EP3532666B1 - Luftgehärtete wattierungsisolierung - Google Patents

Luftgehärtete wattierungsisolierung Download PDF

Info

Publication number
EP3532666B1
EP3532666B1 EP17865837.3A EP17865837A EP3532666B1 EP 3532666 B1 EP3532666 B1 EP 3532666B1 EP 17865837 A EP17865837 A EP 17865837A EP 3532666 B1 EP3532666 B1 EP 3532666B1
Authority
EP
European Patent Office
Prior art keywords
batting
fibers
air
resin
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17865837.3A
Other languages
English (en)
French (fr)
Other versions
EP3532666C0 (de
EP3532666A4 (de
EP3532666A1 (de
Inventor
Jon-Alan MINEHARDT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primaloft Inc
Original Assignee
Primaloft Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primaloft Inc filed Critical Primaloft Inc
Publication of EP3532666A1 publication Critical patent/EP3532666A1/de
Publication of EP3532666A4 publication Critical patent/EP3532666A4/de
Application granted granted Critical
Publication of EP3532666C0 publication Critical patent/EP3532666C0/de
Publication of EP3532666B1 publication Critical patent/EP3532666B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/04Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
    • D04H1/06Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres by treatment to produce shrinking, swelling, crimping or curling of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/593Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • D04H1/641Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions characterised by the chemical composition of the bonding agent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43912Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres fibres with noncircular cross-sections
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43918Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics

Definitions

  • the present invention generally relates to air-cured batting, to articles comprising the batting, and to methods of making the batting.
  • a binder resin or a low melt fiber is used in order to bond a web of fibers together, thereby reinforcing and giving structure and/or strength to the batting.
  • the resins and binder fibers that are used require heat in order to bond the fibers together. In practice, this is accomplished by passing the web through an oven. Ovens typically used are single pass, 3-pass, or 5 pass ovens (i.e., the web is passed through the oven once, three, or five times). The heat from the oven either cures the resin, and/or melts the binder fiber causing the loose fibers to be adhered together. To allow the insulation to pass through the oven, both ends of the oven are open.
  • ovens having more than one level allow even more heat to escape.
  • processes of record for making batting are high in energy consumption, can pollute the environment by releasing carbon monoxide due to composition, and can be draining on nonrenewable resources.
  • ovens can create a hazardous environment, posing risks of, for example, potential burning and heat exhaustion.
  • BE 691 151 A , EP 0 365 133 A1 and WO 2016/118614 A1 disclose such battings and processes of making the batting.
  • the present invention satisfies the need for improved batting and processes of making the same that require less energy expenditure, are less taxing on energy sources (e.g., nonrenewable resources), and/or avoid hazardous environmental risks associated with ovens used to make batting.
  • embodiments of the inventive batting and processes are considered to advantageously be eco-friendly, particularly as compared to processes of record.
  • the present invention may address one or more of the problems and deficiencies of the art discussed above. However, it is contemplated that the invention may prove useful in addressing other problems and deficiencies in a number of technical areas. Therefore, the claimed invention should not necessarily be construed as limited to addressing any of the particular problems or deficiencies discussed herein.
  • the invention provides air-cured batting comprising a nonwoven web, advantageously in the form of a sheet, said batting comprising:
  • the invention provides an article comprising the air-cured batting according to the first aspect of the invention.
  • the invention provides a method of making the air-cured batting according to the first aspect of the invention, said method comprising:
  • Certain embodiments of the presently-disclosed batting, articles comprising the batting, and methods of making the batting have several features, no single one of which is solely responsible for their desirable attributes. Without limiting the scope of the batting, articles, and methods as defined by the claims that follow, their more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section of this specification entitled “Detailed Description of the Invention," one will understand how the features of the various embodiments disclosed herein provide a number of advantages over the current state of the art. For example, embodiments of the batting offer eco-friendly alternatives to commercially-available batting, are produced by methods that require less energy expenditure, are less taxing on energy sources, and/or avoid hazardous environmental risks. Embodiments of the batting can be used to make various articles, including clothing, outerwear, footwear, etc.
  • the invention provides air-cured batting comprising a nonwoven web, advantageously in the form of a sheet, said batting comprising:
  • Some embodiments of the inventive batting are made by the method of making air-cured batting according to the third aspect of the invention (described below in greater detail), which generally comprises forming a nonwoven web from a fiber mixture (and optionally layering two or more web layers), thereby creating an intermediate batting insulation structure having a first surface and a second surface parallel to the first surface; applying a specified resin solution to the first and second surfaces, thereby forming a solution-applied batting structure, and exposing the solution-applied batting structure to air (air-curing it), thereby causing solvent in the resin solution to evaporate and the resin to cure, thus forming the air-cured batting wherein the resin and the fiber mixture form a bonded structure, such that the air-cured batting has structural integrity that imparts handleability of the batting in sheet form.
  • the invention provides batting embodiments having "handleability", wherein fibers within the fiber mixture of the batting are sufficiently adhered to one another via the resin from the resin solution so as to form a discrete batting structure that has structural integrity and is capable of being handled and used as-is, without falling apart or otherwise compromising the structural integrity of the batting so as to make it unfit for end use (e.g., as insulation in an article).
  • binder fibers are optionally included in certain embodiments of the inventive batting, and heat treatment is optionally used in processes of preparing the batting.
  • the inventive air-cured batting is formed by applying a resin solution to a first batting surface and a second batting surface, then subjecting the solution-applied batting to air, thereby causing the resin solution to evaporate and thus forming the inventive batting embodiment.
  • the solution contains 15 to 60 vol. % of a resin comprising a cross-linked acrylic polymer, 20 to 80 vol. % of a fast-drying solvent that is soluble in water; and 0 to 70 vol. % water.
  • These embodiments typically involve spraying an intermediate to the batting (e.g., a nonwoven web or a layered batting structure made up of two or more layered nonwoven webs) with (or otherwise applying to the intermediate) a solution that air-cures - it quickly dries (e.g., in some embodiments it dries within 5 to 20 minutes) and the resin adheres to fiber in the fiber mixture, leaving on the surfaces a cross-linked polymer that, together with the fiber mixture, forms a bonded batting.
  • an intermediate to the batting e.g., a nonwoven web or a layered batting structure made up of two or more layered nonwoven webs
  • a solution that air-cures - it quickly dries (e.g., in some embodiments it dries within 5 to 20 minutes) and the resin adheres to fiber in the fiber mixture, leaving on the surfaces a cross-linked polymer that, together with the fiber mixture, forms a bonded batting.
  • Embodiments of the inventive batting offer a low density, high loft, thermally insulative batting with desirable drape and compressibility characteristics suitable for use in articles including, inter alia, apparel (e.g., clothing such as cold weather clothing apparel, gloves, etc.), bedding (e.g., quilts and comforters), pillows, pads, and sleeping bags.
  • apparel e.g., clothing such as cold weather clothing apparel, gloves, etc.
  • bedding e.g., quilts and comforters
  • pillows e.g., pads, and sleeping bags.
  • the inventive air-cured batting comprises a single non-woven web that contains the fiber mixture.
  • FIG. 5 is a simplified profile view of an embodiment 10 of the inventive batting.
  • the depicted batting 10 comprises a single nonwoven web 12.
  • Batting 10 has a first surface 2 and second surface 4, which correspond to first and second surfaces of nonwoven web 12.
  • the inventive batting comprises two or more non-woven webs, which are layered.
  • FIG. 6 which is a simplified profile view of an embodiment 20 of the inventive batting.
  • the depicted batting 20 comprises three nonwoven webs, 12, 14, and 16, which are layered.
  • Batting 20 has a first surface 2 and a second surface 4'.
  • second surface 4' corresponds to a surface of nonwoven web 16.
  • nonwoven webs 12 and 14 are in direct contact with one another, as are nonwoven webs 14 and 16.
  • the inventive batting comprises 1, 2, 3, 4, 5, or 6 nonwoven webs. Where a single nonwoven web is used in the batting, the batting may be referred to as a non-layered batting. Where a plurality (i.e., 2 or more) of nonwoven webs are used, the batting may be referred to as a layered batting. Where more than one nonwoven webs are present in the inventive batting, the fiber composition of the nonwoven webs may be the same or different.
  • the resin solution when the resin solution is applied to the first and second surfaces of the batting, it permeates into an inner portion of batting. Accordingly, in some batting embodiments, resin is present throughout an entire thickness (e.g., with reference to FIG. 2A , is present in the batting 10 throughout thickness X) of the batting. In some embodiments, the resin penetrates from a surface on which it is applied into the batting in a thickness direction of 0.5 to 30 mm (e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm), including any and all ranges and subranges therein.
  • 0.5 to 30 mm e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm
  • the resin penetrates into the batting in a thickness direction of 0.5 to 30 mm (e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm) from the first surface of the batting toward the second surface of the batting, including any and all ranges and subranges therein, and/or the resin penetrates into the batting in a thickness direction of 0.5 to 30 mm (e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm) from the second surface of the batting toward the first surface of the batting, including any and all ranges and subranges therein.
  • 0.5 to 30 mm e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm
  • the inventive batting comprises: 75 to 97.5 wt % (e.g., 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, or 97.5 wt %), including any and all ranges and subranges therein, of a fiber mixture; and 2.5 to 25 wt % (e.g., 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 wt %), including any and all ranges and subranges therein, of a resin comprising a cross-linked copolymer of butyl acrylate and methyl methacrylate.
  • 75 to 97.5 wt % e.g., 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
  • the resin solution comprises an acrylic polymer (e.g., a self-crosslinking acrylic polymer).
  • the self-crosslinking acrylic polymer is a "cross-linked copolymer of butyl acrylate and methyl methacrylate," which refers to a polymer that comprises structural units from the monomers butyl acrylate and methyl methacrylate.
  • cross-linked copolymers of butyl acrylate and methyl methacrylate result from polymerization of a reaction mixture that comprises monomers including butyl acrylate and methyl methacrylate.
  • the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate contains carboxylic acid groups. In some embodiments, the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate does not contain hydroxyl groups.
  • the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate does not contain any carbohydrate moieties. In some embodiments, the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate does not contain any non-polymerized monomers.
  • the resin is an acrylic polymer according to, or sharing properties with any embodiment described herein, wherein the resin has one or more of the following attributes, including any combination thereof:
  • the entirety of the fiber mixture and the resin may be comprised within the single nonwoven web (including on the first and second surfaces thereof).
  • the entirety of the fiber mixture and the resin may be comprised within the plurality of nonwoven webs (including on the first and second surfaces of the layered batting formed by the plurality of webs), although the distribution of resin may vary by layer.
  • a nonwoven web that contributes the first or second surface of the batting will comprise a higher concentration of resin than a nonwoven web that is not adjacent to a first or second surface of the batting (e.g., in FIG. 6 , nonwoven web 12 contributes first surface 2 of batting 20, and nonwoven web 16 contributes second surface 4' of the batting 20; in some embodiments, nonwoven webs 12 and 16 comprise higher concentrations of resin than interior nonwoven web 14).
  • the fiber mixture comprises synthetic fibers.
  • synthetic fibers Persons having ordinary skill in the art are readily familiar with many synthetic fibers, and it is well within their purview to select an appropriate synthetic fiber for use in inventive batting embodiments depending on desired properties of the batting and/or article within which it is intended to be employed.
  • Embodiments of the inventive batting can comprise any synthetic fiber known in the art as being conducive to the preparation of textile materials.
  • nonexclusive synthetic fibers that may be used in the invention are selected from nylon, polyester, polypropylene, polylactic acid (PLA), poly(butyl acrylate) (PBA), polyamide, acrylic, acetate, polyolefin, nylon, rayon, lyocell, aramid, spandex, viscose, and modal fibers, and combinations thereof.
  • synthetic fibers comprise polyester fibers.
  • the polyester is selected from poly(ethylene terephthalate), poly(hexahydro-p-xylylene terephthalate), poly(butylene terephthalate), poly-1,4-cyclohexelyne dimethylene (PCDT), polytrimethylene terephthalate (PTT), and terephthalate copolyesters in which at least 85 mole percent of the ester units are ethylene terephthalate or hexahydro-p-xylylene terephthalate units.
  • the polyester is polyethylene terephthalate.
  • the synthetic fibers comprise virgin fibers.
  • the synthetic fibers comprise recycled fibers (e.g., recycled polyester fibers).
  • the fiber mixture comprises 0 to 100 wt% synthetic fibers, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 wt%, including any and all ranges and subranges therein (e.g., 10 to 100 wt %, 30
  • fibers may be crimped or uncrimped.
  • Various crimps including spiral and standard (e.g., planar) crimp, are known in the art.
  • the synthetic fibers are staple fibers (i.e., fibers of standardized length).
  • the synthetic fibers have a staple length of 12 mm to 70 mm, for example, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 mm, including any and all ranges and subranges therein.
  • the inventive batting comprises fibers that have a desirable shape that is not linear or linear with crimp. While persons having ordinary skill in the art are familiar with various desirable shapes to choose for the fiber, which are contemplated as being used in embodiments of the invention, some non-limiting examples include Y-shaped fibers, bow-tie shaped fibers, etc.
  • Denier is a unit of measure defined as the weight in grams of 9000 meters of a fiber or yarn. It is a common way to specify the weight (or size) of the fiber or yarn.
  • Microdenier fibers are those having a denier of 1.0 or less, while macrodenier fibers have a denier greater than 1.0.
  • the synthetic fibers have a denier of 0.7 denier to 8.0 denier, including any and all ranges and subranges therein.
  • the synthetic fibers have a denier of 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4,
  • the synthetic fibers comprise microdenier fibers (e.g., fibers having a denier of 0.7 to 1.0 denier). In some embodiments, the synthetic fibers comprise macro-denier fibers (e.g., fibers having a denier of 1.1 to 8.0 denier). In some embodiments, the synthetic fibers comprise micro-denier fibers and macro-denier fibers.
  • the synthetic fibers comprise siliconized fibers.
  • the term "siliconized" means that the fiber is coated with a silicon-comprising composition (e.g., a silicone). Siliconization techniques are well known in the art, and are described, e.g., in U.S. Patent No. 3,454,422 .
  • the silicon-comprising composition may be applied using any method known in the art, e.g., spraying, mixing, dipping, padding, etc.
  • the silicon-comprising (e.g., silicone) composition which may include an organosiloxane or polysiloxane, bonds to an exterior portion of the fiber.
  • the silicone coating is a polysiloxane such as a methylhydrogenpolysiloxane, modified methylhydrogenpolysiloxane, polydimethylsiloxane, or amino modified dimethylpolysiloxane.
  • the silicon-comprising composition may be applied directly to the fiber, or may be diluted with a solvent as a solution or emulsion, e.g. an aqueous emulsion of a polysiloxane, prior to application. Following treatment, the coating may be dried and/or cured.
  • a catalyst may be used to accelerate the curing of the silicon-comprising composition (e.g., polysiloxane containing Si-H bonds) and, for convenience, may be added to a silicon-comprising composition emulsion, with the resultant combination being used to treat the synthetic fiber.
  • Suitable catalysts include iron, cobalt, manganese, lead, zinc, and tin salts of carboxylic acids such as acetates, octanoates, naphthenates and oleates.
  • the fiber may be dried to remove residual solvent and then optionally heated to between 65° and 200° C to cure.
  • 0 to 100 wt% of the fibers are siliconized fibers, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 wt%, including any and all ranges and subranges therein (e.g., 20 to 95), 96,
  • DWR treatments are well known in the art, and provide water repellent properties to treated components. Persons having ordinary skill in the art are familiar with a variety of DWR treatments, any of which may optionally be used on fiber populations in connection with the present invention.
  • fibers used in the inventive batting (which may be referred to as DWR-treated fibers or water repellant fibers) have been treated with a polymer solution of zirconium acetate, which can impart durable water repellant properties while minimizing and/or avoiding negative effects on fiber performance.
  • fibers treated with a durable water repellant are treated with a water-repellant, bacterial-resistant, low friction cured zirconium acetate finish, such that the fibers have improved driability following washing and enhanced handle and resistance to clumping.
  • a zirconium acetate solution that may be used as a DWR treatment in connection with the present invention is disclosed in U.S. Patent No. 4,537,594 .
  • the fiber treated with a durable water repellant is treated in a wet bath or dry spraying process.
  • the treatment comprises a surface energy modification technique, which, as is known in the art, may include, e.g., plasma treatment. Such treatments or processes are explained in U.S.
  • Patent No. 4,869,922 U.S. Patent No. 5,262,208 , U.S. Patent No. 5,895,558 , U.S. Patent No. 6,416,633 , U.S. Patent No. 7,510,632 , U.S. Patent No. 8,309,033 , and U.S. Patent No. 8,298,627 .
  • synthetic fibers comprise up to 15 wt % of particles or material that is different from the synthetic material that the synthetic fiber is primarily comprised of.
  • the synthetic fibers comprise 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9,
  • said particles or material is comprised within (e.g., encapsulated within) a polymer matrix that represents the synthetic material of which the synthetic fiber is primarily comprised.
  • the synthetic fibers in the fiber mixture comprise aerogel fiber, as described in International Application Publication No. WO 2017/087511 .
  • the fiber mixture of the batting comprises natural fibers.
  • the fiber mixture comprises one or more members selected from wool, cotton, tencel, kapok (cotton-like fluff obtained from seeds of a Kapok tree, which may optionally be further processed before use), flax, animal hair, silk, and down (e.g., duck or goose down).
  • the fiber mixture comprises 0 to 100 wt% natural fibers, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 wt%, including any and all ranges and subranges therein (e.g., 0 to 50 wt %,
  • the fiber mixture comprises synthetic fibers and natural fibers.
  • the fiber mixture comprises:
  • the fiber mixture comprises:
  • the invention provides batting embodiments wherein, even in the absence of heat treatment (e.g., in the absence of any fibers melting and bonding to other fibers in the batting), fibers within the batting are sufficiently adhered to one another so as to form a discrete batting structure that has structural integrity and is capable of being handled and used as-is, without falling apart or otherwise compromising the structural integrity of the batting so as to make it unfit for end use.
  • the fiber mixture is free of binder fiber.
  • the nonwoven web is free of binder fiber.
  • the batting is free of binder fiber.
  • the batting does not comprise any melted fibers.
  • no fibers within the batting are bonded to one another via the melting of a fiber in the fiber mixture.
  • the fiber mixture comprises, e.g., a binder fiber
  • the web is heat treated so as to melt the binder fiber and cause it to bond to other fibers in the fiber mixture comprised within the nonwoven web.
  • no fibers within the batting are adhered to one another unless it is via the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate.
  • 90 wt% or more of fibers present in the batting are only adhered to one another via the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate.
  • inventive embodiments comprise binder fibers.
  • a skilled artisan may wish to use the inventive concept of using the cross-linked polymer to form an ambient temperature air-cured batting wherein fibers are adhered via the resin, such that the air-cured batting has structural integrity that imparts handleability of the batting in sheet form, but to also use binder fiber.
  • the fiber mixture comprises binder fiber.
  • the fiber mixture comprises 1 to 25 wt % synthetic binder fibers, said binder fibers having a bonding temperature lower than the softening temperature of synthetic polymeric fibers present in the mixture.
  • the synthetic binder fibers make up, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 wt % of the fiber mixture, including any and all ranges and subranges therein.
  • the synthetic binder fibers have a denier of 1.5 to 4.0 denier, e.g., 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, or 4.0 denier, including any and all ranges and subranges therein (e.g., 2.0-2.2 denier).
  • the binder fibers have a staple cut length of 38 to 105 mm, including any and all ranges and subranges therein.
  • the length is 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, or 105 mm, including any and all ranges/subranges therein (e.g., 38-51 mm).
  • the binder fibers have a bonding temperature lower than the softening temperature of the synthetic fibers.
  • the binder fibers have a bonding temperature of less than or equal to 200 °C.
  • the binder fibers have a bonding temperature of 50 to 200 °C, including any and all ranges and subranges therein.
  • the binder fibers have a bonding temperature of 80 °C to 150 °C.
  • the binder fibers have a bonding temperature of 100 °C to 125 °C.
  • the binder fibers comprise low-melt polyester fibers.
  • the binder fibers are bicomponent fibers comprising a sheath and a core, wherein the sheath comprises a material having a lower melting point than the core.
  • the inventive batting in some embodiments, has been heat treated so as to melt all or a portion of the binder fibers, thereby forming a thermally bonded web-type batting.
  • binder fibers are recited in the fiber mixture of the batting, said fibers may be wholly or partially melted fibers, as opposed to binder fibers in their original, pre-heat treatment form.
  • the inventive batting comprises at least one nonwoven web.
  • the fiber content of the nonwoven web(s) consists of the fiber mixture.
  • the thickness and insulative properties of the batting can be increased.
  • the batting has a thickness of 4 to 30 mm (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm), including any and all ranges and subranges therein (e.g., 10 to 20 mm).
  • the batting has a density of 0.9 to 8 kg/m 3 (e.g., 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, or 8.0 kg/m 3 ), including any and all ranges and subranges therein (e.g.,
  • the members of the fiber mixture are homogenously mixed, meaning, the fiber mixture has a substantially uniform (i.e., 90 - 100% uniform) composition.
  • FIG. 1A is a top-view photograph of one embodiment 10 of the inventive batting according to the first aspect of the invention.
  • the depicted batting 10 is a single non-woven web that comprises first surface 2 and second surface 4 (not pictured, but which is parallel to first surface 2, and which, in the depicted embodiment, faces the surface on which batting 10 is placed).
  • first surface 2 when batting 10 is contained within an article (e.g., as insulation), first surface 2 will face toward an outer portion (e.g., fabric or other material or liner) of the article, e.g., a jacket, and second surface 4 will face toward an inner portion (e.g., fabric or other material or liner) of the article.
  • first surface 2 faces toward an inner portion of an article and second surface 4 faces toward an outer portion of an article.
  • FIG. 1B is a line drawing of the top-view photograph of the embodiment 10 of inventive batting depicted in FIG. 1A .
  • FIG. 2A is a side-view photograph of an embodiment 10 of the inventive batting, wherein X is the thickness of the batting.
  • FIG. 2B is a line drawing of the side-view photograph of the embodiment 10 of inventive batting depicted in FIG. 2A .
  • FIG. 3A is a photograph of an embodiment 10 of the inventive batting draped over a structure.
  • the depicted batting 10 has good drape (i.e., the batting hangs under its own weight).
  • a batting's drape has bearing on qualities such as comfort and aesthetics of an article within which batting is used.
  • FIG. 3B is a line drawing of the photograph in FIG. 3A of embodiment 10 of inventive batting draped over a structure.
  • the batting has a drape of 1.5 cm to 3.5 cm (e.g., 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, or 3.5 cm) including any and all ranges and subranges therein, as measured in accordance with Method ASTM D1388.
  • FIG. 4A is a profile-view photograph of an embodiment 10 of the inventive batting, wherein X is the thickness of the batting.
  • FIG. 4B is a line drawing of the photograph in FIG. 4A of a profile-view of embodiment 10 of inventive batting.
  • the batting has a weight of 25 to 200 gsm (e.g., 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,
  • the batting is in sheet form (suitable for use as a rolled good) and has not been shredded.
  • the batting does not comprise pigment. In some embodiments, where the batting does comprise pigment, the pigment is not present in the resin (i.e., the pigment, if present in the batting, is not contributed by the resin).
  • the invention provides an article comprising the inventive batting.
  • articles include, for example, outerwear (e.g. outerwear garments such as jackets, etc.), clothing, pillows, pads, sleeping bags, bedding (e.g., quilts, comforters), etc.
  • the invention provides a method of making air-cured batting, said method comprising:
  • the fiber mixture can be any embodiment as described above in the first aspect of the invention.
  • the inventive method comprises heating the batting to or in excess of the bonding temperature of the binder fibers.
  • the inventive method of the third aspect of the invention does not comprise heating the batting to or in excess of the bonding temperature of binder fibers employed in the fiber mixture.
  • embodiments of the inventive method of making air-cured batting that do not comprise a specified heating step apply to the final air-cured batting and also any intermediate batting structure thereof comprising the nonwoven web.
  • the inventive method of making air-cured batting does not comprise a process step performed in excess of 48 °C. In some embodiments, the inventive method of making air-cured batting does not comprise a process step performed in excess of 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 °C.
  • the inventive method does not comprise a bonding step that results in bonding or adhesion of fibers within the fiber mixture at a temperature in excess of 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 °C.
  • the nonwoven web is formed using a carding machine or airlay process. Both techniques are well known by persons having ordinary skill in the art.
  • the resin solution comprises:
  • the fast-drying solvent refers to a solvent having an evaporation rate of greater than or equal to 1.3.
  • the evaporation rate is the rate at which a material will vaporize (evaporate, change from liquid to vapor), measured by ASTM D3539-11 method, compared to the rate of vaporization of n-butyl acetate measured in the same conditions. This quantity is a ratio, therefore it is unitless.
  • the fast-drying solvent has an evaporation rate of greater than 1.3 (e.g., greater than 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, or 5.0).
  • the fast-drying solvent has an evaporation rate of greater than 3.0.
  • the fast-drying solvent is soluble in water, which, for the purposes of this application, means that the solvent has a solubility of at least 8 grams per 100 mL of water at 20 °C (i.e., at least 8 mL of the solvent will dissolve in 100 mL water at 20 °C).
  • the solvent has a solubility of greater than or equal to 10 grams per 100 mL water at 20 °C (e.g., greater than or equal to 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 grams solvent per 100 mL water at 20 °C).
  • the fast-drying solvent is selected from isopropyl alcohol, ethanol, methanol, glyme, acetone, tetrahydrofuran, methyl ethyl ketone (MEK), methyl acetate, and ethyl acetate, and combinations thereof.
  • the fast-drying solvent is isopropyl alcohol.
  • the resin solution does not comprise pigment.
  • applying the resin solution to the first and second surfaces of the intermediate batting insulation structure comprises spraying the solution onto the first and/or second surfaces.
  • spray drops of the resin solution have an average median diameter of 150 to 250 ⁇ m (e.g., 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217
  • spray nozzles traverse over the top and across the width of the first and second surfaces of the batting structure.
  • applying the resin solution to the first and second surfaces of the intermediate batting insulation structure comprises applying via a bath or padding, both techniques being known in the art, the solution onto the first and/or second surfaces.
  • exposing the solution-applied batting structure to air comprises subjecting the solution-applied batting to forced air or circulated air. In some embodiments, said exposing comprises subjecting the solution-applied batting to forced air or circulated air having an air speed, at time of contact with the solution-applied batting, of at least 2.5 m/s, at least 3.0 m/s, or at least 3.5 m/s.
  • said exposing comprises subjecting the solution-applied batting to forced air or circulated air having an air speed, at time of contact with the solution-applied batting, of 2.5 to 15 m/s (e.g., 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5,
  • the inventive method comprises, after forming the air-cured batting, winding the batting into roll good form.
  • Such embodiments lend themselves toward, e.g., easy shipping of the batting.
  • the air-cured batting is wound up along with a nonwoven scrim layer and shipped in roll good form.
  • a fiber mixture is prepared by mixing the following:
  • the example batting has a weight of 61 gsm (grams per square meter), a density of 1.34 g/m 3 , and a thickness of 5.99 mm.
  • a method or article that "comprises”, “has”, “includes” or “contains” one or more steps or elements possesses those one or more steps or elements, but is not limited to possessing only those one or more steps or elements.
  • a step of a method or an element of an article that "comprises”, “has”, “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
  • each range is intended to be a shorthand format for presenting information, where the range is understood to encompass each discrete point within the range as if the same were fully set forth herein.

Claims (15)

  1. Luftgehärtete Wattierungsisolierung, umfassend einen nichtgewebten Vliesstoff, vorteilhafterweise in Form einer Bahn, wobei diese Wattierung umfasst:
    - 75 bis 97.5 Gew.-% einer Fasermischung und
    - 2.5 bis 25 Gew.-% Harz, umfassend ein vernetztes Copolymer aus Butylacrylat und Methylmethacrylat,
    wobei das Harz auf einer ersten Oberfläche der Wattierung und auf einer zweiten Oberfläche der Wattierung vorhanden ist, die zweite Oberfläche ist dabei parallel zur ersten Oberfläche, und wobei das Harz an den Fasern der Fasermischung haftet und dadurch eine Klebstruktur entsteht, so dass kraft des Harzes, die luftgehärtete Wattierung eine strukturelle Integrität aufweist, durch die die Wattierung in der Bahnenform handhabbar wird.
    wobei die Faser natürliche Fasern und/ oder synthetische Fasern enthält, und wobei die luftgehärtete Wattierung gebildet wird durch:
    Aufbringen einer Harzlösung auf die erste Oberfläche einer Wattierungszwischenschicht sowie auf die zweite Oberfläche einer Wattierungszwischenschicht um eine durch Lösung aufgebrachte Wattierungsstruktur zu bilden, die Harzlösung enthält dabei:
    - 15 bis 60 Vol.- % Harz, umfassend ein vernetztes Copolymer aus Butylacrylat und Methylmethacrylat;
    - 20 bis 80 Vol.- % eines Lösungsmittels, mit einer Verdunstungsrate die größer oder gleich 1.3 ist, das wasserlöslich ist; und
    - 0 bis 70 Vol.- % Wasser, und
    die mit Lösung versehene Wattierungsstruktur der Luft aussetzen, was dazu führt, dass das Lösungsmittel in der Harzlösung verdampft und das Harz aushärtet, und so die luftgehärtete Wattierung bildet,
    wobei das Harz so gewählt wird, dass es sich bei Umgebungstemperatur innerhalb von 48 Stunden bei 25 °C vernetzt, und/ oder wenn die mit Lösung versehene Wattierungsstruktur einer Zwangsbelüftung oder Umwälzbelüftung mit einer Luftgeschwindigkeit, zum Zeitpunkt des Kontaktes mit der mit Lösung versehenen Wattierung von 2.5 bis 15 m/s hat, die mit Lösung versehene Wattierungsstruktur trocknet innerhalb von 3 bis 60 Minuten.
  2. Die luftgehärtete Wattierung nach Anspruch 1, wobei die synthetischen Fasern Polyesterfasern enthält, vorteilhafterweise über 95 Gew.-% Polyesterfasern, oder silikonisierte Fasern.
  3. Die luftgehärtete Wattierung nach Anspruch 2, wobei die Fasermischung umfasst:
    - 25 bis 90 Gew.-% silikonisierte Synthetikfasern.
  4. Die luftgehärtete Wattierung nach Anspruch 1, wobei die Fasermischung umfasst:
    - 35 bis 80 Gew.-% Mikrofasern, besser noch 50 bis 75 Gew.-% Mikrofasern; und
    - 20 bis 65 Gew.-% Makrofasern, besser noch 25 bis 50 Gew.-% Makrofasern
  5. Die luftgehärtete Wattierung nach Anspruch 4, wobei die Mikrofasern oder die Makrofasern silikonisierte Fasern umfassen.
  6. Die luftgehärtete Wattierung nach Anspruch 5, wobei die Makrofasern zusätzlich nicht- silikonisierte Fasern umfassen.
  7. Die luftgehärtete Wattierung nach Anspruch 1, wobei die luftgehärtete Wattierung keine synthetischen Bindefasern enthält oder keine geschmolzenen Fasern enthält.
  8. Die luftgehärtete Wattierung nach Anspruch 1, wobei mehr als 95% der Fasern in der Fasermischung Stapelfasern sind, wobei die Stapelfasern vorzugsweise eine Stapellänge von 12 mm bis 70 mm haben.
  9. Die luftgehärtete Wattierung nach Anspruch 1, weiterhin umfassend eine Gittergewebeschicht in Kontakt mit mindestens einer der beiden ersten und zweiten Oberflächen.
  10. Die luftgehärtete Wattierung nach Anspruch 1, wobei diese Wattierung mehrere nicht gewebte Vliesschichten enthält, wobei diese verschiedenen nicht gewebten Vliesschichten einander vorzugweise überlappen.
  11. Die luftgehärtete Wattierung nach Anspruch 1, mit einer Dichte von 1 bis 8 kg/m3.
  12. Ein Artikel, der die luftgehärtet Wattierung nach irgendeinem der Ansprüche 1-11 enthält, wobei dieser Artikel vorteilhafterweise ausgewählt wird aus der Gruppe bestehend aus Oberbekleidung, Bekleidung, Schlafsäcken und Bettwäsche.
  13. Verfahren zur Herstellung der luftgehärteten Wattierung nach irgendeinem der Ansprüche 1 bis 11, wobei dieses Verfahren umfasst:
    - Bildung einer nicht gewebten Vliesstoffbahn aus einer Fasermischung und, optional, Übereinanderlegen einer oder mehrerer Stoffschichten, wodurch eine zwischenliegende Wattierungs- und Isolierstruktur entsteht mit einer ersten Fläche und einer zweiten Fläche parallel zur ersten Fläche; wobei auf die erste und die zweite Fläche der zwischenliegenden Wattierungs- Isolierstruktur eine Harzlösung aufgebacht wird, die umfasst:
    . 15 bis 60 vol. % Harz, umfassend ein vernetztes Copolymer aus Butylacrylat und Methylmethacrylat;
    . 20 bis 80 Vol.- % eines Lösungsmittels mit einer Verdunstungsrate von größer gleich 1.3, das wasserlöslich ist, wie Isopropylalkohol; und
    . 0 bis 70 Vol. % Wasser,
    wodurch eine mit Lösung versehene Wattierungsstruktur gebildet wird und
    - die mit Lösung versehene Wattierungsstruktur der Luft aussetzen, was dazu führt, dass das Lösungsmittel in der Harzlösung verdampft und das Harz aushärtet, und so die luftgehärtete Wattierung bildet, die 75 bis 97.5 Gew.-% einer Fasermischung und 2.5 bis 25 Gew.-% Harz enthält, wobei das Harz an den Faser der Fasermischung haftet und dadurch eine Klebstruktur entsteht, so dass kraft des Harzes, die luftgehärtete Wattierung eine strukturelle Integrität aufweist, durch die die Wattierung in der Bahnenform handhabbar ist.
  14. Verfahren nach Anspruch 13, wobei das Verfahren keine Erwärmung des Vliesstoffes umfasst.
  15. Verfahren nach Anspruch 13, wobei das Verfahren eine Erwärmung des Vliesstoffes umfasst.
EP17865837.3A 2016-10-31 2017-10-31 Luftgehärtete wattierungsisolierung Active EP3532666B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662415137P 2016-10-31 2016-10-31
PCT/US2017/059188 WO2018081771A1 (en) 2016-10-31 2017-10-31 Air-cured batting insulation

Publications (4)

Publication Number Publication Date
EP3532666A1 EP3532666A1 (de) 2019-09-04
EP3532666A4 EP3532666A4 (de) 2020-07-08
EP3532666C0 EP3532666C0 (de) 2024-01-03
EP3532666B1 true EP3532666B1 (de) 2024-01-03

Family

ID=62024067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17865837.3A Active EP3532666B1 (de) 2016-10-31 2017-10-31 Luftgehärtete wattierungsisolierung

Country Status (8)

Country Link
US (1) US20190249345A1 (de)
EP (1) EP3532666B1 (de)
JP (1) JP7184767B2 (de)
KR (1) KR102476962B1 (de)
CN (1) CN109996913B (de)
RU (1) RU2754839C2 (de)
TW (1) TWI788308B (de)
WO (1) WO2018081771A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108842301A (zh) * 2018-07-05 2018-11-20 常州市阿曼特医药科技有限公司 一种棉卫生产品面层材料的制备方法
DE202020105424U1 (de) * 2020-09-22 2020-10-16 BADENIA BETTCOMFORT GMBH & Co.KG. Polster- und Füllmaterial, und Bettware
CN114010034A (zh) * 2021-10-22 2022-02-08 山西景柏服饰股份有限公司 一种多纤维被子及制造方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454422A (en) 1964-03-13 1969-07-08 Du Pont Organopolysiloxane coated filling materials and the production thereof
BE691151A (de) * 1966-12-13 1967-05-16
DE1965587A1 (de) * 1969-12-30 1971-07-15 Basf Ag Verfahren zum Herstellen reversibel wasserdampfaufnehmender flaechiger Gebilde
US3959224A (en) * 1971-02-01 1976-05-25 The Lubrizol Corporation Water-soluble hydroxyalkylated and alkoxyalkylated compositions and the like derived from N-3-oxohydrocarbon-substituted acrylamides, and polymers thereof
US4537594A (en) 1983-07-22 1985-08-27 Fogarty P.L.C. Processed feathers
JPS60115542A (ja) * 1983-11-25 1985-06-22 Nippon Zeon Co Ltd シクロペンタノールの製造法
US4869922A (en) 1986-01-24 1989-09-26 Ausimont S.P.A. Method of coating with polyfluorocarbons
GB8821350D0 (en) * 1988-09-12 1988-10-12 Unilever Plc Emulsion binders
JPH0459304A (ja) * 1990-06-29 1992-02-26 Noboru Matsuda 畳表塗布剤及び塗布方法
JP2868922B2 (ja) * 1991-03-27 1999-03-10 日本エヌエスシー株式会社 樹脂綿およびそれに用いるポリマーエマルジヨン
US5262208A (en) 1992-04-06 1993-11-16 Plasma Plus Gas plasma treatment for archival preservation of manuscripts and the like
US5356754A (en) * 1992-09-25 1994-10-18 Mitsubishi Rayon Co., Ltd. Crosslinking curable resin composition
DE4306808A1 (de) * 1993-03-04 1994-09-08 Wacker Chemie Gmbh Vernetzbare Dispersionspulver als Bindemittel für Fasern
US5437909A (en) * 1994-05-20 1995-08-01 Minnesota Mining And Manufacturing Company Multilayer nonwoven thermal insulating batts
AU715719B2 (en) 1995-06-19 2000-02-10 University Of Tennessee Research Corporation, The Discharge methods and electrodes for generating plasmas at one atmosphere of pressure, and materials treated therewith
RU2143018C1 (ru) * 1995-06-30 1999-12-20 Кимберли - Кларк Уорлдвайд, Инк. Многокомпонентные волокна и нетканые материалы, разрушающиеся под действием воды
BR9712056A (pt) 1996-09-18 1999-08-24 Eastman Chem Co Composi-Æo de pol¡mero de auto-reticula-Æo formula-Æo para revest¡mento na parte posterior processos para revestir um substrato tecido e para impregnar um substrato nÆo tecido substrato tecido revestido e substrato nÆo tecido impregnado com uma formula-Æo para revestimento da parte posterior
EP0885906B1 (de) * 1997-06-20 2003-02-12 Rohm And Haas Company Polymerzusammensetzungen
US6630231B2 (en) * 1999-02-05 2003-10-07 3M Innovative Properties Company Composite articles reinforced with highly oriented microfibers
EP1291368B1 (de) * 2001-04-16 2017-05-31 Sumitomo Seika Chemicals Co., Ltd. Wasserabsorbierendes harz geeignet für die absorption viskoser flüssigkeiten enthaltend hochmolekulare verbindungen sowie absorbens und absorbierender gegenstand die dieses enthalten
US7510632B2 (en) 2002-09-10 2009-03-31 Wisconsin Alumni Research Foundation Plasma treatment within dielectric fluids
US7064091B2 (en) * 2003-01-29 2006-06-20 Air Products Polymers, L.P. Incorporation of a self-crosslinking polymer into a nonwoven binder for use in improving the wet strength of pre-moistened wipes
WO2004099490A1 (en) 2003-05-05 2004-11-18 Commonwealth Scientific And Industrial Research Organisation Plasma treatment apparatus and method
JP2007246798A (ja) 2006-03-17 2007-09-27 Toyo Ink Mfg Co Ltd 不織布用バインダーエマルジョン及びその製造方法
JP2007247111A (ja) 2006-03-17 2007-09-27 Toyo Ink Mfg Co Ltd 不織布用バインダーエマルジョン及びその製造方法
EP2250203A1 (de) * 2008-03-03 2010-11-17 Celanese International Corporation Salzempfindliche kationische und polymere bindemittel für vliesbahnen und herstellungsverfahren dafür
WO2010008021A1 (ja) 2008-07-15 2010-01-21 キヤノンアネルバ株式会社 プラズマ処理方法及びプラズマ処理装置
EP2478034A1 (de) * 2009-09-16 2012-07-25 3M Innovative Properties Company Fluorierte beschichtungen und damit hergestellte fotowerkzeuge
US9416300B2 (en) * 2011-01-16 2016-08-16 Simpson Strong-Tie Company, Inc. Low temperature curable adhesive compositions
CN102220674B (zh) * 2011-04-27 2012-10-03 嘉兴学院 一种半耐久性家纺用苎麻无纺材料及其生产方法
US20140093698A1 (en) * 2012-10-01 2014-04-03 Sellars Absorbent Materials, Inc. Hydrophilic industrial absorbent with dual-layer, slip-resistant scrim
CN103938452A (zh) * 2014-05-13 2014-07-23 南通市泓雨化工有限公司 一种高弹性喷胶棉粘合剂的制备方法
JP6683718B2 (ja) * 2015-01-21 2020-04-22 プリマロフト,インコーポレイテッド 伸縮性を有する移行抵抗性中綿及び前記中綿の製造方法並びに前記中綿を含む物品
EP3377683B1 (de) 2015-11-17 2021-09-01 PrimaLoft, Inc. Synthetische faser mit aerogel und polymermaterial sowie verfahren zur herstellung und artikel damit

Also Published As

Publication number Publication date
TWI788308B (zh) 2023-01-01
KR20190072632A (ko) 2019-06-25
WO2018081771A1 (en) 2018-05-03
JP7184767B2 (ja) 2022-12-06
EP3532666C0 (de) 2024-01-03
RU2019116789A (ru) 2020-11-30
CN109996913A (zh) 2019-07-09
RU2754839C2 (ru) 2021-09-08
EP3532666A4 (de) 2020-07-08
RU2019116789A3 (de) 2021-02-26
CN109996913B (zh) 2022-07-26
TW201827664A (zh) 2018-08-01
US20190249345A1 (en) 2019-08-15
KR102476962B1 (ko) 2022-12-13
EP3532666A1 (de) 2019-09-04
JP2020502374A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
TWI694191B (zh) 非織物羽絨毛絮、包含毛絮之物品、製造毛絮之方法
KR102422642B1 (ko) 에어로겔 및 폴리머 물질을 함유하는 합성 섬유, 및 이의 제조 방법 및 이를 포함하는 물품
EP3532666B1 (de) Luftgehärtete wattierungsisolierung
EP3247826B1 (de) Migrationsbeständige rohbaumwolle mit streckung und verfahren zur herstellung und artikel damit
EP3234244B1 (de) Faserballwattefüllung und artikel damit
KR20160122237A (ko) 볼륨 부직포
KR101275671B1 (ko) 고보온성 부직포 및 이의 제조방법
CN105568587B (zh) 阻燃保暖复合型纤维填充物及其制作方法
US20210123185A1 (en) Breathable hydrostatically-resistant structures
JP2003293257A (ja) 断熱材とその製造方法
KR20230016601A (ko) 더 높은 단열을 위한 상이한 파이버볼 형상을 갖는 파이버볼 패딩

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40009048

Country of ref document: HK

A4 Supplementary search report drawn up and despatched

Effective date: 20200609

RIC1 Information provided on ipc code assigned before grant

Ipc: D04H 1/4391 20120101ALI20200602BHEP

Ipc: D06M 15/263 20060101ALI20200602BHEP

Ipc: D04H 1/593 20120101ALI20200602BHEP

Ipc: D04H 1/64 20120101ALI20200602BHEP

Ipc: D04H 1/4374 20120101AFI20200602BHEP

Ipc: D04H 1/06 20120101ALI20200602BHEP

Ipc: D04H 1/587 20120101ALI20200602BHEP

Ipc: D04H 1/74 20060101ALI20200602BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20230703

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MINEHARDT, JON-ALAN

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230830

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017078199

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20240103

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240108

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103