EP3532666A1 - Luftgehärtete wattierungsisolierung - Google Patents
Luftgehärtete wattierungsisolierungInfo
- Publication number
- EP3532666A1 EP3532666A1 EP17865837.3A EP17865837A EP3532666A1 EP 3532666 A1 EP3532666 A1 EP 3532666A1 EP 17865837 A EP17865837 A EP 17865837A EP 3532666 A1 EP3532666 A1 EP 3532666A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- batting
- air
- fibers
- cured
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009413 insulation Methods 0.000 title claims description 20
- 239000000835 fiber Substances 0.000 claims abstract description 246
- 239000011347 resin Substances 0.000 claims abstract description 102
- 229920005989 resin Polymers 0.000 claims abstract description 102
- 239000000203 mixture Substances 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims abstract description 55
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims abstract description 25
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229920001577 copolymer Polymers 0.000 claims abstract description 22
- 229920002994 synthetic fiber Polymers 0.000 claims description 41
- 239000012209 synthetic fiber Substances 0.000 claims description 38
- 239000011230 binding agent Substances 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000002904 solvent Substances 0.000 claims description 26
- 229920000728 polyester Polymers 0.000 claims description 18
- 238000001035 drying Methods 0.000 claims description 16
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical group CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000005507 spraying Methods 0.000 claims description 7
- 238000009960 carding Methods 0.000 claims description 4
- -1 electricity Substances 0.000 description 17
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 229920000058 polyacrylate Polymers 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 4
- 231100001261 hazardous Toxicity 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920006037 cross link polymer Polymers 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 244000146553 Ceiba pentandra Species 0.000 description 2
- 235000003301 Ceiba pentandra Nutrition 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000433 Lyocell Polymers 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 239000012874 anionic emulsifier Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 125000000837 carbohydrate group Chemical group 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000012875 nonionic emulsifier Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 235000020354 squash Nutrition 0.000 description 2
- DNFVWCGSPMSVOO-UHFFFAOYSA-N 3,10-dioxatricyclo[10.2.2.25,8]octadeca-1(15),12(16),13-triene-2,11-dione Chemical group C1OC(=O)C(C=C2)=CC=C2C(=O)OCC2CCC1CC2 DNFVWCGSPMSVOO-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- 241000272814 Anser sp. Species 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- GXGJIOMUZAGVEH-UHFFFAOYSA-N Chamazulene Chemical group CCC1=CC=C(C)C2=CC=C(C)C2=C1 GXGJIOMUZAGVEH-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 206010019332 Heat exhaustion Diseases 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 125000005474 octanoate group Chemical class 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4374—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/04—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
- D04H1/06—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres by treatment to produce shrinking, swelling, crimping or curling of fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4391—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
- D04H1/587—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
- D04H1/593—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
- D04H1/64—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
- D04H1/64—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
- D04H1/641—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions characterised by the chemical composition of the bonding agent
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/732—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/74—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/263—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4391—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
- D04H1/43912—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres fibres with noncircular cross-sections
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4391—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
- D04H1/43918—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/10—Inorganic fibres based on non-oxides other than metals
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/04—Heat-responsive characteristics
Definitions
- the present invention generally relates to air-cured batting, to articles comprising the batting, and to methods of making the batting.
- a binder resin or a low melt fiber is used in order to bond a web of fibers together, thereby reinforcing and giving structure and/or strength to the batting.
- the resins and binder fibers that are used require heat in order to bond the fibers together. In practice, this is accomplished by passing the web through an oven. Ovens typically used are single pass, 3-pass, or 5 pass ovens (i.e., the web is passed through the oven once, three, or five times). The heat from the oven either cures the resin, and/or melts the binder fiber causing the loose fibers to be adhered together. To allow the insulation to pass through the oven, both ends of the oven are open.
- ovens having more than one level allow even more heat to escape.
- processes of record for making batting are high in energy consumption, can pollute the environment by releasing carbon monoxide due to composition, and can be draining on nonrenewable resources.
- ovens can create a hazardous environment, posing risks of, for example, potential burning and heat exhaustion.
- the present invention satisfies the need for improved batting and processes of making the same that require less energy expenditure, are less taxing on energy sources (e.g., nonrenewable resources), and/or avoid hazardous environmental risks associated with ovens used to make batting.
- embodiments of the inventive batting and processes are considered to advantageously be eco-friendly, particularly as compared to processes of record.
- the present invention may address one or more of the problems and deficiencies of the art discussed above. However, it is contemplated that the invention may prove useful in addressing other problems and deficiencies in a number of technical areas. Therefore, the claimed invention should not necessarily be construed as limited to addressing any of the particular problems or deficiencies discussed herein.
- the invention provides air-cured batting comprising a nonwoven web, said batting comprising:
- the invention provides an article comprising the air-cured batting according to the first aspect of the invention.
- the invention provides a method of making the air-cured batting according to the first aspect of the invention, said method comprising: forming a nonwoven web from a fiber mixture and, optionally, layering two or more web layers, thereby creating an intermediate batting insulation structure having a first surface and a second surface parallel to the first surface; applying to the first surface and the second surface of the intermediate batting insulation structure a resin solution comprising:
- the air-cured batting comprising 75 to 97.5 wt % of fiber mixture and 2.5 to 25 wt % of the resin, wherein the resin is adhered to fibers of the fiber mixture, thereby forming a bonded structure, such that, by virtue of the resin, the air-cured batting has structural integrity that imparts handleability of the batting in sheet form.
- Certain embodiments of the presently-disclosed batting, articles comprising the batting, and methods of making the batting have several features, no single one of which is solely responsible for their desirable attributes. Without limiting the scope of the batting, articles, and methods as defined by the claims that follow, their more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section of this specification entitled “Detailed Description of the Invention," one will understand how the features of the various embodiments disclosed herein provide a number of advantages over the current state of the art. For example, embodiments of the batting offer eco-friendly alternatives to commercially-available batting, are produced by methods that require less energy expenditure, are less taxing on energy sources, and/or avoid hazardous environmental risks. Embodiments of the batting can be used to make various articles, including clothing, outerwear, footwear, etc.
- FIG. 1 A is a top-view photograph of an embodiment 10 of the inventive batting.
- FIG. IB is a line drawing of the top-view photograph of the embodiment 10 of inventive batting depicted in FIG. 1 A.
- FIG. 2A is a side-view photograph of an embodiment 10 of the inventive batting.
- FIG. 2B is a line drawing of the side-view photograph of the embodiment 10 of inventive batting depicted in FIG. 2A.
- FIG. 3 A is a photograph of an embodiment 10 of the inventive batting draped over a structure.
- FIG. 3B is a line drawing of the photograph in FIG. 3 A of embodiment 10 of inventive batting draped over a structure.
- FIG. 4A is a profile-view photograph of an embodiment 10 of the inventive batting.
- FIG. 4B is a line drawing of the photograph in FIG. 4A of a profile-view of embodiment 10 of inventive batting.
- FIG. 5 is a simplified profile view of an embodiment 10 of the inventive batting.
- FIG. 6 is a simplified profile view of an embodiment 20 of the inventive batting.
- the invention provides air-cured batting comprising a nonwoven web, said batting comprising:
- Some embodiments of the inventive batting are made by the method of making air- cured batting according to the third aspect of the invention (described below in greater detail), which generally comprises forming a nonwoven web from a fiber mixture (and optionally layering two or more web layers), thereby creating an intermediate batting insulation structure having a first surface and a second surface parallel to the first surface; applying a specified resin solution to the first and second surfaces, thereby forming a solution-applied batting structure, and exposing the solution-applied batting structure to air (air-curing it), thereby causing solvent in the resin solution to evaporate and the resin to cure, thus forming the air- cured batting wherein the resin and the fiber mixture form a bonded structure, such that the air- cured batting has structural integrity that imparts handleability of the batting in sheet form.
- the invention provides batting embodiments having "handleability", wherein fibers within the fiber mixture of the batting are sufficiently adhered to one another via the resin from the resin solution so as to form a discrete batting structure that has structural integrity and is capable of being handled and used as-is, without falling apart or otherwise compromising the structural integrity of the batting so as to make it unfit for end use (e.g., as insulation in an article).
- binder fibers are optionally included in certain embodiments of the inventive batting, and heat treatment is optionally used in processes of preparing the batting.
- the inventive air-cured batting is formed by applying a resin solution to a first batting surface and a second batting surface, then subjecting the solution-applied batting to air, thereby causing the resin solution to evaporate and thus forming the inventive batting embodiment.
- the solution contains 15 to 60 vol. % of a resin comprising a cross-linked acrylic polymer, 20 to 80 vol. % of a fast- drying solvent that is soluble in water; and 0 to 70 vol. % water.
- These embodiments typically involve spraying an intermediate to the batting (e.g., a nonwoven web or a layered batting structure made up of two or more layered nonwoven webs) with (or otherwise applying to the intermediate) a solution that air-cures - it quickly dries (e.g., in some embodiments it dries within 5 to 20 minutes) and the resin adheres to fiber in the fiber mixture, leaving on the surfaces a cross-linked polymer that, together with the fiber mixture, forms a bonded batting.
- an intermediate to the batting e.g., a nonwoven web or a layered batting structure made up of two or more layered nonwoven webs
- a solution that air-cures - it quickly dries (e.g., in some embodiments it dries within 5 to 20 minutes) and the resin adheres to fiber in the fiber mixture, leaving on the surfaces a cross-linked polymer that, together with the fiber mixture, forms a bonded batting.
- Embodiments of the inventive batting offer a low density, high loft, thermally insulative batting with desirable drape and compressibility characteristics suitable for use in articles including, inter alia, apparel (e.g., clothing such as cold weather clothing apparel, gloves, etc.), bedding (e.g., quilts and comforters), pillows, pads, and sleeping bags.
- apparel e.g., clothing such as cold weather clothing apparel, gloves, etc.
- bedding e.g., quilts and comforters
- pillows e.g., pads, and sleeping bags.
- the inventive air-cured batting comprises a single non-woven web that contains the fiber mixture.
- FIG. 5 is a simplified profile view of an embodiment 10 of the inventive batting.
- the depicted batting 10 comprises a single nonwoven web 12.
- Batting 10 has a first surface 2 and second surface 4, which correspond to first and second surfaces of nonwoven web 12.
- the inventive batting comprises two or more non-woven webs, which are layered.
- FIG. 6, which is a simplified profile view of an embodiment 20 of the inventive batting.
- the depicted batting 20 comprises three nonwoven webs, 12, 14, and 16, which are layered.
- Batting 20 has a first surface 2 and a second surface 4' .
- second surface 4' corresponds to a surface of nonwoven web 16.
- nonwoven webs 12 and 14 are in direct contact with one another, as are nonwoven webs 14 and 16.
- the inventive batting comprises 1, 2, 3, 4, 5, or 6 nonwoven webs. Where a single nonwoven web is used in the batting, the batting may be referred to as a non-layered batting. Where a plurality (i.e., 2 or more) of nonwoven webs are used, the batting may be referred to as a layered batting. Where more than one nonwoven webs are present in the inventive batting, the fiber composition of the nonwoven webs may be the same or different.
- the resin solution when the resin solution is applied to the first and second surfaces of the batting, it permeates into an inner portion of batting. Accordingly, in some batting embodiments, resin is present throughout an entire thickness (e.g., with reference to FIG. 2A, is present in the batting 10 throughout thickness X) of the batting. In some embodiments, the resin penetrates from a surface on which it is applied into the batting in a thickness direction of 0.5 to 30 mm (e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm), including any and all ranges and subranges therein.
- 0.5 to 30 mm e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm
- the resin penetrates into the batting in a thickness direction of 0.5 to 30 mm (e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm) from the first surface of the batting toward the second surface of the batting, including any and all ranges and subranges therein, and/or the resin penetrates into the batting in a thickness direction of 0.5 to 30 mm (e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm) from the second surface of the batting toward the first surface of the batting, including any and all ranges and subranges therein.
- 0.5 to 30 mm e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm
- the inventive batting comprises: 75 to 97.5 wt % (e.g., 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, or 97.5 wt %), including any and all ranges and subranges therein, of a fiber mixture; and 2.5 to 25 wt % (e.g., 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 wt %), including any and all ranges and subranges therein, of a resin comprising a cross-linked copolymer of butyl acrylate and methyl methacrylate.
- 75 to 97.5 wt % e.g., 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
- the resin solution comprises an acrylic polymer (e.g., a self- crosslinking acrylic polymer).
- the self-crosslinking acrylic polymer is a "cross-linked copolymer of butyl acrylate and methyl methacrylate," which refers to a polymer that comprises structural units from the monomers butyl acrylate and methyl methacrylate.
- cross-linked copolymers of butyl acrylate and methyl methacrylate result from polymerization of a reaction mixture that comprises monomers including butyl acrylate and methyl methacrylate.
- the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate contains carboxylic acid groups. In some embodiments, the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate does not contain hydroxyl groups.
- the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate does not contain any carbohydrate moieties. In some embodiments, the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate does not contain any non-polymerized monomers.
- the resin is an acrylic polymer according to, or sharing properties with any embodiment described herein, wherein the resin has one or more of the following attributes, including any combination thereof:
- alkylphenols e.g., alkylphenol ethoxylates (APEOs)
- - Has a pH of about 6.0 to about 10.0 (e.g., pH of 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, or 10.0), including any and all ranges and subranges therein (e.g., a pH of about 7.5-8.5); Comprises a nonionic and/or anionic emulsifier;
- Tg glass transition temperature
- -30 °C to +30 °C e.g., -30, -29, -28, - 27, -26, -25, -24, -23, -22, -21, -20, -19, -18, -17, -16, -15, -14, -13, -12, -11, - 10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 °C), including any and all ranges and subranges therein (e.g., -20 to 10 °C, -18 to 0 °C, etc.);
- - Has a weight of 8 to 10 lb. /gal (e.g., 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, or 10.0 lb./gal), including any and all ranges and subranges therein (e.g., 8.30 - 9.20 lb./gal);
- the entirety of the fiber mixture and the resin may be comprised within the single nonwoven web (including on the first and second surfaces thereof).
- the entirety of the fiber mixture and the resin may be comprised within the plurality of nonwoven webs (including on the first and second surfaces of the layered batting formed by the plurality of webs), although the distribution of resin may vary by layer.
- a nonwoven web that contributes the first or second surface of the batting will comprise a higher concentration of resin than a nonwoven web that is not adjacent to a first or second surface of the batting (e.g., in FIG. 6, nonwoven web 12 contributes first surface 2 of batting 20, and nonwoven web 16 contributes second surface 4' of the batting 20; in some embodiments, nonwoven webs 12 and 16 comprise higher concentrations of resin than interior nonwoven web 14).
- the fiber mixture comprises synthetic fibers.
- synthetic fibers Persons having ordinary skill in the art are readily familiar with many synthetic fibers, and it is well within their purview to select an appropriate synthetic fiber for use in inventive batting embodiments depending on desired properties of the batting and/or article within which it is intended to be employed.
- Embodiments of the inventive batting can comprise any synthetic fiber known in the art as being conducive to the preparation of textile materials.
- nonexclusive synthetic fibers that may be used in the invention are selected from nylon, polyester, polypropylene, polylactic acid (PLA), poly(butyl acrylate) (PBA), polyamide, acrylic, acetate, polyolefin, nylon, rayon, lyocell, aramid, spandex, viscose, and modal fibers, and combinations thereof.
- synthetic fibers comprise polyester fibers.
- the polyester is selected from poly(ethylene terephthalate), poly(hexahydro-p-xylylene terephthalate), poly(butylene terephthalate), poly- 1,4-cyclohexelyne dimethylene (PCDT), polytrimethylene terephthalate (PTT), and terephthalate copolyesters in which at least 85 mole percent of the ester units are ethylene terephthalate or hexahydro-p-xylylene terephthalate units.
- the polyester is polyethylene terephthalate.
- the synthetic fibers comprise virgin fibers.
- the synthetic fibers comprise recycled fibers (e.g., recycled polyester fibers).
- the fiber mixture comprises 0 to 100 wt% synthetic fibers, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 wt%, including any and all ranges and subranges therein (e.g., 10 to 100 wt
- fibers may be crimped or uncrimped.
- Various crimps including spiral and standard (e.g., planar) crimp, are known in the art.
- the synthetic fibers are staple fibers (i.e., fibers of
- the synthetic fibers have a staple length of 12 mm to 70 mm, for example, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 mm, including any and all ranges and subranges therein.
- the fibers may be linear, optionally with crimp
- the inventive batting comprises fibers that have a desirable shape that is not linear or linear with crimp. While persons having ordinary skill in the art are familiar with various desirable shapes to choose for the fiber, which are contemplated as being used in embodiments of the invention, some non-limiting examples include Y-shaped fibers, bow-tie shaped fibers, etc.
- Denier is a unit of measure defined as the weight in grams of 9000 meters of a fiber or yarn. It is a common way to specify the weight (or size) of the fiber or yarn.
- polyester fibers that are 1.0 denier typically have a diameter of approximately 10 micrometers.
- Microdenier fibers are those having a denier of 1.0 or less, while macrodenier fibers have a denier greater than 1.0.
- the synthetic fibers have a denier of 0.7 denier to 8.0 denier, including any and all ranges and subranges therein.
- the synthetic fibers have a denier of 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0,
- the synthetic fibers comprise microdenier fibers (e.g., fibers having a denier of 0.7 to 1.0 denier). In some embodiments, the synthetic fibers comprise macro-denier fibers (e.g., fibers having a denier of 1.1 to 8.0 denier). In some embodiments, the synthetic fibers comprise micro-denier fibers and macro-denier fibers.
- the synthetic fibers comprise siliconized fibers.
- the term "siliconized" means that the fiber is coated with a silicon-comprising composition (e.g., a silicone). Siliconization techniques are well known in the art, and are described, e.g., in U.S. Patent No. 3,454,422.
- the silicon-comprising composition may be applied using any method known in the art, e.g., spraying, mixing, dipping, padding, etc.
- the silicon-comprising (e.g., silicone) composition which may include an organosiloxane or polysiloxane, bonds to an exterior portion of the fiber.
- the silicone coating is a polysiloxane such as a methylhydrogenpolysiloxane, modified methylhydrogenpolysiloxane,
- the silicon-comprising composition may be applied directly to the fiber, or may be diluted with a solvent as a solution or emulsion, e.g. an aqueous emulsion of a polysiloxane, prior to application. Following treatment, the coating may be dried and/or cured.
- a catalyst may be used to accelerate the curing of the silicon-comprising composition (e.g., polysiloxane containing Si— H bonds) and, for convenience, may be added to a silicon- comprising composition emulsion, with the resultant combination being used to treat the synthetic fiber.
- Suitable catalysts include iron, cobalt, manganese, lead, zinc, and tin salts of carboxylic acids such as acetates, octanoates, naphthenates and oleates.
- the fiber may be dried to remove residual solvent and then optionally heated to between 65° and 200° C to cure.
- 0 to 100 wt% of the fibers are siliconized fibers, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 wt%, including any and all ranges and subranges therein (e.g.,
- DWR durable water repellant
- inventive batting which may be referred to as DWR-treated fibers or water repellant fibers
- a polymer solution of zirconium acetate which can impart durable water repellant properties while minimizing and/or avoiding negative effects on fiber performance.
- fibers treated with a durable water repellant are treated with a water-repellant, bacterial-resistant, low friction cured zirconium acetate finish, such that the fibers have improved driability following washing and enhanced handle and resistance to clumping.
- a zirconium acetate solution that may be used as a DWR treatment in connection with the present invention is disclosed in U.S. Patent No. 4,537,594.
- the fiber treated with a durable water repellant is treated in a wet bath or dry spraying process.
- the treatment comprises a surface energy modification technique, which, as is known in the art, may include, e.g., plasma treatment. Such treatments or processes are explained in U.S.
- synthetic fibers comprise up to 15 wt % of particles or material that is different from the synthetic material that the synthetic fiber is primarily comprised of.
- the synthetic fibers comprise 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3,
- said particles or material is comprised within (e.g., encapsulated within) a polymer matrix that represents the synthetic material of which the synthetic fiber is primarily comprised.
- the synthetic fibers in the fiber mixture comprise aerogel fiber, as described in International Application Publication No. WO 2017/087511.
- the fiber mixture of the batting comprises natural fibers.
- the fiber mixture comprises one or more members selected from wool, cotton, tencel, kapok (cotton-like fluff obtained from seeds of a Kapok tree, which may optionally be further processed before use), flax, animal hair, silk, and down (e.g., duck or goose down).
- the fiber mixture comprises 0 to 100 wt% natural fibers, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 wt%, including any and all ranges and subranges therein (e.g., 0 to 50 wt
- the fiber mixture comprises synthetic fibers and natural fibers.
- the fiber mixture comprises:
- 50 to 90 wt % siliconized synthetic fibers e.g., polyester fibers
- siliconized macrodenier synthetic fibers e.g., polyester fibers having a staple length of 40 to 70 mm and a denier of greater than 1.0.
- the siliconized macrodenier fibers have a denier of greater than or equal to 3.0.
- the fiber mixture comprises:
- micro-denier fibers e.g., 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 wt %), including any and all ranges and subranges therein; and
- macro-denier fibers e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, or 65 wt %), including any and all ranges and subranges therein.
- the microdenier and macrodenier fibers can individually be siliconized or nonsiliconized.
- 0 to 100 wt% e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 wt%, including any
- the invention provides batting embodiments wherein, even in the absence of heat treatment (e.g., in the absence of any fibers melting and bonding to other fibers in the batting), fibers within the batting are sufficiently adhered to one another so as to form a discrete batting structure that has structural integrity and is capable of being handled and used as-is, without falling apart or otherwise compromising the structural integrity of the batting so as to make it unfit for end use.
- the fiber mixture is free of binder fiber.
- the nonwoven web is free of binder fiber.
- the batting is free of binder fiber.
- the batting does not comprise any melted fibers.
- no fibers within the batting are bonded to one another via the melting of a fiber in the fiber mixture.
- the fiber mixture comprises, e.g., a binder fiber
- the web is heat treated so as to melt the binder fiber and cause it to bond to other fibers in the fiber mixture comprised within the nonwoven web.
- no fibers within the batting are adhered to one another unless it is via the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate.
- 90 wt% or more of fibers present in the batting are only adhered to one another via the resin comprising the cross-linked copolymer of butyl acrylate and methyl methacrylate.
- inventive embodiments comprise binder fibers.
- a skilled artisan may wish to use the inventive concept of using the cross-linked polymer to form an ambient temperature air-cured batting wherein fibers are adhered via the resin, such that the air-cured batting has structural integrity that imparts handleability of the batting in sheet form, but to also use binder fiber.
- the fiber mixture comprises binder fiber.
- the fiber mixture comprises 1 to 25 wt % synthetic binder fibers, said binder fibers having a bonding temperature lower than the softening temperature of synthetic polymeric fibers present in the mixture.
- the synthetic binder fibers make up, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 wt % of the fiber mixture, including any and all ranges and subranges therein.
- the synthetic binder fibers have a denier of 1.5 to 4.0 denier, e.g., 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, or 4.0 denier, including any and all ranges and subranges therein (e.g., 2.0-2.2 denier).
- the binder fibers have a staple cut length of 38 to 105 mm, including any and all ranges and subranges therein.
- the length is 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, or 105 mm, including any and all ranges/subranges therein (e.g., 38-51 mm).
- the binder fibers have a bonding temperature lower than the softening temperature of the synthetic fibers.
- the binder fibers have a bonding temperature of less than or equal to 200 °C.
- the binder fibers have a bonding temperature of 50 to 200 °C, including any and all ranges and subranges therein.
- the binder fibers have a bonding temperature of 80 °C to 150 °C.
- the binder fibers have a bonding temperature of 100 °C to 125 °C.
- the binder fibers comprise low-melt polyester fibers.
- the binder fibers are bicomponent fibers comprising a sheath and a core, wherein the sheath comprises a material having a lower melting point than the core.
- the inventive batting in some embodiments, has been heat treated so as to melt all or a portion of the binder fibers, thereby forming a thermally bonded web-type batting.
- binder fibers are recited in the fiber mixture of the batting, said fibers may be wholly or partially melted fibers, as opposed to binder fibers in their original, pre-heat treatment form.
- the inventive batting comprises at least one nonwoven web.
- the fiber content of the nonwoven web(s) consists of the fiber mixture.
- the thickness and insulative properties of the batting can be increased.
- the batting has a thickness of 4 to 30 mm (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 mm), including any and all ranges and subranges therein (e.g., 10 to 20 mm).
- the batting has a density of 0.9 to 8 kg/m 3 (e.g., 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, or 8.0 kg/m 3 ), including any and all ranges and subranges
- the batting has a thermal performance rating of at least 0.70 clo/oz/yd 2 when tested according to ISO 11092.
- the batting has a thermal performance rating of 0.70 clo/oz/yd 2 to 0.95 clo/oz/yd 2 (e.g., 0.70, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.90, 0.91, 0.92, 0.93, 0.94, or 0.95 clo/oz/yd 2 ), including any and all ranges and subranges therein.
- the members of the fiber mixture are homogenously mixed, meaning, the fiber mixture has a substantially uniform (i.e., 90 - 100% uniform) composition.
- FIG. 1 A is a top-view photograph of one embodiment 10 of the inventive batting according to the first aspect of the invention.
- the depicted batting 10 is a single non-woven web that comprises first surface 2 and second surface 4 (not pictured, but which is parallel to first surface 2, and which, in the depicted embodiment, faces the surface on which batting 10 is placed).
- first surface 2 when batting 10 is contained within an article (e.g., as insulation), first surface 2 will face toward an outer portion (e.g., fabric or other material or liner) of the article, e.g., a jacket, and second surface 4 will face toward an inner portion (e.g., fabric or other material or liner) of the article.
- first surface 2 faces toward an inner portion of an article and second surface 4 faces toward an outer portion of an article.
- FIG. IB is a line drawing of the top-view photograph of the embodiment 10 of inventive batting depicted in FIG. 1 A.
- FIG. 2A is a side-view photograph of an embodiment 10 of the inventive batting, wherein X is the thickness of the batting.
- FIG. 2B is a line drawing of the side-view photograph of the embodiment 10 of inventive batting depicted in FIG. 2A.
- FIG. 3 A is a photograph of an embodiment 10 of the inventive batting draped over a structure.
- the depicted batting 10 has good drape (i.e., the batting hangs under its own weight).
- a batting's drape has bearing on qualities such as comfort and aesthetics of an article within which batting is used.
- FIG. 3B is a line drawing of the photograph in FIG. 3 A of embodiment 10 of inventive batting draped over a structure.
- the batting has a drape of 1.5 cm to 3.5 cm (e.g., 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, or 3.5 cm) including any and all ranges and subranges therein, as measured in accordance with Method ASTM D1388.
- FIG. 4A is a profile-view photograph of an embodiment 10 of the inventive batting, wherein X is the thickness of the batting.
- FIG. 4B is a line drawing of the photograph in FIG. 4A of a profile-view of embodiment 10 of inventive batting.
- the batting has a weight of 25 to 200 gsm (e.g., 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 40, 41, 42, 43,
- the batting is in sheet form (suitable for use as a rolled good) and has not been shredded.
- the batting does not comprise pigment.
- the pigment is not present in the resin (i.e., the pigment, if present in the batting, is not contributed by the resin).
- the invention provides an article comprising the inventive batting.
- articles include, for example, outerwear (e.g.
- outerwear garments such as jackets, etc.
- clothing pillows, pads, sleeping bags, bedding (e.g., quilts, comforters), etc.
- the invention provides a method of making air-cured batting, said method comprising: forming a nonwoven web from a fiber mixture and, optionally, layering two or more web layers, thereby creating an intermediate batting insulation structure having a first surface and a second surface parallel to the first surface; applying to the first surface and the second surface of the intermediate batting insulation structure a resin solution comprising:
- the air-cured batting comprising 75 to 97.5 wt % of fiber mixture and 2.5 to 25 wt % of the resin, wherein the resin is adhered to fibers of the fiber mixture, thereby forming a bonded structure, such that, by virtue of the resin, the air-cured batting has structural integrity that imparts handleability of the batting in sheet form.
- the fiber mixture can be any embodiment as described above in the first aspect of the invention.
- the inventive method comprises heating the batting to or in excess of the bonding temperature of the binder fibers.
- the inventive method of the third aspect of the invention does not comprise heating the batting to or in excess of the bonding temperature of binder fibers employed in the fiber mixture.
- embodiments of the inventive method of making air-cured batting that do not comprise a specified heating step apply to the final air-cured batting and also any intermediate batting structure thereof comprising the nonwoven web.
- the inventive method of making air-cured batting does not comprise a process step performed in excess of 48 °C. In some embodiments, the inventive method of making air-cured batting does not comprise a process step performed in excess of 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 °C.
- the inventive method does not comprise a bonding step that results in bonding or adhesion of fibers within the fiber mixture at a temperature in excess of 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 °C.
- the nonwoven web is formed using a carding machine or air- lay process. Both techniques are well known by persons having ordinary skill in the art.
- the resin solution comprises:
- the solution comprises 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 vol. % of the resin, including any and all ranges and subranges therein (e.g., 20 to 50 vol.%, 25 to 35 vol.%, etc.);
- the solution comprises 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 vol. % of the fast-drying solvent, including any and all ranges and subranges therein (e.g., 30 to 75 vol.%, 50 to 70 vol.%, etc.); and
- the solution comprises 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 vol. % water, including any and all ranges and subranges therein (e.g., 0 to 50 vol.%, 1 to 30 vol.%, 2 to 20 vol.%. 5 to 15 vol.%, etc.).
- the fast-drying solvent refers to a solvent having an evaporation rate of greater than or equal to 1.3.
- the evaporation rate is the rate at which a material will vaporize (evaporate, change from liquid to vapor), measured by ASTM D3539-11 method, compared to the rate of vaporization of n-butyl acetate measured in the same conditions. This quantity is a ratio, therefore it is unitless.
- the fast-drying solvent has an evaporation rate of greater than 1.3 (e.g., greater than 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0,
- the fast- drying solvent has an evaporation rate of greater than 3.0.
- the fast-drying solvent is soluble in water, which, for the purposes of this application, means that the solvent has a solubility of at least 8 grams per 100 mL of water at 20 °C (i.e., at least 8 mL of the solvent will dissolve in 100 mL water at 20 °C).
- the solvent has a solubility of greater than or equal to 10 grams per 100 mL water at 20 °C (e.g., greater than or equal to 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 grams solvent per 100 mL water at 20 °C).
- the fast-drying solvent is selected from isopropyl alcohol, ethanol, methanol, glyme, acetone, tetrahydrofuran, methyl ethyl ketone (MEK), methyl acetate, and ethyl acetate, and combinations thereof.
- the fast- drying solvent is isopropyl alcohol.
- the resin solution does not comprise pigment.
- applying the resin solution to the first and second surfaces of the intermediate batting insulation structure comprises spraying the solution onto the first and/or second surfaces.
- spray drops of the resin solution have an average median diameter of 150 to 250 ⁇ (e.g., 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216
- spray nozzles traverse over the top and across the width of the first and second surfaces of the batting structure.
- applying the resin solution to the first and second surfaces of the intermediate batting insulation structure comprises applying via a bath or padding, both techniques being known in the art, the solution onto the first and/or second surfaces.
- exposing the solution-applied batting structure to air comprises subjecting the solution-applied batting to forced air or circulated air.
- said exposing comprises subjecting the solution-applied batting to forced air or circulated air having an air speed, at time of contact with the solution-applied batting, of at least 2.5 m/s, at least 3.0 m/s, or at least 3.5 m/s.
- said exposing comprises subjecting the solution-applied batting to forced air or circulated air having an air speed, at time of contact with the solution-applied batting, of 2.5 to 15 m/s (e.g., 2.5, 2.6, 2.7,
- the inventive method comprises, after forming the air-cured batting, winding the batting into roll good form.
- Such embodiments lend themselves toward, e.g., easy shipping of the batting.
- the air-cured batting is wound up along with a nonwoven scrim layer and shipped in roll good form.
- the invention provides a batting, article or method according to an embodiment of one of the following clauses:
- Air-cured batting comprising a nonwoven web, said batting comprising:
- the resin is present on a first surface of the batting, and on a second surface of the batting, the second surface being parallel to the first surface, and wherein the resin is adhered to fibers of the fiber mixture, thereby forming a bonded structure, such that, by virtue of the resin, the air-cured batting has structural integrity that imparts handleability of the batting in sheet form.
- nonwoven web layers are crosslapped with one another.
- Clause 23 The article according to clause 22, wherein said article is selected from the group consisting of an outerwear product, clothing, a sleeping bag, and bedding.
- said method comprising:
- the air-cured batting comprising 75 to 97.5 wt % of fiber mixture and 2.5 to 25 wt % of the resin, wherein the resin is adhered to fibers of the fiber mixture, thereby forming a bonded structure, such that, by virtue of the resin, the air-cured batting has structural integrity that imparts handleability of the batting in sheet form.
- Clause 27 The method according to any one of clauses 24-26, wherein said applying comprises spraying the resin solution on the first surface and the second surface of the intermediate batting insulation structure.
- Clause 28 The method according to any one of clauses 24-27, wherein the method does not comprise heating the nonwoven web.
- Clause 29 The method according to any one of clauses 24-27, wherein the method comprises heating the nonwoven web.
- Clause 30 The method according to any one of clauses 24-29, wherein said exposing the solution-applied batting to air comprises subjecting the solution-applied batting to forced air or circulated air.
- a fiber mixture is prepared by mixing the following:
- the fiber mixture After being mixed/blended, the fiber mixture is then processed into web form on a traditional carding machine to form a nonwoven web.
- the web is then sent through a cross-lapper in order to get the desired weight and thickness.
- the cross-lapped webbing is then sprayed with a resin solution (30 vol. % resin comprising a cross-linked copolymer of butyl acrylate and methyl methacrylate; 60 vol. % isopropyl alcohol; 10 vol. % water), and sent through a room temperature 3 pass oven with the convection fans running to help expedite the drying process.
- the resin in the resin solution is a milky white pourable liquid that comprises a self- crosslinking crosslinked copolymer of butyl acrylate and methyl methacrylate that is formaldehyde and APEO free, has a pH of -8.0, a specific gravity of 1.04, a solids content of 49% +/- 1.00%, a Tg of -15 °, comprises a nonionic and/or anionic emulsifier, is dilutable in water, has a product weight of 8.34 - 9.17 lb. /gal, and has a boiling point of -212 °F.
- the resin solution is sprayed on both sides of the insulation.
- the resin solution cures within 10-15 minutes, leaving a dry, air-cured batting wherein the resin adheres to fibers of the fiber mixture forming a bonded structure, such that the air-cured batting has structural integrity that imparts handleability of the batting in sheet form.
- the example batting has a weight of 61 gsm (grams per square meter), a density of 1.34 g/m 3 , and a thickness of 5.99 mm.
- a method or article that "comprises”, “has”, “includes” or “contains” one or more steps or elements possesses those one or more steps or elements, but is not limited to possessing only those one or more steps or elements.
- a step of a method or an element of an article that "comprises”, “has”, “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
- each range is intended to be a shorthand format for presenting information, where the range is understood to encompass each discrete point within the range as if the same were fully set forth herein.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Nonwoven Fabrics (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Bedding Items (AREA)
- Treatment Of Fiber Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662415137P | 2016-10-31 | 2016-10-31 | |
PCT/US2017/059188 WO2018081771A1 (en) | 2016-10-31 | 2017-10-31 | Air-cured batting insulation |
Publications (4)
Publication Number | Publication Date |
---|---|
EP3532666A1 true EP3532666A1 (de) | 2019-09-04 |
EP3532666A4 EP3532666A4 (de) | 2020-07-08 |
EP3532666C0 EP3532666C0 (de) | 2024-01-03 |
EP3532666B1 EP3532666B1 (de) | 2024-01-03 |
Family
ID=62024067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17865837.3A Active EP3532666B1 (de) | 2016-10-31 | 2017-10-31 | Luftgehärtete wattierungsisolierung |
Country Status (8)
Country | Link |
---|---|
US (1) | US20190249345A1 (de) |
EP (1) | EP3532666B1 (de) |
JP (1) | JP7184767B2 (de) |
KR (1) | KR102476962B1 (de) |
CN (1) | CN109996913B (de) |
RU (1) | RU2754839C2 (de) |
TW (1) | TWI788308B (de) |
WO (1) | WO2018081771A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108842301A (zh) * | 2018-07-05 | 2018-11-20 | 常州市阿曼特医药科技有限公司 | 一种棉卫生产品面层材料的制备方法 |
IT202000011041A1 (it) * | 2020-05-14 | 2021-11-14 | Minardi Piume S R L | Metodo per realizzare materiale da imbottitura |
DE202020105424U1 (de) * | 2020-09-22 | 2020-10-16 | BADENIA BETTCOMFORT GMBH & Co.KG. | Polster- und Füllmaterial, und Bettware |
CN114010034A (zh) * | 2021-10-22 | 2022-02-08 | 山西景柏服饰股份有限公司 | 一种多纤维被子及制造方法 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3454422A (en) | 1964-03-13 | 1969-07-08 | Du Pont | Organopolysiloxane coated filling materials and the production thereof |
BE691151A (de) * | 1966-12-13 | 1967-05-16 | ||
DE1965587A1 (de) * | 1969-12-30 | 1971-07-15 | Basf Ag | Verfahren zum Herstellen reversibel wasserdampfaufnehmender flaechiger Gebilde |
US3959224A (en) * | 1971-02-01 | 1976-05-25 | The Lubrizol Corporation | Water-soluble hydroxyalkylated and alkoxyalkylated compositions and the like derived from N-3-oxohydrocarbon-substituted acrylamides, and polymers thereof |
US4537594A (en) | 1983-07-22 | 1985-08-27 | Fogarty P.L.C. | Processed feathers |
JPS60115542A (ja) * | 1983-11-25 | 1985-06-22 | Nippon Zeon Co Ltd | シクロペンタノールの製造法 |
US4869922A (en) | 1986-01-24 | 1989-09-26 | Ausimont S.P.A. | Method of coating with polyfluorocarbons |
GB8821350D0 (en) * | 1988-09-12 | 1988-10-12 | Unilever Plc | Emulsion binders |
JPH0459304A (ja) * | 1990-06-29 | 1992-02-26 | Noboru Matsuda | 畳表塗布剤及び塗布方法 |
JP2868922B2 (ja) * | 1991-03-27 | 1999-03-10 | 日本エヌエスシー株式会社 | 樹脂綿およびそれに用いるポリマーエマルジヨン |
US5262208A (en) | 1992-04-06 | 1993-11-16 | Plasma Plus | Gas plasma treatment for archival preservation of manuscripts and the like |
US5356754A (en) * | 1992-09-25 | 1994-10-18 | Mitsubishi Rayon Co., Ltd. | Crosslinking curable resin composition |
DE4306808A1 (de) * | 1993-03-04 | 1994-09-08 | Wacker Chemie Gmbh | Vernetzbare Dispersionspulver als Bindemittel für Fasern |
US5437909A (en) * | 1994-05-20 | 1995-08-01 | Minnesota Mining And Manufacturing Company | Multilayer nonwoven thermal insulating batts |
AU715719B2 (en) | 1995-06-19 | 2000-02-10 | University Of Tennessee Research Corporation, The | Discharge methods and electrodes for generating plasmas at one atmosphere of pressure, and materials treated therewith |
PL324201A1 (en) * | 1995-06-30 | 1998-05-11 | Kimberly Clark Co | Multiple-component fibre and non-woven fabric amide thereof degradable in water |
EP0927204B1 (de) | 1996-09-18 | 2002-11-20 | Eastman Chemical Company | Selbstvernetzende wässrige dispersionen |
DE69811293T2 (de) * | 1997-06-20 | 2003-10-23 | Rohm And Haas Co., Philadelphia | Polymerzusammensetzungen |
US6630231B2 (en) * | 1999-02-05 | 2003-10-07 | 3M Innovative Properties Company | Composite articles reinforced with highly oriented microfibers |
JP4685332B2 (ja) * | 2001-04-16 | 2011-05-18 | 住友精化株式会社 | 高分子量体含有粘性液の吸収に適した吸水性樹脂、並びにそれを用いた吸収体および吸収性物品 |
EP1545764A4 (de) | 2002-09-10 | 2007-08-08 | Wisconsin Alumni Res Found | Plasmabehandlung mit dielektrischen fluiden |
US7064091B2 (en) * | 2003-01-29 | 2006-06-20 | Air Products Polymers, L.P. | Incorporation of a self-crosslinking polymer into a nonwoven binder for use in improving the wet strength of pre-moistened wipes |
NZ543027A (en) | 2003-05-05 | 2007-06-29 | Commw Scient Ind Res Org | Plasma treatment apparatus and method |
JP2007247111A (ja) | 2006-03-17 | 2007-09-27 | Toyo Ink Mfg Co Ltd | 不織布用バインダーエマルジョン及びその製造方法 |
JP2007246798A (ja) | 2006-03-17 | 2007-09-27 | Toyo Ink Mfg Co Ltd | 不織布用バインダーエマルジョン及びその製造方法 |
MX2010009630A (es) * | 2008-03-03 | 2010-09-28 | Celanese Int Corp | Aglutinantes polimericos cationicos sensibles a sales para telas no tejidas, y metodo de fabricacion de los mismos. |
WO2010008021A1 (ja) | 2008-07-15 | 2010-01-21 | キヤノンアネルバ株式会社 | プラズマ処理方法及びプラズマ処理装置 |
US9051423B2 (en) * | 2009-09-16 | 2015-06-09 | 3M Innovative Properties Company | Fluorinated coating and phototools made therewith |
US9416300B2 (en) * | 2011-01-16 | 2016-08-16 | Simpson Strong-Tie Company, Inc. | Low temperature curable adhesive compositions |
CN102220674B (zh) * | 2011-04-27 | 2012-10-03 | 嘉兴学院 | 一种半耐久性家纺用苎麻无纺材料及其生产方法 |
US20140093698A1 (en) * | 2012-10-01 | 2014-04-03 | Sellars Absorbent Materials, Inc. | Hydrophilic industrial absorbent with dual-layer, slip-resistant scrim |
CN103938452A (zh) * | 2014-05-13 | 2014-07-23 | 南通市泓雨化工有限公司 | 一种高弹性喷胶棉粘合剂的制备方法 |
US10954615B2 (en) * | 2015-01-21 | 2021-03-23 | Primaloft, Inc. | Migration resistant batting with stretch and methods of making and articles comprising the same |
JP7005490B2 (ja) | 2015-11-17 | 2022-01-21 | プリマロフト,インコーポレイテッド | エアロゲル及びポリマー材料を含有する合成繊維並びにそれの製造方法及びそれを含む物品 |
-
2017
- 2017-10-31 JP JP2019522460A patent/JP7184767B2/ja active Active
- 2017-10-31 WO PCT/US2017/059188 patent/WO2018081771A1/en unknown
- 2017-10-31 KR KR1020197015624A patent/KR102476962B1/ko active IP Right Grant
- 2017-10-31 TW TW106137631A patent/TWI788308B/zh active
- 2017-10-31 RU RU2019116789A patent/RU2754839C2/ru active
- 2017-10-31 EP EP17865837.3A patent/EP3532666B1/de active Active
- 2017-10-31 US US16/342,109 patent/US20190249345A1/en not_active Abandoned
- 2017-10-31 CN CN201780067618.1A patent/CN109996913B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
TW201827664A (zh) | 2018-08-01 |
KR20190072632A (ko) | 2019-06-25 |
EP3532666C0 (de) | 2024-01-03 |
RU2754839C2 (ru) | 2021-09-08 |
TWI788308B (zh) | 2023-01-01 |
EP3532666B1 (de) | 2024-01-03 |
CN109996913B (zh) | 2022-07-26 |
CN109996913A (zh) | 2019-07-09 |
WO2018081771A1 (en) | 2018-05-03 |
JP2020502374A (ja) | 2020-01-23 |
RU2019116789A (ru) | 2020-11-30 |
RU2019116789A3 (de) | 2021-02-26 |
KR102476962B1 (ko) | 2022-12-13 |
EP3532666A4 (de) | 2020-07-08 |
JP7184767B2 (ja) | 2022-12-06 |
US20190249345A1 (en) | 2019-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3532666B1 (de) | Luftgehärtete wattierungsisolierung | |
TWI694191B (zh) | 非織物羽絨毛絮、包含毛絮之物品、製造毛絮之方法 | |
EP3247826B1 (de) | Migrationsbeständige rohbaumwolle mit streckung und verfahren zur herstellung und artikel damit | |
EP3234244B1 (de) | Faserballwattefüllung und artikel damit | |
TW200944630A (en) | Thermal bonding conjugate fiber with excellent bulkiness and softness, and fiber formed article using the same | |
KR20160122237A (ko) | 볼륨 부직포 | |
WO2008022169A2 (en) | Controlled flow polymer blends and products including the same | |
KR101275671B1 (ko) | 고보온성 부직포 및 이의 제조방법 | |
KR20230016601A (ko) | 더 높은 단열을 위한 상이한 파이버볼 형상을 갖는 파이버볼 패딩 | |
US20210123185A1 (en) | Breathable hydrostatically-resistant structures | |
CA2664077A1 (en) | Dryer sheets including bicomponent fibers | |
WO2022126008A1 (en) | Air-permeable multi-layer insulative construct |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190516 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40009048 Country of ref document: HK |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20200609 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D04H 1/4391 20120101ALI20200602BHEP Ipc: D06M 15/263 20060101ALI20200602BHEP Ipc: D04H 1/593 20120101ALI20200602BHEP Ipc: D04H 1/64 20120101ALI20200602BHEP Ipc: D04H 1/4374 20120101AFI20200602BHEP Ipc: D04H 1/06 20120101ALI20200602BHEP Ipc: D04H 1/587 20120101ALI20200602BHEP Ipc: D04H 1/74 20060101ALI20200602BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
INTG | Intention to grant announced |
Effective date: 20230703 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MINEHARDT, JON-ALAN |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230830 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017078199 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
U01 | Request for unitary effect filed |
Effective date: 20240103 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240108 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20240103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240103 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240503 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240103 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240404 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240103 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240919 Year of fee payment: 8 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 8 Effective date: 20240919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240103 |