EP3526456A1 - Verfahren zum starten einer brennkraftmaschine - Google Patents
Verfahren zum starten einer brennkraftmaschineInfo
- Publication number
- EP3526456A1 EP3526456A1 EP17742158.3A EP17742158A EP3526456A1 EP 3526456 A1 EP3526456 A1 EP 3526456A1 EP 17742158 A EP17742158 A EP 17742158A EP 3526456 A1 EP3526456 A1 EP 3526456A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compressed air
- starter
- starting
- sequence
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000007858 starting material Substances 0.000 claims abstract description 31
- 230000006837 decompression Effects 0.000 claims abstract description 13
- 230000004044 response Effects 0.000 claims description 2
- 239000002689 soil Substances 0.000 claims 2
- 238000012544 monitoring process Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 8
- 102100029290 Transthyretin Human genes 0.000 description 6
- 102220502165 TP53-binding protein 1_S25A_mutation Human genes 0.000 description 4
- 102220531551 39S ribosomal protein L4, mitochondrial_S12A_mutation Human genes 0.000 description 3
- 102220531547 39S ribosomal protein L4, mitochondrial_S17A_mutation Human genes 0.000 description 3
- 102220542357 Endogenous retrovirus group K member 113 Pro protein_S20A_mutation Human genes 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 101001118566 Homo sapiens 40S ribosomal protein S15a Proteins 0.000 description 2
- 101001115218 Homo sapiens Ubiquitin-40S ribosomal protein S27a Proteins 0.000 description 2
- 102220588438 Keratin, type I cytoskeletal 18_S15A_mutation Human genes 0.000 description 2
- 102220588437 Keratin, type I cytoskeletal 18_S18A_mutation Human genes 0.000 description 2
- 102220602485 Small integral membrane protein 1_S22A_mutation Human genes 0.000 description 2
- 102220602494 Small integral membrane protein 1_S27A_mutation Human genes 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 102220531552 39S ribosomal protein L4, mitochondrial_S19A_mutation Human genes 0.000 description 1
- 102220495789 Alkaline ceramidase 1_S28A_mutation Human genes 0.000 description 1
- 102220588439 Keratin, type I cytoskeletal 18_S10A_mutation Human genes 0.000 description 1
- 102220588432 Keratin, type I cytoskeletal 18_S23A_mutation Human genes 0.000 description 1
- 102220588441 Keratin, type I cytoskeletal 18_S30A_mutation Human genes 0.000 description 1
- 102220511853 Replication protein A 32 kDa subunit_S26A_mutation Human genes 0.000 description 1
- 102220501791 TP53-binding protein 1_S13A_mutation Human genes 0.000 description 1
- 102220502164 TP53-binding protein 1_S29A_mutation Human genes 0.000 description 1
- 102220506862 Taste receptor type 2 member 9_S11A_mutation Human genes 0.000 description 1
- 102220506916 Taste receptor type 2 member 9_S24A_mutation Human genes 0.000 description 1
- 206010000210 abortion Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N9/00—Starting of engines by supplying auxiliary pressure fluid to their working chambers
- F02N9/04—Starting of engines by supplying auxiliary pressure fluid to their working chambers the pressure fluid being generated otherwise, e.g. by compressing air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B21/00—Engines characterised by air-storage chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N15/00—Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
- F02N15/10—Safety devices not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N7/00—Starting apparatus having fluid-driven auxiliary engines or apparatus
- F02N7/08—Starting apparatus having fluid-driven auxiliary engines or apparatus the engines being of rotary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Definitions
- the invention relates to a method for starting an internal combustion engine by means of
- Compressed air start system in which in a first start sequence, an engagement of the starter is effected by means of compressed air and is applied in a second starting sequence of the starter with compressed air.
- An internal combustion engine is started either by means of an electrically actuated starter or by means of a compressed air starter.
- a compressed air start system is
- the starter is engaged by means of compressed air and in the second start sequence of the starter, the compressed air is used to rotate.
- the second start sequence is ended when the internal combustion engine is at idling speed, for
- Example 350 revolutions / minute, has reached. After that starts the
- the invention is therefore based on the object to provide an improved method for starting an internal combustion engine with compressed air system.
- This object is achieved by a method in which in a first start sequence, an engagement of the starter is effected by compressed air, a decompression valve for relieving the cylinder working space is acted upon in the opening direction and a starting of the internal combustion engine is initiated by the starter is subjected to pulsed compressed air.
- a second start sequence the decompression valve is then acted upon in the closing direction and the starter is subjected to constant compressed air.
- a compressed air path for engaging the starter is determined by a plant controller via an engagement valve and a compressed air path to the. Via a start valve
- the pulsed compressed air is generated by controlling the start valve in response to a setpoint engine speed via a PWM signal during the first start sequence.
- the starter is continuously, gently turned on via the PWM signal and the pulsed compressed air. So avoided is a hard transition from a stationary internal combustion engine to a rotating one
- the setpoint speed is ramped from a first setpoint speed value to a second setpoint speed value.
- the first start sequence is ended positively when a speed control deviation from setpoint to actual speed within a tolerance band, for example 10 revolutions / minute, is detected.
- the process offers a high degree of process reliability and, as an additional security measure, allows a sales-promoting argumentation. As a pure software solution, this is almost cost neutral.
- the invention can be easily retrofitted, since the function only accesses the already existing components.
- FIG. 1 shows a system diagram
- FIG. 2 is a program flowchart
- FIG. 1 shows a system diagram of an internal combustion engine 1
- the compressed air start system 2 comprises a compressed air reservoir 10 for providing the compressed air, an engagement valve 5 and a start valve 6. Das
- Engagement valve 5 and the start valve 6 are designed as 2/2 valves. Alternatively, 3/2 valves are applicable.
- the engagement valve 5 is shown in the position 1, so that a continuous compressed air path from the compressed air reservoir 10 via the engagement valve 5 to the starter 3 exists. In this position, the starter is engaged.
- the start valve 6 is shown in the position zero, in which the compressed air path is blocked from the compressed air reservoir 10 to the starter, that is, the starter does not turn.
- the operating state of the entire system is determined by a system controller 4. An operator specifies his activation / deactivation request or his desired performance via the system controller 4.
- a monitoring unit 7 (EMU), an interface unit 8 (EIM) and an engine control unit 9 are connected to the plant controller 4 via a CAN bus. The monitoring unit 7 in turn determines the switching state of the engagement valve 5 and the start valve 6. This is typically done via a PWM signal.
- the engine control unit 9 controls and regulates the state of the internal combustion engine 1. In internal combustion engine operation, these are, for example, a rail pressure, an injection start and an injection end.
- the other input and output variables are represented by the reference symbol on / off, for example, a switching signal for the switchable exhaust gas turbocharger in a register charging.
- FIG. 2 shows a program flow chart.
- FIG. 2 consists of subfigures 2A, 2B and 2C.
- FIG. 2A shows the program part for
- FIG. 2B shows the program part of the first start sequence and FIG. 2C shows the program part of the second start sequence.
- the program sequence in the monitoring unit 7 is identified by the reference symbol EMU. With the reference EIM the sequence is in the
- Interface unit 8 marked.
- Information that is set or queried on the CAN bus is shown as dashed arrows.
- the air pressure sensor is set in step S2A
- S3A checks whether an error has been detected. If error is detected, query result S3A: yes, an alarm is displayed in S4A and this is set for further processing on the CAN bus, reference symbol C. If the absence of errors is determined in S3A, the function release is issued at S5A, reference character C, and then at S6A the status of the engagement valve (FIG. 1: 5), at S7A the status of the start valve (FIG. V.6) and at S8A queried the status of the speed sensor. Subsequently, the program branches back to step S3A. The steps S9A to S11 A indicate the procedure for a start abort. At S9A it is checked whether a start abort of the
- EIM Monitoring unit
- the program execution of the interface unit starts at S1 with the query of the start mode. This is specified by the operator via the system controller. Accordingly, either the engine start by means of generator, step S2, or a start by means of compressed air system is selected. At S3, the interface unit (EIM) starts at S1 with the query of the start mode. This is specified by the operator via the system controller. Accordingly, either the engine start by means of generator, step S2, or a start by means of compressed air system is selected. At S3, the
- Monitoring Unit is ready for operation.
- the readiness for operation on the CAN bus, reference C, is read out for this purpose. If it was determined at S8 that the monitoring unit (EMU) is ready for operation, the system branches to FIG. 2B. In the case of a negative test result, that is, the monitoring unit (EMU) is not ready for operation, a branch is made to S9, the start procedure is aborted and this status is set on the CAN bus, reference symbol D.
- FIG. 2B shows the program part of the first start sequence.
- EMU monitoring unit
- the following input variables are present at a PI controller 11: the PWM frequency fPWM for actuating the engagement valve (FIG. 1: 5) and the start valve (FIG. 1: 6), a minimum pulse duty cycle PWM (min), a maximum Pulse duty cycle PWM (max) to control the apply and start valve, two speed setpoints nSL1 and nSL2, a tolerance band of the speed
- the PI controller 11 is supplied with the actual speed nIST whose value is available on the CAN bus.
- step S16A of FIG. 2B If during a time dt the speed control deviation dn lies within the tolerance band TB, query result S16A: yes, then in S18A cranking is recognized as complete and set as a data value on the CAN bus, reference J. If, however, S16A still has no stable speed -Regelabweichung detected, so a time step t is compared with a limit GW in S17A. Is the
- the interface unit sets the following states on the CAN bus, reference character G: no injection, decompression valve activated, ie actuate in opening positions and a state variable CTS on cranking. Then it is checked at S11 if the cranking is running. For this purpose, the corresponding value, reference H, is read in on the CAN bus. If the test result is negative, the start is stopped and branched to S10. Was at S11 the
- EMU monitoring unit
- step S19 If negative Test result, that is, the internal combustion engine is already rotating, aborts the program flow, step S19 and reference M. If the test at S16 is positive, then in S17 the decompression valve is actuated in the closing direction and set at S18 cranking as finished.
- FIG. 2C shows the program parts of the second start sequence.
- EMU monitoring unit
- PWM one hundred percent
- the starter is now charged with the full compressed air.
- the interface unit deactivates the decompression valve, that is, the decompression valve is operated in the closing direction.
- the state variable CTS is set to the status Start. Thereafter, it is checked at S22 whether the second start sequence is running. For this the status on the CAN bus,
- EMU Interface Unit
- EIM Engine Control Unit
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016012403.2A DE102016012403B4 (de) | 2016-10-17 | 2016-10-17 | Verfahren zum Starten einer Brennkraftmaschine |
PCT/EP2017/000838 WO2018072859A1 (de) | 2016-10-17 | 2017-07-13 | Verfahren zum starten einer brennkraftmaschine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3526456A1 true EP3526456A1 (de) | 2019-08-21 |
EP3526456B1 EP3526456B1 (de) | 2021-11-17 |
Family
ID=59381234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17742158.3A Active EP3526456B1 (de) | 2016-10-17 | 2017-07-13 | Verfahren zum starten einer brennkraftmaschine |
Country Status (8)
Country | Link |
---|---|
US (1) | US10794352B2 (de) |
EP (1) | EP3526456B1 (de) |
JP (1) | JP6920429B2 (de) |
KR (1) | KR102380226B1 (de) |
CN (1) | CN109804147B (de) |
AU (1) | AU2017346327B2 (de) |
DE (1) | DE102016012403B4 (de) |
WO (1) | WO2018072859A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019211508A1 (en) * | 2018-05-04 | 2019-11-07 | Wärtsilä Finland Oy | A method for starting a four-stroke reciprocating internal combustion piston engine and a four-stroke reciprocating internal combustion piston engine |
CN111058953A (zh) * | 2019-12-28 | 2020-04-24 | 潍柴动力股份有限公司 | 发动机起动系统、发动机及发动机起动方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH491290A (de) * | 1968-05-10 | 1970-05-31 | Nova Werke Ferber & Wran | Druckluftanlasseranlage für Dieselmotoren mit Vorrichtung zum Entwässern der Zylinder vor dem Anlassen |
US3667442A (en) * | 1970-02-16 | 1972-06-06 | White Sales Corp Graham | Pneumatic starting system for diesel engines |
DE2632015A1 (de) | 1976-07-16 | 1978-01-19 | Motoren Turbinen Union | Dieselbrennkraftmaschine |
DE3020930C2 (de) * | 1980-06-03 | 1982-12-23 | G. Düsterloh GmbH, 4322 Sprockhövel | Verfahren zum Starten einer Antriebsmaschine und Starter für eine Antriebsmaschine |
US4494499A (en) * | 1983-05-09 | 1985-01-22 | Tech Development Inc. | System and apparatus providing a two step starting cycle for diesel engines using a pneumatic starter |
DE19724921C2 (de) | 1997-06-12 | 1999-08-12 | Mannesmann Sachs Ag | Antriebssystem für ein Kraftfahrzeug und Verfahren zum Betreiben einer Brennkraftmaschine |
JPH1113608A (ja) * | 1997-06-25 | 1999-01-19 | Niigata Eng Co Ltd | 非常用ディーゼル機関の予潤滑方法およびその装置 |
US9360025B2 (en) * | 2010-07-22 | 2016-06-07 | Maradyne Corporation | Hydraulic soft start system |
AT511612B1 (de) * | 2011-06-17 | 2013-01-15 | Ge Jenbacher Gmbh & Co Ohg | Verfahren zum starten einer brennkraftmaschine |
FI123333B (en) * | 2011-11-23 | 2013-02-28 | Waertsilae Finland Oy | Liquid detection system for a combustion engine, method for operating a liquid detection system, and method for improving an internal combustion engine |
CN106460765B (zh) * | 2014-04-07 | 2020-08-11 | 通用电气航空系统有限责任公司 | 用于在诊断流体静力锁的存在时以气动起动机缓慢起动往复发动机的方法 |
KR102057748B1 (ko) * | 2015-03-04 | 2019-12-19 | 현대중공업 주식회사 | 수동 및 전자식 겸용 스타팅 에어 공급 시스템 |
CN105626342A (zh) * | 2015-12-24 | 2016-06-01 | 沪东重机有限公司 | 一种船用柴油机的慢转起动系统 |
-
2016
- 2016-10-17 DE DE102016012403.2A patent/DE102016012403B4/de active Active
-
2017
- 2017-07-13 CN CN201780064213.2A patent/CN109804147B/zh active Active
- 2017-07-13 EP EP17742158.3A patent/EP3526456B1/de active Active
- 2017-07-13 AU AU2017346327A patent/AU2017346327B2/en active Active
- 2017-07-13 US US16/338,173 patent/US10794352B2/en active Active
- 2017-07-13 KR KR1020197013841A patent/KR102380226B1/ko active IP Right Grant
- 2017-07-13 JP JP2019520604A patent/JP6920429B2/ja active Active
- 2017-07-13 WO PCT/EP2017/000838 patent/WO2018072859A1/de active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2019530828A (ja) | 2019-10-24 |
KR20190060857A (ko) | 2019-06-03 |
WO2018072859A1 (de) | 2018-04-26 |
JP6920429B2 (ja) | 2021-08-18 |
DE102016012403B4 (de) | 2018-11-08 |
CN109804147A (zh) | 2019-05-24 |
US10794352B2 (en) | 2020-10-06 |
KR102380226B1 (ko) | 2022-03-29 |
DE102016012403A1 (de) | 2018-04-19 |
EP3526456B1 (de) | 2021-11-17 |
US20190277238A1 (en) | 2019-09-12 |
AU2017346327A1 (en) | 2019-04-11 |
AU2017346327B2 (en) | 2023-02-02 |
CN109804147B (zh) | 2021-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1521907B1 (de) | Verfahren zur überprüfung der funktionsfähigkeit eines umgebungsdrucksensors einer brennkraftmaschine | |
EP2705237B1 (de) | Verfahren zur steuerung und regelung einer brennkraftmaschine | |
DE10329331B3 (de) | Verfahren zur Diagnose eines Volumenstromregelventils bei einer Brennkraftmaschine mit Hochdruck-Speichereinspritzsystem | |
DE102017109335A1 (de) | Systeme und verfahren zur maschinenkühlmittelsystemdiagnose | |
DE102011001470A1 (de) | Fehlfunktionsdiagnosesystem für ein Fahrzeug-Leerlauf-Stop-System | |
DE102009006664A1 (de) | Verfahren zum Starten einer Brennkraftmaschine | |
EP3526456B1 (de) | Verfahren zum starten einer brennkraftmaschine | |
DE19836845A1 (de) | Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Kraftfahrzeugs | |
DE10156637C1 (de) | Verfahren zur Steuerung und Regelung des Startbetriebs einer Brennkraftmaschine | |
DE10315881A1 (de) | Verfahren zur Drehzahl-Regelung | |
DE19963214A1 (de) | Verfahren und Vorrichtung zum Hochfahren eines Steuergeräts für ein Kraftfahrzeug | |
WO2005119040A1 (de) | Verfahren zum betreiben einer brennkraftmaschine, brennkraftmaschine und steuergerät für eine brennkraftmaschine | |
DE4229540C2 (de) | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine | |
DE102014102424A1 (de) | Verfahren zum Betreiben eines Lenksystems | |
DE19939051A1 (de) | Vorrichtung und Verfahren zur Erzeugung eines Kraftstoffhochdrucks | |
DE102006042608A1 (de) | Verfahren zur Ermittlung des Zustandes einer Anfahrkupplung | |
DE4302482B4 (de) | Verfahren zur Prüfung eines elektronischen Steuergerätes mit Hilfe eines externen Diagnosegerätes | |
EP1305509B1 (de) | Elektronische schaltungsanordnung und zugehöriges verfahren zur ansteuerung eines stellglieds , zum beispiel für ventile oder injektoren | |
DE102006023726A1 (de) | Verfahren zum Erfassen einer Manipulation sowie entsprechend ausgestaltetes Steuergerät, Steuersystem und Kraftfahrzeug | |
DE102015220098B3 (de) | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit einem Hochdruck-Kraftstoffeinspritzsystem | |
DE102017216989B4 (de) | Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem und Einspritzsystem zur Durchführung eines solchen Verfahrens | |
DE102008035455A1 (de) | Verfahren und Vorrichtung zur Ansteuerung von Ölversorgungseinrichtungen einer Brennkraftmaschine | |
DE102007034190A1 (de) | Verfahren und Vorrichtung zur Nullmengenkalibrierung bei einem Verbrennungsmotor | |
DE102015205946A1 (de) | Verfahren zum Verhindern einer ungewollten Beschleunigung eines Kraftfahrzeugs | |
DE102016215125B4 (de) | Verfahren zur Steuerung einer Notfalleinrichtung, Klappensteuergerät und Steuereinrichtung für eine Brennkraftmaschine sowie Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190517 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210601 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROLLS-ROYCE SOLUTIONS GMBH |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017012048 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1448225 Country of ref document: AT Kind code of ref document: T Effective date: 20211215 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20211117 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220317 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220317 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220218 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017012048 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220713 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220713 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1448225 Country of ref document: AT Kind code of ref document: T Effective date: 20220713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220713 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20230721 Year of fee payment: 7 Ref country code: IT Payment date: 20230724 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240725 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 8 |