EP3523120B1 - Elektrohydraulische antriebseinheit - Google Patents

Elektrohydraulische antriebseinheit Download PDF

Info

Publication number
EP3523120B1
EP3523120B1 EP17772687.4A EP17772687A EP3523120B1 EP 3523120 B1 EP3523120 B1 EP 3523120B1 EP 17772687 A EP17772687 A EP 17772687A EP 3523120 B1 EP3523120 B1 EP 3523120B1
Authority
EP
European Patent Office
Prior art keywords
hydraulic
piston
working chamber
valve
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17772687.4A
Other languages
English (en)
French (fr)
Other versions
EP3523120A1 (de
Inventor
Stefan GUTH
Martin Rauwolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAWE Altenstadt Holding GmbH
Original Assignee
HAWE Altenstadt Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAWE Altenstadt Holding GmbH filed Critical HAWE Altenstadt Holding GmbH
Publication of EP3523120A1 publication Critical patent/EP3523120A1/de
Application granted granted Critical
Publication of EP3523120B1 publication Critical patent/EP3523120B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/163Control arrangements for fluid-driven presses for accumulator-driven presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/18Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram
    • B30B15/20Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram controlling the speed of the ram, e.g. the speed of the approach, pressing or return strokes

Definitions

  • the present invention relates to an electrohydraulic drive unit of the generic type specified in the preamble of claim 1.
  • Electrohydraulic drive units which - designed as linear drives - each comprise at least one cylinder-piston arrangement which can be acted upon by a hydraulic pump and are particularly suitable as machine drives, are known in various configurations.
  • the DE 10 2011 116 964 A1 discloses an electrohydraulic drive unit which comprises a cylinder-piston arrangement and a hydraulic pump which serves to act upon it and is driven by an electric motor at variable speeds.
  • the delivery direction of the hydraulic pump can be reversed so that it can be switched between an application of the first hydraulic working chamber on the piston side and the second hydraulic working chamber on the piston rod side, so that it does not have a defined tank connection and a defined working connection.
  • the line arrangement is designed in such a way that in both directions of movement of the piston of the cylinder-piston arrangement, hydraulic fluid can be pumped out of one of the working spaces into the other working space.
  • An electrohydraulic drive unit of the generic type is in particular the one mentioned above DE 202015106161 U1 removable.
  • One of the characteristics is that the hydraulic pump with its working connection can be switched to either of the two hydraulic working spaces of the - double-acting - cylinder-piston arrangement.
  • the piston of the cylinder-piston arrangement can be actively moved in either of the two directions of movement (lowered and raised with a vertical axis of movement) by appropriately loading one of the two hydraulic working spaces from the hydraulic pump.
  • the piston of the cylinder-piston arrangement is under considerable tension at its bottom dead center.
  • the first hydraulic working space of the cylinder-piston arrangement at the bottom dead center of the piston is under considerable pressure.
  • a so-called decompression phase is provided, which follows the holding phase.
  • the latest end of the decompression phase results from the process itself, namely at the latest at the point of equilibrium of the forces acting on the piston (in particular hydraulic forces, weight forces, reaction or springback forces of the workpiece, restoring forces of the machine parts deformed elastically during pressing), whereby the tool is typically still on the workpiece gets up.
  • the hydraulic system is then reversed in the sense that the second hydraulic working chamber is acted upon, causing the piston to be actively raised, by the hydraulic pump, which in turn is switched back to pumping mode.
  • the present invention has set itself the task of providing an electrohydraulic drive unit of the generic type, which is characterized by a further improved operating behavior, in particular in the area of movement reversal of the piston of the hydraulic cylinder-piston arrangement.
  • the electrohydraulic drive unit is characterized in that a decompression module comprising a hydraulic accumulator is integrated in the hydraulic system the cylinder-piston arrangement can be coupled or separated therefrom. In this way, the hydraulic decompression module can be switched on and off within the respective working cycle.
  • the drive unit according to the invention is particularly suitable as a press drive, the piston being used for forming a workpiece and drives from movable tool, the present invention is mainly explained below with reference to this use. However, a limitation of the invention to this use cannot be derived from this.
  • the effective interaction of the hydraulic accumulator of the hydraulic decompression module with the second hydraulic working space can be restricted to a (preferably small) part of the working cycle (more or less adjacent to the bottom dead center of the piston), so that during the predominant one Share of the respective work cycle of the hydraulic accumulator is separated from the second hydraulic work space.
  • the hydraulic fluid displaced from the second hydraulic working chamber after the decompression module is switched on (by opening the loading / unloading valve) when the piston approaches the bottom dead center is displaced into the hydraulic accumulator of the decompression module via the line arrangement.
  • the point at which the hydraulic decompression module is activated effectively when the piston moves downward is preferably selected so that the hydraulic energy stored in the hydraulic accumulator of the decompression module and the volume of hydraulic fluid stored are sufficient to support the piston during the (an active "return stroke creep speed" including) decompression phase so that there is no longer any contact between the tool and the workpiece.
  • a hydraulic accumulator in the rest of the hydraulic system which is characteristic of the present invention, in particular allows the pressure conditions in the two hydraulic work spaces decouple the cylinder-piston arrangement and the movement of the piston in the particularly critical phase of the pressure reduction in the first hydraulic working space and the onset of the return movement of the piston from the interaction with a formed workpiece or the like, by said pressure reduction in the first hydraulic Working space and the beginning return movement of the piston is not a force induced in the piston by the workpiece or the like to be formed, but rather the hydraulic pressure induced in the second hydraulic working space by the decompression module. In this way it is possible, among other things, to achieve good reproducibility of the work cycle and to carry out the process particularly gently for the workpiece.
  • the return stroke of the piston in the decompression phase is, moreover, not determined and limited by the elastic springback of the workpiece and the machine parts deformed elastically during pressing; rather, the decompression module specifies the degree of return stroke of the piston in the decompression phase. So in the Decompression phase, which, depending on the individual execution of the cycle, can also represent a "return stroke creep speed", by means of the decompression module the pistons are continuously, steadily and jerk-free (actively) raised so that there is no longer any contact between the tool and the workpiece.
  • Discontinuities such as those that occur due to various switching processes, when switching to the active lifting of the piston in rapid traverse (by applying the second hydraulic working chamber from the hydraulic pump in pump mode) cannot have a detrimental effect on the workpiece in this way.
  • the hydraulic pump since in that braking mode in the "decompression phase" the hydraulic pump remains connected to the first hydraulic work area, the effective piston area of which is regularly many times larger than the effective piston area of the second hydraulic work area, a particularly sensitive movement control of the piston is also possible, decidedly more sensitive than in the return stroke with active loading of the second hydraulic work space from the hydraulic pump.
  • powder presses can also be designed using drive units according to the invention, in which the green compact is then treated particularly gently, so that a particularly low error and reject rate can be achieved. Because of their outstanding characteristic The present invention is also very well suited for use in press brakes for sensor-controlled bending.
  • the steady and jerk-free active decompression stroke possible in application of the invention is ideal until the tool is completely lifted off the workpiece or beyond. This is evidently also true when going through several post-bending cycles in "shuttle operation".
  • the present invention also proves to be extremely useful in forming processes which are carried out using bending aids as a result of the specific workpiece geometry; because the full path control during active decompression enables a controlled transfer of the workpiece to the bending aid.
  • the decompression module can be switched on via the loading / unloading valve in the switching phase that is present anyway at the end of the rapid traverse (operated in braking mode) (see above). This is favorable with regard to the possibility of a time-coordinated shut-off of the line connection of the second hydraulic work space to the tank.
  • the like is not mandatory;
  • a later activation of the decompression module may also offer advantages only when the piston is in motion. Limiting the effective connection of the decompression module to the part of the work cycle required to achieve the advantages described above has a positive effect, inter alia, in that the hydraulic accumulator of the decompression module can be designed accordingly small.
  • the capacity of the hydraulic accumulator of the decompression module can be significantly smaller than the maximum volume of the second hydraulic work space, for example only less than 30% of it.
  • the loading / unloading valve can in particular open in a pressure-controlled manner, the control pressure line communicating with the first hydraulic working space.
  • the decompression module is to a certain extent automatically switched on at the beginning or during the power train when a predefined pressure value is reached in the first hydraulic working space. If activation is desired right at the start of the power gear, the threshold value that switches the load / unload valve is matched to the pressure jump that occurs in the first hydraulic work space during the transition from rapid gear to power gear.
  • the threshold value switching the loading / unloading valve can be matched, for example, to the pressure jump that occurs when the tool is placed on the workpiece.
  • an even later switching point can possibly be set, namely more or less towards the end of the power gear at a correspondingly high pressure in the first hydraulic work space.
  • the decompression module When the hydraulic pump switches to braking operation in such a way that hydraulic fluid braked flows back from the first hydraulic working space (via the hydraulic pump working in braking operation) back into the tank, the decompression module is effective as long (in the sense of loading the second hydraulic working space out of the hydraulic accumulator via the line arrangement with the loading / unloading valve open) until the pressure in the first hydraulic working space falls below the switching pressure of the loading / unloading valve again. From then on, the further work cycle proceeds without the action of the decompression module.
  • the hydraulic accumulator is automatically charged during the work cycle only during the power train or even only a part of it, from the second hydraulic work space to the extent that it is for the application of the second hydraulic work area from the hydraulic accumulator is required during the phase of controlled active decompression (possibly including a return stroke creep speed).
  • the line arrangement comprises a first connecting line with a pressure limiting valve with a flow direction from the second hydraulic work space to the hydraulic accumulator and a second connecting line with a check valve opening in the flow direction from the hydraulic accumulator to the second hydraulic work space, the loading / unloading valve in one for the first connecting line and the second Connection line common wiring harness is arranged.
  • Yet another preferred development of the invention is characterized in that the means of the Machine control in a braking mode with a reversible direction of rotation and flow direction hydraulic pump is designed as a 2-quadrant pump.
  • This further development uses the possibility of using comparatively simple, inexpensive and reliable pump technology for the implementation of the concept on which the invention is based.
  • a filter unit is connected between the working connection of the hydraulic pump and the valve arrangement.
  • the filter unit comprises a filter through which the hydraulic fluid delivered by the hydraulic pump flows in pump operation. In braking mode, the hydraulic fluid is led past the filter unit via a bypass.
  • This arrangement and design of the filter unit is characterized by a particularly high efficiency.
  • the electro-hydraulic drive unit according to the in the Figures 1 and 2nd illustrated first embodiment corresponds to a significant extent to that drive unit, as in the DE 202015106161 U1 is described and explained in detail.
  • the scope of this agreement with the prior art is based on a separate, detailed explanation at this point waived and instead the DE 202015106161 U1 the entire disclosure content of which is made by reference to the content of the present patent application.
  • the illustrated electrohydraulic drive unit as it is particularly suitable for use on a machine press, such as a straightening, bending or folding press, or else a powder press, comprises a hydraulic cylinder-piston arrangement 1, a hydraulic pump 3 driven by an electric motor 2 with variable speed ( 2-quadrant pump) with a tank connection T and a working connection P, a hydraulic fluid storage tank 4, a plurality of electrically controllable switching valves S1, S2, S3, S4, connected between the working connection P of the hydraulic pump 3 and the hydraulic cylinder-piston arrangement 1, S5 and S6 comprehensive valve arrangement and - not shown - a machine control acting on the switching valves S1 - S6 and the electric motor 2.
  • the cylinder-piston arrangement 1 is double-acting; it has a first hydraulic working chamber 5 on the piston side and a second hydraulic working chamber 6 on the piston rod side.
  • the cylinder-piston arrangement 1 is oriented with a vertical movement axis X of the piston 7 in such a way that the first hydraulic working space 5 is arranged above the second hydraulic working space 6. Pressurizing the first hydraulic working space 5 by means of the hydraulic pump 3 results in a downward movement, but pressurizing the second hydraulic working space 6 results in an upward movement of the piston 7.
  • a Nachsaugventil 8 switched by through which the first hydraulic working space 5 is filled with hydraulic fluid during a downward movement of the piston 7 in rapid traverse.
  • the drive unit has a hydraulic decompression module 9.
  • This comprises a hydraulic accumulator 10, which can be connected to the second hydraulic working space 6 via a line arrangement L.
  • the line arrangement L in this case comprises two different connecting lines 11 and 12, which, however, in some areas have a matching common line line 13 with a charge / discharge valve 14 arranged therein.
  • the hydraulic accumulator 10 of the hydraulic decompression module 9 can be connected to the second hydraulic working chamber 6 via a first connecting line 11 with a pressure limiting valve 15 with the flow direction from the second hydraulic working chamber 6 to the hydraulic accumulator 10; the first connecting line 11 thus represents a “charging line” for the hydraulic accumulator 10.
  • the hydraulic accumulator 10 can be connected via a second connecting line 12 to a check valve 16 opening in the flow direction from the hydraulic accumulator 10 to the second hydraulic working chamber 6; the second connecting line 12 thus represents a “discharge line” for the hydraulic accumulator 10.
  • the loading / unloading valve 14 opens (and closes) under pressure control, that is, as a function of a control pressure.
  • the control pressure is the pressure prevailing in the first hydraulic working space 5.
  • the control pressure line 17 of the loading / unloading valve 14 communicates with the first hydraulic work space 5.
  • the switching pressure threshold of the loading / unloading valve 14 is set so that this is already the case (due to the pressure relief valve 15) at the beginning of the power gear in the first hydraulic working space 5 opens pressure.
  • the representation of the switching and operating states is partially schematic, namely in the sense that instead of the gradual change in the speed of the electric motor explained above, a sudden change is shown. Accordingly, the piston movement is also characterized by discontinuities.
  • the electric motor 2 driving the hydraulic pump 3 is first operated at a speed which is reduced in comparison with the phase upward rapid traverse (VII); and the suction valve 8 is initially not yet switched to continuous flow, since the switching valve S5 initially remains energized as during phases II-VI, so that the hydraulic fluid is displaced through the valve arrangement from the first hydraulic working chamber 5 into the tank 4.
  • a filter unit 18 is connected between the working port P of the hydraulic pump 3 and the valve arrangement, by means of which the entire hydraulic fluid delivered by the latter is cleaned by the filter 19 in the pumping operation of the hydraulic pump 3. Only when the filter 19 is clogged does the hydraulic fluid delivered by the hydraulic pump 3 flow via the "small" bypass 20, in which the check valve 21 acts as a pressure relief valve and opens when the filter 19 is loaded or clogged, in order to prevent a filter breakage. In the braking operation of the hydraulic pump 3, the hydraulic fluid flows past the filter unit 18 via the “large” bypass 22 with the check valve 23.
  • Fig. 3 The second embodiment to which Fig. 3 is largely identical to the first embodiment according to the Figures 1 and 2nd . For this reason it is limited Fig. 3 even on just a section of the hydraulic circuit diagram, namely that part which shows the only modification.
  • the line arrangement L assigned to the decompression module 9, into which the charge / discharge valve 14 is integrated connects the hydraulic accumulator 10 of the decompression module 9 directly, ie without additional valves, to the second hydraulic working space 6 of the cylinder-piston arrangement 1.
  • the control of the loading / unloading valve 14 after Fig. 3 is done in the same manner as in the first embodiment.
  • the pressure relief valve 15 only serves here - during the power train - to generate such a counterpressure in the second hydraulic working chamber 6 (with the switching valve S1 blocked) that a downward movement of the piston 7 due to gravity alone is prevented.
  • the hydraulic decompression module - due to the sudden increase in pressure then occurring in the first hydraulic working space - switches on at the beginning of the power train, ie in the changeover phase, at the same time - by controlled closing of the switching valve S2 -
  • the outflow of the liquid displaced from the second hydraulic working space to the tank is prevented.
  • a shift of the connection of the hydraulic decompression module to a later operating point for example that caused by putting on the "Clamping point" characterized on the workpiece by specifying a correspondingly higher switching pressure threshold for the loading / unloading valve would go hand in hand with a modification of the hydraulic system.
  • the switching valve S2 would remain correspondingly longer, ie at least still open during a first part of the power course; and expediently the simultaneous activation of the hydraulic decompression module (by hydraulic opening of the loading / unloading valve) by means of a likewise pressure-controlled valve connected in series with the switching valve S2 would prevent the outflow of the liquid displaced from the second hydraulic working space to the tank.
  • the loading / unloading valve of the hydraulic decompression module is not hydraulically operated, as in the exemplary embodiments, but rather is controlled electrically, it would be particularly easy to appropriately coordinate the hydraulic decompression module with simultaneous locking of the drain to the tank (e.g. location-controlled) realize any operating point of the gear train. In this case, the respective process management could be easily optimized in terms of need in terms of maximum efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

  • Die vorliegende Erfindung betrifft eine elektrohydraulische Antriebseinheit der im Oberbegriff des Anspruchs 1 angegebenen gattungsgemäßen Art.
  • Elektrohydraulische Antriebseinheiten, die - als Linearantriebe ausgeführt - jeweils mindestens eine gesteuert von einer Hydraulikpumpe beaufschlagbare Zylinder-Kolben-Anordnung umfassen und sich insbesondere als Maschinenantriebe eignen, sind in verschiedenen Ausgestaltungen bekannt. Insoweit ist beispielsweise zu verweisen auf die DE 102014005352 A1 , DE 1020120013098 A1 , DE 102009052531 A1 , DE 4036564 A1 , DE 102005029822 A1 , DE 4314801 A1 , WO 2012/112130 A1 , WO 2011/003506 A1 , EP 103727 A1 und DE 202015106161 U1 .
  • Auch die DE 10 2011 116 964 A1 offenbart eine elektrohydraulische Antriebseinheit, welche eine Zylinder-Kolben-Anordnung und eine deren Beaufschlagung dienende, mittels eines Elektromotors drehzahlvariabel angetriebene Hydraulikpumpe umfasst. Bei dieser Antriebseinheit ist allerdings für wahlweise Umschaltung zwischen einer Beaufschlagung des kolbenseitigen ersten hydraulischen Arbeitsraums und des kolbenstangenseitigen zweiten hydraulischen Arbeitsraums die Förderrichtung der Hydraulikpumpe umsteuerbar, so dass diese nicht einen definierten Tankanschluss sowie einen definierten Arbeitsanschluss aufweist. Die Leitungsanordnung ist dergestalt ausgeführt, dass in beiden Bewegungsrichtungen des Kolbens der Zylinder-Kolben-Anordnung jeweils Hydraulikflüssigkeit aus dem einen der Arbeitsräume in den anderen Arbeitsraum umgepumpt werden kann. Dabei ist weiterhin ein eine Kammer mit verstellbarem Volumen aufweisender Fluidbehälter vorgesehen, wobei ein Volumenverstellelement des Fluidbehälters mechanisch an den Kolben der Zylinder-Kolben-Anordnung gekoppelt ist.
  • Eine elektrohydraulische Antriebseinheit der gattungsgemäßen Art ist dabei insbesondere der weiter oben genannten DE 202015106161 U1 entnehmbar. Eines der Charakteristika besteht dabei darin, dass die Hydraulikpumpe mit ihrem Arbeitsanschluss wahlweise auf jeden der beiden hydraulischen Arbeitsräume der - doppeltwirkenden - Zylinder-Kolben-Anordnung geschaltet werden kann. Hierdurch kann der Kolben der Zylinder-Kolben-Anordnung - durch entsprechende Beaufschlagung eines der beiden hydraulischen Arbeitsräume aus der Hydraulikpumpe - aktiv in jede der beiden Bewegungsrichtungen bewegt (bei vertikaler Bewegungsachse abgesenkt wie auch angehoben) werden. Bei einem typischen Einsatz einer solchen elektrohydraulischen Antriebseinheit erfolgt während eines Arbeitszyklus' ein erster Teil der Abwärtsbewegung des Kolbens (der sog. Eilgang) bei geöffnetem Nachsaugventil allein aufgrund Schwerkraft unter Verdrängung von Hydraulikflüssigkeit aus dem zweiten hydraulischen Arbeitsraum in den Tank, wobei die Verdrängung durch die in Bremsbetrieb geschaltete Hydraulikpumpe gebremst wird. Im Anschluss an eine Umschaltphase, die bei Verwendung der Antriebseinheit in einer Presse typischerweise kurz vor dem Aufsetzen des Werkzeugs auf dem Werkstück abläuft, erfolgen der zweite Teil der Abwärtsbewegung des Kolbens (der sog. Kraftgang) sowie das nachfolgende Halten des Kolbens am unterem Totpunkt unter Beaufschlagung des ersten hydraulischen Arbeitsraumes aus der Hydraulikpumpe in deren Pumpbetrieb, wobei beim Kraftgang Hydraulikflüssigkeit aus dem zweiten hydraulischen Arbeitsraum gegen einen durch eine Druckhalteventil generierten Gegendruck in den Tank verdrängt wird.
  • Bei verschiedenen Anwendungen steht der Kolben der Zylinder-Kolben-Anordnung an seinem unteren Totpunkt unter einer erheblichen Spannung. Dies gilt beispielsweise beim Einsatz der jeweiligen elektrohydraulischen Antriebseinheit in einer Richt-, Biege- oder Abkantpresse, bei der das umzuformende Werkstück - je nach seinen Materialeigenschaften und Dimensionen - im unteren Totpunkt des Kolbens auf diesen typischerweise eine hohe, der die Umformung bewirkenden Kolbenbewegung entgegen gerichtete Gegenkraft ausübt. Dementsprechend steht bei solchen Anwendungen der erste hydraulische Arbeitsraum der Zylinder-Kolben-Anordnung am unteren Totpunkt des Kolbens unter einem erheblichen Druck. Um diesen Druck abzubauen, bevor der Kolben - durch Beaufschlagung des zweiten hydraulischen Arbeitsraums - aktiv angehoben wird, ist nach der DE 202015106161 U1 eine sog. Dekompressionsphase vorgesehen, welche sich an die Haltephase anschließt. Hierzu wird - bei unveränderter Verbindung des ersten hydraulischen Arbeitsraums der Zylinder-Kolben-Anordnung mit dem Arbeitsausgang der Hydraulikpumpe - die Dreh- und Durchströmungsrichtung der Hydraulikpumpe, welche in der Umform- und der Haltephase den ersten hydraulischen Arbeitsraum beaufschlagt, umgekehrt. Die Rückströmung von Hydraulikflüssigkeit aus dem ersten hydraulischen Arbeitsraum über die - nun im Bremsbetrieb gefahrene - Hydraulikpumpe zum Tank wird dabei gemäß der DE 202015106161 U1 über eine Strömungsdrossel begrenzt. Das späteste Ende der Dekompressionsphase ergibt sich dabei aus dem Prozess selbst, nämlich spätestens an dem Punkt eines Gleichgewichts der auf den Kolben wirkenden Kräfte (insbesondere Hydraulikkräfte, Gewichtskräfte, Reaktions- bzw. Rückfederkräfte des Werkstücks, Rückstellkräfte der beim Pressen elastisch verformten Maschinenteile), wobei dabei das Werkzeug typischerweise noch auf dem Werkstück aufsteht. Nach erfolgter Dekompression in diesem Sinne erfolgt dann die Umsteuerung der Hydraulik im Sinne einer - das aktive Anheben des Kolbens bewirkenden - Beaufschlagung des zweiten hydraulischen Arbeitsraums durch die wiederum zurück in den Pumpbetrieb geschaltete Hydraulikpumpe.
  • Die vorliegende Erfindung hat sich zur Aufgabe gemacht, eine elektrohydraulische Antriebseinheit der gattungsgemäßen Art bereit zu stellen, die sich durch ein weiter verbessertes Betriebsverhalten insbesondere im Bereich der Bewegungsumkehr des Kolbens der hydraulischen Zylinder-Kolben-Anordnung auszeichnet.
  • Gelöst wird die vorstehende Aufgabenstellung gemäß der vorliegenden Erfindung, wie im Anspruch 1 angegeben, durch Ausstattung einer gattungsgemäßen elektrohydraulischen Antriebseinheit mit einem hydraulischen Dekompressionsmodul mit einem Hydraulikspeicher, der über ein Leitungsanordnung mit einem darin angeordneten Lade-/Entladeventil mit dem zweiten hydraulischen Arbeitsraum verbindbar ist. Die erfindungsgemäße elektrohydraulische Antriebseinheit zeichnet sich, mit anderen Worten, dadurch aus, dass in das Hydrauliksystem ein einen Hydraulikspeicher umfassendes Dekompressionsmodul integriert ist, wobei infolge der spezifischen Ausführung des Anschlusses des Hydraulikspeichers an den zweiten hydraulischen Arbeitsraum über ein Lade-/Entladeventil dieser funktional mit der der Zylinder-Kolben-Anordnung koppelbar bzw. von dieser zu trennen ist. Das hydraulische Dekompressionsmodul lässt sich auf diese Weise innerhalb des jeweiligen Arbeitszyklus' gewissermaßen zu- und abschalten.
  • Da sich die erfindungsgemäße Antriebseinheit in ganz besonderer Weise als Pressenantrieb eignet, wobei der Kolben ein zur Umformung eines Werkstücks verwendetes, auf und ab bewegbares Werkzeug antreibt, wird die vorliegende Erfindung nachfolgend überwiegend in Bezug auf diese Verwendung erläutert. Eine Beschränkung der Erfindung auf diese Verwendung lässt sich daraus allerdings nicht herleiten.
  • Mittels des besagten Lade-/Entladeventils lässt sich die effektive Interaktion des Hydraulikspeichers des hydraulischen Dekompressionsmoduls mit dem zweiten hydraulischen Arbeitsraum auf einen (bevorzugt kleinen) Anteil des Arbeitszyklus' (mehr oder weniger benachbart dem unteren Totpunkt des Kolbens) beschränken, so dass während des überwiegenden Anteils des jeweiligen Arbeitszyklus' der Hydraulikspeicher von dem zweiten hydraulischen Arbeitsraum getrennt ist. Die nach dem Zuschalten des Dekompressionsmoduls (durch Öffnen des Lade-/Entladeventils) bei der weiteren Annäherung des Kolbens an den unteren Totpunkt aus dem zweiten hydraulischen Arbeitsraum verdrängte Hydraulikflüssigkeit wird über die Leitungsanordnung in den Hydraulikspeicher des Dekompressionsmoduls hinein verschoben. Der Punkt der effektiven Zuschaltung des hydraulischen Dekompressionsmoduls bei der Abwärtsbewegung des Kolbens wird dabei bevorzugt so gewählt, dass die in dem Hydraulikspeicher des Dekompressionsmoduls gespeicherte hydraulische Energie und das Volumen an gespeicherter Hydraulikflüssigkeit ausreicht, um den Kolben während der (einen aktiven "Rückhub-Schleichgang" einschließenden) Dekompressionsphase so weit anzuheben, dass zwischen Werkzeug und Werkstück kein Kontakt mehr besteht.
  • Die für die vorliegende Erfindung charakteristische Einbindung eines Hydraulikspeichers in das übrige Hydrauliksystem gestattet insbesondere, die Druckverhältnisse in den beiden hydraulischen Arbeitsräumen der Zylinder-Kolben-Anordnung und die Bewegung des Kolbens in der besonders kritischen Phase des Druckabbaus in dem ersten hydraulischen Arbeitsraum und der einsetzenden Rückbewegung des Kolbens von der Interaktion mit einem umgeformten Werkstück oder dergleichen zu entkoppeln, indem bei dem besagten Druckabbau in dem ersten hydraulischen Arbeitsraum und der einsetzenden Rückbewegung des Kolbens nicht eine durch das umzuformende Werkstück oder dergleichen in dem Kolben induzierte Kraft die entscheidende Größe ist, sondern vielmehr der in dem zweiten hydraulischen Arbeitsraum durch das Dekompressionsmodul induzierte Hydraulikdruck. Auf diese Weise lassen sich unter anderem eine gute Reproduzierbarkeit des Arbeitszyklus' sowie eine für das Werkstück besonders schonende Verfahrensführung erreichen. Von herausragender Bedeutung für die erzielbaren besonders günstigen Ergebnisse sind synergetische Effekte mehrerer in Kombination zusammenwirkender Einflüsse. So muss im Bereich des Übergangs vom Kraftgang über die Haltephase am unteren Totpunkt zum beginnenden Ruckhub des Kolbens die Hydraulikpumpe nicht vom ersten auf den zweiten hydraulischen Arbeitsraum umgeschaltet werden; sie bleibt vielmehr durchgängig mit dem ersten hydraulischen Arbeitsraum verbunden und reduziert zunächst allein (ruckfrei und stetig) die Drehzahl im Pumpbetrieb und geht sodann unter Umkehrung der Drehrichtung zum Bremsbetrieb über. Auch Schaltventile werden in dieser kritischen Phase nicht umgeschaltet, so dass auch durch Umschaltvorgänge der Schaltventile induzierte Unstetigkeiten vermieden werden. Der Rückhub des Kolbens in der Dekompressionsphase ist im Übrigen nicht durch das elastische Rückfedern des Werkstücks und der beim Pressen elastisch verformten Maschinenteile bestimmt und begrenzt; vielmehr gibt das Dekompressionsmodul das Maß des Rückhubs des Kolbens in der Dekompressionsphase vor. So kann in der Dekompressionsphase, die je nach individueller Ausführung des Zyklus' somit auch einen "Rückhub-Schleichgang" darstellen kann, mittels des Dekompressionsmoduls der Kolben kontinuierlich, stetig und ruckfrei (aktiv) so weit angehoben werden, dass keinerlei Kontakt mehr zwischen Werkzeug und Werkstück besteht. Unstetigkeiten, wie sie - durch verschiedene Schaltvorgänge - notwendigerweise dann beim Übergang auf das aktive Anheben des Kolbens im Eilgang (unter Beaufschlagung des zweiten hydraulischen Arbeitsraums aus der Hydraulikpumpe im Pumpbetrieb) auftreten, können sich auf diese Weise nicht nachteilig auf das Werkstück auswirken. Und da in jenem Bremsbetrieb in der "Dekompressionsphase" die Hydraulikpumpe mit dem ersten hydraulischen Arbeitsraum verbunden bleibt, dessen wirksame Kolbenfläche regelmäßig um ein Vielfaches größer ist als die wirksame Kolbenfläche des zweiten hydraulischen Arbeitsraums, ist zudem eine besonders feinfühlige Bewegungsführung des Kolbens möglich, entschieden feinfühliger als im Rückhub unter aktiver Beaufschlagung des zweiten hydraulischen Arbeitsraums aus der Hydraulikpumpe. Durch Reduzierung des Einflusses der Rückwirkungen (z. B. Rückfedern) eines ungeformten Werkstücks oder dergleichen in der Dekompressionsphase lässt sich ferner ein hochgradig stetiger Kraft- und Bewegungsverlauf dieser Phase erreichen.
  • All diese vorstehend erläuterten positiven Effekte sind für verschiedene Anwendungen der hier in Rede stehenden elektrohydraulischen Antriebseinheit von ganz erheblichem Vorteil und Nutzen. Namentlich lassen sich unter Verwendung von erfindungsgemäßen Antriebseinheiten auch Pulverpressen konzipieren, bei denen der Grünling im Anschluss das Pressen besonders schonend behandelt wird, so dass sich eine besonders geringe Fehler- und Ausschussquote erreichen lässt. Aufgrund ihrer herausragenden charakteristischen Vorteile eignet sich die vorliegende Erfindung ebenfalls sehr gut zum Einsatz bei Abkantpressen für sensorgeregeltes Biegen. Denn für den Nachbiegezyklus, der im Anschluss an die erste, aufgrund errechneter Werte für den Stempel erfolgte Abkantung gefahren wird und - nach dem vollständigen Abheben des Stempels von dem Werkstück - eine messtechnische Erfassung von des Werkstück-Istmaßes sowie Ermittlung der erforderlichen Zustellung des Stempels umfasst, ist der in Anwendung der Erfindung mögliche stetige und ruckelfreie aktive Dekompressionshub bis zum vollständigen Abheben des Werkzeugs vom Werkstück bzw. noch darüber hinaus ideal. Dies gilt erkennbar auch beim Durchfahren mehrerer Nachbiegezyklen im "Pendelbetrieb". Bei Umformprozessen, die infolge der spezifischen Werkstückgeometrie unter Einsatz von Biegehilfen erfolgen, erweist sie die vorliegende Erfindung ebenfalls als außerordentlich nützlich; denn die volle Bahnkontrolle bei der aktiven Dekompression ermöglicht eine kontrollierte Übergabe des Werkstücks an die Biegehilfe.
  • Bei typischen Anwendungsfällen der Erfindung kann das Zuschalten des Dekompressionsmoduls über das Lade-/Entladeventil in der ohnehin vorhandenen Umschaltphase am Ende des - im Bremsbetrieb gefahrenen - Eilgangs (s. o.) erfolgen. Dies ist günstig im Hinblick auf die Möglichkeit einer zeitlich koordinierten Absperrung der Leitungsverbindung des zweiten hydraulischen Arbeitsraums zum Tank. Indessen ist dergleichen nicht zwingend; denn je nach dem individuellen Arbeitszyklus bietet ggf. auch eine spätere Zuschaltung des Dekompressionsmoduls erst während des Kraftgangs des Kolbens Vorteile. Eine Beschränkung des effektiven Zuschaltung des Dekompressionsmoduls auf den für das Erreichen der oben beschriebenen Vorteile erforderlichen Teil des Arbeitszyklus' wirkt sich unter anderem dahingehend positiv aus, dass der Hydraulikspeicher des Dekompressionsmoduls entsprechend klein ausgelegt werden kann. Dies hat nicht nur Kostenvorteile; auch ist diese angesichts der mitunter beengten Platzverhältnisse an der betreffenden Maschine günstig. Generell gilt (auch bei einer Zuschaltung des Dekompressionsmoduls in der Umschaltphase vom Eilgang auf den Kraftgang), dass die Kapazität des Hydraulikspeichers des Dekompressionsmoduls wesentlich kleiner sein kann als das maximale Volumen des zweiten hydraulischen Arbeitsraums, beispielsweise nur weniger als 30% hiervon beträgt.
  • Was die Zuschaltung des Dekompressionsmoduls durch Öffnen des Lade-/Entladeventils angeht, so kann insbesondere - in bevorzugter Weiterbildung - das Lade-/Entladeventil druckgesteuert öffnen, wobei die Steuerdruckleitung mit dem ersten hydraulischen Arbeitsraum kommuniziert. Das Dekompressionsmodul wird auf diese Weise, je nach dem vorgegebenen Schwellenwert, gleich zu Beginn oder aber während des Kraftgangs bei Erreichen eines vorgegebenen Druckwerts in dem ersten hydraulischen Arbeitsraum gewissermaßen automatisch zugeschaltet. Ist eine Zuschaltung gleich zu Beginn des Kraftgangs erwünscht, wird der das Lade-/Entladeventil schaltende Schwellenwert auf jenen Drucksprung abgestimmt, der sich im ersten hydraulischen Arbeitsraum beim Übergang vom Eilgang zum Kraftgang einstellt. Für eine spätere Zuschaltung des Dekompressionsmoduls während des Kraftgangs kann der das Lade-/Entladeventil schaltende Schwellenwert beispielsweise auf jenen Drucksprung abgestimmt werden, der sich beim Aufsetzen des Werkzeugs auf dem Werkstück einstellt. Durch Vorgabe eines noch höheren Schaltdrucks kann ggf. auch ein noch späterer Schaltpunkt eingestellt werden, nämlich mehr oder weniger gegen Ende des Kraftgangs bei entsprechend hohem Druck im ersten hydraulischen Arbeitsraum. Ein nennenswerter Vorteil der druckgesteuerten Betätigung des Lade-/Entladeventils besteht darin, dass die Steuerung keinen gesonderten, das Lade-/Entladeventil betätigenden Steuerausgang aufzuweisen braucht.
  • Beim Übergang der Hydraulikpumpe in den Bremsbetrieb dergestalt, dass Hydraulikflüssigkeit gebremst aus dem ersten hydraulischen Arbeitsraum (über die im Bremsbetrieb arbeitende Hydraulikpumpe) in den Tank zurückströmt, ist das Dekompressionsmodul jeweils so lange effektiv (im Sinne einer Beaufschlagung des zweiten hydraulischen Arbeitsraums aus dem Hydraulikspeicher heraus über die Leitungsanordnung mit geöffnetem Lade-/Entladeventils), bis der Druck im ersten hydraulischen Arbeitsraum wieder unter den Schaltdruck des Lade-/Entladeventils sinkt. Von da ab verläuft der weitere Arbeitszyklus ohne Einwirkung des Dekompressionsmoduls. Bei dieser Ausgestaltung lässt sich somit, mit anderen Worten, erreichen, dass der Hydraulikspeicher während des Arbeitszyklus' selbsttätig nur während des Kraftgangs oder sogar nur eines Teils desselben, aus dem zweiten hydraulischen Arbeitsraum heraus in dem Umfang geladen wird, wie es für die Beaufschlagung des zweiten hydraulischen Arbeitsraums aus dem Hydraulikspeicher während der Phase einer gesteuerten aktiven Dekompression (ggf. samt Rückhub-Schleichgang) erforderlich ist.
  • Gemäß einer wiederum anderen bevorzugten Weiterbildung der vorliegenden Erfindung umfasst die Leitungsanordnung eine erste Verbindungsleitung mit einem Druckbegrenzungsventil mit Durchströmungsrichtung vom zweiten hydraulischen Arbeitsraum zum Hydraulikspeicher und eine zweite Verbindungsleitung mit einem in Durchströmungsrichtung vom Hydraulikspeicher zum zweiten hydraulischen Arbeitsraum öffnenden Rückschlagventil, wobei das Lade-/Entladeventil in einem für die erste Verbindungsleitung und die zweite Verbindungsleitung gemeinsamen Leitungsstrang angeordnet ist. Zwar ergeben sich infolge des Druckabfalls am Druckbegrenzungsventil beim Laden des Hydraulikspeichers hydraulische Verluste mit negativen Auswirkungen auf die Effizienz. Allerdings sind - bei typischen Anwendungen der vorliegenden Erfindung - diese Auswirkungen wegen der nur geringen Menge an Hydraulikflüssigkeit, die für den späteren aktiven Dekompressionshub in den Hydraulikspeicher zu laden ist, vergleichsweise gering. Ihnen stehen die mit dieser Ausgestaltung der Leitungsanordnung verbundenen Vorteile gegenüber, worunter insbesondere eine besonders zuverlässigere Verfahrensführung fällt. Hierzu trägt bei, dass das den Gegendruck im zweiten hydraulischen Arbeitsraum beim Kraftgang erzeugende Gegendruckventil und die hydraulische Dekompressionseinheit nicht gegeneinander arbeiten, weil keine hydraulische Parallelschaltung dieser Komponenten vorliegt, sondern vielmehr zum Laden des Hydraulikspeichers Hydraulikflüssigkeit stromabwärts des Gegendruckventils herangezogen wird. Auch muss in diesem Falle der Hydraulikspeicher des hydraulischen Dekompressionsmoduls nur auf einen entsprechend geringeren Arbeitsdruck ausgelegt sein. Und indem bei dieser Weiterbildung das Laden des Hydraulikspeichers des hydraulischen Dekompressionsmoduls aus dem zweiten hydraulischen Arbeitsraum heraus über ein (in der ersten Verbindungsleitung angeordnetes) Druckbegrenzungsventil - dieses kann identisch sein mit dem bei herkömmlichen elektrohydraulischen Antriebseinheiten im Kraftgang wirksamen Druckbegrenzungsventil - erfolgt, ist die erfindungsgemäße Integration eines hydraulischen Dekompressionsmoduls in das Hydrauliksystem, verglichen zum Stand der Technik, ohne sicherheitsrelevante Auswirkungen.
  • Eine nochmals andere bevorzugte Weiterbildung der Erfindung zeichnet sich dadurch aus, dass die mittels der Maschinensteuerung in einen Bremsbetrieb mit zum Pumpbetrieb umgekehrter Dreh- und Durchströmungsrichtung umsteuerbare Hydraulikpumpe als 2-Quadrantenpumpe ausgeführt ist. Diese Weiterbildung nutzt die Möglichkeit, für die Umsetzung des der Erfindung zugrunde liegenden Konzepts vergleichsweise einfache, kostengünstige und zuverlässige Pumpentechnik einzusetzen.
  • Gemäß einer abermals anderen bevorzugten Weiterbildung der Erfindung ist zwischen den Arbeitsanschluss der Hydraulikpumpe und die Ventilanordnung eine Filtereinheit geschaltet. Die Filtereinheit umfasst dabei einen Filter, der im Pumpbetrieb von der durch die Hydraulikpumpe geförderten Hydraulikflüssigkeit durchströmt wird. Im Bremsbetrieb wird die Hydraulikflüssigkeit über einen Bypass an der Filtereinheit vorbei geführt. Diese Anordnung und Ausgestaltung der Filtereinheit zeichnet sich durch eine besonders hohe Effizienz aus.
  • Im Folgenden wird die vorliegende Erfindung anhand zweier bevorzugter, in der Zeichnung veranschaulichter Ausführungsbeispiele näher erläutert, wobei
  • Fig. 1
    einen Hydraulik-Schaltplan und
    Fig. 2
    ein Funktionsdiagramm eines ersten Ausführungsbeispiels und
    Fig. 3
    ausschnittsweise einen Hydraulikschaltplan eines zweiten Ausführungsbeispiels zeigt.
  • Die elektrohydraulische Antriebseinheit nach dem in den Figuren 1 und 2 veranschaulichten ersten Ausführungsbeispiel entspricht in einem erheblichen Umfang jener Antriebseinheit, wie sie in der DE 202015106161 U1 im Einzelnen beschrieben und erläutert wird. Im Umfang dieser Übereinstimmung mit dem Stand der Technik wird auf eine gesonderte, eingehende Erläuterung an dieser Stelle verzichtet und stattdessen auf die DE 202015106161 U1 verwiesen, deren gesamter Offenbarungsgehalt durch Bezugnahme zum Inhalt der vorliegenden Patentanmeldung gemacht wird.
  • Die veranschaulichte elektrohydraulische Antriebseinheit, wie sie sich insbesondere zur Verwendung an einer Maschinenpresse wie beispielsweise einer Richt-, Biege- oder Abkantpresse oder aber einer Pulverpresse eignet, umfasst eine hydraulische Zylinder-Kolben-Anordnung 1, eine mittels eines Elektromotors 2 drehzahlvariabel angetriebene Hydraulikpumpe 3 (2-Quadrantenpumpe) mit einem Tankanschluss T und einem Arbeitsanschluss P, einen Hydraulikflüssigkeit bevorratenden Tank 4, eine zwischen den Arbeitsanschluss P der Hydraulikpumpe 3 und die hydraulische Zylinder-Kolben-Anordnung 1 geschaltete, mehrere elektrisch ansteuerbare Schaltventile S1, S2, S3, S4, S5 und S6 umfassende Ventilanordnung und - nicht gezeigt - eine auf die Schaltventile S1 - S6 und den Elektromotor 2 einwirkende Maschinensteuerung. Die Zylinder-Kolben-Anordnung 1 ist doppeltwirkend ausgeführt; sie weist einen kolbenseitigen ersten hydraulischen Arbeitsraum 5 und einen kolbenstangeseitigen zweiten hydraulischen Arbeitsraum 6 auf. Die Zylinder-Kolben-Anordnung 1 ist dabei dergestalt mit senkrechter Bewegungsachse X des Kolbens 7 orientiert, dass der erste hydraulische Arbeitsraum 5 oberhalb des zweiten hydraulischen Arbeitsraums 6 angeordnet ist. Eine Druckbeaufschlagung des ersten hydraulischen Arbeitsraums 5 mittels der Hydraulikpumpe 3 resultiert in einer Abwärtsbewegung, die Druckbeaufschlagung des zweiten hydraulischen Arbeitsraums 6 indessen in einer Aufwärtsbewegung des Kolbens 7. Zwischen den Tank 4 und den ersten hydraulischen Arbeitsraum 5 der Zylinder-Kolben-Anordnung 1 ist ein Nachsaugventil 8 geschaltet, durch das hindurch der erste hydraulische Arbeitsraum 5 bei einer Abwärtsbewegung des Kolbens 7 im Eilgang mit Hydraulikflüssigkeit gefüllt wird.
  • Die Antriebseinheit weist ein hydraulisches Dekompressionsmodul 9 auf. Dieses umfasst einen Hydraulikspeicher 10, der mit dem zweiten hydraulischen Arbeitsraum 6 über eine Leitungsanordnung L verbindbar ist. Die Leitungsanordnung L umfasst dabei zwei unterschiedliche Verbindungsleitungen 11 und 12, welche allerdings streckenweise einen übereinstimmenden, gemeinsamen Leitungsstrang 13 mit einem darin angeordneten Lade-/Entladeventil 14 aufweisen. Einerseits ist der Hydraulikspeicher 10 des hydraulischen Dekompressionsmoduls 9 mit dem zweiten hydraulischen Arbeitsraum 6 über eine erste Verbindungsleitung 11 mit einem Druckbegrenzungsventil 15 mit Durchströmungsrichtung vom zweiten hydraulischen Arbeitsraum 6 zum Hydraulikspeicher 10 verbindbar; die erste Verbindungsleitung 11 stellt somit eine "Ladeleitung" für den Hydraulikspeicher 10 dar. Und andererseits ist der Hydraulikspeicher 10 über eine zweite Verbindungsleitung 12 mit einem in Durchströmungsrichtung vom Hydraulikspeicher 10 zum zweiten hydraulischen Arbeitsraum 6 öffnenden Rückschlagventil 16 verbindbar; die zweite Verbindungsleitung 12 stellt somit eine "Entladeleitung" für den Hydraulikspeicher 10 dar.
  • Das Lade-/Entladeventil 14 öffnet (und schließt) dabei druckgesteuert, d. h. in Abhängigkeit von einem Steuerdruck. Der Steuerdruck ist dabei der in dem ersten hydraulischen Arbeitsraum 5 herrschende Druck. Hierzu kommuniziert die Steuerdruckleitung 17 des Lade-/Entladeventils 14 mit dem ersten hydraulischen Arbeitsraum 5. Die Schaltdruckschwelle des Lade-/Entladeventils 14 ist dabei so eingestellt, dass dieses bereits bei dem sich (infolge des Druckbegrenzungsventils 15) zu Beginn des Kraftgangs in dem ersten hydraulischen Arbeitsraum 5 einstellenden Druck öffnet.
  • Die Betätigung des Schaltventile S1 - S6 der Ventilanordnung sowie des Elektromotors 2 durch die Maschinensteuerung sowie die sich ergebende Bewegung des Kolbens 7 zwischen dem oberen Totpunkt (OT) und dem unteren Totpunkt während eines vollständigen Arbeitszyklus' ist in dem Funktionsdiagramm nach Fig. 2 veranschaulicht. Ebenfalls ist in Fig. 2 die sich durch dessen druckgesteuerte Betätigung ergebende Schaltsituation des Lade-/Entladeventils 14 während des Arbeitszyklus' veranschaulicht. Durch entsprechende Ansteuerung der Schaltventile S1 - S6 und des Elektromotors 2 - unter wahlweiser Beaufschlagung des ersten hydraulischen Arbeitsraums 5 bzw. des zweiten hydraulischen Arbeitsraums 6 der Zylinder-Kolben-Anordnung 1 im Pump- oder aber im Bremsbetrieb der Hydraulikpumpe 3 - lassen sich bei der gezeigten elektrohydraulischen Antriebseinheit während eines Arbeitszyklus' somit die Phasen
    • I: Halten des Kolbens im oberen Totpunkt,
    • II: Abwärts-Eilgang des Kolbens,
    • III: Umschaltphase
    • IV: Abwärts-Kraftgang des Kolbens,
    • V: Halten des Kolbens im unteren Totpunkt und
    • VI: Dekompression (samt aktivem Aufwärts-Kriechgang) und
    • VII: Aufwärtsbewegung des Kolbens im Eilgang durchführen.
  • Die Darstellung der Schalt- und Betriebszustände ist dabei teilweise schematisch, namentlich in dem Sinne, dass statt der weiter oben erläuterten allmählichen Veränderung der Drehzahl des Elektromotors eine sprunghafte Veränderung gezeigt ist. Dementsprechend ist auch die Kolbenbewegung durch Unstetigkeiten geprägt.
  • Bedarfsweise kann zwischen der Dekompressionsphase (VI) und der Aufwärtsbewegung des Kolbens im Eilgang (VII) eine zusätzliche Phase "Langsam-Aufwärts" vorgesehen werden.
  • Hierzu wird der die Hydraulikpumpe 3 antreibende Elektromotor 2 zunächst mit gegenüber der Phase Aufwärts-Eilgang (VII) reduzierter Drehzahl betrieben; und das Nachsaugventil 8 wird, indem das Schaltventil S5 zunächst ebenso bestromt bleibt wie während der Phasen II - VI, zunächst noch nicht auf Durchlauf geschaltet, so dass die Hydraulikflüssigkeit durch die Ventilanordnung hindurch aus dem ersten hydraulischen Arbeitsraum 5 in den Tank 4 verdrängt wird.
  • Zur effektiven Reinigung der Hydraulikflüssigkeit ist zwischen den Arbeitsanschluss P der Hydraulikpumpe 3 und die Ventilanordnung eine Filtereinheit 18 geschaltet, mittels derer im Pumpbetrieb der Hydraulikpumpe 3 die gesamte von letzterer geförderte Hydraulikflüssigkeit durch den Filter 19 gereinigt wird. Nur bei Verstopfung des Filters 19 strömt die von der Hydraulikpumpe 3 geförderte Hydraulikflüssigkeit über den "kleinen" Bypass 20, in dem das Rückschlagventil 21 wie ein Druckbegrenzungsventil wirkt und bei beladenem bzw. verstopften Filter 19 öffnet, um einem Filterbruch vorzubeugen. Im Bremsbetrieb der Hydraulikpumpe 3 strömt die Hydraulikflüssigkeit über den "großen" Bypass 22 mit dem Rückschlagventil 23 an der Filtereinheit 18 vorbei.
  • Das zweite Ausführungsbeispiel, auf das Fig. 3 gerichtet ist, ist weitgehend identisch mit dem ersten Ausführungsbeispiel nach den Figuren 1 und 2. Aus diesem Grund beschränkt sich Fig. 3 auch auf nur einen Ausschnitt des Hydraulikschaltplans, nämlich auf jenen Teil, der die einzige Abwandlung zeigt. Und zwar verbindet hier die dem Dekompressionsmodul 9 zugeordnete Leitungsanordnung L, in die das Lade-/Entladeventil 14 integriert ist, den Hydraulikspeicher 10 des Dekompressionsmoduls 9 direkt, d. h. ohne zusätzliche Ventile, mit dem zweiten hydraulischen Arbeitsraum 6 der Zylinder-Kolben-Anordnung 1. Es sind auch nicht unterschiedliche Verbindungsleitungen für das Laden und das Entladen des Hydraulikspeichers 10, wenn das hydraulische Dekompressionsmodul zugeschaltet ist, vorgesehen; vielmehr erfolgt das Laden und das Entladen des Hydraulikspeichers 10 über ein und dieselbe Verbindungsleitung zum zweiten hydraulischen Arbeitsraum 6.
  • Die Ansteuerung des Lade-/Entladeventils 14 nach Fig. 3 erfolgt auf gleiche Weise wie bei dem ersten Ausführungsbeispiel. Das Druckbegrenzungsventil 15 dient hier lediglich - während des Kraftgangs - der Erzeugung eines solchen Gegendrucks in dem zweiten hydraulischen Arbeitsraum 6 (bei gesperrtem Schaltventil S1), dass eine allein schwerkraftbedingte Abwärtsbewegung des Kolbens 7 unterbunden ist.
  • Bei den in der Zeichnung veranschaulichten Ausführungsformen der Erfindung schaltet sich, wie dargelegt, das hydraulische Dekompressionsmodul - infolge des dann im ersten hydraulischen Arbeitsraum auftretenden sprunghaften Druckanstiegs - zu Beginn des Kraftgangs, d. h. in der Umschaltphase zu, wobei zeitgleich - durch gesteuertes Schließen des Schaltventils S2 - die Abströmung des aus dem zweiten hydraulischen Arbeitsraum verdrängten Flüssigkeit zum Tank unterbunden wird. Eine weiter oben näher erläuterte Verlagerung des Zuschaltens des hydraulischen Dekompressionsmoduls auf einen späteren Betriebspunkt (beispielsweise den durch das Aufsetzen des Werkzeugs auf dem Werkstück charakterisierten "Klemmpunkt") durch Vorgabe einer dementsprechend höheren Schaltdruckschwelle für das Lade-/Entladeventil ginge Hand in Hand mit einer Modifikation des Hydrauliksystems. Und zwar bliebe in diesem Falle das Schaltventil S2 entsprechend länger, d. h. zumindest noch während eines ersten Teils des Kraftgangs geöffnet; und zweckmäßigerweise würde simultan zum Zuschalten des hydraulischen Dekompressionsmoduls (durch hydraulisches Öffnen des Lade-/Entladeventils) mittels eines ebenfalls druckgesteuerten, zum Schaltventil S2 in Reihe geschalteten Ventils die Abströmung des aus dem zweiten hydraulischen Arbeitsraum verdrängten Flüssigkeit zum Tank unterbunden.
  • Wird das Lade-/Entladeventil des hydraulischen Dekompressionsmoduls nicht, wie nach den Ausführungsbeispielen, hydraulisch betätigt, sondern vielmehr elektrisch gesteuert, ließe sich besonders einfach eine entsprechende koordinierte Zuschaltung des hydraulischen Dekompressionsmoduls bei gleichzeitigem Sperren des Ablaufs zum Tank (z. B. ortsgesteuert) an jedem beliebigen Betriebspunkt des Kraftgangs realisieren. In diesem Falle ließe sich die jeweilige Verfahrensführung problemlos bedarfsbezogen im Sinne größtmöglicher Effizienz optimieren.

Claims (6)

  1. Elektrohydraulische Antriebseinheit, insbesondere zur Verwendung an einer Maschinenpresse, mit
    - einer Zylinder-Kolben-Anordnung (1) mit einem kolbenseitigen ersten hydraulischen Arbeitsraum (5) und einem kolbenstangeseitigen zweiten hydraulischen Arbeitsraum (6),
    - einem Hydraulikflüssigkeit bevorratenden Tank (4),
    - einer mittels eines Elektromotors (2) drehzahlvariabel angetriebenen Hydraulikpumpe (3) mit einem Tankanschluss (T) und einem Arbeitsanschluss (P),
    - einer zwischen den Arbeitsanschluss (P) der Hydraulikpumpe (3) und die Zylinder-Kolben-Anordnung (1) geschalteten, mehrere elektrisch ansteuerbare Schaltventile (S1 - S6) umfassenden Ventilanordnung,
    - einem zwischen den Tank (4) und den ersten hydraulischen Arbeitsraum (5) der Zylinder-Kolben-Anordnung (1) geschalteten Nachsaugventil (8),
    - und einer auf die Schaltventile (S1 - S6) und den Elektromotor (2) einwirkenden Maschinensteuerung, mittels derer die Schaltventile (S1 - S6) zwischen einer Beaufschlagung des ersten hydraulischen Arbeitsraums (5) und des zweiten hydraulischen Arbeitsraums (6) der Zylinder-Kolben-Anordnung (1) im Pumpbetrieb der Hydraulikpumpe (3) aus deren Arbeitsanschluss (P) umsteuerbar sind,
    gekennzeichnet durch ein hydraulisches Dekompressionsmodul (9) mit einem Hydraulikspeicher (10), der über eine Leitungsanordnung (L) mit einem darin angeordneten Lade-/Entladeventil (14) mit dem zweiten hydraulischen Arbeitsraum (6) verbindbar ist.
  2. Elektrohydraulische Antriebseinheit nach Anspruch 1, dadurch gekennzeichnet, dass das Lade-/Entladeventil (14) druckgesteuert öffnet, wobei die Steuerdruckleitung (17) mit dem ersten hydraulischen Arbeitsraum (5) kommuniziert.
  3. Elektrohydraulische Antriebseinheit nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die Leitungsanordnung (L) eine erste Verbindungsleitung (11) mit einem Druckbegrenzungsventil (15) mit Durchströmungsrichtung vom zweiten hydraulischen Arbeitsraum (6) zum Hydraulikspeicher (10) und eine zweite Verbindungsleitung (12) mit einem in Durchströmungsrichtung vom Hydraulikspeicher (10) zum zweiten hydraulischen Arbeitsraum (6) öffnenden Rückschlagventil (16) umfasst, wobei das Lade-/Entladeventil (14) in einem für die erste Verbindungsleitung (11) und die zweite Verbindungsleitung (12) gemeinsamen Leitungsstrang (13) angeordnet ist.
  4. Elektrohydraulische Antriebseinheit nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Zylinder-Kolben-Anordnung (1) mit zumindest im Wesentlichen senkrechter Bewegungsachse (X) des Kolbens (7) orientiert ist, wobei der erste hydraulische Arbeitsraum (5) oberhalb des zweiten hydraulischen Arbeitsraums (6) angeordnet ist.
  5. Elektrohydraulische Antriebseinheit nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwischen den Arbeitsanschluss (P) der Hydraulikpumpe (3) und die Ventilanordnung eine Filtereinheit (18) geschaltet ist.
  6. Elektrohydraulische Antriebseinheit nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Hydraulikpumpe (3) als 2-Quadrantenpumpe ausgeführt und mittels der Maschinensteuerung in einen Bremsbetrieb mit zum Pumpbetrieb umgekehrter Dreh- und Durchströmungsrichtung umsteuerbar ist.
EP17772687.4A 2016-10-05 2017-09-21 Elektrohydraulische antriebseinheit Active EP3523120B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016118854.9A DE102016118854A1 (de) 2016-10-05 2016-10-05 Elektrohydraulische Antriebseinheit
PCT/EP2017/073886 WO2018065226A1 (de) 2016-10-05 2017-09-21 Elektrohydraulische antriebseinheit

Publications (2)

Publication Number Publication Date
EP3523120A1 EP3523120A1 (de) 2019-08-14
EP3523120B1 true EP3523120B1 (de) 2020-04-22

Family

ID=59969151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17772687.4A Active EP3523120B1 (de) 2016-10-05 2017-09-21 Elektrohydraulische antriebseinheit

Country Status (3)

Country Link
EP (1) EP3523120B1 (de)
DE (1) DE102016118854A1 (de)
WO (1) WO2018065226A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021006222B3 (de) 2021-12-16 2023-04-20 Hydac International Gmbh Pressenvorrichtung und 2/2-Wege-Proportional-Sitzventil

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0103727A1 (de) 1982-09-02 1984-03-28 Inventio Ag Gleichlaufregelungseinrichtung für den elektrohydraulischen Antrieb einer Abkantpresse
DE4036564A1 (de) 1990-11-16 1992-05-21 Bosch Gmbh Robert Hydraulische einrichtung zur steuerung eines arbeitszylinders einer presse
DE4314801B4 (de) 1993-05-05 2004-09-09 Bosch Rexroth Ag Hydraulische Anlage, insbesondere für eine Abkantpresse
DE102005029822A1 (de) 2005-04-01 2006-10-05 Bosch Rexroth Aktiengesellschaft Hydraulische Umformanlage
AT505724B1 (de) * 2007-09-12 2010-06-15 Trumpf Maschinen Austria Gmbh Antriebsvorrichtung für eine biegepresse
DE102009058408A1 (de) 2009-07-09 2011-01-13 Robert Bosch Gmbh Elektrohydraulische Steuerung
DE102009052531A1 (de) 2009-11-11 2011-05-12 Hoerbiger Automatisierungstechnik Holding Gmbh Maschinenpresse
CN103201093B (zh) * 2010-11-11 2017-02-15 罗伯特·博世有限公司 液压轴
TR201101488A2 (tr) 2011-02-16 2012-03-21 Ermaksan Maki̇na Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Düşük gürültü seviyesine sahip enerji tasarruflu abkant pres
DE102012013098B4 (de) 2012-06-30 2014-08-07 Hoerbiger Automatisierungstechnik Holding Gmbh Maschinenpresse
DE102012020581A1 (de) * 2012-10-22 2014-04-24 Robert Bosch Gmbh Hydraulische Schaltung für eine hydraulische Achse und eine hydraulische Achse
DE102014005352B4 (de) 2014-04-11 2016-03-10 Hoerbiger Automatisierungstechnik Holding Gmbh Maschinenpresse
DE202015106161U1 (de) 2015-11-13 2015-11-27 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische Antriebseinheit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102016118854A1 (de) 2018-04-05
WO2018065226A1 (de) 2018-04-12
EP3523120A1 (de) 2019-08-14

Similar Documents

Publication Publication Date Title
AT505724B1 (de) Antriebsvorrichtung für eine biegepresse
EP2838719B1 (de) Maschinenpresse
EP3356683B1 (de) Elektrohydraulische antriebseinheit
EP3317088B1 (de) Elektrohydraulische antriebseinheit
DE102014005352B4 (de) Maschinenpresse
DE3340332C2 (de) Leistungs-Regelvorrichtung für einen hydrostatischen Antrieb mit Fördermengeneinstellung
EP3077674B1 (de) Hydraulische anordnung
AT516316B1 (de) Verfahren zur Steuerung einer hydraulisch angetriebenen Maschine
EP2846942B1 (de) Hydraulische strangpresse sowie verfahren zum betrieb einer hydraulischen strangpresse
EP0311779B1 (de) Hydraulische Steuereinrichtung für eine Presse
EP3837446B1 (de) Elektrohydrostatisches aktuatorsystem mit nachsaugbehälter
EP3523120B1 (de) Elektrohydraulische antriebseinheit
DE102017107994B4 (de) Kraftfahrzeug-Fahrgestell
DE102018222425A1 (de) Hydrostatischer Antrieb, insbesondere für eine Presse oder eine Spritzgießmaschine
DE102010012126A1 (de) Presse mit vorgespanntem Rahmen
DE19715224C2 (de) Hydroseilaufzug
DE102005041252B4 (de) Elektrohydraulischer Pressenantrieb
DE102021006222B3 (de) Pressenvorrichtung und 2/2-Wege-Proportional-Sitzventil
DE102021212944B3 (de) Hydraulische Schaltung mit einem Hydrozylinder
WO2023041473A1 (de) Hydraulisches antriebssystem mit einer 2x2q pumpeneinheit
EP4026689A1 (de) Hydraulische antriebseinheit für eine presse
WO2021115708A1 (de) Hydraulische einrichtung zur betätigung eines stempels eines innenmischers, und darauf bezogenes verfahren
DE8713628U1 (de) Hydraulische Steuereinrichtung für eine Presse

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20191113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004905

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1259550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004905

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200921

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210921

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230914

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1259550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 7

Ref country code: DE

Payment date: 20230926

Year of fee payment: 7

Ref country code: BE

Payment date: 20230918

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 7