EP3569466B1 - Capteur de détection des parties métalliques ainsi que procédé d'affaiblissement d'un champ magnétique - Google Patents

Capteur de détection des parties métalliques ainsi que procédé d'affaiblissement d'un champ magnétique Download PDF

Info

Publication number
EP3569466B1
EP3569466B1 EP19172211.5A EP19172211A EP3569466B1 EP 3569466 B1 EP3569466 B1 EP 3569466B1 EP 19172211 A EP19172211 A EP 19172211A EP 3569466 B1 EP3569466 B1 EP 3569466B1
Authority
EP
European Patent Office
Prior art keywords
coil
windings
sensor
rail vehicle
coil section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19172211.5A
Other languages
German (de)
English (en)
Other versions
EP3569466A1 (fr
Inventor
Ralf Wiengarten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pintsch GmbH
Original Assignee
Pintsch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pintsch GmbH filed Critical Pintsch GmbH
Publication of EP3569466A1 publication Critical patent/EP3569466A1/fr
Application granted granted Critical
Publication of EP3569466B1 publication Critical patent/EP3569466B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/163Detection devices
    • B61L1/165Electrical

Definitions

  • the present invention relates to a sensor for detecting metal parts, in particular metallic or partially metallic wheels of a rail vehicle, a use of at least two such sensors and a method for attenuating a magnetic field emanating from a rail vehicle.
  • devices for detecting metal parts are implemented using inductive sensors. This requires a high level of safety, despite only sporadic use.
  • An example of such an application area is rail transport. The following refers to the use of such sensors or such a method in rail transport. However, this does not imply any restriction to this application area.
  • a sensor In the field of railway transport, it is common for a sensor to detect metal parts, in particular metallic or partially metallic wheels of a rail vehicle, to be arranged parallel in the longitudinal direction of the rail, i.e. parallel to the direction of movement of the wheels of the rail vehicle.
  • a sensor provides signals with high availability, which are usually routed via a cable to an indoor system and processed accordingly. This enables functions such as the presence detection of a rail vehicle, the direction of travel detection or a track vacancy detection in the form of an axle count to be implemented. This is used, for example, in EN 36 32 316 A1 shown.
  • each sensor it is also common for each sensor to consist of a sensor coil and an oscillator circuit.
  • the sensor coil forms an oscillating circuit with a capacitor and creates an alternating magnetic field in its surroundings.
  • a metal part of a railway wheel that penetrates the effective range of the sensor coil dampens the oscillating circuit because the iron of the railway wheel draws energy from it through eddy current losses. This results in the voltage amplitude or the voltage frequency of the oscillating circuit changing, which is converted into a change in the current consumption of the sensor.
  • This measurement signal is fed via a two-wire line into the internal system of a security system and processed there or prepared for processing.
  • the mounting position of the sensor is predetermined within narrow limits by the geometry of the rail or by the railway wheel. Irrespective of this, however, a problem arises that the rail vehicle can also emit magnetic fields with such a high intensity that a voltage is induced in the sensor coil. This process can lead to a state in the electronics that incorrectly transmits the presence of a wheel to the higher-level evaluation electronics. There, this leads to incorrect information that can disrupt the operation of the railway network.
  • Such magnetic fields emitted by the rail vehicle are generated, for example, by eddy current brakes, magnetic rail brakes or a high current consumption by the drive units of the rail vehicles.
  • the prior art document DE 199 15 597 A1 an arrangement of a figure-of-eight coil that is aligned in the direction of travel of the rail vehicle.
  • the two partial coils of the figure-of-eight coil are connected in such a way that a magnetic field that is emitted from a distance significantly greater than the extent of the figure-of-eight coil is already compensated in the figure-of-eight coil.
  • the WO 2010/052081 A1 describes an arrangement in which one coil is the transmitting or receiving coil and a second coil serves exclusively for compensation. This second coil is arranged at least one third of the coil diameter of the transmitting or receiving coil below.
  • the EN 10 2009 053 257 A1 discloses an arrangement of sensor and compensation coil with a total of three coils.
  • the magnetic field emitted by the rail vehicle either hits the sensor coil at different times, or a compensation arrangement for an induced voltage is very difficult to implement.
  • One disadvantage is the arrangement of a figure-of-eight coil in the direction of movement of the rail vehicle. This means that first one partial coil of the figure-of-eight coil, then both partial coils of the figure-of-eight coil, and at the end of the sensor coil's passage only the last partial coil of the figure-of-eight coil is flooded with the disturbing magnetic field of the rail vehicle.
  • a figure-of-eight coil is only effective if it is flooded at the same time with approximately the same intensity. For this reason, an interference voltage is induced, particularly when only one partial coil of the figure-of-eight coil is flooded, as occurs at the beginning and end of the passage of the wheel of the rail vehicle.
  • approximately at an orthogonal angle is understood to mean in particular an arrangement of the sensor coil at an angle of 70° to 110° to a direction of movement of the metallic or partially metallic wheels of the rail vehicle, whereby this arrangement is related to the longitudinal axis of the sensor coil.
  • this arrangement is at an angle of 80° to 100°, particularly preferably 85° to 95°. It is also possible that this is an orthogonal angle in the mathematical sense, i.e. a right-angled (90°) angle.
  • the sensor according to the invention offers the advantage that the magnetic field emitted by a rail vehicle is weakened. This prevents the induction of a voltage which is induced in the sensor coil by such a magnetic field. This is achieved by the sensor coil, which is designed as an air coil, being arranged approximately at an orthogonal angle to the direction of movement of the metallic or partially metallic wheels of the Rail vehicle. As a result, the magnetic fields emanating from the rail vehicle are weakened at the moment they reach the sensor coil due to the coil structure and the coil positioning.
  • the structure of the sensor coil in particular the windings which are not electrically conductively connected at a crossing point, also ensures that only the magnetic fields emanating from the rail vehicle are compensated.
  • the magnetic field generated by the sensor coil which is influenced by the metallic or partially metallic wheels and is used by the sensor to detect the presence of the wheel of a rail vehicle, is not impaired by the object according to the invention.
  • the present invention is based on the finding that the magnetic fields emitted by the rail vehicle have, to a good approximation, the same direction and similar intensities at every point of rail contact.
  • the generators of this magnetic field emitted by the rail vehicle are located at a distance from the sensor coil which is large compared to the dimensions of the sensor coil. This is used both in the construction, especially in the windings, and in the approximately orthogonal positioning of the sensor coil, which ensures the compensation of the voltage induced by the magnetic field emitted by the rail vehicle.
  • the windings are arranged in a circle. This makes it easier to produce the sensor coil and provides a known shape.
  • the windings of the sensor coil are arranged in the shape of a figure eight along the longitudinal axis. This allows the detection direction of the sensor coil to be precisely configured. With such a shape, it is also possible to focus the detection cone of the sensor coil, which means that the metallic or partially metallic wheels of a rail vehicle to be detected can be detected at a greater distance from the sensor coil.
  • the windings due to their circular arrangement in the longitudinal axis of the sensor coil, define two coil parts that are connected in series.
  • One advantage of this is that a coil structure known in the prior art can be used. can be achieved, thereby achieving the advantages of this coil structure known in the prior art.
  • one coil part has a magnetic north pole and the second coil part has a magnetic south pole. This ensures that at all times, including when a wheel of a rail vehicle is passing over, the magnetic fields emitted by the rail vehicle strike the two coil parts of the sensor coil at the same time. This induces a voltage in the two coil parts, which, however, cancel each other out due to different signs.
  • the windings of the sensor coil lie in a plane whose surface normal is approximately parallel to the metallic or partially metallic wheels of the rail vehicle.
  • the windings of the sensor coil lie in a plane whose surface normal forms an acute angle with the metallic or partially metallic wheels of the rail vehicle.
  • the product of the area of the first coil part multiplied by the number of turns of the first coil part is equal to the product of the area of the second coil part multiplied by the number of turns of the second coil part.
  • Such a sensor coil is particularly advantageous when the magnetic fields emitted by the rail vehicle impinge symmetrically on the sensor coil. This makes it possible to weaken an induced voltage that occurs due to the symmetrically emitted magnetic fields.
  • the windings span asymmetrical areas. From a functional point of view, it has proven to be advantageous if the product of the area of the first coil part multiplied by the number of turns of the first coil part is not equal to the product of the area of the second coil part multiplied by the number of turns of the second coil part. This is particularly advantageous if the magnetic fields emitted by the rail vehicle are applied asymmetrically to the sensor coil. This can further reduce any induced voltage that occurs due to the asymmetrical emitted magnetic fields. Since the magnetic fields emitted by the rail vehicle are stronger near a rail head, the emitted magnetic field is often asymmetrical and therefore also often hits the sensor coil asymmetrically.
  • a residual voltage can be measured on the sensor coil even after compensation, which can continue to disrupt the electronics in their function. Because the windings have different numbers of turns and span asymmetrical surfaces, the residual voltage can be reduced to a minimum, or reduced to zero, so as not to impair the detection of metal parts, especially metallic or partially metallic wheels of a rail vehicle.
  • the object set out at the beginning is also achieved by using at least two sensors according to one of the preceding embodiments for determining a direction of movement of a rail vehicle. This achieves the advantages of the sensor.
  • the sensor coil of the present invention is designed in such a way that the magnetic fields emitted by the rail vehicle, as a result of the coil structure and the position of the sensor coil, generate a voltage in the sensor coil that compensates for itself the moment they reach the sensor coil.
  • the structure and positioning of the sensor coil thus ensure that only the externally interfering magnetic fields compensate for themselves.
  • the desired magnetic field i.e. the magnetic field that is used to detect metal parts, in particular metallic or partially metallic wheels of a rail vehicle, is not impaired by this structure and positioning.
  • the Figure 1 shows a schematic representation of a first embodiment of the sensor coil 1 according to the invention in the form of an air coil.
  • the dashed arrow 5 indicates a direction of movement of a wheel of a rail vehicle (not shown).
  • the sensor coil 1 shown has a longitudinal axis 3 and two windings 2, 2', which intersect in an electrically non-conductive manner at a crossing point 4.
  • Each of the windings 2, 2' defines a coil part 7, 7', with a first coil part 7 having an area A 1 and a number of windings n 1 .
  • a second coil part 7' has an area A 2 and a number of windings n 2 .
  • the current flow is also shown schematically which flows through the two coil parts 7, 7'.
  • the sensor coil 1 is located at an approximately orthogonal angle to the rail heads 9, 9'.
  • a magnetic field of the rail vehicle, which is emitted by it, is not shown. Even without the magnetic field being shown, it is clear that the magnetic field of the rail vehicle enters the coil parts 7, 7', or the windings 2, 2' of the sensor coil 1, and is weakened both by the symmetrical design of the sensor coil 1, and by the approximately orthogonal positioning of the sensor coil 1, or the voltage induced by this magnetic field in the respective coil parts 7, 7' is compensated.
  • the electronics connected to the sensor coil 1 (not shown) are therefore not affected by any interference voltage.
  • a sensor coil 1 according to a second embodiment is shown schematically.
  • the windings 2, 2' of the sensor coil 1 have the shape of a cornered figure eight, whereby they intersect in an electrically non-conductive manner at an intersection point 4.
  • the direction of movement 5 of a wheel 8 of a rail vehicle is also shown schematically.
  • the windings 2, 2' are located in a plane which is spanned by the first rail head 9 and a second rail head opposite it (not shown).
  • the sensor coil 1 is located at an approximately orthogonal angle to the direction of movement 5 of the wheels of the rail vehicle.
  • the surface normal of the plane spanned by the windings 2, 2' is approximately parallel to the metallic or partially metallic wheels 8 of the rail vehicle.
  • a magnetic field 6 of the rail vehicle which is emitted by it.
  • This magnetic field 6 can be generated, for example, by an eddy current brake, by magnetic rail brakes or by a strong current consumption by the drive units of the rail vehicle.
  • the magnetic field 6 of the rail vehicle enters the coil parts 7, 7', or the windings 2, 2' of the sensor coil 1, and is attenuated by both the symmetrical design of the sensor coil 1 and the approximately orthogonal positioning of the sensor coil 1. In other words, the voltage induced by this magnetic field 6 in the respective coil parts 7, 7' is compensated.
  • the electronics connected to the sensor coil 1 (not shown) are therefore not affected by any interference voltage.
  • the Figure 3 shows a sensor coil 1 according to a third embodiment.
  • the windings 2, 2' of the sensor coil 1 have the shape of a cornered figure eight, and they intersect in an electrically non-conductive manner at a crossing point 4.
  • the surface normal of the plane spanned by the windings 2, 2' describes an acute angle with the metallic or partially metallic wheels 8 of the rail vehicle.
  • the sensor coil 1 is located at an approximately orthogonal angle to the direction of movement 5 of the wheels of the rail vehicle.
  • a magnetic field 6 of the rail vehicle is shown schematically, which is emitted by it.
  • the magnetic field 6 of the rail vehicle enters the coil part 7, or the winding 2 of the sensor coil 1, with a higher intensity than in the coil part 7', or the winding 2'.
  • the winding 2' has a different area A 2 , which is larger in the present embodiment, and also a different number of turns n 2 than the winding 2, or its area A 1 , or number of turns n 1 .
  • Both the different areas A 1 , A 2 , and the different numbers of turns n 1 , n 2 result in a magnetic field 6 of the same size in relation to the magnetic flux in each of the limbs of the coil parts 7, 7'. Consequently, a voltage of the same magnitude is induced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Claims (12)

  1. Capteur de détection de pièces métalliques, en particulier de roues métalliques ou partiellement métalliques d'un véhicule ferroviaire, comprenant un circuit oscillant électrique qui présente au moins un condensateur de capteur et une bobine de capteur (1) générant un champ magnétique, celle-ci étant une bobine à air,
    caractérisé en ce que
    les spires (2) de la bobine de capteur (1) sont disposées dans son axe longitudinal (3) de manière à former un point de croisement (4) des spires (2), les spires (2) définissant, du fait de leur disposition circulaire dans l'axe longitudinal (3) de la bobine de capteur (1), deux parties de bobine (7, 7') qui sont montées en série, et/ou, lors du passage du courant à travers les deux parties de bobine (7, 7'), une partie de bobine (7) définit un pôle nord magnétique et la deuxième partie de bobine (7') définit un pôle sud magnétique,
    la bobine de capteur (1) étant disposée, par rapport à son axe longitudinal (3), selon un angle dont la valeur est comprise entre 70° et 110° par rapport à une direction de déplacement (5) des pièces métalliques du véhicule ferroviaire, les tensions induites dans les parties de bobine respectives (7, 7') s'annulant mutuellement en raison de signes différents.
  2. Capteur selon la revendication 1,
    caractérisé en ce que
    les spires (2) sont disposées de manière circulaire.
  3. Capteur selon la revendication 1 ou 2,
    caractérisé en ce que
    les spires (2) de la bobine de capteur (1) sont disposées en forme de huit selon l'axe longitudinal (3).
  4. Capteur selon l'une des revendications précédentes,
    caractérisé en ce que
    les spires (2) de la bobine de capteur (1) sont situées dans un plan dont la normale à la surface est approximativement parallèle aux roues métalliques ou partiellement métalliques (8) du véhicule ferroviaire.
  5. Capteur selon l'une des revendications 1 à 3,
    caractérisé en ce que
    les spires (2) de la bobine de capteur (1) sont situées dans un plan dont la normale à la surface décrit un angle aigu avec les roues métalliques ou partiellement métalliques (8) du véhicule ferroviaire, et/ou le produit de la surface (A1) de la première partie de bobine (7) multipliée par le nombre de spires (n1) de la première partie de bobine (7) est égal au produit de la surface (A2) de la deuxième partie de bobine (7') multipliée par le nombre de spires (n2) de la deuxième partie de bobine (7').
  6. Capteur selon l'une des revendications 1 à 4,
    caractérisé en ce que
    les spires (2, 2') définissent des surfaces asymétriques (A1 , A2), et/ou le produit de la surface (A1) de la première partie de bobine (7) multipliée par le nombre de spires (n1) de la première partie de bobine (7) est inégal au produit de la surface (A2) de la deuxième partie de bobine (7') multipliée par le nombre de spires (n2) de la deuxième partie de bobine (7').
  7. Procédé d'atténuation d'un champ magnétique (6) émanant d'un véhicule ferroviaire, comprenant l'étape consistant à :
    monter une bobine de capteur (1) d'un circuit oscillant électrique, la bobine de capteur (1) étant une bobine à air,
    caractérisé en ce que les spires (2) de la bobine de capteur (1) sont disposées dans son axe longitudinal (3) de manière à former un point de croisement (4) des spires (2), les spires (2, 2') définissant, du fait de leur disposition circulaire dans l'axe longitudinal (3), deux parties de bobine (7, 7') qui sont montées en série, et/ou, lors du passage du courant à travers les deux parties de bobine (7, 7'), un pôle nord magnétique est défini par la première partie de bobine (7) et un pôle sud magnétique est défini par la deuxième partie de bobine (7'),
    la bobine de capteur (1) étant disposée, par rapport à son axe longitudinal (3), selon un angle dont la valeur est comprise entre 70° et 110° par rapport à une direction de déplacement des pièces métalliques du véhicule ferroviaire, les tensions induites dans les parties de bobine respectives (7, 7') s'annulant mutuellement en raison de signes différents.
  8. Procédé selon la revendication 7,
    caractérisé en ce que
    les spires (2, 2') sont disposées de manière circulaire.
  9. Procédé selon la revendication 7 ou 8,
    caractérisé en ce que
    les spires (2, 2') de la bobine de capteur (1) sont disposées en forme de huit selon l'axe longitudinal (3).
  10. Procédé selon l'une des revendications 7 à 9,
    caractérisé en ce que
    les spires (2, 2') de la bobine de capteur (1) sont disposées dans un plan dont la normale à la surface est approximativement parallèle aux roues métalliques ou partiellement métalliques (8) du véhicule ferroviaire.
  11. Procédé selon l'une des revendications 7 à 9,
    caractérisé en ce que
    les spires (2, 2') de la bobine de capteur (1) sont disposées dans un plan dont la normale à la surface décrit un angle aigu avec les roues métalliques ou partiellement métalliques (8) du véhicule ferroviaire, et/ou
    le produit de la surface (A1) de la première partie de bobine (7) multipliée par le nombre de spires (n1) de la première partie de bobine (7) est égal au produit de la surface (A2) de la deuxième partie de bobine (7') multipliée par le nombre de spires (n2) de la deuxième partie de bobine (7').
  12. Procédé selon l'une des revendications 7 à 10,
    caractérisé en ce que
    des surfaces asymétriques (A1 , A2) sont définies par les spires (2, 2'), et/ou
    le produit de la surface (A1) de la première partie de bobine (7) multipliée par le nombre de spires (n1) de la première partie de bobine (7) est inégal au produit de la surface (A2) de la deuxième partie de bobine (7') multipliée par le nombre de spires (n2) de la deuxième partie de bobine (7').
EP19172211.5A 2018-05-14 2019-05-02 Capteur de détection des parties métalliques ainsi que procédé d'affaiblissement d'un champ magnétique Active EP3569466B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018111454.0A DE102018111454A1 (de) 2018-05-14 2018-05-14 Sensor zum Erfassen von Metallteilen, sowie Verfahren zum Abschwächen eines magnetischen Feldes

Publications (2)

Publication Number Publication Date
EP3569466A1 EP3569466A1 (fr) 2019-11-20
EP3569466B1 true EP3569466B1 (fr) 2024-05-15

Family

ID=66379753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19172211.5A Active EP3569466B1 (fr) 2018-05-14 2019-05-02 Capteur de détection des parties métalliques ainsi que procédé d'affaiblissement d'un champ magnétique

Country Status (2)

Country Link
EP (1) EP3569466B1 (fr)
DE (1) DE102018111454A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3632316A1 (de) * 1986-09-23 1988-03-31 Siemens Ag Fahrzeugdetektor
AT406139B (de) * 1998-04-08 2000-02-25 Frauscher Josef Radsensor
DE10137519A1 (de) * 2001-07-30 2003-02-13 Siemens Ag Radsensor
DE10221577B3 (de) * 2002-05-08 2004-03-18 Siemens Ag Magnetischer Radsensor
DE102008056481A1 (de) * 2008-11-05 2010-05-06 Siemens Aktiengesellschaft Radsensor
DE102009053257B4 (de) * 2009-11-05 2013-10-02 Siemens Aktiengesellschaft Radsensor

Also Published As

Publication number Publication date
EP3569466A1 (fr) 2019-11-20
DE102018111454A1 (de) 2019-11-14

Similar Documents

Publication Publication Date Title
EP3107791B1 (fr) Système de capteurs servant à détecter une variation du champ magnétique et installation de circulation guidée sur rails comprenant au moins un tel système de capteurs
DE102006053023B4 (de) Induktiver Näherungsschalter
DE102011115030B4 (de) Berührungslos arbeitender Wegmesssensor und Verfahren zur berührungslosen Wegstreckenmessung
WO2016037597A1 (fr) Elément de détection d'un capteur de proximité inductif ou d'un capteur de distance et procédé pour faire fonctionner l'élément de détection
EP3131779A1 (fr) Dispositif et procédé de détection d'un élément perturbateur dans un système de transmission d'énergie par induction ainsi que système de transmission d'énergie par induction
WO2021239175A1 (fr) Capteur de position, dispositif de débrayage central et dispositif d'embrayage
WO2009030221A2 (fr) Ensemble capteur pour un arbre logé dans un palier magnétique
DE102019125309A1 (de) Sensorsystem zur Erfassung einer Winkellage und eines Linearwegs
DE10057773B4 (de) Näherungsschalter
DE102012010014B3 (de) Verfahren zur Bestimmung der Position einer mobilen Einheit und Anlage zur Durchführung eines Verfahrens
DE202016000534U1 (de) Vorrichtung zur Drehzahlerfassung
EP3673231B1 (fr) Capteur inductif
EP3569466B1 (fr) Capteur de détection des parties métalliques ainsi que procédé d'affaiblissement d'un champ magnétique
DE102015221585B3 (de) Verfahren zum Betreiben einer Ladevorrichtung zum induktiven Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs, Ladevorrichtung sowie Anordnung
EP1685365A2 (fr) Systeme de mesure de deplacement fonctionnant sans contact
EP3569467B1 (fr) Capteur de détection des parties métalliques ainsi que procédé d'affaiblissement d'un champ magnétique
EP2936212B1 (fr) Capteur pour localiser des objets metalliques ou magnetiques
EP2884237A1 (fr) Capteur d'angle de rotation inductif
EP3824323B1 (fr) Détecteur servant à détecter du matériau électriquement conducteur
EP2797802B1 (fr) Dispositif de détection permettant de détecter une roue se déplaçant sur un rail de roulement
DE102012015200A1 (de) Induktiver Näherungsschalter
DE102015122244B4 (de) Anordnung zur Kompensierung von in einem Übertrager induzierten Störspannungen
DE102013219826A1 (de) Lineare magnetische Schienenbremse
EP2382120B1 (fr) Capteur de roue
EP3294608B1 (fr) Dispositif de détection permettant de détecter une roue se déplaçant le long d'un rail de roulement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200512

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211011

17Q First examination report despatched

Effective date: 20211021

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019011259

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B61L0001160000

Ipc: H04L0012120000

Free format text: PREVIOUS MAIN CLASS: B61L0001160000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240104

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 12/12 20060101AFI20231215BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019011259

Country of ref document: DE