EP3558656B1 - Matrice pour une presse et procédé permettant de fabriquer une ébauche crue à l'aide d'une presse - Google Patents

Matrice pour une presse et procédé permettant de fabriquer une ébauche crue à l'aide d'une presse Download PDF

Info

Publication number
EP3558656B1
EP3558656B1 EP17816745.8A EP17816745A EP3558656B1 EP 3558656 B1 EP3558656 B1 EP 3558656B1 EP 17816745 A EP17816745 A EP 17816745A EP 3558656 B1 EP3558656 B1 EP 3558656B1
Authority
EP
European Patent Office
Prior art keywords
die
peripheral surface
stiffness
inner peripheral
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17816745.8A
Other languages
German (de)
English (en)
Other versions
EP3558656A1 (fr
Inventor
Rainer Schmitt
Tobias Müller
Thomas Schupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Powder Metallurgy Engineering GmbH
Original Assignee
GKN Sinter Metals Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKN Sinter Metals Engineering GmbH filed Critical GKN Sinter Metals Engineering GmbH
Publication of EP3558656A1 publication Critical patent/EP3558656A1/fr
Application granted granted Critical
Publication of EP3558656B1 publication Critical patent/EP3558656B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • B30B15/026Mounting of dies, platens or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • B30B15/022Moulds for compacting material in powder, granular of pasta form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds

Definitions

  • the invention relates to a die for a press, in particular for a powder press for producing green compacts.
  • the press is used in particular to produce sinterable green compacts, i.e. green compacts that can be sintered after the pressing process.
  • metallic and/or ceramic powders can be pressed into green compacts in the die.
  • Known matrices of this type comprise a so-called shrink ring, with a core (particularly made of hard metal) possibly arranged within the shrink ring, which then forms the inner circumferential surface of the die.
  • the inner circumferential surface of the die forms the receptacle for the powder or the green compact to be produced.
  • at least one upper punch of the press can move into the die along an axial direction via a first face of the die that is open at the top.
  • the at least one upper punch slides along the inner circumferential surface of the die and increasingly presses the powder.
  • at least one lower punch can also be provided, which moves into the die along the axial direction via a second face of the die that is open at the bottom, or moves in the die between an upper position and a lower position.
  • the powder is thus pressed into a green compact between the at least one upper punch and the at least one lower punch, with the inner circumferential surface of the die defining in particular a lateral contour of the green compact.
  • the die has a collar on an outer circumferential surface, by means of which the die can be received and clamped in the press.
  • the collar extends in a radial direction over the outer circumferential surface, so that the die can be placed or supported on a support of the press.
  • such dies are essentially cylindrical, wherein the cylindrically shaped outer peripheral surface is usually accommodated in the press via a radial clearance, so that a centering of the punch(s) and the die relative to each other, i.e. a coaxial arrangement of the punch(s) and the die, can be made possible.
  • a die can have punch guide zones on each of the front sides, with a pressing zone spaced apart from the front sides and adjacent to the punch guide zones.
  • the pressing zone is the zone in which the powder is compacted with the highest pressing force.
  • the pressing zone is clearly defined in the die and limited along the axial direction.
  • a demolding zone can be provided at least on one front side, i.e. a zone of the die through which the green compact is pushed out of the die (demolded) and made available for removal from the press.
  • the inner peripheral surface of the die is elastically expanded in the radial direction (or in the direction of a normal vector present on the inner peripheral surface, which is therefore arranged perpendicular to the respective surface of the inner peripheral surface).
  • This expansion in the pressing zone leads to strong frictional forces being generated during demolding.
  • These frictional forces can extend into the demolding zone because the die is usually cylindrical and therefore has a substantially constant stiffness (i.e. a substantially constant resistance to elastic expansion in the radial direction or in the direction of a normal vector present on the inner circumferential surface, which is therefore arranged perpendicular to the respective surface of the inner circumferential surface) along the axial direction.
  • the SU 686 818 A1 is directed to a die according to the preamble of claim 1, the wall thickness of which tapers increasingly outwards along the radial direction.
  • the WO 2016/109111 A1 is directed to a method for producing a component that can be used in a press.
  • the component can have different properties in certain areas, e.g. electrical conductivity, thermal conductivity, density.
  • the object of the present invention is to at least partially solve the problems described with reference to the prior art.
  • unwanted, but previously process-related conicities on the green body are to be avoided.
  • non-rotationally symmetrical components can be produced with high precision.
  • a die for a press is to be provided which is lighter than conventional dies, whereby the dimensional accuracy of the green compacts to be produced is not impaired.
  • a die for arrangement in a press contributes to this, wherein the die extends along an axial direction between a first end face and a (opposite) second end face and forms an inner circumferential surface between the end faces.
  • the die extends from the inner circumferential surface along a radial direction to an outer circumferential surface and to at least one centering surface, which is arranged on a first diameter in the radial direction.
  • the die has a pressing zone at a distance from the end faces. In the area of the pressing zone, the die has a higher maximum (i.e.
  • the maximum first stiffness is at least 10% higher, in particular by at least 15%, preferably by at least 20%, particularly preferably by at least 40% higher than a minimum (i.e. smallest) second stiffness present in at least one of the zones arranged on one of the end faces. This particularly preferably applies to both zones arranged on the end faces.
  • the maximum first stiffness is preferably higher, in particular by at least 10%, preferably by at least 15%, particularly preferably by at least 20%, or even by at least 40%, than a maximum (i.e. greatest) second stiffness present in at least one of the zones arranged on one of the end faces. This particularly preferably applies to both zones arranged on the end faces.
  • the stiffnesses refer in particular to the resistance of the inner circumferential surface to deformation in the radial direction (or in the direction of a normal vector present on the inner circumferential surface, which is therefore arranged perpendicular to the respective surface of the inner circumferential surface).
  • the unit of stiffness is: N/m [Newton/meter].
  • the stiffness can be determined, for example, as follows: Using an FEM analysis in which the deformation, in particular the elastic deformation, of the die is determined at a certain pressing force [N], which acts in particular perpendicularly on the inner circumferential surface of the die (i.e. the displacement of the material of the die in the direction of the normal vector of the inner circumferential surface of the die, which can be specified in [m]). The ratio of these values (pressing force [N]/material displacement [m]) represents the stiffness of the die.
  • the die should therefore be as rigid as possible in the pressing zone in order to to ensure the dimensional stability of the green compact.
  • the die In the area of the lower and/or upper face, the die should have the lowest possible rigidity in order to have greater elasticity, particularly in the demolding zone, so that the frictional forces in this zone are minimized and, if necessary, the surface of the green compact is not affected or is only affected to a small extent.
  • the die is designed in particular for a powder press for producing green compacts.
  • the press is used in particular to produce sinterable green compacts, i.e. green compacts that can be sintered after the pressing process.
  • metallic powders or ceramic powders can be pressed into green compacts in the die.
  • the die comprises a so-called shrink ring, with a core (in particular made of hard metal) possibly arranged within the shrink ring, which then forms the inner peripheral surface of the die.
  • the inner peripheral surface of the die forms the receptacle for the powder or the green compact to be produced.
  • at least one upper punch of the press can move into the die along an axial direction via a first face of the die that is open at the top.
  • the at least one upper punch slides along the inner peripheral surface of the die and increasingly presses the powder.
  • at least one lower punch can also be provided, which moves into the die along the axial direction via a second face of the die that is open at the bottom.
  • the powder is thus pressed into a green compact between the at least one upper punch and the at least one lower punch, with the inner peripheral surface of the die defining in particular a lateral contour of the green compact.
  • the pressing force is introduced into the powder via the punches.
  • the pressing force is maintained via the punches and the die.
  • the pressing force acts on the die in the direction of the normal vector.
  • the die has in particular (if necessary directly adjacent) a punch guide zone as zones on each of the front sides, with a pressing zone being provided at a distance from the front sides and (if necessary directly) adjacent to the punch guide zones.
  • the pressing zone the powder is compacted with the highest pressing force.
  • the pressing zone is defined by the area along the axial direction in which the powder is arranged during the application of the highest pressing force.
  • demoulding zone i.e. a zone of the die through which the green compact is pushed out of the die (demoulded) and made available for removal from the press.
  • the die in the press is aligned with respect to the punches via the at least one (outer) centering surface.
  • the die can also be centered with respect to the punches via other surfaces, e.g. parts of the outer circumferential surface.
  • the smallest radial play between the die and the press in the radial direction is between the centering surface (or the respective surface used for centering) and the press (connections for cooling lines, etc. are excluded).
  • the at least one centering surface is on the largest first diameter of the die, i.e. the die only extends within the first diameter.
  • centering surfaces or the top and bottom of the die in the immediate vicinity of the centering surfaces, are used as collars for clamping the die in a holder (an adapter) of the press.
  • other surfaces are also suitable for being used as collars for clamping the die by means of a holder of the press.
  • the die proposed here is designed in such a way that a maximum or as high as possible initial stiffness is present (only) in the area of the pressing zone.
  • the second stiffness is significantly smaller in the area of the front sides of the die because in these areas (limited in the axial direction) the die is subjected to significantly less stress from the pressing force component acting in the direction of the normal vector.
  • the weight can thus be saved by at least 25%, preferably at least 50% and particularly preferably at least 75%.
  • the die has integrated cooling lines and/or heating lines, which are necessary for tempering the die during the pressing processes.
  • the design and layout of the die is carried out in particular by calculating and simulating the loads and deformations that occur on the die (e.g. through FEM calculations: finite element method). Furthermore, programs for topology optimization can be used here.
  • the lower second stiffness also means that the frictional forces can be reduced during demolding of the green compact from the die.
  • demolding slopes on the green compact or on the inner circumferential surface of the die are no longer absolutely necessary, so that very dimensionally accurate and cylindrical outer circumferential surfaces of the green compact can be produced.
  • the stress on the die due to friction during demolding is reduced, so that the wear on the die can be reduced.
  • the restoring forces of the die are reduced during demolding of the green compact. reduced over one end face, so that the green body is less constricted and therefore has only very little or even no (unwanted) conicity.
  • an adapter change for the die is not necessary. This eliminates the need for a second adapter and an adapter station. This also reduces the risk of damage to the die or punches caused by contact between the die and the sharp-edged punches of the press.
  • the first stiffness along a circumferential direction of the die can be designed differently or can vary in the circumferential direction.
  • the die is not designed to be rotationally symmetrical about an axis parallel to the axial direction (or in particular only with a rotation of 180 degrees along the circumferential direction).
  • Such a design of the die is advantageous, for example, when non-rotationally symmetrical green compacts are produced, e.g. cuboids.
  • the at least one centering surface is arranged along the axial direction (at least partially or exclusively) in the pressing zone.
  • the at least one centering surface can be arranged at least partially in one of the zones adjacent to the end faces and in particular completely outside the pressing zone.
  • the at least one centering surface has a first height along the axial direction, wherein the first height is at most 80% of a smallest distance between the end faces.
  • the smallest distance is preferably determined in the region of the transition from the end faces to the inner circumferential surface.
  • the cross-section reduced in the axial direction describes the shape of the die on the front sides in the area between the inner circumferential surface and the first diameter.
  • a kind of constriction of the shape of the die can be provided here, i.e. the die has a smaller distance between the front sides in this area than in the area of the inner circumferential surface.
  • the connecting areas describe the shape of the die along the circumferential direction.
  • the connecting areas can, for example, form spokes that form the inner circumferential surface with a centering surface arranged on the first diameter.
  • the connecting areas are additionally arranged at a distance from one another in the axial direction.
  • spokes can be formed in this way, for example, which are arranged at least partially in the same positions in the circumferential direction, but at different positions in the axial direction.
  • a second diameter is arranged between the inner circumferential surface and the first diameter, wherein a cross-sectional area of the die present on a second diameter is at most 80%, in particular at most 60%, preferably at most 40% of the inner circumferential surface.
  • a cross-sectional area of the die present on a second diameter is at most 80%, in particular at most 60%, preferably at most 40% of the inner circumferential surface.
  • areas without material, i.e. free spaces are therefore provided on this second diameter.
  • a further cross-sectional area is provided between the second diameter and the first diameter, which is larger than the cross-sectional area present on the second diameter.
  • a plurality of centering surfaces are arranged on the first diameter, wherein the centering surfaces are arranged at a distance from one another along the circumferential direction.
  • at least three centering surfaces are provided, which are arranged at a distance from one another along the circumferential direction.
  • the at least one centering surface can be designed to run all the way around the circumference. This means, for example, that this centering surface is designed to be continuous over the circumference.
  • the die can have at least one holding area arranged at a distance from the at least one centering surface in the axial direction.
  • the holding area is provided to facilitate handling of the die.
  • the holding area serves as a handle for manual handling of the die.
  • the holding area is preferably connected to the die in one piece, i.e. preferably with a material bond. Alternatively, the holding area can also be attached to the die using screws, for example.
  • the holding region is arranged in the radial direction between the inner peripheral surface and the first diameter.
  • the holding area extends in a ring shape.
  • the special shape of the dies proposed here can of course be produced using the known manufacturing processes such as turning, milling, sawing, drilling, grinding, wire cutting, sinking EDM and hard milling etc.
  • additive processes e.g. laser sintering (3D printing process for producing spatial structures from powdered starting material by sintering; the workpiece is produced layer by layer). This allows a truly free design of the die, whereby the weight of the die can be reduced as much as possible.
  • the green compact is demolded from the die in step c) via a first zone arranged on the first end face, wherein the maximum first stiffness is at least 10% higher than at least the minimum second stiffness present in the first zone.
  • first primarily serve (only) to distinguish between several similar objects or sizes, and in particular do not necessarily specify any dependency and/or sequence of these objects or sizes in relation to one another. Should a dependency and/or sequence be required, this is explicitly stated here or it is obvious to the expert when studying the specifically described design.
  • Fig.1 shows a known matrix 1 in a side view in section.
  • Fig.2 shows the matrix 1 after Fig.1 in a perspective view.
  • the Fig. 1 and 2 are described together below.
  • the die 1 comprises a so-called shrink ring 23, with a core 24 arranged within the shrink ring 23, which then forms the inner peripheral surface 6 of the die 1.
  • the inner peripheral surface 6 of the die 1 forms the receptacle for the powder or the green compact 25 to be produced.
  • An upper punch 26 of the press 2 can move into the die 1 along an axial direction 3 via a first end face 4 of the die 1 that is open at the top.
  • the upper punch 26 slides along the inner peripheral surface 6 of the die 1 and increasingly presses the powder.
  • a lower punch 27 is also provided here, which (when the die 1 is being assembled) moves into the die 1 along the axial direction 3 via a second end face 5 of the die 1 that is open at the bottom and moves up and down within the die 1 until the die 1 is disassembled. Between the upper punch 26 and the lower punch 27 the powder is thus Press forces 14 to form a green compact 25, wherein the inner peripheral surface 6 of the die 1 in particular defines a lateral contour of the green compact 25.
  • the die 1 has a collar 28 on an outer circumferential surface 8, via which the die 1 can be received and clamped in the press 2.
  • the collar 28 extends further in a radial direction 7 than the outer circumferential surface 8, so that the die 1 can be placed on a support 29 of the press 2.
  • the die 1 is cylindrical, with the cylindrically shaped outer circumferential surface 8 being received in the press 2 via a radial play, so that a centering of punches 26, 27 and die 1, i.e. a coaxial arrangement of punches 26, 27 and die 1, can be made possible.
  • the die 1 has a first zone 12 on the first end face 4 and a second zone 13 on the second end face 5, each of which is referred to as a punch guide zone 30.
  • a pressing zone 11 is present at a distance from the end faces 4, 5 and adjacent to the punch guide zones 30.
  • the pressing zone 11 is the zone in which the powder is compacted with the highest pressing force 14.
  • the pressing zone 11 is clearly defined in the die 1 and delimited along the axial direction 3.
  • the inner peripheral surface 6 of the die 1 is also subjected to great stress due to the high pressing pressure.
  • the inner circumferential surface 6 of the die 1 is elastically expanded in the direction of the normal vector 32.
  • This expansion in the pressing zone 11 leads to strong frictional forces being generated during demolding. These frictional forces are present up to the demolding zone 31, since the die 1 is usually cylindrical and therefore has a substantially constant stiffness (i.e. a substantially constant resistance to elastic expansion in the direction of the normal vector 32) along the axial direction 3.
  • This Expansion only in the pressing zone 11 of the die 1 means that the green compact 25 cannot be produced with exact dimensions.
  • demolding of the green compact 25 a conicity of the green compact 25 can occur.
  • the die 1 in the pressing zone 11 springs back as demolding progresses, so that the green compact 25 is increasingly constricted at the lower end and thus becomes conical overall.
  • Fig.3 shows a matrix 1 according to a first embodiment in a perspective view.
  • Fig.4 shows the matrix 1 after Fig.3 in a top view.
  • Fig.5 shows the matrix after Fig.3 and 4 in a side view.
  • Fig.6 shows the matrix 1 after Fig. 3 to 5 in a side view in section. The Fig. 3 to 6 are described together below.
  • the die 1 extends along an axial direction 3 between two end faces 4, 5 and forms an inner peripheral surface 6 between the end faces 4, 5.
  • the die 1 extends from the inner peripheral surface 6 along a radial direction 7 to an outer peripheral surface 8 and to three centering surfaces 10 arranged on a first diameter 9 in the radial direction 7.
  • the die 1 has a pressing zone 11 at a distance from the end faces 4, 5. In the area of the pressing zone 11, the die 1 has a higher maximum (i.e. highest) first rigidity with respect to a pressing force 14 acting on the inner peripheral surface 6 in the direction of the normal vector 32, at least compared to the zones 12, 13 arranged on the end faces 4, 5.
  • the die 1 is intended for a powder press for producing green compacts 25.
  • the press 2 is used to produce sinterable green compacts 25, i.e. green compacts 25 that can be sintered after the pressing process.
  • metallic powders or ceramic powders can be pressed into green compacts 25.
  • the die 1 comprises a so-called shrink ring 23, with a core 24 arranged within the shrink ring 23, which then forms the inner peripheral surface 6 of the die 1.
  • the inner peripheral surface 6 of the die 1 forms the receptacle for the powder or the green compact 25 to be produced.
  • An upper punch 26 of the press 2 can move into the die 1 along an axial direction 3 via a first end face 4 of the die 1 that is open at the top.
  • the upper punch 26 slides along the inner peripheral surface 6 of the die 1 and increasingly presses the powder.
  • a lower punch 27 is also provided here, which moves into the die 1 along the axial direction 3 via a second end face 5 of the die 1 that is open at the bottom.
  • the powder is pressed by pressing forces 14 into a green compact 25, with the inner circumferential surface 6 of the die 1 defining in particular a lateral contour of the green compact 25.
  • the pressing force 14 is introduced into the powder via the punches 26, 27.
  • the pressing force 14 is maintained via the punches 26, 27 and the die 1.
  • the pressing force 14 acts on the die 1 in the direction of the normal vector 32.
  • the die 1 has punch guide zones 30 as zones 12, 13 on the front sides 4, 5, with a pressing zone 11 being provided at a distance from the front sides 4, 5 and adjacent to the punch guide zones 30.
  • the powder is compacted with the highest pressing force.
  • the pressing zone 11 is defined by the area along the axial direction 3 in which the powder is compressed during the application of the highest pressing force 14 (see Fig.1 ) is arranged.
  • a demolding zone 31 i.e. a first zone 12 of the die 1, through which the green compact 25 is pushed out of the die 1 (demolded) and made available for removal from the press 2.
  • the die 1 in the press 2 is aligned with respect to the punches 26, 27 via the centering surfaces 10.
  • the centering surfaces 10 are located on the largest first Diameter 9 of the die 1, ie the die 1 extends only within the first diameter 9.
  • the first stiffness should be as high as possible only in the area of the pressing zone 11. This high first stiffness can ensure that the green compact 25 is manufactured with the press 2 or the pressing process to a precise dimension.
  • a second stiffness in the area of the end faces 4, 5 of the die 1 can be made significantly smaller, since in these areas (limited in the axial direction 3) there is a significantly lower stress on the die 1 due to the pressing force (component) 14 acting in the direction of the normal vector 32.
  • the centering surfaces 10 are arranged along the axial direction 3 exclusively in the pressing zone 11.
  • the centering surfaces 10 have a first height 16 along the axial direction 3, wherein the first height 16 is smaller than a smallest distance 17 between the end faces 4, 5.
  • the die 1 has, along the radial direction 7 between the inner circumferential surface 6 and the first diameter 9, both a cross-section 18 which is reduced at least in the axial direction 3 and connecting regions 19 which are arranged at a distance from one another in the circumferential direction 15.
  • the cross-section 18 reduced in the axial direction 3 describes the shape of the die 1 at the end faces 4, 5 in the area between the inner peripheral surface 6 and the first diameter 9.
  • the die 1 has a smaller distance 17 between the end faces 4, 5 in this area than in the area of the inner circumferential surface 6.
  • the connecting areas 19 describe the shape of the die 1 along the circumferential direction 15. Here, there are free spaces (i.e. without material of the die 1) between the inner circumferential surface 6 and the first diameter 9.
  • the connecting areas 19 form spokes that connect the inner circumferential surface 6 to a centering surface 10 arranged on the first diameter 9.
  • centering surfaces 10 are arranged on the first diameter 9, wherein the centering surfaces 10 are arranged spaced apart from one another along the circumferential direction 15.
  • the die 1 also has a holding region 22 arranged at a distance from the centering surfaces 10 in the axial direction 3.
  • the holding area 22 is intended to facilitate the handling of the die 1.
  • the holding area 22 serves as a handle for the manual handling of the die 1.
  • the holding area 22 is attached to the die 1 by screws (see Fig.4 ).
  • the holding area 22 is arranged in the radial direction 7 between the inner circumferential surface 6 and the first diameter 9.
  • the holding area 22 extends in a ring shape.
  • the green compact 25 is arranged within the pressing zone 11.
  • the green compact 25 is formed in step b) of the process in the pressing zone by pressing a powder formed.
  • the highest pressing pressure is achieved in the pressing zone 11.
  • step c) of the method the green compact 25 is demolded via the first zone 12 provided as demolding zone 31, which is arranged on the first end face 4.
  • Fig.7 shows a matrix 1 according to a second embodiment in a perspective view.
  • the explanations on the Fig. 3 to 6 is referred to.
  • the die 1 has additional free spaces or recesses in the area of the connecting areas 19.
  • the connection of the holding area 22 to the die 1 or to the shrink ring 23 is also designed differently here.
  • Fig.8 shows a matrix 1 according to a third embodiment in a perspective view.
  • the explanations on the Fig. 3 to 6 is referred to.
  • the connecting areas 19 are additionally arranged at a distance from one another in the axial direction 3. This forms spokes which are arranged in at least partially identical positions in the circumferential direction 15, but in different positions in the axial direction 3.
  • the centering surface 10 is designed to run all the way around in the circumferential direction 15.
  • connecting areas 19 can be used as handles for the manual handling of the die 1.
  • Fig.9 shows a matrix 1 according to a fourth embodiment in a perspective view.
  • the explanations on the Fig. 3 to 6 or to Fig.8 is referred to.
  • a further circumferential intermediate ring is provided between the inner peripheral surface 6 and the circumferential centering surface 10.
  • Fig.10 shows a matrix 1 according to a fifth embodiment in a perspective view.
  • Fig. 11 shows the matrix 1 after Fig.10 in a side view in section, the section running through the central axis of the matrix 1.
  • Fig. 12 shows the matrix 1 after Fig. 10 and 11 in a side view in section, where the cutting line is offset from the central axis. Please refer to the explanations on the Fig. 3 to 6 or to Fig.8 is referred to.
  • a corrugated region is formed which runs all the way around in the circumferential direction 15 and has a cross-section 18 which is significantly reduced in the axial direction.
  • a second diameter 20 is arranged between the inner circumferential surface 6 and the first diameter 9, wherein a cross-sectional area 21 of the die 1 present on a second diameter 20 is significantly smaller than the inner circumferential surface 6. Between the second diameter 20 and the first diameter 9, a further cross-sectional area is provided (here directly adjacent to the circumferential centering surface 10), which is larger than the cross-sectional area 21 present on the second diameter 20.
  • centering surfaces 10 or the top and bottom of the die 1 in the immediate vicinity of the centering surfaces 10, are used as collars 28 for clamping the die 1 in a holder (an adapter; only a support 29 of the holder is shown here) of the press 2.
  • Fig. 13 shows a matrix 1 according to a sixth embodiment in a perspective view.
  • Fig. 14 shows a matrix 1 according to a seventh embodiment in a perspective view.
  • Fig. 15 shows a matrix 1 according to an eighth embodiment in a perspective view.
  • the Figures 13 to 15 are described together below. Please refer to the explanations on the Fig. 3 to 6 or to Fig.8 is referred to. In contrast to Fig.8 the inner peripheral surface 6 is not rotationally symmetrical.
  • the inner circumferential surface 6 or the die 1 Due to the shape of the inner circumferential surface 6 or the receptacle for the powder to be pressed, the inner circumferential surface 6 or the die 1 is stressed to varying degrees by the pressing force 14 applied via the punches 26, 27 and acting on the inner circumferential surface 6 depending on the position along the circumferential direction 15.
  • the die 1 is therefore designed with a first stiffness that varies along the circumferential direction 15.
  • the die 1 is designed to be rotationally symmetrical by an angular step of 180 degrees about an axis parallel to the axial direction 3.
  • Such a design of the die 1, with a first stiffness that varies along the circumferential direction 15, is particularly useful when non-rotationally symmetrical green compacts 25 (or green compacts 25 that only have symmetry when rotated by 180 degrees) are produced, e.g. B. cuboid-shaped green compacts 25 as shown.
  • This special design variant of the die allows asymmetrical green compacts 25 to be ideally supported so that radially asymmetrical deformations of the die 1 and thus of the green compact 25 can be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Claims (15)

  1. Matrice (1) destinée à être agencée dans une presse (2), la matrice (1) s'étendant le long d'une direction axiale (3) entre une première face frontale (4) et une deuxième face frontale (5) et formant entre les faces frontales (4, 5) une surface périphérique intérieure (6), la matrice (1) s'étendant à partir de la surface périphérique intérieure (6) le long d'une direction radiale (7) en direction d'une surface périphérique extérieure (8) et en direction d'au moins une surface de centrage (10) agencée sur un premier diamètre (9) dans la direction radiale (7) ; la matrice (1) présentant, de manière espacée des faces frontales (4, 5), une zone de pressage (11) et, dans la région de la zone de pressage (11), une première rigidité maximale plus élevée au moins par rapport à des zones (12, 13) agencées au niveau des faces frontales (4, 5), par rapport à une force de pressage (14) agissant sur la surface périphérique intérieure (6) dans une direction d'un vecteur normal (32) ; la première rigidité maximale étant supérieure d'au moins 10 % à une deuxième rigidité minimale présente dans au moins l'une des zones (12, 13) agencées au niveau de l'une des faces frontales (4, 5) ; la matrice (1) présentant des régions de connexion (19) agencées de manière espacée les unes des autres par respectivement un espace libre au moins dans une direction périphérique (15) le long de la direction radiale (7) entre la surface périphérique intérieure (6) et le premier diamètre (9) ; la matrice (1) étant produite par un procédé de fabrication connu tel que le tournage, le fraisage, le sciage, le perçage ainsi que le meulage, la découpe par fil, l'enfonçage par électroérosion et le fraisage dur etc. ou la matrice (1) étant fabriquée par un procédé dit additif permettant de fabriquer par frittage des structures spatiales à partir de matière première pulvérulente.
  2. Matrice (1) destinée à être agencée dans une presse (2), la matrice (1) s'étendant le long d'une direction axiale (3) entre une première face frontale (4) et une deuxième face frontale (5) et formant entre les faces frontales (4, 5) une surface périphérique intérieure (6), la matrice (1) s'étendant à partir de la surface périphérique intérieure (6) le long d'une direction radiale (7) en direction d'une surface périphérique extérieure (8) et en direction d'au moins une surface de centrage (10) agencée sur un premier diamètre (9) dans la direction radiale (7) ; la matrice (1) présentant, de manière espacée des faces frontales (4, 5), une zone de pressage (11) et, dans la région de la zone de pressage (11), une première rigidité maximale plus élevée au moins par rapport à des zones (12, 13) agencées au niveau des faces frontales (4, 5), par rapport à une force de pressage (14) agissant sur la surface périphérique intérieure (6) dans une direction d'un vecteur normal (32) ; la première rigidité maximale étant supérieure d'au moins 10 % à une deuxième rigidité minimale présente dans au moins l'une des zones (12, 13) agencées au niveau de l'une des faces frontales (4, 5) ; la matrice (1) présentant au moins une section transversale (18) réduite au moins dans la direction axiale (3) au niveau d'un deuxième diamètre (20) le long de la direction radiale (7) entre la surface périphérique intérieure (6) et le premier diamètre (9), une autre surface de section transversale étant prévue entre le deuxième diamètre (20) et le premier diamètre (9), laquelle est plus grande que la surface de section transversale présente sur le deuxième diamètre (20).
  3. Matrice (1) destinée à être agencée dans une presse (2), la matrice (1) s'étendant le long d'une direction axiale (3) entre une première face frontale (4) et une deuxième face frontale (5) et formant entre les faces frontales (4, 5) une surface périphérique intérieure (6), la matrice (1) s'étendant à partir de la surface périphérique intérieure (6) le long d'une direction radiale (7) en direction d'une surface périphérique extérieure (8) et en direction d'au moins une surface de centrage (10) agencée sur un premier diamètre (9) dans la direction radiale (7) ; la matrice (1) présentant, de manière espacée des faces frontales (4, 5), une zone de pressage (11) et, dans la région de la zone de pressage (11), une première rigidité maximale plus élevée au moins par rapport à des zones (12, 13) agencées au niveau des faces frontales (4, 5), par rapport à une force de pressage (14) agissant sur la surface périphérique intérieure (6) dans une direction d'un vecteur normal (32) ; la première rigidité maximale étant supérieure d'au moins 10 % à une deuxième rigidité minimale présente dans au moins l'une des zones (12, 13) agencées au niveau de l'une des faces frontales (4, 5) ; la matrice (1) présentant des régions de connexion (19) agencées de manière espacée les unes des autres par respectivement un espace libre au moins dans une direction périphérique (15) le long de la direction radiale (7) entre la surface périphérique intérieure (6) et le premier diamètre (9), les régions de connexion (19) étant en outre agencées de manière espacée les unes des autres par respectivement un espace libre dans la direction axiale (3).
  4. Matrice (1) selon l'une des revendications précédentes, la première rigidité étant différente le long d'une direction périphérique (15).
  5. Matrice (1) destinée à être agencée dans une presse (2), la matrice (1) s'étendant le long d'une direction axiale (3) entre une première face frontale (4) et une deuxième face frontale (5) et formant entre les faces frontales (4, 5) une surface périphérique intérieure (6), la matrice (1) s'étendant à partir de la surface périphérique intérieure (6) le long d'une direction radiale (7) en direction d'une surface périphérique extérieure (8) et en direction d'au moins une surface de centrage (10) agencée sur un premier diamètre (9) dans la direction radiale (7) ; la matrice (1) présentant, de manière espacée des faces frontales (4, 5), une zone de pressage (11) et, dans la région de la zone de pressage (11), une première rigidité maximale plus élevée au moins par rapport à des zones (12, 13) agencées au niveau des faces frontales (4, 5), par rapport à une force de pressage (14) agissant sur la surface périphérique intérieure (6) dans une direction d'un vecteur normal (32) ; la première rigidité maximale étant supérieure d'au moins 10 % à une deuxième rigidité minimale présente dans au moins l'une des zones (12, 13) agencées au niveau de l'une des faces frontales (4, 5) ; la première rigidité étant différente le long d'une direction périphérique (15).
  6. Matrice (1) selon la revendication 5, la matrice (1) présentant, le long de la direction radiale (7) entre la surface périphérique intérieure (6) et le premier diamètre (9), au moins
    - une section transversale (18) réduite au moins dans la direction axiale (3) ou
    - des régions de connexion (19) agencées de manière espacée les unes des autres par respectivement un espace libre dans une direction périphérique (15).
  7. Matrice (1) selon l'une des revendications précédentes 5 et 6, où, lorsque la matrice (1) présente des régions de connexion (19) agencées de manière espacée les unes des autres par respectivement un espace libre dans une direction périphérique (15) le long de la direction radiale (7) entre la surface périphérique intérieure (6) et le premier diamètre (9), les régions de connexion (19) sont agencées en outre de manière espacée les unes des autres par respectivement un espace libre dans la direction axiale (3).
  8. Matrice (1) selon l'une des revendications précédentes, l'au moins une surface de centrage (10) étant agencée dans la zone de pressage (11) le long de la direction axiale (3).
  9. Matrice (1) selon l'une des revendications précédentes, l'au moins une surface de centrage (10) présentant une première hauteur (16) le long de la direction axiale (3), la première hauteur (16) valant au maximum 80 % d'une distance (17) la plus petite entre les faces frontales (4, 5).
  10. Matrice (1) selon l'une des revendications précédentes, un deuxième diamètre (20) étant agencé entre la surface périphérique intérieure (6) et le premier diamètre (9), une surface de section transversale (21), présente sur le deuxième diamètre (20), de la matrice (1) valant au maximum 80 % de la surface périphérique intérieure (6).
  11. Matrice (1) selon l'une des revendications précédentes, plusieurs surfaces de centrage (10) étant agencées sur le premier diamètre (9), les surfaces de centrage (10) étant agencées de manière espacée les unes des autres le long d'une direction périphérique (15).
  12. Matrice (1) selon l'une des revendications précédentes 1 à 10, l'au moins une surface de centrage (10) étant formée de manière périphérique dans une direction périphérique (15).
  13. Matrice (1) selon l'une des revendications précédentes, la matrice (1) présentant au moins une région de retenue (22) agencée de manière espacée de l'au moins une surface de centrage (10) dans la direction axiale (3).
  14. Procédé permettant de fabriquer au moins une ébauche crue (25) à l'aide d'une presse (2), la presse (2) présentant au moins une matrice (1) selon l'une des revendications précédentes et au moins un poinçon (26, 27) qui peut être déplacé le long de la direction axiale (3) via une face frontale (4, 5) de la matrice (1) dans un logement, formé par la surface périphérique intérieure (6), pour l'ébauche crue (25) ; le procédé comprenant au moins les étapes suivantes :
    a) agencement d'une poudre dans le logement ;
    b) déplacement de l'au moins un poinçon (26, 27) dans la matrice (1) le long de la direction axiale (3) et compression de la poudre de manière à former une ébauche crue (25) dans la zone de pressage (11) ;
    c) démoulage de l'ébauche crue (25) hors de la matrice (1) via une face frontale (4, 5) de la matrice (1) ;
    la matrice (1) présentant, de manière espacée des faces frontales (4, 5), la zone de pressage (11) et, dans la région de la zone de pressage (11), une première rigidité maximale plus élevée au moins par rapport à des zones (12, 13) agencées au niveau des faces frontales (4, 5), par rapport à une force de pressage (14) agissant sur la surface périphérique intérieure (6) dans une direction d'un vecteur normal (32) au moins à l'étape b) ; la première rigidité maximale étant supérieure d'au moins 10 % à une deuxième rigidité minimale présente dans au moins l'une des zones (12, 13) agencées au niveau de l'une des faces frontales (4, 5).
  15. Procédé selon la revendication 14, l'ébauche crue (25) étant démoulée hors de la matrice via une première zone (12) agencée au niveau de la première face frontale (4) à l'étape c), la première rigidité maximale étant supérieure d'au moins 10 % à au moins la deuxième rigidité minimale présente dans la première zone (12, 13).
EP17816745.8A 2016-12-22 2017-12-13 Matrice pour une presse et procédé permettant de fabriquer une ébauche crue à l'aide d'une presse Active EP3558656B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016125406.1A DE102016125406A1 (de) 2016-12-22 2016-12-22 Matrize für eine Presse
PCT/EP2017/082544 WO2018114502A1 (fr) 2016-12-22 2017-12-13 Matrice pour une presse et procédé permettant de fabriquer une ébauche crue à l'aide d'une presse

Publications (2)

Publication Number Publication Date
EP3558656A1 EP3558656A1 (fr) 2019-10-30
EP3558656B1 true EP3558656B1 (fr) 2024-04-10

Family

ID=60702748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17816745.8A Active EP3558656B1 (fr) 2016-12-22 2017-12-13 Matrice pour une presse et procédé permettant de fabriquer une ébauche crue à l'aide d'une presse

Country Status (7)

Country Link
US (1) US11420407B2 (fr)
EP (1) EP3558656B1 (fr)
JP (1) JP7104887B2 (fr)
CN (1) CN110300657B (fr)
BR (1) BR112019012655A2 (fr)
DE (1) DE102016125406A1 (fr)
WO (1) WO2018114502A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014003726A1 (de) * 2014-03-18 2015-09-24 Gkn Sinter Metals Engineering Gmbh Presse zum Herstellen maßhaltiger Grünlinge und Verfahren zum Herstellen
RU2732493C1 (ru) * 2019-11-05 2020-09-17 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ прессования малочувствительного взрывчатого материала в корпус
JP7338774B1 (ja) 2022-03-17 2023-09-05 Jfeスチール株式会社 プレス金型の設計方法、装置及びプログラム、並びにプレス成形品の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU686818A1 (ru) * 1976-09-03 1979-09-25 Предприятие П/Я А-1216 Матрица пресс-формы дл прессовани порошков
WO2016109111A1 (fr) * 2014-12-30 2016-07-07 Smith International, Inc. Composants à densité variable, à composition variable ou à géométrie complexe pour des presses à haute pression fabriquées par des procédés de fabrication additive

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE720296C (de) 1938-11-03 1942-04-30 Waffen Und Munitionsfabriken A Presse zur Herstellung homogener Sprengstoffpresslinge unter hohem Druck
SE316350B (fr) 1968-02-07 1969-10-20 P Strandell
SE332274B (fr) * 1969-06-25 1971-02-01 Per-Olof Strandell
JPS533977B2 (fr) 1974-03-14 1978-02-13
CH620396A5 (en) 1977-07-08 1980-11-28 Veitscher Magnesitwerke Ag Clamping apparatus for the pressing mould of a block press.
GB1560002A (en) 1977-07-20 1980-01-30 Oesterr Amerikan Magnesit Brickmaking press
DE3834996A1 (de) * 1988-10-14 1990-04-19 Danfoss As Formwerkzeug und verfahren zu dessen herstellung
JPH0741352B2 (ja) 1992-09-24 1995-05-10 アカマツフォーシス株式会社 ダイス
DE4311249C2 (de) * 1993-04-06 1995-11-23 Danfoss As Formwerkzeug
SE0003755L (sv) * 2000-10-17 2002-04-18 Skf Ab Metod och anordning fö pulverpressning
JP2006144050A (ja) * 2004-11-17 2006-06-08 Toyota Motor Corp 成形品の製造方法、成形方法、および成形型
CN2887590Y (zh) * 2006-01-16 2007-04-11 北京国药龙立科技有限公司 压片机的冲模
JP5154781B2 (ja) 2006-10-27 2013-02-27 昭和電工株式会社 プレス加工装置
JP2008284566A (ja) 2007-05-16 2008-11-27 Fuji Heavy Ind Ltd クラウニング付歯形の鍛造成形装置
AT505947B1 (de) * 2007-11-14 2016-04-15 Miba Sinter Austria Gmbh Verdichtungswerkzeug
DE102009042603A1 (de) * 2009-09-23 2011-03-24 Gkn Sinter Metals Holding Gmbh Verfahren zur Herstellung eines Verbundbauteils
JP5577557B2 (ja) 2010-12-28 2014-08-27 住友電工焼結合金株式会社 成形用ダイ
JP6096147B2 (ja) 2014-03-31 2017-03-15 出光興産株式会社 圧縮成形金型の製造方法、及び圧縮成形体の製造方法
JP2016179486A (ja) 2015-03-24 2016-10-13 ダイハツ工業株式会社 プレス装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU686818A1 (ru) * 1976-09-03 1979-09-25 Предприятие П/Я А-1216 Матрица пресс-формы дл прессовани порошков
WO2016109111A1 (fr) * 2014-12-30 2016-07-07 Smith International, Inc. Composants à densité variable, à composition variable ou à géométrie complexe pour des presses à haute pression fabriquées par des procédés de fabrication additive

Also Published As

Publication number Publication date
JP2020514060A (ja) 2020-05-21
EP3558656A1 (fr) 2019-10-30
US11420407B2 (en) 2022-08-23
US20190358925A1 (en) 2019-11-28
JP7104887B2 (ja) 2022-07-22
CN110300657A (zh) 2019-10-01
BR112019012655A2 (pt) 2019-12-03
CN110300657B (zh) 2022-08-19
DE102016125406A1 (de) 2018-06-28
WO2018114502A1 (fr) 2018-06-28

Similar Documents

Publication Publication Date Title
EP3253567B1 (fr) Presse à poudre présentant une infrastructure conique
EP3558656B1 (fr) Matrice pour une presse et procédé permettant de fabriquer une ébauche crue à l'aide d'une presse
DE102014003726A1 (de) Presse zum Herstellen maßhaltiger Grünlinge und Verfahren zum Herstellen
WO2015043734A2 (fr) Procédé de fabrication d'une pièce frittée avec une très grande précision radiale et jeu de pièces comportant des pièces de jonction frittée
WO2015039747A1 (fr) Procédé permettant de produire une pièce frittée d'une hauteur de pièce moulée précise et ensemble de pièces composé de pièces frittées assemblées
DE10254293A1 (de) Pleuelstangenanordnung und lagerbestückte Pleuelstange
EP3349925B1 (fr) Presse à fritter avec déformation axialement contrôlée et procédé associé
DE112011103625T5 (de) Axiale und radiale Arretierungsmerkmale für Pulvermetall-Formungsanwendungen
EP3645260B1 (fr) Plaque de niveau d'un outil de presse
DE102011088863A1 (de) Verfahren zum Schmieden eines Schmiedekörpers mit einem Hinterschnitt und Schmiedewerkzeug zur Herstellung eines solchen Schmiedekörpers
DE112013005510T5 (de) Komponente mit verformbaren Pads
EP3265302B1 (fr) Presse radiale
EP3645261B1 (fr) Plaque plane d'un outil de presse
DE102017130680B4 (de) Matrize für eine Presse sowie Verfahren zur Herstellung mindestens eines Grünlings mit einer solchen Presse
EP3645262B1 (fr) Plaque de matriçage d'un moule de presse
EP3645259B1 (fr) Plaque de matriçage conçue pour un moule de presse
DE102010000416A1 (de) Vorrichtung zum Verdichten eines Sinterbauteils
DE102010009800B3 (de) Verfahren zum Hochgenauigkeitskalibrieren eines Bauteils
EP2834030B1 (fr) Procédé de fabrication de tourillons forgés
AT524440A4 (de) Vorrichtung zur Herstellung eines Zahnradgrünlings
DE102019128350A1 (de) Verfahren zur Herstellung eines kalibrierten Teileverbunds
DE102019134153A1 (de) Sinterteil und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220610

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230602

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017016025

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN