EP3569466B1 - Sensor zum erfassen von metallteilen, sowie verfahren zum abschwächen eines magnetischen feldes - Google Patents
Sensor zum erfassen von metallteilen, sowie verfahren zum abschwächen eines magnetischen feldes Download PDFInfo
- Publication number
- EP3569466B1 EP3569466B1 EP19172211.5A EP19172211A EP3569466B1 EP 3569466 B1 EP3569466 B1 EP 3569466B1 EP 19172211 A EP19172211 A EP 19172211A EP 3569466 B1 EP3569466 B1 EP 3569466B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coil
- windings
- sensor
- rail vehicle
- coil section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 14
- 239000002184 metal Substances 0.000 title claims description 10
- 229910052751 metal Inorganic materials 0.000 title claims description 10
- 238000004804 winding Methods 0.000 claims description 49
- 230000001154 acute effect Effects 0.000 claims description 4
- 230000003313 weakening effect Effects 0.000 claims description 3
- 230000008901 benefit Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 230000036961 partial effect Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L1/00—Devices along the route controlled by interaction with the vehicle or train
- B61L1/16—Devices for counting axles; Devices for counting vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L1/00—Devices along the route controlled by interaction with the vehicle or train
- B61L1/16—Devices for counting axles; Devices for counting vehicles
- B61L1/163—Detection devices
- B61L1/165—Electrical
Definitions
- the present invention relates to a sensor for detecting metal parts, in particular metallic or partially metallic wheels of a rail vehicle, a use of at least two such sensors and a method for attenuating a magnetic field emanating from a rail vehicle.
- devices for detecting metal parts are implemented using inductive sensors. This requires a high level of safety, despite only sporadic use.
- An example of such an application area is rail transport. The following refers to the use of such sensors or such a method in rail transport. However, this does not imply any restriction to this application area.
- a sensor In the field of railway transport, it is common for a sensor to detect metal parts, in particular metallic or partially metallic wheels of a rail vehicle, to be arranged parallel in the longitudinal direction of the rail, i.e. parallel to the direction of movement of the wheels of the rail vehicle.
- a sensor provides signals with high availability, which are usually routed via a cable to an indoor system and processed accordingly. This enables functions such as the presence detection of a rail vehicle, the direction of travel detection or a track vacancy detection in the form of an axle count to be implemented. This is used, for example, in EN 36 32 316 A1 shown.
- each sensor it is also common for each sensor to consist of a sensor coil and an oscillator circuit.
- the sensor coil forms an oscillating circuit with a capacitor and creates an alternating magnetic field in its surroundings.
- a metal part of a railway wheel that penetrates the effective range of the sensor coil dampens the oscillating circuit because the iron of the railway wheel draws energy from it through eddy current losses. This results in the voltage amplitude or the voltage frequency of the oscillating circuit changing, which is converted into a change in the current consumption of the sensor.
- This measurement signal is fed via a two-wire line into the internal system of a security system and processed there or prepared for processing.
- the mounting position of the sensor is predetermined within narrow limits by the geometry of the rail or by the railway wheel. Irrespective of this, however, a problem arises that the rail vehicle can also emit magnetic fields with such a high intensity that a voltage is induced in the sensor coil. This process can lead to a state in the electronics that incorrectly transmits the presence of a wheel to the higher-level evaluation electronics. There, this leads to incorrect information that can disrupt the operation of the railway network.
- Such magnetic fields emitted by the rail vehicle are generated, for example, by eddy current brakes, magnetic rail brakes or a high current consumption by the drive units of the rail vehicles.
- the prior art document DE 199 15 597 A1 an arrangement of a figure-of-eight coil that is aligned in the direction of travel of the rail vehicle.
- the two partial coils of the figure-of-eight coil are connected in such a way that a magnetic field that is emitted from a distance significantly greater than the extent of the figure-of-eight coil is already compensated in the figure-of-eight coil.
- the WO 2010/052081 A1 describes an arrangement in which one coil is the transmitting or receiving coil and a second coil serves exclusively for compensation. This second coil is arranged at least one third of the coil diameter of the transmitting or receiving coil below.
- the EN 10 2009 053 257 A1 discloses an arrangement of sensor and compensation coil with a total of three coils.
- the magnetic field emitted by the rail vehicle either hits the sensor coil at different times, or a compensation arrangement for an induced voltage is very difficult to implement.
- One disadvantage is the arrangement of a figure-of-eight coil in the direction of movement of the rail vehicle. This means that first one partial coil of the figure-of-eight coil, then both partial coils of the figure-of-eight coil, and at the end of the sensor coil's passage only the last partial coil of the figure-of-eight coil is flooded with the disturbing magnetic field of the rail vehicle.
- a figure-of-eight coil is only effective if it is flooded at the same time with approximately the same intensity. For this reason, an interference voltage is induced, particularly when only one partial coil of the figure-of-eight coil is flooded, as occurs at the beginning and end of the passage of the wheel of the rail vehicle.
- approximately at an orthogonal angle is understood to mean in particular an arrangement of the sensor coil at an angle of 70° to 110° to a direction of movement of the metallic or partially metallic wheels of the rail vehicle, whereby this arrangement is related to the longitudinal axis of the sensor coil.
- this arrangement is at an angle of 80° to 100°, particularly preferably 85° to 95°. It is also possible that this is an orthogonal angle in the mathematical sense, i.e. a right-angled (90°) angle.
- the sensor according to the invention offers the advantage that the magnetic field emitted by a rail vehicle is weakened. This prevents the induction of a voltage which is induced in the sensor coil by such a magnetic field. This is achieved by the sensor coil, which is designed as an air coil, being arranged approximately at an orthogonal angle to the direction of movement of the metallic or partially metallic wheels of the Rail vehicle. As a result, the magnetic fields emanating from the rail vehicle are weakened at the moment they reach the sensor coil due to the coil structure and the coil positioning.
- the structure of the sensor coil in particular the windings which are not electrically conductively connected at a crossing point, also ensures that only the magnetic fields emanating from the rail vehicle are compensated.
- the magnetic field generated by the sensor coil which is influenced by the metallic or partially metallic wheels and is used by the sensor to detect the presence of the wheel of a rail vehicle, is not impaired by the object according to the invention.
- the present invention is based on the finding that the magnetic fields emitted by the rail vehicle have, to a good approximation, the same direction and similar intensities at every point of rail contact.
- the generators of this magnetic field emitted by the rail vehicle are located at a distance from the sensor coil which is large compared to the dimensions of the sensor coil. This is used both in the construction, especially in the windings, and in the approximately orthogonal positioning of the sensor coil, which ensures the compensation of the voltage induced by the magnetic field emitted by the rail vehicle.
- the windings are arranged in a circle. This makes it easier to produce the sensor coil and provides a known shape.
- the windings of the sensor coil are arranged in the shape of a figure eight along the longitudinal axis. This allows the detection direction of the sensor coil to be precisely configured. With such a shape, it is also possible to focus the detection cone of the sensor coil, which means that the metallic or partially metallic wheels of a rail vehicle to be detected can be detected at a greater distance from the sensor coil.
- the windings due to their circular arrangement in the longitudinal axis of the sensor coil, define two coil parts that are connected in series.
- One advantage of this is that a coil structure known in the prior art can be used. can be achieved, thereby achieving the advantages of this coil structure known in the prior art.
- one coil part has a magnetic north pole and the second coil part has a magnetic south pole. This ensures that at all times, including when a wheel of a rail vehicle is passing over, the magnetic fields emitted by the rail vehicle strike the two coil parts of the sensor coil at the same time. This induces a voltage in the two coil parts, which, however, cancel each other out due to different signs.
- the windings of the sensor coil lie in a plane whose surface normal is approximately parallel to the metallic or partially metallic wheels of the rail vehicle.
- the windings of the sensor coil lie in a plane whose surface normal forms an acute angle with the metallic or partially metallic wheels of the rail vehicle.
- the product of the area of the first coil part multiplied by the number of turns of the first coil part is equal to the product of the area of the second coil part multiplied by the number of turns of the second coil part.
- Such a sensor coil is particularly advantageous when the magnetic fields emitted by the rail vehicle impinge symmetrically on the sensor coil. This makes it possible to weaken an induced voltage that occurs due to the symmetrically emitted magnetic fields.
- the windings span asymmetrical areas. From a functional point of view, it has proven to be advantageous if the product of the area of the first coil part multiplied by the number of turns of the first coil part is not equal to the product of the area of the second coil part multiplied by the number of turns of the second coil part. This is particularly advantageous if the magnetic fields emitted by the rail vehicle are applied asymmetrically to the sensor coil. This can further reduce any induced voltage that occurs due to the asymmetrical emitted magnetic fields. Since the magnetic fields emitted by the rail vehicle are stronger near a rail head, the emitted magnetic field is often asymmetrical and therefore also often hits the sensor coil asymmetrically.
- a residual voltage can be measured on the sensor coil even after compensation, which can continue to disrupt the electronics in their function. Because the windings have different numbers of turns and span asymmetrical surfaces, the residual voltage can be reduced to a minimum, or reduced to zero, so as not to impair the detection of metal parts, especially metallic or partially metallic wheels of a rail vehicle.
- the object set out at the beginning is also achieved by using at least two sensors according to one of the preceding embodiments for determining a direction of movement of a rail vehicle. This achieves the advantages of the sensor.
- the sensor coil of the present invention is designed in such a way that the magnetic fields emitted by the rail vehicle, as a result of the coil structure and the position of the sensor coil, generate a voltage in the sensor coil that compensates for itself the moment they reach the sensor coil.
- the structure and positioning of the sensor coil thus ensure that only the externally interfering magnetic fields compensate for themselves.
- the desired magnetic field i.e. the magnetic field that is used to detect metal parts, in particular metallic or partially metallic wheels of a rail vehicle, is not impaired by this structure and positioning.
- the Figure 1 shows a schematic representation of a first embodiment of the sensor coil 1 according to the invention in the form of an air coil.
- the dashed arrow 5 indicates a direction of movement of a wheel of a rail vehicle (not shown).
- the sensor coil 1 shown has a longitudinal axis 3 and two windings 2, 2', which intersect in an electrically non-conductive manner at a crossing point 4.
- Each of the windings 2, 2' defines a coil part 7, 7', with a first coil part 7 having an area A 1 and a number of windings n 1 .
- a second coil part 7' has an area A 2 and a number of windings n 2 .
- the current flow is also shown schematically which flows through the two coil parts 7, 7'.
- the sensor coil 1 is located at an approximately orthogonal angle to the rail heads 9, 9'.
- a magnetic field of the rail vehicle, which is emitted by it, is not shown. Even without the magnetic field being shown, it is clear that the magnetic field of the rail vehicle enters the coil parts 7, 7', or the windings 2, 2' of the sensor coil 1, and is weakened both by the symmetrical design of the sensor coil 1, and by the approximately orthogonal positioning of the sensor coil 1, or the voltage induced by this magnetic field in the respective coil parts 7, 7' is compensated.
- the electronics connected to the sensor coil 1 (not shown) are therefore not affected by any interference voltage.
- a sensor coil 1 according to a second embodiment is shown schematically.
- the windings 2, 2' of the sensor coil 1 have the shape of a cornered figure eight, whereby they intersect in an electrically non-conductive manner at an intersection point 4.
- the direction of movement 5 of a wheel 8 of a rail vehicle is also shown schematically.
- the windings 2, 2' are located in a plane which is spanned by the first rail head 9 and a second rail head opposite it (not shown).
- the sensor coil 1 is located at an approximately orthogonal angle to the direction of movement 5 of the wheels of the rail vehicle.
- the surface normal of the plane spanned by the windings 2, 2' is approximately parallel to the metallic or partially metallic wheels 8 of the rail vehicle.
- a magnetic field 6 of the rail vehicle which is emitted by it.
- This magnetic field 6 can be generated, for example, by an eddy current brake, by magnetic rail brakes or by a strong current consumption by the drive units of the rail vehicle.
- the magnetic field 6 of the rail vehicle enters the coil parts 7, 7', or the windings 2, 2' of the sensor coil 1, and is attenuated by both the symmetrical design of the sensor coil 1 and the approximately orthogonal positioning of the sensor coil 1. In other words, the voltage induced by this magnetic field 6 in the respective coil parts 7, 7' is compensated.
- the electronics connected to the sensor coil 1 (not shown) are therefore not affected by any interference voltage.
- the Figure 3 shows a sensor coil 1 according to a third embodiment.
- the windings 2, 2' of the sensor coil 1 have the shape of a cornered figure eight, and they intersect in an electrically non-conductive manner at a crossing point 4.
- the surface normal of the plane spanned by the windings 2, 2' describes an acute angle with the metallic or partially metallic wheels 8 of the rail vehicle.
- the sensor coil 1 is located at an approximately orthogonal angle to the direction of movement 5 of the wheels of the rail vehicle.
- a magnetic field 6 of the rail vehicle is shown schematically, which is emitted by it.
- the magnetic field 6 of the rail vehicle enters the coil part 7, or the winding 2 of the sensor coil 1, with a higher intensity than in the coil part 7', or the winding 2'.
- the winding 2' has a different area A 2 , which is larger in the present embodiment, and also a different number of turns n 2 than the winding 2, or its area A 1 , or number of turns n 1 .
- Both the different areas A 1 , A 2 , and the different numbers of turns n 1 , n 2 result in a magnetic field 6 of the same size in relation to the magnetic flux in each of the limbs of the coil parts 7, 7'. Consequently, a voltage of the same magnitude is induced.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Train Traffic Observation, Control, And Security (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
- Die vorliegende Erfindung betrifft einen Sensor zum Erfassen von Metallteilen, insbesondere von metallischen oder teilmetallischen Rädern eines Schienenfahrzeugs, eine Verwendung mindestens zweier derartiger Sensoren und ein Verfahren zum Abschwächen eines von einem Schienenfahrzeug ausgehenden magnetischen Feldes.
- Allgemein werden Einrichtungen zum Erfassen von Metallteilen, insbesondere zum Erfassen von metallischen oder teilmetallischen Rädern von Schienenfahrzeugen, mit Hilfe von induktiven Sensoren realisiert. Hierbei ist ein Höchstmaß an Sicherheit erforderlich, trotz nur sporadischer Anwendung. Ein Beispiel für einen derartigen Anwendungsbereich ist der Eisenbahnverkehr. Im Folgenden wird auf die Verwendung derartiger Sensoren oder eines derartigen Verfahrens im Eisenbahnverkehr Bezug genommen. Damit ist allerdings keine Einschränkung auf diesen Anwendungsbereich verbunden.
- Im Bereich des Eisenbahnverkehrs ist es üblich, dass ein Sensor zum Erfassen von Metallteilen, insbesondere von metallischen oder teilmetallischen Rädern eines Schienenfahrzeuges, parallel in Schienenlängsrichtung, also parallel zur Bewegungsrichtung der Räder des Schienenfahrzeuges, angeordnet ist. Ein derartiger Sensor stellt mit hoher Verfügbarkeit Signale bereit, die üblicherweise über ein Kabel in eine Innenanlage geleitet und dort entsprechend verarbeitet werden. Hierdurch können Funktionen, wie beispielsweise die Anwesenheitsmeldung eines Schienenfahrzeugs, die Fahrtrichtungserkennung oder eine Gleisfreimeldung in Form einer Achsenzählung realisiert werden. Dies wird beispielsweise in
DE 36 32 316 A1 gezeigt. - Auch ist es üblich, dass jeder Sensor aus einer Sensorspule und einer Oszillatorschaltung besteht. Die Sensorspule bildet mit einem Kondensator einen Schwingkreis und baut ein Wechselmagnetfeld in ihrer Umgebung auf. Ein in den Wirkbereich der Sensorspule eindringender metallischer Teil eines Eisenbahnrades dämpft den Schwingkreis, da diesem durch das Eisen des Eisenbahnrades Energie durch Wirbelstromverluste entzogen wird. Dies hat zur Folge, dass sich die Spannungsamplitude bzw. die Spannungsfrequenz des Schwingkreises ändert, was in eine Änderung der Stromaufnahme des Sensors umgewandelt wird. Dieses Messsignal wird über eine Zweidrahtleitung in die Innenanlage einer Sicherungsanlage geleitet und dort verarbeitet oder zur Verarbeitung aufbereitet.
- Die Montageposition des Sensors wird durch die Geometrie der Schiene bzw. durch das Eisenbahnrad in engen Grenzen vorbestimmt. Unabhängig hiervon tritt jedoch als Problem auf, dass von dem Schienenfahrzeug auch magnetische Felder mit einer derart hohen Intensität emittiert werden können, dass eine Spannung in die Sensorspule induziert wird. Dieser Vorgang kann in der Elektronik zu einem Zustand führen, der das Vorhandensein eines Rades fälschlicherweise an die höhergelegene Auswerteelektronik weiterleitet. Dort führt dies zu einer fehlerhaften Information, die den Betrieb des Eisenbahnnetzes stören kann. Derartige vom Schienenfahrzeug emittierte magnetische Felder werden beispielsweise durch Wirbelstrombremsen, Magnetschienenbremsen oder eine starke Stromaufnahme von den Antriebseinheiten der Schienenfahrzeuge erzeugt.
- Bekannt ist beispielsweise aus dem Stand der Technik Dokument
DE 199 15 597 A1 eine Anordnung einer Achterspule, die in Fahrtrichtung des Schienenfahrzeugs ausgerichtet wird. Die beiden Teilspulen der Achterspule sind derart verschaltet, dass ein Magnetfeld, das aus einer Entfernung deutlich größer als die Ausdehnung der Achterspule ausgesendet wird, bereits in dieser kompensiert wird. - Das Stand der Technik Dokument
DE 101 37 519 A1 versucht das oben beschriebene Problem durch eine zusätzliche Spule zu lösen, welche in die eigentliche Sende- bzw. Empfangsspule eingebettet wird. - Die
WO 2010/052081 A1 beschreibt eine Anordnung, bei der eine Spule die Sende- bzw. Empfangsspule ist und eine zweite Spule ausschließlich der Kompensation dient. Diese zweite Spule ist mindestens ein Drittel des Spulendurchmessers der Sende- bzw. Empfangsspule darunter angeordnet. - Die
DE 10 2009 053 257 A1 offenbart eine Anordnung von Sensor- und Kompensationsspule mit insgesamt drei Spulen. - Es haben sich jedoch unterschiedliche Nachteile im Stand der Technik ergeben. So trifft das vom Schienenfahrzeug emittierte magnetische Feld entweder zu unterschiedlichen Zeiten auf die Sensorspule oder eine Kompensationsanordnung für eine induzierte Spannung ist sehr anspruchsvoll zu realisieren. Ein Nachteil besteht in der Anordnung einer Achterspule in Bewegungsrichtung des Schienenfahrzeugs. Dies führt dazu, dass zuerst eine Teilspule der Achterspule, dann beide Teilspulen der Achterspule und zum Ende der Überfahrt der Sensorspule nur die letzte Teilspule der Achterspule mit dem störenden Magnetfeld des Schienenfahrzeuges durchflutet wird. Eine Achterspule wird aber gattungsgemäß nur wirksam, wenn sie zur gleichen Zeit mit etwa der gleichen Intensität durchflutet wird. Aus diesem Grund wird, insbesondere wenn nur eine Teilspule der Achterspule durchflutet wird, wie es am Anfang und am Ende der Überfahrt des Rades des Schienenfahrzeuges vorkommt, eine Störspannung induziert.
- Allgemein gesprochen wird bei einer Überfahrt eines Rades eines Schienenfahrzeuges über die Sensorspule zuerst die äußere und danach die mittlere Spule durch das magnetische Feld beeinflusst. Erst wenn beide Spulen mit dem vom Schienenfahrzeug emittierten magnetischen Feld durchflutet sind, kommt es zu einer optimalen Kompensation. Ein weiterer Nachteil des Stands der Technik besteht darin, dass Kompensationsspulen üblicherweise unterhalb der eigentlichen Sende- bzw. Empfangsspulen montiert werden, wodurch die Kompensationsspulen nicht die gleiche Intensität des von dem Schienenfahrzeug emittierten magnetischen Feldes erfahren, wie die Sende- bzw. Empfangsspulen. Dies hat seinen Grund darin, dass mit steigendem Abstand von der Quelle das magnetische Feld schwächer wird. Hierdurch wird eine vollständige Kompensation verhindert und eine Störspannung bleibt bestehen. Ein weiterer Nachteil zeigt sich durch sehr anspruchsvoll zu realisierenden Spulenkonstruktionen, welche insbesondere für den Eisenbahnbereich einen zu hohen Platzaufwand erfordern. Auch zeigt sich bei den komplizierten Spulenkonstruktionen der bereits beschriebene Nachteil, dass die Spule nicht zu jedem Zeitpunkt der Überfahrt eines Rades eines Schienenfahrzeugs dem gleichen magnetischen Feld ausgesetzt ist.
- Es ist somit Aufgabe der vorliegenden Erfindung, die aus dem Stand der Technik bekannten Nachteile zu beseitigen oder zumindest zu minimieren.
- Diese Aufgabe wird erfindungsgemäß durch einen Sensor nach Anspruch 1 gelöst.
- Unter dem Begriff "ungefähr in einem orthogonalen Winkel" wird insbesondere eine Anordnung der Sensorspule in einem Winkel von 70° bis 110° zu einer Bewegungsrichtung der metallischen oder teilmetallischen Räder des Schienenfahrzeuges, verstanden, wobei diese Anordnung bezogen auf die Längsachse der Sensorspule ist. Vorzugsweise erfolgt diese Anordnung in einem Winkel von 80° bis 100°, besonders bevorzugt 85° bis 95°. Auch ist es möglich, dass es sich um einen orthogonalen Winkel im mathematischen Sinn, also um einen rechtwinkligen (90°-) Winkel handelt.
- Der erfindungsgemäße Sensor bietet den Vorteil, dass das von einem Schienenfahrzeug emittierte magnetische Feld abgeschwächt wird. Hierdurch wird eine Induktion einer Spannung, welche durch ein derartiges magnetisches Feld in die Sensorspule induziert wird, verhindert. Dies wird dadurch erreicht, dass die als Luftspule ausgebildete Sensorspule ungefähr in einem orthogonalen Winkel zu der Bewegungsrichtung der metallischen oder teilmetallischen Räder des Schienenfahrzeuges angeordnet ist. Hierdurch werden die vom Schienenfahrzeug ausgehenden magnetischen Felder in dem Moment, in dem sie die Sensorspule erreichen, bedingt durch den Spulenaufbau und die Spulenpositionierung abgeschwächt. Durch den Aufbau der Sensorspule, insbesondere durch die Windungen, welche in einem Kreuzungspunkt elektrisch nicht leitend verbunden sind, wird außerdem erreicht, dass nur die vom Schienenfahrzeug ausgehenden magnetischen Felder kompensiert werden. Das durch die Sensorspule erzeugte Magnetfeld, welches von den metallischen oder teilmetallischen Rädern beeinflusst wird und durch den Sensor zum Erfassen der Anwesenheit des Rades eines Schienenfahrzeugs verwendet wird, wird durch den erfindungsgemäßen Gegenstand nicht beeinträchtigt. Insbesondere liegt der vorliegenden Erfindung die Erkenntnis zugrunde, dass die vom Schienenfahrzeug emittierten magnetischen Felder an jedem Ort des Schienenkontaktes in guter Näherung die gleiche Richtung und ähnliche Intensitäten aufweisen. Die Erzeuger dieses vom Schienenfahrzeug emittierten Magnetfeldes befinden sich in einer Entfernung zu der Sensorspule, die groß ist gegenüber den Abmaßen der Sensorspule. Dies wird sowohl beim Aufbau, insbesondere bei den Windungen, als auch bei der ungefähr orthogonalen Positionierung der Sensorspule benutzt, welche die Kompensation der Spannung, die von dem vom Schienenfahrzeug emittierten magnetischen Feld induziert wird, sicherstellt.
- Vorzugsweise sind die Windungen kreisförmig angeordnet. Hierdurch wird eine erleichterte Möglichkeit der Produktion der Sensorspule, sowie eine bekannte Form zur Verfügung gestellt.
- Ebenso hat es sich als vorteilhaft erwiesen, dass die Windungen der Sensorspule, in der Längsachse, in Form einer Acht angeordnet sind. Hierdurch kann die Detektionsrichtung der Sensorspule genau konfiguriert werden. Auch ist es mit einer derartigen Form möglich, dass der Detektionskegel der Sensorspule fokussiert wird, was dazu führt, dass die zu detektierenden metallischen oder teilmetallischen Räder eines Schienenfahrzeuges in einem höheren Abstand zur Sensorspule erfasst werden können.
- In funktioneller Hinsicht hat es sich als vorteilhaft erwiesen, dass die Windungen bedingt durch ihre kreisförmige Anordnung in Längsachse der Sensorspule zwei Spulenteile definieren, welche in Reihe geschaltet sind. Ein Vorteil hierbei ist, dass hierdurch ein im Stand der Technik bekannter Spulenaufbau verwendet werden kann, wodurch die im Stand der Technik bekannten Vorteile dieses Spulenaufbaus erzielt werden.
- In einer weiteren Ausführungsform spannt bei Stromfluss durch die beiden Spulenteile einer einen magnetischen Nordpol und der zweite Spulenteil einen magnetischen Südpol auf. Hierdurch wird erreicht, dass zu jeder Zeit, also auch während der Überfahrt eines Rades eines Schienenfahrzeuges, die vom Schienenfahrzeug emittierten Magnetfelder gleichzeitig auf die beiden Spulenteile der Sensorspule treffen. Hierdurch wird in die beiden Spulenteile eine Spannung induziert, welche sich jedoch aufgrund unterschiedlicher Vorzeichen, gegenseitig aufhebt.
- Vorteilhafterweise liegen die Windungen der Sensorspule in einer Ebene, deren Flächennormale ungefähr parallel zu den metallischen oder teilmetallischen Rädern des Schienenfahrzeuges ist. In einer weiteren Ausführungsform liegen die Windungen der Sensorspule in einer Ebene, deren Flächennormale mit den metallischen oder teilmetallischen Rädern des Schienenfahrzeuges einen spitzen Winkel beschreibt. Durch derartige Anordnungen kann die Erregungsrichtung der Sensorspule genau eingestellt werden.
- Vorzugsweise ist das Produkt aus der Fläche des ersten Spulenteils multipliziert mit der Windungszahl des ersten Spulenteils gleich dem Produkt aus der Fläche des zweiten Spulenteils multipliziert mit der Windungszahl des zweiten Spulenteils. Hierdurch wird eine, bezogen auf ihre Längsachse, symmetrische Sensorspule realisiert, mit zwei symmetrischen Flächen und gleichen Windungszahlen. Eine derartige Sensorspule ist insbesondere dann vorteilhaft, wenn die vom Schienenfahrzeug emittierten magnetischen Felder symmetrisch auf die Sensorspule auftreffen. Hierdurch kann eine induzierte Spannung, welche aufgrund der symmetrisch emittierten magnetischen Felder auftritt, abgeschwächt werden.
- Auch hat es sich als vorteilhaft herausgestellt, wenn die Windungen asymmetrische Flächen aufspannen. In funktioneller Hinsicht hat es sich als vorteilhaft erwiesen, wenn das Produkt aus der Fläche des ersten Spulenteils multipliziert mit der Windungszahl des ersten Spulenteils ungleich dem Produkt aus der Fläche des zweiten Spulenteils multipliziert mit der Windungszahl des zweiten Spulenteils ist. Dies ist insbesondere dann vorteilhaft, wenn die vom Schienenfahrzeug emittierten magnetischen Felder unsymmetrisch auf die Sensorspule auftreffen. Hierdurch kann eine mögliche induzierte Spannung, welche aufgrund der unsymmetrischen emittierten magnetischen Felder auftritt, weiter reduziert werden. Da die vom Schienenfahrzeug emittierten magnetischen Felder stärker in der Nähe eines Schienenkopfes sind, ist das emittierte magnetische Feld häufig unsymmetrisch und trifft folglich auch häufig unsymmetrisch auf die Sensorspule auf. So kann es vorkommen, dass an der Sensorspule auch nach der Kompensation eine Restspannung messbar ist, die die Elektronik weiterhin in ihrer Funktion stören kann. Dadurch, dass die Windungen unterschiedliche Windungszahlen aufweisen und asymmetrische Flächen aufspannen, kann die Restspannung auf ein Minimum reduziert werden, oder auf den Wert Null reduziert werden, um das Erfassen von Metallteilen, insbesondere von metallischen oder teilmetallischen Rädern eines Schienenfahrzeuges, nicht zu beeinträchtigen.
- Auch wird die eingangs gestellte Aufgabe durch die Verwendung von mindestens zwei Sensoren nach einem der vorangehenden Ausführungsbeispiele zur Bestimmung einer Bewegungsrichtung eines Schienenfahrzeuges gelöst. Hierdurch werden die Vorteile des Sensors erzielt.
- Auch wird die Aufgabe erfindungsgemäß durch ein Verfahren entsprechend Anspruch 7 gelöst.
- Durch das erfindungsgemäße Verfahren werden die Vorteile des Sensors erzielt.
- Zusätzlich wird durch das Anbringen der Sensorspule in ungefähr einem orthogonalen Winkel zu einer Bewegungsrichtung der metallischen oder teilmetallischen Räder des Schienenfahrzeuges eine Abschwächung eines von einem Schienenfahrzeug ausgehenden magnetischen Feldes erreicht, weitgehend unabhängig von den lokalen Gegebenheiten.
- Betreffend den in den Ansprüchen aufgeführten vorteilhaften Ausführungsformen des Verfahrens wird auf die Vorteile, welche in Bezug auf die vorteilhaften Ausführungsformen des Sensors beschrieben sind, verwiesen. Diese Vorteile werden durch die jeweiligen Ausführungsformen des Verfahrens ebenfalls erreicht.
- Weitere Einzelheiten und Vorteile der Erfindung sollen nun anhand einiger in den Zeichnungen dargestellter und bevorzugter Ausführungsbeispiele näher erläutert werden. Es zeigen:
- Figur 1
- eine schematische Darstellung einer ersten Ausführungsform der erfindungsgemäßen Sensorspule in Form einer Luftspule;
- Figur 2
- eine zweite Ausführungsform der Sensorspule;
- Figur 3
- eine dritte Ausführungsform der Sensorspule.
- Insbesondere sei darauf hingewiesen, dass die Sensorspule der vorliegenden Erfindung derart konstruiert ist, dass die emittierten Magnetfelder vom Schienenfahrzeug in dem Moment, in dem sie die Sensorspule erreichen, bedingt durch den Spulenaufbau und bedingt durch die Lage der Sensorspule, eine Spannung in der Sensorspule erzeugen, die sich kompensiert. So wird durch den Aufbau und durch die Positionierung der Sensorspule erreicht, dass nur die von außen störenden Magnetfelder sich kompensieren. Das erwünschte Magnetfeld, also das Magnetfeld, das zum Erfassen von Metallteilen, insbesondere von metallischen oder teilmetallischen Rädern eines Schienenfahrzeugs verwendet wird, wird durch diesen Aufbau und durch diese Positionierung nicht beeinträchtigt.
- Die
Figur 1 zeigt eine schematische Darstellung einer ersten Ausführungsform der erfindungsgemäßen Sensorspule 1 in Form einer Luftspule. Mit dem gestrichelten Pfeil 5 ist eine Bewegungsrichtung eines nicht abgebildeten Rades eines Schienenfahrzeuges angedeutet. Die abgebildete Sensorspule 1 besitzt eine Längsachse 3, sowie zwei Windungen 2, 2', welche sich elektrisch nichtleitend in einem Kreuzungspunkt 4 überschneiden. Jede der Windungen 2, 2' definiert einen Spulenteil 7, 7', wobei ein erster Spulenteil 7 eine Fläche A 1, sowie eine Windungszahl n 1 aufweist. Analog hierzu weist ein zweiter Spulenteil 7' eine Fläche A 2, und eine Windungszahl n 2 auf. Auch ist schematisch der Stromfluss eingezeichnet, welcher durch die beiden Spulenteile 7, 7' fließt. Die Sensorspule 1 befindet sich in einem ungefähr orthogonalen Winkel zu den Schienenköpfen 9, 9'. Nicht eingezeichnet ist ein magnetisches Feld des Schienenfahrzeuges, welches von diesem emittiert wird. Auch ohne, dass das magnetische Feld eingezeichnet ist, ist es ersichtlich, dass das magnetische Feld des Schienenfahrzeuges in die Spulenteile 7, 7', bzw. die Windungen 2, 2' der Sensorspule 1 eintritt und sowohl durch die symmetrische Ausgestaltung der Sensorspule 1, als auch durch die ungefähr orthogonale Positionierung der Sensorspule 1, abgeschwächt wird, bzw. wird die durch dieses magnetische Feld in die jeweiligen Spulenteile 7, 7' induzierte Spannung kompensiert. Die mit der Sensorspule 1 verbundene Elektronik (nicht abgebildet) wird folglich durch keine Störspannung beeinträchtigt. - In der
Figur 2 ist eine Sensorspule 1 nach einer zweiten Ausführungsform schematisch abgebildet. Hierbei weisen die Windungen 2, 2' der Sensorspule 1 die Form einer geeckten Acht auf, wobei sich diese elektrisch nichtleitend in einem Kreuzungspunkt 4 überschneiden. Ebenso ist die Bewegungsrichtung 5 eines Rades 8 eines Schienenfahrzeuges schematisch eingezeichnet. Die Windungen 2, 2' befinden sich in einer Ebene, welche durch den ersten Schienenkopf 9 und einen zweiten diesem gegenüberliegenden Schienenkopf (nicht abgebildet) aufgespannt wird. Die Sensorspule 1 befindet sich in einem ungefähr orthogonalen Winkel zur Bewegungsrichtung 5 der Räder des Schienenfahrzeuges. Die Flächennormale der durch die Windungen 2, 2' aufgespannten Ebene ist ungefähr parallel zu den metallischen oder teilmetallischen Rädern 8 des Schienenfahrzeugs. Schematisch eingezeichnet ist außerdem ein magnetisches Feld 6 des Schienenfahrzeuges, welches von diesem emittiert wird. Dieses magnetische Feld 6 kann beispielsweise durch eine Wirbelstrombremse, durch Magnetschienenbremsen oder durch eine starke Stromaufnahme von den Antriebseinheiten des Schienenfahrzeuges erzeugt werden. Das magnetische Feld 6 des Schienenfahrzeuges tritt in die Spulenteile 7, 7', bzw. die Windungen 2, 2' der Sensorspule 1 ein und wird sowohl durch die symmetrische Ausgestaltung der Sensorspule 1, als auch durch die ungefähr orthogonale Positionierung der Sensorspule 1, abgeschwächt. Anders ausgedrückt wird die durch dieses magnetische Feld 6 in die jeweiligen Spulenteile 7, 7' induzierten Spannung kompensiert. Die mit der Sensorspule 1 verbundene Elektronik (nicht abgebildet) wird folglich durch keine Störspannung beeinträchtigt. - Die
Figur 3 zeigt eine Sensorspule 1 nach einer dritten Ausführungsform. Hierbei weisen die Windungen 2, 2' der Sensorspule 1 die Form einer geeckten Acht auf, wobei sich diese elektrisch nichtleitend in einem Kreuzungspunkt 4 überschneiden. Im Gegensatz zu den vorherigen Ausführungsformen beschreibt die Flächennormale der durch die Windungen 2, 2' aufgespannten Ebene mit den metallischen oder teilmetallischen Rädern 8 des Schienenfahrzeugs einen spitzen Winkel. Die Sensorspule 1 befindet sich in einem ungefähr orthogonalen Winkel zur Bewegungsrichtung 5 der Räder des Schienenfahrzeuges. Schematisch eingezeichnet ist ein magnetisches Feld 6 des Schienenfahrzeuges, welches von diesem emittiert wird. Das magnetische Feld 6 des Schienenfahrzeuges tritt in den Spulenteil 7, bzw. die Windung 2 der Sensorspule 1 mit einer höheren Intensität ein, als in den Spulenteil 7', bzw. die Windung 2'. Um dennoch eine Abschwächung des emittierten magnetischen Feldes 6, bzw. der durch diese induzierten Spannung zu ermöglichen, weist die Windung 2' eine andere, im vorliegendem Ausführungsbeispiel größere Fläche A 2 und ebenso eine andere Windungszahl n 2 auf, als die Windung 2, bzw. deren Fläche A 1, bzw. Windungszahl n 1. Sowohl durch die unterschiedlichen Flächen A 1, A 2 , als auch durch die unterschiedlichen Windungszahlen n 1, n 2 tritt in jedem der Schenkel Spulenteile 7, 7' in Summe ein bezogen auf den magnetischen Fluss gleich großes magnetische Feld 6 ein. Folglich wird eine betragsmäßig gleich große Spannung induziert. Hierdurch wird erreicht, dass das emittierte magnetische Feld 6 abgeschwächt wird, bzw. die von diesem Feld erzeugte Spannung in den beiden Spulenteilen 7, 7' ist betragsmäßig gleich, wodurch keine Störspannung an einer an der Sensorspule angeschlossenen Elektronik auftritt. Dies wird sowohl durch die orthogonale Anordnung zur Bewegungsrichtung 5 des Rades des Schienenfahrzeuges 8, als auch durch die Form der Sensorspule 1 und durch die unterschiedlichen Flächen, bzw. Windungszahlen erreicht. -
- 1
- Sensorspule
- 2, 2`
- Windung
- 3
- Längsachse
- 4
- Kreuzungspunkt
- 5
- Bewegungsrichtung der Räder eines Schienenfahrzeugs
- 6
- magnetisches Feld des Schienenfahrzeuges
- 7, 7'
- Spulenteil
- 8
- Rad des Schienenfahrzeugs
- 9, 9'
- Schienenkopf
Claims (12)
- Sensor zum Erfassen von Metallteilen , insbesondere von metallischen oder teilmetallischen Rädern eines Schienenfahrzeuges, mit einem elektrischen Schwingkreis, welcher mindestens eine Sensorkapazität und eine ein magnetisches Feld erzeugende Sensorspule (1) aufweist, wobei diese eine Luftspule ist, dadurch gekennzeichnet, dassdie Windungen (2) der Sensorspule (1) in deren Längsachse (3) derart angeordnet sind, dass ein Kreuzungspunkt (4) der Windungen (2) entsteht, wobei die Windungen (2) bedingt durch ihre kreisförmige Anordnung in Längsachse (3) der Sensorspule (1) zwei Spulenteile (7, 7') definieren, welche in Reihe geschaltet sind, und/oder wobei bei Stromfluss durch die beiden Spulenteile (7, 7') ein Spulenteil (7) einen magnetischen Nordpol und der zweite Spulenteil (7') einen magnetischen Südpol aufspannt,wobei die Sensorspule (1), bezogen auf deren Längsachse (3), in einem Winkel mit einem Wert im Bereich zwischen 70° und 110° zu einer Bewegungsrichtung (5) der Metallteile des Schienenfahrzeugs angeordnet ist, wobei sich in die jeweiligen Spulenteile (7,7') induzierte Spannungen aufgrund unterschiedlicher Vorzeichen gegenseitig aufheben.
- Sensor nach Anspruch 1,
dadurch gekennzeichnet, dass
die Windungen (2) kreisförmig angeordnet sind. - Sensor nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Windungen (2) der Sensorspule (1), in der Längsachse (3), in Form einer Acht angeordnet sind. - Sensor nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Windungen (2) der Sensorspule (1) in einer Ebene liegen, deren Flächennormale ungefähr parallel zu den metallischen oder teilmetallischen Rädern (8) des Schienenfahrzeuges ist. - Sensor nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
die Windungen (2) der Sensorspule (1) in einer Ebene liegen, deren Flächennormale mit den metallischen oder teilmetallischen Rädern (8) des Schienenfahrzeugs einen spitzen Winkel beschreibt, und/oder wobei das Produkt aus der Fläche (A 1) des ersten Spulenteils (7) multipliziert mit der Windungszahl (n 1) des ersten Spulenteils (7) gleich dem Produkt aus der Fläche (A 2) des zweiten Spulenteils (7') multipliziert mit der Windungszahl (n 2) des zweiten Spulenteils (7') ist. - Sensor nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dassdie Windungen (2, 2') asymmetrische Flächen (A 1 , A 2) aufspannen, und/oderwobeidas Produkt aus der Fläche (A 1) des ersten Spulenteils (7) multipliziert mit der Windungszahl (n 1) des ersten Spulenteils (7) ungleich dem Produkt aus der Fläche (A 2) des zweiten Spulenteils (7') multipliziert mit der Windungszahl (n 2) des zweiten Spulenteils (7') ist. - Verfahren zum Abschwächen eines von einem Schienenfahrzeug ausgehenden magnetischen Feldes (6), aufweisend den Schritt:Anbringen einer Sensorspule (1) eines elektrischen Schwingkreises, wobei die Sensorspule (1) eine Luftspule ist, dadurch gekennzeichnet, dass die Windungen (2, 2') der Sensorspule (1), in deren Längsachse (3),derart angeordnet sind, dass ein Kreuzungspunkt (4) der Windungen (2, 2') entsteht, wobei durch die kreisförmige Anordnung der Windungen (2, 2') in Längsachse (3) zwei Spulenteile (7, 7') definiert werden, welche in Reihe geschaltet werden, und/oder wobei bei Stromfluss durch die beiden Spulenteile (7, 7') von dem ersten Spulenteil (7) ein magnetischer Nordpol und vom zweiten Spulenteil (7') ein magnetischer Südpol aufgespannt wird,wobei die Sensorspule (1) bezogen auf deren Längsachse (3) in einem Winkel mit einem Wert im Bereich zwischen 70° und 110° zu einer Bewegungsrichtung der Metallteile des Schienenfahrzeuges angeordnet wird, wobei sich in die jeweiligen Spulenteile (7,7') induzierte Spannungen aufgrund unterschiedlicher Vorzeichen gegenseitig.
- Verfahren nach Anspruch 7,
dadurch gekennzeichnet, dass
die Windungen (2, 2') kreisförmig angeordnet werden. - Verfahren nach Anspruch 7 oder 8,
dadurch gekennzeichnet, dass
die Windungen (2, 2') der Sensorspule (1), in der Längsachse (3), in Form einer Acht angeordnet werden. - Verfahren nach einem der Ansprüche 7 bis 9,
dadurch gekennzeichnet, dass
die Windungen (2, 2') der Sensorspule (1) in einer Ebene angeordnet werden, deren Flächennormale ungefähr parallel zu den metallischen oder teilmetallischen Rädern (8) des Schienenfahrzeuges ist. - Verfahren nach einem der Ansprüche 7 bis 9,
dadurch gekennzeichnet, dassdie Windungen (2, 2') der Sensorspule (1) in einer Ebene angeordnet werden, deren Flächennormale mit den metallischen oder teilmetallischen Rädern (8) des Schienenfahrzeugs einen spitzen Winkel beschreibt, und/oderwobeidas Produkt aus der Fläche (A 1) des ersten Spulenteils (7) multipliziert mit der Windungszahl (n 1) des ersten Spulenteils (7) gleich dem Produkt aus der Fläche (A 2) des zweiten Spulenteils (7') multipliziert mit der Windungszahl (n 2) des zweiten Spulenteils (7') ist. - Verfahren nach einem der Ansprüche 7 bis 10,
dadurch gekennzeichnet, dassdurch die Windungen (2, 2') asymmetrische Flächen (A 1 , A 2) aufgespannt werden, und/oderwobeidas Produkt aus der Fläche (A 1) des ersten Spulenteils (7) multipliziert mit der Windungszahl (n 1) des ersten Spulenteils (7) ungleich dem Produkt aus der Fläche (A 2) des zweiten Spulenteils (7') multipliziert mit der Windungszahl (n 2) des zweiten Spulenteils (7') ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018111454.0A DE102018111454A1 (de) | 2018-05-14 | 2018-05-14 | Sensor zum Erfassen von Metallteilen, sowie Verfahren zum Abschwächen eines magnetischen Feldes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3569466A1 EP3569466A1 (de) | 2019-11-20 |
EP3569466B1 true EP3569466B1 (de) | 2024-05-15 |
Family
ID=66379753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19172211.5A Active EP3569466B1 (de) | 2018-05-14 | 2019-05-02 | Sensor zum erfassen von metallteilen, sowie verfahren zum abschwächen eines magnetischen feldes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3569466B1 (de) |
DE (1) | DE102018111454A1 (de) |
DK (1) | DK3569466T3 (de) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3632316A1 (de) * | 1986-09-23 | 1988-03-31 | Siemens Ag | Fahrzeugdetektor |
AT406139B (de) * | 1998-04-08 | 2000-02-25 | Frauscher Josef | Radsensor |
DE10137519A1 (de) * | 2001-07-30 | 2003-02-13 | Siemens Ag | Radsensor |
DE10221577B3 (de) * | 2002-05-08 | 2004-03-18 | Siemens Ag | Magnetischer Radsensor |
DE102008056481A1 (de) * | 2008-11-05 | 2010-05-06 | Siemens Aktiengesellschaft | Radsensor |
DE102009053257B4 (de) * | 2009-11-05 | 2013-10-02 | Siemens Aktiengesellschaft | Radsensor |
-
2018
- 2018-05-14 DE DE102018111454.0A patent/DE102018111454A1/de active Pending
-
2019
- 2019-05-02 DK DK19172211.5T patent/DK3569466T3/da active
- 2019-05-02 EP EP19172211.5A patent/EP3569466B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
DK3569466T3 (da) | 2024-07-22 |
EP3569466A1 (de) | 2019-11-20 |
DE102018111454A1 (de) | 2019-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006053023B4 (de) | Induktiver Näherungsschalter | |
EP3107791B1 (de) | Sensoreinrichtung zum erfassen einer magnetfeldänderung sowie anlage des spurgebundenen verkehrs mit zumindest einer solchen sensoreinrichtung | |
DE102011115030B4 (de) | Berührungslos arbeitender Wegmesssensor und Verfahren zur berührungslosen Wegstreckenmessung | |
WO2016037597A1 (de) | Sensorelement eines induktiven näherungs- oder abstandssensor und verfahren zum betreiben des sensorelements | |
WO2021239175A1 (de) | Positionssensor, zentralausrücker und kupplungseinrichtung | |
DE102007042920A1 (de) | Sensoranordnung für eine in einem Magnetlager gelagerte Welle | |
EP3131779A1 (de) | Vorrichtung und verfahren zur detektion eines störkörpers in einem system zur induktiven energieübertragung sowie system zur induktiven energieübertragung | |
DE102019125309A1 (de) | Sensorsystem zur Erfassung einer Winkellage und eines Linearwegs | |
DE10057773B4 (de) | Näherungsschalter | |
DE102012010014B3 (de) | Verfahren zur Bestimmung der Position einer mobilen Einheit und Anlage zur Durchführung eines Verfahrens | |
EP3673231B1 (de) | Induktiver sensor | |
EP3569466B1 (de) | Sensor zum erfassen von metallteilen, sowie verfahren zum abschwächen eines magnetischen feldes | |
DE102015221585B3 (de) | Verfahren zum Betreiben einer Ladevorrichtung zum induktiven Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs, Ladevorrichtung sowie Anordnung | |
EP3824323B1 (de) | Detektor zum detektieren von elektrisch leitfähigem material | |
EP1685365A2 (de) | Berührungslos arbeitendes wegmesssystem | |
EP3569467B1 (de) | Sensor zum erfassen von metallteilen, sowie verfahren zum abschwächen eines magnetischen feldes | |
EP2936212B1 (de) | Sensor zur ortung metallischer oder magnetischer objekte | |
EP2884237A1 (de) | Induktiver Drehwinkelsensor | |
EP2797802B1 (de) | Sensoreinrichtung zum detektieren eines sich entlang einer fahrschiene bewegenden rades | |
DE102012015200A1 (de) | Induktiver Näherungsschalter | |
DE102015122244B4 (de) | Anordnung zur Kompensierung von in einem Übertrager induzierten Störspannungen | |
DE102013219826A1 (de) | Lineare magnetische Schienenbremse | |
EP2382120B1 (de) | Radsensor | |
EP3294608B1 (de) | Sensoreinrichtung zum detektieren eines sich entlang einer fahrschiene bewegenden rades | |
DE102022208616A1 (de) | Induktive Sensoranordnung zur Ermittlung eines Drehwinkels oder eines Differenzwinkels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200512 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20211011 |
|
17Q | First examination report despatched |
Effective date: 20211021 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230601 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502019011259 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B61L0001160000 Ipc: H04L0012120000 Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: B61L0001160000 Ipc: H04L0012120000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240104 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04L 12/12 20060101AFI20231215BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019011259 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20240716 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240515 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240916 |