hoyt M | Flame, Heat and Electric Arc Protective Yarn and Fabric |
RU118313U1 (ru) * | 2011-09-26 | 2012-07-20 | Открытое акционерное общество "Центральный научно-исследовательский текстильный институт" (ОАО ЦНИТИ) | Ткань с повышенным показателем огнестойкости и термостойкости для защиты человека от высокотемпературных контактов |
AU2013293487B2 (en) | 2012-07-27 | 2017-09-07 | Drifire, Llc | Fiber blends for wash durable thermal and comfort properties |
BR112015015161A2 (pt) * | 2012-12-28 | 2017-07-11 | Teijin Ltd | tecido resistente ao calor |
US9474328B2 (en) * | 2013-01-15 | 2016-10-25 | Nike, Inc. | Spacer textile material with tensile strands in non-linear arrangements |
JP5937633B2 (ja) | 2013-03-28 | 2016-06-22 | 日本毛織株式会社 | 難燃ストレッチ織物及びこれを用いた衣類 |
CN104878501B (zh) * | 2014-02-28 | 2017-01-04 | 旭化成株式会社 | 织物 |
ES2659314T3 (es) * | 2015-02-09 | 2018-03-14 | Trafalgar Associates, LLC | Colchones resistentes al fuego, materiales de cobertura de colchones resistentes al fuego |
-
2018
- 2018-02-20 EP EP18705409.3A patent/EP3585927B1/fr active Active
- 2018-02-20 RU RU2019129085A patent/RU2753284C2/ru active
- 2018-02-20 CN CN201880018689.7A patent/CN110446805B/zh active Active
- 2018-02-20 JP JP2019546394A patent/JP7044798B2/ja active Active
- 2018-02-20 WO PCT/EP2018/054117 patent/WO2018153844A1/fr active Application Filing
- 2018-02-20 KR KR1020197027063A patent/KR20190117668A/ko not_active IP Right Cessation
- 2018-02-20 ES ES18705409T patent/ES2948636T3/es active Active
- 2018-02-20 KR KR1020237040937A patent/KR20230169408A/ko not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
EP3585927A1 (fr) | 2020-01-01 |
CN110446805B (zh) | 2023-03-31 |
WO2018153844A1 (fr) | 2018-08-30 |
RU2019129085A3 (fr) | 2021-04-01 |
KR20230169408A (ko) | 2023-12-15 |
CN110446805A (zh) | 2019-11-12 |
JP7044798B2 (ja) | 2022-03-30 |
JP2020510762A (ja) | 2020-04-09 |
ES2948636T3 (es) | 2023-09-15 |
RU2753284C2 (ru) | 2021-08-12 |
KR20190117668A (ko) | 2019-10-16 |
RU2019129085A (ru) | 2021-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5124022B2 (ja) | ジアミノジフェニルスルホンから誘導された繊維と、低熱収縮繊維と、難燃性繊維と、帯電防止繊維とのブレンドから製造された難燃性紡績スフ糸ならびにそれらから製造された布および衣類ならびにそれらの製造方法 | |
KR101300333B1 (ko) | 아크 및 화염으로부터의 보호 및 수축율 감소를 위한모다크릴/아라미드 섬유 블렌드 | |
CN104611806B (zh) | 包含含砜基的芳香族聚合物纤维的阻燃纱线和由其制得的织物及制备方法 | |
JP5330390B2 (ja) | ジアミノジフェニルスルホンから誘導された繊維とモダクリル繊維とのブレンドから製造された難燃性紡績スフ糸、それから製造された布及び衣類並びにそれらの製造方法 | |
JP5330389B2 (ja) | ジアミノジフェニルスルホンから誘導された繊維と織物繊維とのブレンドから製造された難燃性紡績スフ糸ならびにそれらから製造された布および衣類ならびにそれらの製造方法 | |
EP2191052B1 (fr) | Fils courts filés résistant à la flamme fabriqués avec des mélanges de fibres dérivées de diaminodiphénylsulfone et de fibres de polyoxadiazole, tissus et vêtements fabriqués avec lesdits fils et leurs procédés de fabrication | |
JP5186000B2 (ja) | ジアミノジフェニルスルホンから誘導された繊維と高弾性率繊維とのブレンドから製造された難燃性紡績スフ糸、それらから製造された布及び衣類並びにそれらの製造方法 | |
JP7365466B2 (ja) | アラミドおよびモダクリル繊維を含む炭素含有繊維ブレンド | |
JP5186001B2 (ja) | 剛性ロッド繊維とジアミノジフェニルスルホンから誘導された繊維とのブレンドから製造された紡績スフ糸、それらから製造された布及び衣類並びにそれらの製造方法 | |
EP3585927B1 (fr) | Tissu textile et vêtements de travail fabriqués à partir de ce tissu | |
JP5149966B2 (ja) | 4,4’ジアミノジフェニルスルホンを含む複数のアミンモノマーから誘導された構造を含有するコポリマーを含む繊維およびそれらの製造方法 | |
JP2010537078A (ja) | 3,3’ジアミノジフェニルスルホンを含む複数のアミンモノマーから誘導された構造を含有するコポリマーを含む繊維およびそれらの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190927 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230131 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018049953 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1568396 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230710 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2948636 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230915 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1568396 Country of ref document: AT Kind code of ref document: T Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230918 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230817 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230917 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018049953 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240301 Year of fee payment: 7 Ref country code: NL Payment date: 20240222 Year of fee payment: 7 |
|
26N | No opposition filed |
Effective date: 20240220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240228 Year of fee payment: 7 Ref country code: GB Payment date: 20240221 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240215 Year of fee payment: 7 Ref country code: IT Payment date: 20240227 Year of fee payment: 7 Ref country code: FR Payment date: 20240227 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240220 |