EP3506341B1 - Procede de transfert d'une couche utile sur un substrat support - Google Patents

Procede de transfert d'une couche utile sur un substrat support Download PDF

Info

Publication number
EP3506341B1
EP3506341B1 EP18213125.0A EP18213125A EP3506341B1 EP 3506341 B1 EP3506341 B1 EP 3506341B1 EP 18213125 A EP18213125 A EP 18213125A EP 3506341 B1 EP3506341 B1 EP 3506341B1
Authority
EP
European Patent Office
Prior art keywords
donor substrate
substrate
zone
cavity
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18213125.0A
Other languages
German (de)
English (en)
Other versions
EP3506341A1 (fr
Inventor
Lamine BENAISSA
Thierry SALVETAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3506341A1 publication Critical patent/EP3506341A1/fr
Application granted granted Critical
Publication of EP3506341B1 publication Critical patent/EP3506341B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/005Bulk micromachining
    • B81C1/00507Formation of buried layers by techniques other than deposition, e.g. by deep implantation of elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining
    • B81C2201/0116Thermal treatment for structural rearrangement of substrate atoms, e.g. for making buried cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates

Definitions

  • the invention relates to the technical field of the transfer of a useful layer, belonging to a donor substrate, onto a support substrate.
  • the donor substrate and / or the support substrate is provided with at least one surface cavity.
  • the invention finds its application in particular in the manufacture of a membrane on the cavity, used for micromechanical systems (MEMS), for example in a pressure sensor, a resonator, a microphone, or even a biochemical sensor.
  • MEMS micromechanical systems
  • the transferred useful layer can also be used as a protective cover, for example for a component, or else as a means of hermetic encapsulation.
  • Such a method of the state of the art makes it possible to obtain satisfactory control of the thickness of the useful layer transferred as well as good uniformity of the thickness on the support substrate.
  • a method of the state of the art is not entirely satisfactory insofar as D1 teaches that the thickness of the useful layer, denoted t, defines a theoretical maximum width of the cavity, denoted W lim , which is proportional to t 2 .
  • W lim a width of the cavity greater than W lim will lead to failure of the useful layer transferred to the support substrate, which is linked to the formation of bubbling (" blistering ” in English) of the species implanted in the cavity.
  • such a method according to the invention makes it possible, thanks to the presence of such an amorphous zone, to push back the limits of the maximum width of the cavity beyond which a failure of the useful layer transferred to the substrate is observed. support.
  • such an amorphous zone makes it possible to locally inhibit the bubbling of the implanted species, caused by the gas resulting from the recombination of said species.
  • this inhibition of the bubbling of the implanted species makes it possible to transfer a thin useful layer, without fear of its mechanical failure, or even its rupture.
  • the inhibition of bubbling of the implanted species is increased when the amorphous zone is completely opposite the cavity at the end of step b).
  • such an amorphous zone has a lower Young's modulus than a monocrystalline structure (for example of the order of 20% lower for amorphous silicon compared to monocrystalline silicon), which makes it possible to reduce the risks propagation of a crack during step c).
  • the fact that the amorphous zone extends parallel to the weakening zone allows a fracture of the donor substrate during step c) which takes place parallel to the cavity.
  • the method according to the invention may include one or more of the following characteristics.
  • the cavity is made on the first surface of the support substrate; and the bonding of step b) takes place between the first surface of the donor substrate and the first surface of the support substrate.
  • the support substrate comprises pillars, extending to the first surface of the support substrate, and partly delimiting the cavity; and the bonding of step b) takes place between the first surface of the donor substrate and the pillars of the support substrate.
  • the donor substrate provided during step a) comprises pillars, extending to the first surface of the donor substrate, and partly delimiting the cavity; and the bonding of step b) takes place between the pillars of the donor substrate and the first surface of the support substrate.
  • the support substrate comprises pillars, extending to the first surface of the support substrate, and partly delimiting a first cavity;
  • the donor substrate provided during step a) comprises pillars, extending to the first surface of the donor substrate, and partly delimiting a second cavity; and the bonding of step b) takes place between the pillars of the donor substrate and the pillars of the support substrate so as to join the first and second cavities and form the cavity.
  • the method comprises a step d) consisting in recrystallizing the amorphous zone, step d) being carried out after step c); step d) preferably being carried out by resuming solid phase epitaxy.
  • the amorphous zone is recrystallized during step d) in order to reconstruct the crystalline structure of the useful layer, and this from the crystalline material surrounding the amorphous zone.
  • Step d) is essential when it is desired to form an electronic device from the useful layer.
  • step a 1 ) consists in implanting ionized species in the donor substrate, through the first surface of the donor substrate, said ionized species preferably comprising at least one of the species selected from H + , He + , B + .
  • step a 2 consists in implanting species in the useful layer, through the first surface of the donor substrate, said species preferably being silicon ions or germanium ions.
  • an advantage obtained is to be able to easily obtain an amorphous “buried” zone, that is to say located at a distance from the first surface of the donor substrate, which is not possible with a deposition technique.
  • step a 2 is carried out so that the amorphous zone extends at a distance from the first surface of the donor substrate.
  • an advantage provided by such a buried amorphous zone, closer to the weakening zone, is to improve the effectiveness of the inhibition of the bubbling of the implanted species, caused by the gas resulting from the recombination of said species.
  • a buried amorphous zone makes it possible to improve the quality of the recrystallization during step d).
  • another advantage provided by such a buried amorphous zone is that it can be removed simply, by sacrificial oxidation or thinning.
  • the useful layer of the donor substrate provided during step a) has a volume density, denoted pi; and step 2) is performed so that the amorphous region has a bulk density, denoted ⁇ 2, ⁇ satisfying 2 ⁇ ⁇ 1/10.
  • an advantage obtained is to improve the efficiency of inhibiting the bubbling of the implanted species.
  • the useful layer of the donor substrate provided during step a) has a thickness, denoted t, defining a theoretical maximum width of the cavity, denoted W lim , which is proportional to t 2 ; and step a 2 ) is executed so that the amorphous zone forms a periodic lattice with a pitch, noted p, verifying p ⁇ W lim , the periodic lattice extending parallel to the first surface of the donor substrate.
  • an advantage provided by such a periodic network is to be able to obtain an excellent inhibition of the bubbling of the implanted species, and this without requiring to have an amorphous zone extending completely opposite the cavity at the end of the step. b) - involving an alignment which can be difficult to operate -.
  • step c) is carried out by applying thermal annealing to the assembly obtained at the end of step b).
  • the thermal annealing temperature is the plateau value of the heating temperature.
  • semiconductor is understood to mean that the material has an electrical conductivity at 300 K of between 10 -8 S / cm and 10 3 S / cm.
  • the cavity or cavities 200 are formed on the first surface 20 of the support substrate 2, preferably by steps of photolithography and etching.
  • the support substrate 2 comprises a second surface 21, opposite to the first surface 20.
  • the first surface 20 of the support substrate 2 can be covered with an oxide layer.
  • the oxide layer can be a thermal oxide.
  • the first surface 20 of the support substrate 2 can be covered with a metal layer.
  • the metallic layer is made of a metallic material, preferably selected from Au, Cu, Ti, W.
  • the first surface 30 of the donor substrate 3 is advantageously covered with an oxide layer in order to promote hydrophilic bonding during step b) .
  • the first surface 30 of the donor substrate 3 is advantageously covered with a metallic layer, preferably of the same metal, in order to promote bonding by thermocompression during lamination. 'step b).
  • the donor substrate 3 has a monocrystalline structure.
  • Steps a 1 ) and a 2 ) can be reversed.
  • Step a 0 ) is illustrated in Figure la.
  • Step a 1 ) is illustrated in figure 1b .
  • Step a 2 ) is illustrated in Figure le.
  • the parameters will be adapted according to the thickness desired for the useful layer 1.
  • the donor substrate 3 is made of monocrystalline silicon
  • an energy of 160 keV and a dose of 6x10 16 at.cm -2 lead to a thickness of 1.5 ⁇ m for the useful layer 1.
  • the parameters will be adapted according to the desired depth of amorphization.
  • the useful layer 1 of the donor substrate 3 provided during step a) has a volume density, denoted p1.
  • Step a2) is advantageously performed so that the amorphous region 4 has a volumetric density, denoted ⁇ 2, ⁇ satisfying 2 ⁇ ⁇ 1/10.
  • the useful layer 1 of the donor substrate 3 provided during step a) has a thickness, denoted t, defining a theoretical maximum width of the cavity, denoted W lim , which is proportional to t 2 , as described in D1.
  • step a 2 ) is executed so that the amorphous zone 4 forms a periodic lattice with a pitch, noted p, verifying p ⁇ W lim , the periodic lattice extending parallel to the first surface 30 of the donor substrate 3.
  • W lim is of the order of 40 ⁇ m.
  • step b) takes place between the first surface 30 of the donor substrate 3 and the first surface 20 of the support substrate 2.
  • step b) is carried out so that the amorphous zone 4 is at least partially opposite the cavity 200.
  • the step b) is carried out so that the amorphous zone 4 is at least partially facing each cavity 200.
  • the side of the first surface 30 of the donor substrate 3 is defined by the orientation of the normal to the first surface 30 of the donor substrate 3.
  • the side of the first surface 20 of the supporting substrate 2 is defined by l orientation of the normal to the first surface 20 of the support substrate 2.
  • the bonding carried out during step b) is advantageously bonding by direct adhesion between the first surface 30 of the donor substrate 3 and the first surface 20 of the support substrate 2.
  • direct adhesion is understood to mean spontaneous bonding resulting from the contacting two surfaces, that is to say in the absence of an additional element such as an adhesive, a wax or a solder. Adhesion mainly comes from van der Waals forces resulting from the electronic interaction between atoms or molecules of two surfaces, hydrogen bonds due to surface preparations or covalent bonds established between two surfaces. We also speak of bonding by molecular adhesion or direct bonding. Bonding by direct adhesion cannot be likened to bonding by thermocompression, to eutectic bonding, or even to anodic bonding.
  • the bonding carried out during step b) can be bonding by thermocompression or eutectic bonding depending on the nature of the first surface 30 of the donor substrate 3 and of the first surface 20 of the support substrate 2.
  • Step b) is advantageously preceded by a preparation of the first surface 30 of the donor substrate 3 and by a preparation of the first surface 20 of the support substrate 2.
  • CMP chemical mechanical polishing
  • Step b) is advantageously carried out in a medium with a controlled atmosphere.
  • step b) can be carried out under a high vacuum such as a secondary vacuum of less than 10 -2 mbar.
  • Step c) is illustrated in figure 1f .
  • Step c) of fracture (“ splitting” ) is advantageously carried out by applying thermal annealing to the assembly obtained at the end of step b).
  • the thermal annealing is applied according to a thermal budget suitable for fracturing the donor substrate 3 along the zone of embrittlement ZS.
  • the thermal annealing temperature is preferably between 350 ° C and 550 ° C.
  • the duration of the thermal annealing is preferably between 5 minutes and 3 hours.
  • Step c) is advantageously preceded by a step consisting in applying a thermal annealing to the assembly obtained during step b) according to a thermal budget suitable for strengthening the bonding without initiating the fracture of the donor substrate 3 according to the zone ZS embrittlement.
  • the method advantageously comprises a step d) consisting in recrystallizing the amorphous zone 4, step d) being carried out after step c).
  • Step d) is illustrated in figure 1g .
  • Step d) is advantageously carried out by resuming solid phase epitaxy.
  • an advantage obtained is to be able to easily reconstruct a crystalline structure for the useful layer 1.
  • Step d) is essential when it is desired to form an electronic device from the useful layer 1.
  • step a 2 ) is advantageously carried out so that the amorphous zone 4 has a level of mass crystallinity less than or equal to 20%, which makes it possible to improve the quality of the recrystallization.
  • Step d) is carried out by applying thermal annealing.
  • the recrystallization begins at 450 ° C.
  • the method can also include steps of dry or wet etching, as well as steps of cleaning the useful layer 1.
  • Step d) is optional. Indeed, when the useful layer 1 forms a protective cover, an electronic device is not necessarily formed from the useful layer 1.
  • step a 2 ) can be carried out so that the amorphous zone 4 has a mass crystallinity rate less than or equal to 80%. In other words, a polycrystalline structure of the amorphous zone 4 is perfectly suitable since an electronic device does not have to be formed from the useful layer 1.
  • the pillars 6 are advantageously made of a metallic material, preferably copper.
  • the pillars 6 are formed on the first surface 20 of the support substrate 2 by electrodeposition (ECD for “ ElectroChemical Déposition ”).
  • ECD ElectroChemical Déposition
  • the bonding carried out during step b) is advantageously bonding by thermocompression.
  • Such a useful layer 1 transferred locally forms a protective cover, preferably hermetic, on the support substrate 2, so as to form an encapsulation means.
  • a useful layer 1 transferred forms a more effective means of encapsulation than an ad hoc layer deposited, pierced and then recapped.
  • Step d) is optional. Indeed, when the useful layer 1 forms a protective cover, an electronic device is not necessarily formed from the useful layer 1.
  • step a 2 ) can be carried out so that the amorphous zone 4 has a mass crystallinity rate less than or equal to 80%. In other words, a polycrystalline structure of the amorphous zone 4 is perfectly suitable since an electronic device does not have to be formed from the useful layer 1.
  • the pillars 6 ' are advantageously made of a metallic material, preferably of copper.
  • the pillars 6 ′ are formed at the first surface 30 of the donor substrate 3 by electrodeposition (ECD for “ ElectroChemical Déposition ”).
  • ECD ElectroChemical Déposition
  • the bonding carried out during step b) is advantageously bonding by thermocompression.
  • Such a useful layer 1 transferred locally forms a protective cover, preferably hermetic, on the support substrate 2, so as to form an encapsulation means.
  • a useful layer 1 transferred forms a more effective means of encapsulation than an ad hoc layer deposited, pierced and then recapped.
  • Step d) is optional. Indeed, when the useful layer 1 forms a protective cover, an electronic device is not necessarily formed from the useful layer 1.
  • step a 2 ) can be carried out so that the amorphous zone 4 has a mass crystallinity rate less than or equal to 80%. In other words, a polycrystalline structure of the amorphous zone 4 is perfectly suitable since an electronic device does not have to be formed from the useful layer 1.
  • the pillars 6 of the support substrate 2 and the pillars 6 'of the donor substrate 3 are advantageously made of a metallic material, preferably copper.
  • the pillars 6 of the support substrate 2 and the pillars 6 'of the donor substrate 3 are respectively formed on the first surface 20 of the support substrate 2 and on the first surface 30 of the donor substrate 3 by electrodeposition (ECD for “ ElectroChemical Deposition ”).
  • ECD ElectroChemical Deposition
  • the bonding performed during step b) is advantageously a bonding by thermocompression.
  • Such a useful layer 1 transferred locally forms a protective cover, preferably hermetic, on the support substrate 2, so as to form an encapsulation means.
  • a useful layer 1 transferred forms a more effective means of encapsulation than an ad hoc layer deposited, pierced and then recapped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

    Domaine technique
  • L'invention se rapporte au domaine technique du transfert d'une couche utile, appartenant à un substrat donneur, sur un substrat support. Le substrat donneur et/ou le substrat support est muni d'au moins une cavité superficielle.
  • L'invention trouve notamment son application dans la fabrication d'une membrane sur la cavité, utilisée pour les microsystèmes mécaniques (MEMS), par exemple dans un capteur de pression, un résonateur, un microphone, ou encore un capteur biochimique. La couche utile transférée peut également être utilisée comme capot de protection, par exemple pour un composant, ou encore comme moyen d'encapsulation hermétique.
  • Etat de la technique antérieure
  • Un procédé connu de l'état de la technique, notamment du document C.-H. Yun et al., « Fabrication of Silicon and Oxide Membranes Over Cavities Using Ion-Cut Layer Transfer », Journal of Microelectromechanical Systems, vol. 9, n°4, 474-477, 2000 (ci-après D1), est un procédé de transfert d'une couche utile sur un substrat support, le substrat support comportant :
    • une première surface et une seconde surface opposée,
    • au moins une cavité ménagée à la première surface ;
    le procédé comportant les étapes successives :
    • a') prévoir un substrat donneur comportant :
      • une première surface et une seconde surface opposée,
      • une zone de fragilisation comprenant des espèces implantées,
      • la couche utile, délimitée par la zone de fragilisation et par la première surface du substrat donneur,
    • b') assembler le substrat donneur au substrat support par un collage entre la première surface du substrat donneur et la première surface du substrat support ;
    • c') fracturer le substrat donneur suivant la zone de fragilisation de manière à exposer la couche utile.
  • Un tel procédé de l'état de la technique permet d'obtenir un contrôle satisfaisant de l'épaisseur de la couche utile transférée ainsi qu'une bonne uniformité de l'épaisseur sur le substrat support. Cependant, un tel procédé de l'état de la technique n'est pas entièrement satisfaisant dans la mesure où D1 enseigne que l'épaisseur de la couche utile, notée t, définit une largeur maximale théorique de la cavité, notée Wlim, qui est proportionnelle à t2. En d'autres termes, pour une épaisseur t fixée de la couche utile, une largeur de la cavité supérieure à Wlim va conduire à une défaillance de la couche utile transférée sur le substrat support, qui est liée à la formation de bullage (« blistering » en langue anglaise) des espèces implantées dans la cavité.
  • D'autres documents de l'état de la technique pertinentes pour le procédé de transfert sont US2006 / 0118817 A1 et EP2224476 A1 .
  • L'homme du métier recherche, pour une épaisseur fixée de la couche utile, à repousser les limites de la largeur maximale de la cavité au-delà de laquelle on observe une défaillance de la couche utile transférée sur le substrat support.
  • Exposé de l'invention
  • L'invention vise à remédier en tout ou partie aux inconvénients précités. A cet effet, l'invention a pour objet un procédé de transfert d'une couche utile sur un substrat support comportant une première surface, le procédé comportant les étapes successives :
    1. a) prévoir un substrat donneur comportant :
      • une première surface,
      • une zone de fragilisation comprenant des espèces implantées,
      • la couche utile, délimitée par la zone de fragilisation et par la première surface du substrat donneur,
      • une zone amorphe s'étendant dans la couche utile, parallèlement à la zone de fragilisation ;
    2. b) assembler, du côté de la première surface du substrat donneur et du côté de la première surface du substrat support, le substrat donneur au substrat support par un collage ; l'étape b) étant exécutée de sorte que la zone amorphe est au moins partiellement en regard d'au moins une cavité délimitée en partie par la première surface du substrat donneur ;
    3. c) fracturer le substrat donneur suivant la zone de fragilisation de manière à exposer la couche utile.
  • Ainsi, un tel procédé selon l'invention permet, grâce à la présence d'une telle zone amorphe, de repousser les limites de la largeur maximale de la cavité au-delà de laquelle on observe une défaillance de la couche utile transférée sur le substrat support. En effet, une telle zone amorphe permet d'inhiber localement le bullage des espèces implantées, provoqué par le gaz issu de la recombinaison desdites espèces. De plus, cette inhibition du bullage des espèces implantées permet de transférer une couche utile fine, sans craindre sa défaillance mécanique, voire sa rupture. L'inhibition du bullage des espèces implantées est accrue lorsque la zone amorphe se trouve totalement en regard de la cavité à l'issue de l'étape b).
  • En outre, une telle zone amorphe présente un module d'Young plus faible qu'une structure monocristalline (par exemple de l'ordre de 20% plus faible pour le silicium amorphe par rapport au silicium monocristallin), ce qui permet de réduire les risques de propagation d'une fissure lors de l'étape c).
  • Par ailleurs, le fait que la zone amorphe s'étende parallèlement à la zone de fragilisation autorise une fracture du substrat donneur lors de l'étape c) qui s'opère parallèlement à la cavité.
  • Définitions
    • Par « couche utile », on entend une couche à partir de laquelle peut être formé un dispositif pour tout type d'applications, notamment électronique, mécanique, optique ; ou encore une couche formant un capot de protection.
    • Par «substrat », on entend un support physique autoporté, réalisé dans un matériau de base permettant la fabrication d'un dispositif électronique ou d'un composant électronique. Un substrat est classiquement une tranche (« wafer » en langue anglaise) découpée dans un lingot monocristallin de matériau semi-conducteur.
    • Par « amorphe », on entend que la zone présente un taux de cristallinité massique strictement inférieur à celui du substrat donneur, le substrat donneur possédant une structure monocristalline. Ainsi, la zone « amorphe » peut avoir une structure polycristalline (taux de cristallinité massique classiquement inférieur ou égal à 80%) ou une structure amorphe (taux de cristallinité massique classiquement inférieur ou égal à 20%).
    • Le terme « parallèlement » s'entend dans les tolérances usuelles liées aux techniques de fabrication en microélectronique, et non au sens mathématique du terme.
    • Par « au moins partiellement en regard », on entend que tout ou partie de la zone amorphe se situe en face (i.e. à la perpendiculaire) de tout ou partie de la cavité, avec ou sans interposition d'une portion de couche utile. Ainsi, l'expression couvre les cas suivants :
      1. (i) toute la zone amorphe se situe en face de toute la cavité,
      2. (ii) toute la zone amorphe se situe en face d'une partie de la cavité,
      3. (iii) une partie de la zone amorphe se situe en face de toute la cavité,
      4. (iv) une partie de la zone amorphe se situe en face d'une partie de la cavité.
  • Le procédé selon l'invention peut comporter une ou plusieurs des caractéristiques suivantes.
  • Selon une caractéristique de l'invention, la cavité est ménagée à la première surface du substrat support ;
    et le collage de l'étape b) s'opère entre la première surface du substrat donneur et la première surface du substrat support.
  • Selon une caractéristique de l'invention, le substrat support comporte des piliers, s'étendant à la première surface du substrat support, et délimitant en partie la cavité ;
    et le collage de l'étape b) s'opère entre la première surface du substrat donneur et les piliers du substrat support.
  • Selon une caractéristique de l'invention, le substrat donneur prévu lors de l'étape a) comporte des piliers, s'étendant à la première surface du substrat donneur, et délimitant en partie la cavité ;
    et le collage de l'étape b) s'opère entre les piliers du substrat donneur et la première surface du substrat support.
  • Selon une caractéristique de l'invention, le substrat support comporte des piliers, s'étendant à la première surface du substrat support, et délimitant en partie une première cavité ;
    le substrat donneur prévu lors de l'étape a) comporte des piliers, s'étendant à la première surface du substrat donneur, et délimitant en partie une deuxième cavité ;
    et le collage de l'étape b) s'opère entre les piliers du substrat donneur et les piliers du substrat support de manière à réunir les première et deuxième cavités et former la cavité.
  • Selon une caractéristique de l'invention, le procédé comporte une étape d) consistant à recristalliser la zone amorphe, l'étape d) étant exécutée après l'étape c) ; l'étape d) étant de préférence exécutée par une reprise d'épitaxie en phase solide.
  • Ainsi, la zone amorphe est recristallisée lors de l'étape d) afin de reconstruire la structure cristalline de la couche utile, et ce à partir du matériau cristallin entourant la zone amorphe. L'étape d) est essentielle lorsque l'on souhaite former un dispositif électronique à partir de la couche utile.
  • Selon une caractéristique de l'invention, l'étape a) comporte les étapes :
    • a0) prévoir le substrat donneur comportant la première surface ;
    • a1) former la zone de fragilisation dans le substrat donneur ;
    • a2) former la zone amorphe dans la couche utile.
    Les étapes a1) et a2) peuvent être interverties.
  • Selon une caractéristique de l'invention, l'étape a1) consiste à implanter des espèces ionisées dans le substrat donneur, à travers la première surface du substrat donneur, lesdites espèces ionisées comportant de préférence au moins une des espèces sélectionnées parmi H+, He+, B+.
  • Selon une caractéristique de l'invention, l'étape a2) consiste à implanter des espèces dans la couche utile, à travers la première surface du substrat donneur, lesdites espèces étant de préférence des ions de silicium ou des ions de germanium.
  • Ainsi, un avantage procuré est de pouvoir obtenir aisément une zone amorphe « enterrée », c'est-à-dire située à distance de la première surface du substrat donneur, ce qui n'est pas envisageable avec une technique de dépôt.
  • Selon une caractéristique de l'invention, l'étape a2) est exécutée de sorte que la zone amorphe s'étend à distance de la première surface du substrat donneur.
  • Ainsi, un avantage procuré par une telle zone amorphe enterrée, plus proche de la zone de fragilisation, est d'améliorer l'efficacité de l'inhibition du bullage des espèces implantées, provoqué par le gaz issu de la recombinaison desdites espèces. En outre, le cas échéant, une telle zone amorphe enterrée permet d'améliorer la qualité de la recristallisation lors de l'étape d). Enfin, un autre avantage procuré par une telle zone amorphe enterrée est qu'elle peut être supprimée simplement, par oxydation sacrificielle ou amincissement.
  • Selon une caractéristique de l'invention, la couche utile du substrat donneur prévu lors de l'étape a) présente une densité volumique, notée pi ;
    et l'étape a2) est exécutée de sorte que la zone amorphe présente une densité volumique, notée ρ2, vérifiant ρ2 ≥ ρ1/10.
  • Ainsi, un avantage procuré est d'améliorer l'efficacité de l'inhibition du bullage des espèces implantées.
  • Selon une caractéristique de l'invention, la couche utile du substrat donneur prévu lors de l'étape a) présente une épaisseur, notée t, définissant une largeur maximale théorique de la cavité, notée Wlim, qui est proportionnelle à t2 ;
    et l'étape a2) est exécutée de sorte que la zone amorphe forme un réseau périodique avec un pas, noté p, vérifiant p < Wlim, le réseau périodique s'étendant parallèlement à la première surface du substrat donneur.
  • Ainsi, un avantage procuré par un tel réseau périodique est de pouvoir obtenir une excellente inhibition du bullage des espèces implantées, et ce sans nécessiter d'avoir une zone amorphe s'étendant totalement en regard de la cavité à l'issue de l'étape b) -impliquant un alignement qui peut être délicat à opérer-.
  • Selon une caractéristique de l'invention, l'étape c) est exécutée en appliquant un recuit thermique à l'assemblage obtenu à l'issue de l'étape b).
  • Par « recuit thermique », on entend un traitement thermique comportant un cycle de chauffage avec :
    • une première phase de montée graduelle en température jusqu'à atteindre une valeur plateau,
    • une deuxième phase où la température de chauffage conserve la valeur plateau, et
    • une troisième phase de refroidissement.
  • La température du recuit thermique est la valeur plateau de la température de chauffage.
  • Selon une caractéristique de l'invention, le substrat donneur prévu lors de l'étape a) est réalisé dans un matériau sélectionné parmi :
    • un matériau semi-conducteur, de préférence Si, Ge, GaAs, InP, GaN ;
    • un matériau piézoélectrique, de préférence LiNbO3, LiTaO3.
  • Par « semi-conducteur », on entend que le matériau présente une conductivité électrique à 300 K comprise entre 10-8 S/cm et 103 S/cm.
  • Brève description des dessins
  • D'autres caractéristiques et avantages apparaîtront dans l'exposé détaillé de différents modes de réalisation de l'invention, l'exposé étant assorti d'exemples et de références aux dessins joints.
    • Figures la à 1g sont des vues schématiques en coupe selon la normale aux premières surfaces -et secondes surfaces- des substrats donneur et support, illustrant des étapes d'un procédé selon l'invention.
    • Figures 2a à 2f sont des vues schématiques en coupe selon la normale aux premières surfaces -et secondes surfaces- des substrats donneur et support, illustrant des étapes d'un procédé selon l'invention.
    • Figures 3a à 3f sont des vues schématiques en coupe selon la normale aux premières surfaces -et secondes surfaces- des substrats donneur et support, illustrant des étapes d'un procédé selon l'invention.
    • Figures 4a à 4g sont des vues schématiques en coupe selon la normale aux premières surfaces -et secondes surfaces- des substrats donneur et support, illustrant des étapes d'un procédé selon l'invention.
    • Figure 5 est une vue schématique en coupe selon la normale aux premières surfaces -et secondes surfaces- des substrats donneur et support, illustrant une zone amorphe formant un réseau périodique.
  • Les figures ne sont pas représentées à l'échelle pour en simplifier leur compréhension.
  • Exposé détaillé des modes de réalisation
  • Les éléments identiques ou assurant la même fonction porteront les mêmes références pour les différents modes de réalisation, par souci de simplification.
  • Un objet de l'invention est un procédé de transfert d'une couche utile 1 sur un substrat support 2 comportant une première surface 20, le procédé comportant les étapes successives :
    1. a) prévoir un substrat donneur 3 comportant :
      • une première surface 30,
      • une zone de fragilisation ZS comprenant des espèces implantées,
      • la couche utile 1, délimitée par la zone de fragilisation ZS et par la première surface 30 du substrat donneur 3,
      • une zone amorphe 4 s'étendant dans la couche utile 1, parallèlement à la zone de fragilisation ZS ;
    2. b) assembler, du côté de la première surface 30 du substrat donneur 3 et du côté de la première surface 20 du substrat support 2, le substrat donneur 3 au substrat support 2 par un collage ; l'étape b) étant exécutée de sorte que la zone amorphe 4 est au moins partiellement en regard d'au moins une cavité 200 délimitée en partie par la première surface 30 du substrat donneur 3 ;
    3. c) fracturer le substrat donneur 3 suivant la zone de fragilisation ZS de manière à exposer la couche utile 1.
    Substrat support
  • Comme illustré à la figure 1d, selon un mode de réalisation, la ou les cavités 200 sont formées à la première surface 20 du substrat support 2, de préférence par des étapes de photolithographie et de gravure. Le substrat support 2 comporte une seconde surface 21, opposée à la première surface 20.
  • La première surface 20 du substrat support 2 peut être recouverte d'une couche d'oxyde. La couche d'oxyde peut être un oxyde thermique. A titre de variante, la première surface 20 du substrat support 2 peut être recouverte d'une couche métallique. La couche métallique est réalisée dans un matériau métallique, de préférence sélectionné parmi Au, Cu, Ti, W.
  • Substrat donneur
  • Le substrat donneur 3 prévu lors de l'étape a) comporte une seconde surface 31, opposée à la première surface 30. Le substrat donneur 3 prévu lors de l'étape a) est avantageusement réalisé dans un matériau sélectionné parmi :
    • un matériau semi-conducteur, de préférence Si, Ge, GaAs, InP, GaN ;
    • un matériau piézoélectrique, de préférence LiNbO3, LiTaO3.
  • Lorsque la première surface 20 du substrat support 2 est recouverte d'une couche d'oxyde, la première surface 30 du substrat donneur 3 est avantageusement recouverte d'une couche d'oxyde afin de favoriser un collage hydrophile lors de l'étape b). Lorsque la première surface 20 du substrat support 2 est recouverte d'une couche métallique, la première surface 30 du substrat donneur 3 est avantageusement recouverte d'une couche métallique, de préférence du même métal, afin de favoriser un collage par thermocompression lors de l'étape b).
  • Le substrat donneur 3 présente une structure monocristalline.
  • L'étape a) comporte avantageusement les étapes :
    • a0) prévoir le substrat donneur 3 comportant la première surface 30 et la seconde surface 31 opposée ;
    • a1) former la zone de fragilisation ZS dans le substrat donneur 3 ;
    • a2) former la zone amorphe 4 dans la couche utile 1.
  • Les étapes a1) et a2) peuvent être interverties. L'étape a0) est illustrée à la figure la. L'étape a1) est illustrée à la figure 1b. L'étape a2) est illustrée à la figure le.
  • L'étape a1) consiste avantageusement à implanter des espèces ionisées dans le substrat donneur 3, à travers la première surface 30 du substrat donneur 3, lesdites espèces ionisées comportant de préférence au moins une des espèces sélectionnées parmi H+, He+, B+. Il est donc possible d'effectuer une co-implantation avec plusieurs espèces ionisées (e.g. H+ et B+), ou encore d'effectuer une multi-implantation des mêmes espèces ionisées. A titre d'exemple non limitatif, lorsque le substrat donneur 3 est réalisé en silicium monocristallin et lorsque les espèces implantées sont des ions H+, l'étape a1) peut être exécutée selon les paramètres suivants :
    • une énergie comprise entre 60 keV et 200 keV,
    • une dose comprise 5x1016 at.cm-2 et 1017 at.cm-2.
  • Les paramètres seront adaptés selon l'épaisseur souhaitée pour la couche utile 1. Par exemple, lorsque le substrat donneur 3 est réalisé en silicium monocristallin, une énergie de 160 keV et une dose de 6x1016 at.cm-2 conduisent à une épaisseur de 1,5 µm pour la couche utile 1.
  • L'étape a2) consiste avantageusement à implanter des espèces dans la couche utile 1, à travers la première surface 30 du substrat donneur 3, lesdites espèces étant de préférence des ions de silicium ou des ions de germanium. L'implantation des espèces est exécutée lors de l'étape a2) à travers un masque 5 (illustré à la figure 1c). Le masque 5 peut être un masque dur ou une résine photosensible épaisse (de l'ordre de 3 µm). L'étape a2) est avantageusement exécutée de sorte que la zone amorphe 4 s'étend à distance de la première surface 30 du substrat donneur 3. A titre d'exemple non limitatif, lorsque le substrat donneur 3 est réalisé en silicium monocristallin et lorsque les espèces implantées sont des ions de silicium, l'étape a2) peut être exécutée selon les paramètres suivants :
    • une énergie comprise entre 10 keV et 150 keV,
    • une dose comprise 1014 at.cm-2 et 5x1015 at.cm-2.
  • Les paramètres seront adaptés selon la profondeur d'amorphisation souhaitée.
  • Selon une variante, l'étape a2) comporte les étapes :
    • a20) graver une partie de la première surface 30 du substrat donneur 3 ;
    • a21) déposer une couche amorphe dans ladite partie gravée de manière à former la zone amorphe 4.
  • La couche utile 1 du substrat donneur 3 prévu lors de l'étape a) présente une densité volumique, notée pi. L'étape a2) est avantageusement exécutée de sorte que la zone amorphe 4 présente une densité volumique, notée ρ2, vérifiant ρ2 ≥ ρ1/10.
  • La couche utile 1 du substrat donneur 3 prévu lors de l'étape a) présente une épaisseur, notée t, définissant une largeur maximale théorique de la cavité, notée Wlim, qui est proportionnelle à t2, comme décrit dans D1. Selon un mode de mise en œuvre illustré à la figure 2, l'étape a2) est exécutée de sorte que la zone amorphe 4 forme un réseau périodique avec un pas, noté p, vérifiant p < Wlim, le réseau périodique s'étendant parallèlement à la première surface 30 du substrat donneur 3. A titre d'exemple non limitatif, lorsque le substrat donneur 3 est réalisé en silicium monocristallin, et lorsque l'épaisseur t de la couche utile 1 est de l'ordre de 1,5 µm, alors Wlim est de l'ordre de 40 µm.
  • Etape b) de collage
  • L'étape b) est illustrée à la figure 1e. Les étapes a2) et b) sont configurées de sorte que les cas suivants peuvent se présenter à l'issue de l'étape b) :
    1. (i) toute la zone amorphe 4 se situe en face de toute la cavité 200,
    2. (ii) toute la zone amorphe 4 se situe en face d'une partie de la cavité 200,
    3. (iii) une partie de la zone amorphe 4 se situe en face de toute la cavité 200,
    4. (iv) une partie de la zone amorphe 4 se situe en face d'une partie de la cavité 200.
  • On privilégiera le cas (i) afin d'optimiser l'inhibition du bullage des espèces implantées.
  • Lorsque la ou les cavités 200 sont ménagées à la première surface 20 du substrat support 2, le collage de l'étape b) s'opère entre la première surface 30 du substrat donneur 3 et la première surface 20 du substrat support 2. Lorsque le substrat support 2 est muni d'une seule cavité 200, l'étape b) est exécutée de sorte que la zone amorphe 4 est au moins partiellement en regard de la cavité 200. Lorsque le substrat support 2 est muni de plusieurs cavités 200, l'étape b) est exécutée de sorte que la zone amorphe 4 est au moins partiellement en regard de chaque cavité 200.
  • Le côté de la première surface 30 du substrat donneur 3 est défini par l'orientation de la normale à la première surface 30 du substrat donneur 3. De la même façon, le côté de la première surface 20 du substrat support 2 est défini par l'orientation de la normale à la première surface 20 du substrat support 2.
  • Comme illustré à la figure 1e, à l'issue de l'étape b), chaque cavité 200 est délimitée :
    • en partie par la première surface 30 du substrat donneur 3,
    • en partie par la première surface 20 du substrat support 2.
  • Le collage exécuté lors de l'étape b) est avantageusement un collage par adhésion directe entre la première surface 30 du substrat donneur 3 et la première surface 20 du substrat support 2. Par « adhésion directe », on entend un collage spontané issu de la mise en contact de deux surfaces, c'est-à-dire en l'absence d'un élément additionnel tel qu'une colle, une cire ou une brasure. L'adhésion provient principalement des forces de van der Waals issues de l'interaction électronique entre les atomes ou les molécules de deux surfaces, des liaisons hydrogène du fait des préparations des surfaces ou des liaisons covalentes établies entre deux surfaces. On parle également de collage par adhésion moléculaire ou de collage direct. Le collage par adhésion directe ne saurait être assimilé à un collage par thermocompression, à un collage eutectique, ou encore à un collage anodique.
  • Toutefois, le collage exécuté lors de l'étape b) peut être un collage par thermocompression ou un collage eutectique selon la nature de la première surface 30 du substrat donneur 3 et de la première surface 20 du substrat support 2.
  • L'étape b) est avantageusement précédée d'une préparation de la première surface 30 du substrat donneur 3 et d'une préparation de la première surface 20 du substrat support 2. A titre d'exemple, pour un collage direct, il est possible d'activer chimiquement les premières surfaces 20, 30, par exemple à l'aide d'un acide de Caro (produit par un mélange de H2SO4 et de H2O2), puis de nettoyer les premières surfaces 20, 30 par un procédé standard de type RCA. A titre de variante, pour un collage direct, il est possible d'activer les premières surfaces 20, 30 par un polissage mécano-chimique (CMP), puis de nettoyer les premières surfaces 20, 30 avec une brosse de nettoyage (« scrubber » en langue anglaise).
  • L'étape b) est avantageusement exécutée dans un milieu à atmosphère contrôlée. A titre d'exemple non limitatif, l'étape b) peut être exécutée sous vide poussé tel qu'un vide secondaire inférieur à 10-2 mbar.
  • Etape c) de fracture
  • L'étape c) est illustrée à la figure 1f. L'étape c) de fracture (« splitting » en langue anglaise) est avantageusement exécutée en appliquant un recuit thermique à l'assemblage obtenu à l'issue de l'étape b).
  • Le recuit thermique est appliqué selon un budget thermique adapté pour fracturer le substrat donneur 3 suivant la zone de fragilisation ZS. La température de recuit thermique est de préférence comprise entre 350°C et 550°C. La durée du recuit thermique est de préférence comprise entre 5 minutes et 3 heures.
  • L'étape c) est avantageusement précédée d'une étape consistant à appliquer un recuit thermique à l'assemblage obtenu lors de l'étape b) selon un budget thermique adapté pour renforcer le collage sans initier la fracture du substrat donneur 3 suivant la zone de fragilisation ZS.
  • Etape d) de recristallisation
  • Le procédé comporte avantageusement une étape d) consistant à recristalliser la zone amorphe 4, l'étape d) étant exécutée après l'étape c). L'étape d) est illustrée à la figure 1g. L'étape d) est avantageusement exécutée par une reprise d'épitaxie en phase solide. Ainsi, un avantage procuré est de pouvoir reconstruire aisément une structure cristalline pour la couche utile 1. L'étape d) est essentielle lorsque l'on souhaite former un dispositif électronique à partir de la couche utile 1. Pour cette application, l'étape a2) est avantageusement exécutée de sorte que la zone amorphe 4 présente un taux de cristallinité massique inférieur ou égal à 20%, ce qui permet d'améliorer la qualité de la recristallisation. L'étape d) est exécutée en appliquant un recuit thermique. A titre d'exemple non limitatif, lorsque la zone amorphe 4 est du silicium amorphe, la recristallisation débute à 450°C.
  • A titre de variante, l'étape d) peut être exécutée :
    • par un recuit thermique rapide par énergie micro-onde, ou
    • par un laser de recristallisation.
    Finition
  • Le procédé selon l'invention comporte avantageusement :
    • une étape d'oxydation sacrificielle de la couche utile 1, exécutée après l'étape d), de manière à ajuster l'épaisseur finale de la couche utile 1 et ôter les parties endommagées par l'implantation des espèces ionisées ;
    • une étape de polissage mécano-chimique pour améliorer l'état de surface de la couche utile 1.
  • Le procédé peut également comporter des étapes de gravure sèche ou humide, ainsi que des étapes de nettoyage de la couche utile 1.
  • Application à la formation d'un capot de protection
  • Selon le mode de réalisation illustré aux figures 2a à 2f, le substrat support 2 comporte des piliers 6, s'étendant à la première surface 20 du substrat support 2, et délimitant en partie la cavité 200. Le collage de l'étape b) s'opère entre la première surface 30 du substrat donneur 3 et les piliers 6 du substrat support 2. Les piliers 6 du substrat support 2 peuvent délimiter en partie plusieurs cavités 200. Comme illustré à la figure 2e, à l'issue de l'étape b), chaque cavité 200 est délimitée :
    • en partie par la première surface 30 du substrat donneur 3,
    • en partie par la première surface 20 du substrat support 2,
    • en partie par les piliers 6 du substrat support 2.
  • Les caractéristiques techniques décrites ci-avant pour les étapes a), b) et c) s'appliquent pour cet objet, excepté le collage direct de l'étape b) qui n'est pas envisageable dans ce cas. L'étape d) est facultative. En effet, lorsque la couche utile 1 forme un capot de protection, un dispositif électronique n'est pas nécessairement formé à partir de la couche utile 1. Pour cette application, l'étape a2) peut être exécutée de sorte que la zone amorphe 4 présente un taux de cristallinité massique inférieur ou égal à 80%. En d'autres termes, une structure polycristalline de la zone amorphe 4 convient parfaitement dès lors qu'un dispositif électronique n'a pas à être formé à partir de la couche utile 1.
  • Les piliers 6 sont avantageusement réalisés dans un matériau métallique, de préférence en cuivre. A titre d'exemple non limitatif, les piliers 6 sont formés à la première surface 20 du substrat support 2 par électrodéposition (ECD pour « ElectroChemical Déposition »). Le collage exécuté lors de l'étape b) est avantageusement un collage par thermocompression.
  • Ainsi, une telle couche utile 1 transférée forme localement un capot de protection, de préférence hermétique, sur le substrat support 2, de manière à former un moyen d'encapsulation. Une telle couche utile 1 transférée forme un moyen d'encapsulation plus efficace qu'une couche ad hoc déposée, percée puis rebouchée.
  • A titre de variante illustrée aux figures 3a à 3f, le substrat donneur 3 prévu lors de l'étape a) comporte des piliers 6', s'étendant à la première surface 30 du substrat donneur 3, et délimitant en partie la cavité 200. Le collage de l'étape b) s'opère entre les piliers 6' du substrat donneur 3 et la première surface 20 du substrat support 2. Les piliers 6' du substrat donneur 3 peuvent délimiter en partie plusieurs cavités 200. Comme illustré à la figure 3e, à l'issue de l'étape b), chaque cavité 200 est délimitée :
    • en partie par la première surface 30 du substrat donneur 3,
    • en partie par la première surface 20 du substrat support 2,
    • en partie par les piliers 6' du substrat donneur 3.
  • Les caractéristiques techniques décrites ci-avant pour les étapes a), b) et c) s'appliquent pour cet objet, excepté le collage direct de l'étape b) qui n'est pas envisageable dans ce cas. L'étape d) est facultative. En effet, lorsque la couche utile 1 forme un capot de protection, un dispositif électronique n'est pas nécessairement formé à partir de la couche utile 1. Pour cette application, l'étape a2) peut être exécutée de sorte que la zone amorphe 4 présente un taux de cristallinité massique inférieur ou égal à 80%. En d'autres termes, une structure polycristalline de la zone amorphe 4 convient parfaitement dès lors qu'un dispositif électronique n'a pas à être formé à partir de la couche utile 1.
  • Les piliers 6' sont avantageusement réalisés dans un matériau métallique, de préférence en cuivre. A titre d'exemple non limitatif, les piliers 6' sont formés à la première surface 30 du substrat donneur 3 par électrodéposition (ECD pour « ElectroChemical Déposition »). Le collage exécuté lors de l'étape b) est avantageusement un collage par thermocompression.
  • Ainsi, une telle couche utile 1 transférée forme localement un capot de protection, de préférence hermétique, sur le substrat support 2, de manière à former un moyen d'encapsulation. Une telle couche utile 1 transférée forme un moyen d'encapsulation plus efficace qu'une couche ad hoc déposée, percée puis rebouchée.
  • A titre de variante illustrée aux figures 4a à 4g, le substrat support 2 comporte des piliers 6, s'étendant à la première surface 20 du substrat support 2, et délimitant en partie une première cavité 200a. Le substrat donneur 3 prévu lors de l'étape a) comporte des piliers 6', s'étendant à la première surface 30 du substrat donneur 3, et délimitant en partie une deuxième cavité 200b. Le collage de l'étape b) s'opère entre les piliers 6' du substrat donneur 3 et les piliers 6 du substrat support 2 de manière à réunir les première et deuxième cavités 200a, 200b et former la cavité 200. Les piliers 6 du substrat support 2 peuvent délimiter en partie plusieurs premières cavités 200a. Les piliers 6' du substrat donneur 3 peuvent délimiter en partie plusieurs deuxièmes cavités 200b. La réunion des premières et deuxièmes cavités 200a, 200b forme plusieurs cavités 200. Comme illustré à la figure 4f, à l'issue de l'étape b), chaque cavité 200 est délimitée :
    • en partie par la première surface 30 du substrat donneur 3,
    • en partie par la première surface 20 du substrat support 2,
    • en partie par les piliers 6' du substrat donneur 3,
    • en partie par les piliers 6 du substrat support 2.
  • Les caractéristiques techniques décrites ci-avant pour les étapes a), b) et c) s'appliquent pour cet objet, excepté le collage direct de l'étape b) qui n'est pas envisageable dans ce cas. L'étape d) est facultative. En effet, lorsque la couche utile 1 forme un capot de protection, un dispositif électronique n'est pas nécessairement formé à partir de la couche utile 1. Pour cette application, l'étape a2) peut être exécutée de sorte que la zone amorphe 4 présente un taux de cristallinité massique inférieur ou égal à 80%. En d'autres termes, une structure polycristalline de la zone amorphe 4 convient parfaitement dès lors qu'un dispositif électronique n'a pas à être formé à partir de la couche utile 1.
  • Les piliers 6 du substrat support 2 et les piliers 6' du substrat donneur 3 sont avantageusement réalisés dans un matériau métallique, de préférence en cuivre. A titre d'exemple non limitatif, les piliers 6 du substrat support 2 et les piliers 6' du substrat donneur 3 sont respectivement formés à la première surface 20 du substrat support 2 et à la première surface 30 du substrat donneur 3 par électrodéposition (ECD pour « ElectroChemical Déposition »). Le collage exécuté lors de l'étape b) est avantageusement un collage par thermocompres sion.
  • Ainsi, une telle couche utile 1 transférée forme localement un capot de protection, de préférence hermétique, sur le substrat support 2, de manière à former un moyen d'encapsulation. Une telle couche utile 1 transférée forme un moyen d'encapsulation plus efficace qu'une couche ad hoc déposée, percée puis rebouchée.
  • L'invention ne se limite pas aux modes de réalisation exposés. L'homme du métier est mis à même de considérer leurs combinaisons techniquement opérantes, et de leur substituer des équivalents.

Claims (14)

  1. Procédé de transfert d'une couche utile (1) sur un substrat support (2) comportant une première surface (20), le procédé comportant les étapes successives :
    a) prévoir un substrat donneur (3) comportant :
    - une première surface (30),
    - une zone de fragilisation (ZS) comprenant des espèces implantées,
    - la couche utile (1), délimitée par la zone de fragilisation (ZS) et par la première surface (30) du substrat donneur (3),
    - une zone amorphe (4) s'étendant dans la couche utile (1), parallèlement à la zone de fragilisation (ZS) ;
    b) assembler, du côté de la première surface (30) du substrat donneur (3) et du côté de la première surface (20) du substrat support (2), le substrat donneur (3) au substrat support (2) par un collage ; l'étape b) étant exécutée de sorte que la zone amorphe (4) est au moins partiellement en regard d'au moins une cavité (200) délimitée en partie par la première surface (30) du substrat donneur (3) ;
    c) fracturer le substrat donneur (3) suivant la zone de fragilisation (ZS) de manière à exposer la couche utile (1).
  2. Procédé selon la revendication 1, dans lequel la cavité (200) est ménagée à la première surface (20) du substrat support (2) ;
    et dans lequel le collage de l'étape b) s'opère entre la première surface (30) du substrat donneur (3) et la première surface (20) du substrat support (2).
  3. Procédé selon la revendication 1, dans lequel le substrat support (2) comporte des piliers (6), s'étendant à la première surface (20) du substrat support (2), et délimitant en partie la cavité (200) ;
    et dans lequel le collage de l'étape b) s'opère entre la première surface (30) du substrat donneur (3) et les piliers (6) du substrat support (2).
  4. Procédé selon la revendication 1, dans lequel le substrat donneur (3) prévu lors de l'étape a) comporte des piliers (6'), s'étendant à la première surface (30) du substrat donneur (3), et délimitant en partie la cavité (200) ;
    et dans lequel le collage de l'étape b) s'opère entre les piliers (6') du substrat donneur (3) et la première surface (20) du substrat support (2).
  5. Procédé selon la revendication 1, dans lequel le substrat support (2) comporte des piliers (6), s'étendant à la première surface (20) du substrat support (2), et délimitant en partie une première cavité (200a) ;
    dans lequel le substrat donneur (3) prévu lors de l'étape a) comporte des piliers (6'), s'étendant à la première surface (30) du substrat donneur (3), et délimitant en partie une deuxième cavité (200b) ;
    et dans lequel le collage de l'étape b) s'opère entre les piliers (6') du substrat donneur (3) et les piliers (6) du substrat support (2) de manière à réunir les première et deuxième cavités (200a, 200b) et former la cavité (200).
  6. Procédé selon l'une des revendications 1 à 5, comportant une étape d) consistant à recristalliser la zone amorphe (4), l'étape d) étant exécutée après l'étape c) ; l'étape d) étant de préférence exécutée par une reprise d'épitaxie en phase solide.
  7. Procédé selon l'une des revendications 1 à 6, dans lequel l'étape a) comporte les étapes :
    a0) prévoir le substrat donneur (3) comportant la première surface (30) ;
    a1) former la zone de fragilisation (ZS) dans le substrat donneur (3) ;
    a2) former la zone amorphe (4) dans la couche utile (1).
  8. Procédé selon la revendication 7, dans lequel l'étape a1) consiste à implanter des espèces ionisées dans le substrat donneur (3), à travers la première surface (30) du substrat donneur (3), lesdites espèces ionisées comportant de préférence au moins une des espèces sélectionnées parmi H+, He+, B+.
  9. Procédé selon la revendication 7 ou 8, dans lequel l'étape a2) consiste à implanter des espèces dans la couche utile (1), à travers la première surface (30) du substrat donneur (3), lesdites espèces étant de préférence des ions de silicium ou des ions de germanium.
  10. Procédé selon l'une des revendications 7 à 9, dans lequel l'étape a2) est exécutée de sorte que la zone amorphe (4) s'étend à distance de la première surface (30) du substrat donneur (3).
  11. Procédé selon l'une des revendications 7 à 10, dans lequel la couche utile (1) du substrat donneur (3) prévu lors de l'étape a) présente une densité volumique, notée pi ;
    et dans lequel l'étape a2) est exécutée de sorte que la zone amorphe (4) présente une densité volumique, notée ρ2, vérifiant ρ2 ≥ ρ1/10.
  12. Procédé selon l'une des revendications 7 à 11, dans lequel la couche utile (1) du substrat donneur (3) prévu lors de l'étape a) présente une épaisseur, notée t, définissant une largeur maximale théorique de la cavité, notée Wlim, qui est proportionnelle à t2 ;
    et dans lequel l'étape a2) est exécutée de sorte que la zone amorphe (4) forme un réseau périodique avec un pas, noté p, vérifiant p < Wlim, le réseau périodique s'étendant parallèlement à la première surface (30) du substrat donneur (3).
  13. Procédé selon l'une des revendications 1 à 12, dans lequel l'étape c) est exécutée en appliquant un recuit thermique à l'assemblage obtenu à l'issue de l'étape b).
  14. Procédé selon l'une des revendications 1 à 13, dans lequel le substrat donneur (3) prévu lors de l'étape a) est réalisé dans un matériau sélectionné parmi :
    - un matériau semi-conducteur, de préférence Si, Ge, GaAs, InP, GaN ;
    - un matériau piézoélectrique, de préférence LiNbO3, LiTaO3.
EP18213125.0A 2017-12-28 2018-12-17 Procede de transfert d'une couche utile sur un substrat support Active EP3506341B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1763342A FR3076292B1 (fr) 2017-12-28 2017-12-28 Procede de transfert d'une couche utile sur un substrat support

Publications (2)

Publication Number Publication Date
EP3506341A1 EP3506341A1 (fr) 2019-07-03
EP3506341B1 true EP3506341B1 (fr) 2020-07-29

Family

ID=62455579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18213125.0A Active EP3506341B1 (fr) 2017-12-28 2018-12-17 Procede de transfert d'une couche utile sur un substrat support

Country Status (3)

Country Link
US (1) US11401162B2 (fr)
EP (1) EP3506341B1 (fr)
FR (1) FR3076292B1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3076292B1 (fr) * 2017-12-28 2020-01-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de transfert d'une couche utile sur un substrat support
FR3091032B1 (fr) * 2018-12-20 2020-12-11 Soitec Silicon On Insulator Procédé de transfert d’une couche superficielle sur des cavités
FR3091620B1 (fr) * 2019-01-07 2021-01-29 Commissariat Energie Atomique Procédé de transfert de couche avec réduction localisée d’une capacité à initier une fracture
FR3108204B1 (fr) * 2020-03-10 2023-10-27 Commissariat Energie Atomique Procédé de suspension d’une couche mince sur une cavité avec effet raidisseur obtenu par pressurisation de la cavité par des espèces implantées
FR3108787B1 (fr) * 2020-03-31 2022-04-01 Commissariat Energie Atomique Procédé basse température de transfert et de guérison d’une couche semi-conductrice
FR3113772B1 (fr) * 2020-08-25 2024-05-03 Commissariat Energie Atomique Procédé de transfert d’une couche mince sur un substrat receveur comportant des cavités et une région dépourvue de cavités en bordure d’une face de collage
CN112259675B (zh) * 2020-10-19 2022-10-28 济南晶正电子科技有限公司 一种具有图案的薄膜键合体、制备方法及电子器件
US11955374B2 (en) * 2021-08-29 2024-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming SOI substrate

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177084A (en) * 1978-06-09 1979-12-04 Hewlett-Packard Company Method for producing a low defect layer of silicon-on-sapphire wafer
US4509990A (en) * 1982-11-15 1985-04-09 Hughes Aircraft Company Solid phase epitaxy and regrowth process with controlled defect density profiling for heteroepitaxial semiconductor on insulator composite substrates
DE4439238A1 (de) * 1994-11-03 1996-05-09 Telefunken Microelectron Kapazitiver Beschleunigungssensor
US6191007B1 (en) * 1997-04-28 2001-02-20 Denso Corporation Method for manufacturing a semiconductor substrate
EP1144973B1 (fr) * 1998-12-15 2006-01-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede pour produire des structures d'alignement dans des substrats a semi-conducteurs
US6245618B1 (en) * 1999-02-03 2001-06-12 Advanced Micro Devices, Inc. Mosfet with localized amorphous region with retrograde implantation
US6459141B2 (en) * 1999-11-22 2002-10-01 Advanced Micro Devices, Inc. Method and apparatus for suppressing the channeling effect in high energy deep well implantation
US6806147B1 (en) * 1999-11-22 2004-10-19 Advanced Micro Devices, Inc. Method and apparatus for suppressing the channeling effect in high energy deep well implantation
US6352909B1 (en) * 2000-01-06 2002-03-05 Silicon Wafer Technologies, Inc. Process for lift-off of a layer from a substrate
FR2810448B1 (fr) * 2000-06-16 2003-09-19 Soitec Silicon On Insulator Procede de fabrication de substrats et substrats obtenus par ce procede
FR2817974B1 (fr) * 2000-12-12 2003-09-12 Commissariat Energie Atomique Micro-actionneur optique, composant optique utilisant le micro-actionneur, et procede de realisation d'un micro-actionneur optique
EP1244142A1 (fr) * 2001-03-23 2002-09-25 Universite Catholique De Louvain Procédé de fabrication des dispositifs semiconducteurs du type SOI
TW564471B (en) * 2001-07-16 2003-12-01 Semiconductor Energy Lab Semiconductor device and peeling off method and method of manufacturing semiconductor device
FR2834123B1 (fr) * 2001-12-21 2005-02-04 Soitec Silicon On Insulator Procede de report de couches minces semi-conductrices et procede d'obtention d'une plaquette donneuse pour un tel procede de report
US6958255B2 (en) * 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
US20060118817A1 (en) * 2002-12-19 2006-06-08 Koninklijke Philips Electronics N.V. Stress-free composite substrate and method of manufacturing such a composite substrate
FR2850487B1 (fr) * 2002-12-24 2005-12-09 Commissariat Energie Atomique Procede de realisation de substrats mixtes et structure ainsi obtenue
US6902962B2 (en) * 2003-04-04 2005-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Silicon-on-insulator chip with multiple crystal orientations
FR2855908B1 (fr) * 2003-06-06 2005-08-26 Soitec Silicon On Insulator Procede d'obtention d'une structure comprenant au moins un substrat et une couche ultramince
KR20060118437A (ko) * 2003-09-26 2006-11-23 위니베르시트카솔리끄드루뱅 저항손을 감소시키는 다층 반도체 구조의 제조 방법
US7247246B2 (en) * 2003-10-20 2007-07-24 Atmel Corporation Vertical integration of a MEMS structure with electronics in a hermetically sealed cavity
US20050116290A1 (en) * 2003-12-02 2005-06-02 De Souza Joel P. Planar substrate with selected semiconductor crystal orientations formed by localized amorphization and recrystallization of stacked template layers
US7104129B2 (en) * 2004-02-02 2006-09-12 Invensense Inc. Vertically integrated MEMS structure with electronics in a hermetically sealed cavity
KR100938866B1 (ko) * 2004-02-25 2010-01-27 에스.오.아이. 테크 실리콘 온 인슐레이터 테크놀로지스 광검출장치
DE602004010117D1 (de) * 2004-09-16 2007-12-27 St Microelectronics Srl Verfahren zur Hestellung von zusammengestzten Halbleiterplättchen mittels Schichtübertragung
WO2006037783A1 (fr) * 2004-10-04 2006-04-13 S.O.I.Tec Silicon On Insulator Technologies Procédé de transfert d'une couche mince comprenant une perturbation controlée d'une structure cristalline
US7250353B2 (en) * 2005-03-29 2007-07-31 Invensense, Inc. Method and system of releasing a MEMS structure
US7318349B2 (en) * 2005-06-04 2008-01-15 Vladimir Vaganov Three-axis integrated MEMS accelerometer
US7880565B2 (en) * 2005-08-03 2011-02-01 Kolo Technologies, Inc. Micro-electro-mechanical transducer having a surface plate
DE102005054218B4 (de) * 2005-11-14 2011-06-09 Infineon Technologies Ag Verfahren zum Herstellen eines Halbleiterelements und Halbleiterelement
FR2895391B1 (fr) * 2005-12-27 2008-01-25 Commissariat Energie Atomique Procede d'elaboration de nanostructures ordonnees
FR2897982B1 (fr) * 2006-02-27 2008-07-11 Tracit Technologies Sa Procede de fabrication des structures de type partiellement soi, comportant des zones reliant une couche superficielle et un substrat
US7956510B2 (en) * 2006-04-04 2011-06-07 Kolo Technologies, Inc. Modulation in micromachined ultrasonic transducers
US7625776B2 (en) * 2006-06-02 2009-12-01 Micron Technology, Inc. Methods of fabricating intermediate semiconductor structures by selectively etching pockets of implanted silicon
US20080296708A1 (en) * 2007-05-31 2008-12-04 General Electric Company Integrated sensor arrays and method for making and using such arrays
JP2009016692A (ja) * 2007-07-06 2009-01-22 Toshiba Corp 半導体記憶装置の製造方法と半導体記憶装置
FR2918792B1 (fr) * 2007-07-10 2010-04-23 Soitec Silicon On Insulator Procede de traitement de defauts d'interface dans un substrat.
FR2925888A1 (fr) * 2007-12-27 2009-07-03 Commissariat Energie Atomique Dispositif a structure pre-liberee
FR2938117B1 (fr) * 2008-10-31 2011-04-15 Commissariat Energie Atomique Procede d'elaboration d'un substrat hybride ayant une couche continue electriquement isolante enterree
FR2941561B1 (fr) * 2009-01-28 2011-05-13 Commissariat Energie Atomique Procede de fermeture de cavite pour au moins un dispositif microelectronique
FR2942674B1 (fr) 2009-02-27 2011-12-16 Commissariat Energie Atomique Procede d'elaboration d'un substrat hybride par recristallisation partielle d'une couche mixte
WO2011025939A1 (fr) * 2009-08-28 2011-03-03 Analog Devices, Inc. Système de microphone à double plaque de fond et cristal unique, et procédé de fabrication de celui-ci
US8563345B2 (en) * 2009-10-02 2013-10-22 National Semiconductor Corporated Integration of structurally-stable isolated capacitive micromachined ultrasonic transducer (CMUT) array cells and array elements
US9099526B2 (en) * 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
CN102822970B (zh) * 2010-03-31 2015-06-17 Soitec公司 键合半导体结构及其形成方法
US10497713B2 (en) * 2010-11-18 2019-12-03 Monolithic 3D Inc. 3D semiconductor memory device and structure
US8847337B2 (en) * 2011-02-25 2014-09-30 Evigia Systems, Inc. Processes and mounting fixtures for fabricating electromechanical devices and devices formed therewith
FR2973158B1 (fr) * 2011-03-22 2014-02-28 Soitec Silicon On Insulator Procédé de fabrication d'un substrat de type semi-conducteur sur isolant pour applications radiofréquences
FI124354B (fi) * 2011-04-04 2014-07-15 Okmetic Oyj Menetelmä yhden tai useamman polykiteisen piikerroksen pinnoittamiseksi substraatille
FR2983342B1 (fr) * 2011-11-30 2016-05-20 Soitec Silicon On Insulator Procede de fabrication d'une heterostructure limitant la formation de defauts et heterostructure ainsi obtenue
FR2986106B1 (fr) * 2012-01-20 2014-08-22 Soitec Silicon On Insulator Procede de fabrication de substrats semi-conducteur, et substrats semi-conducteur
US8884725B2 (en) * 2012-04-19 2014-11-11 Qualcomm Mems Technologies, Inc. In-plane resonator structures for evanescent-mode electromagnetic-wave cavity resonators
US20130278359A1 (en) * 2012-04-19 2013-10-24 Qualcomm Mems Technologies, Inc. Two- and three-substrate level processes for producing evanescent mode electromagnetic wave cavity resonators
JP2013229356A (ja) * 2012-04-24 2013-11-07 Mitsubishi Electric Corp Soiウェハおよびその製造方法、並びにmemsデバイス
US8735199B2 (en) * 2012-08-22 2014-05-27 Honeywell International Inc. Methods for fabricating MEMS structures by etching sacrificial features embedded in glass
US9499392B2 (en) * 2013-02-05 2016-11-22 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
CA2905040C (fr) * 2013-03-15 2021-10-19 Butterfly Network, Inc. Transducteurs ultrasonores a semi-conducteur complementaire a l'oxyde de metal (cmos) et leurs procedes de formation
US10446700B2 (en) * 2013-05-22 2019-10-15 W&Wsens Devices, Inc. Microstructure enhanced absorption photosensitive devices
FR3008543B1 (fr) * 2013-07-15 2015-07-17 Soitec Silicon On Insulator Procede de localisation de dispositifs
US9187316B2 (en) * 2013-07-19 2015-11-17 University Of Windsor Ultrasonic sensor microarray and method of manufacturing same
CA2919183A1 (fr) * 2013-07-23 2015-01-29 Butterfly Network, Inc. Sondes a transducteurs ultrasonores interconnectables, procedes et appareil associes
US9111996B2 (en) * 2013-10-16 2015-08-18 Taiwan Semiconductor Manufacturing Company Limited Semiconductor-on-insulator structure and method of fabricating the same
US9935191B2 (en) * 2014-06-13 2018-04-03 Intel Corporation High electron mobility transistor fabrication process on reverse polarized substrate by layer transfer
WO2015199644A1 (fr) * 2014-06-23 2015-12-30 Intel Corporation Techniques de formation d'architectures de transistor verticales
FR3023411B1 (fr) * 2014-07-07 2017-12-22 Commissariat Energie Atomique Generation localisee de contrainte dans un substrat soi
US9067779B1 (en) * 2014-07-14 2015-06-30 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
US9165945B1 (en) * 2014-09-18 2015-10-20 Soitec Method for fabricating semiconductor structures including transistor channels having different strain states, and related semiconductor structures
US9394161B2 (en) * 2014-11-14 2016-07-19 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS and CMOS integration with low-temperature bonding
US20160009544A1 (en) * 2015-03-02 2016-01-14 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
FR3045934B1 (fr) * 2015-12-22 2018-02-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d’un empilement de dispositifs electroniques
TW201735286A (zh) * 2016-02-11 2017-10-01 天工方案公司 使用可回收載體基板之裝置封裝
FR3052765B1 (fr) * 2016-06-17 2021-06-04 Commissariat Energie Atomique Dispositif microelectromecanique et/ou nanoelectromecanique a deplacement hors-plan comportant des moyens capacitifs a variation de surface
US10991675B2 (en) * 2016-10-10 2021-04-27 Monolithic 3D Inc. 3D semiconductor device and structure
EP3642611B1 (fr) * 2017-06-21 2024-02-14 Butterfly Network, Inc. Transducteur à ultrasons microfabriqué ayant des cellules individuelles comportant des sections d'électrode électriquement isolées
FR3076292B1 (fr) * 2017-12-28 2020-01-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de transfert d'une couche utile sur un substrat support
US11121121B2 (en) * 2018-09-04 2021-09-14 Monolithic 3D Inc. 3D semiconductor device and structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG-HAN YUN ET AL: "Fabrication of silicon and oxide membranes over cavities using ion-cut layer transfer", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, IEEE SERVICE CENTER, US, vol. 9, no. 4, 1 December 2000 (2000-12-01), pages 474 - 477, XP011450865, ISSN: 1057-7157, DOI: 10.1109/84.896768 *

Also Published As

Publication number Publication date
EP3506341A1 (fr) 2019-07-03
US11401162B2 (en) 2022-08-02
FR3076292B1 (fr) 2020-01-03
US20190202688A1 (en) 2019-07-04
FR3076292A1 (fr) 2019-07-05

Similar Documents

Publication Publication Date Title
EP3506341B1 (fr) Procede de transfert d&#39;une couche utile sur un substrat support
EP1155442B1 (fr) Procede de realisation d&#39;une structure multicouche a contraintes internes controlees
EP1114446B1 (fr) Procede de realisation d&#39;une membrane mince
EP0851465B1 (fr) Procédé de séparation d&#39;au moins deux éléments d&#39;une structure en contact entre eux par implantation ionique
EP1923912B1 (fr) Procédé de fabrication d&#39;une structure microtechnologique mixte
EP3646374B1 (fr) Procédé de transfert d&#39;une couche mince sur un substrat support présentant des coefficients de dilatation thermique différents
EP1210730B1 (fr) Realisation d&#39;un collage electriquement conducteur entre deux elements semi-conducteurs
FR2797347A1 (fr) Procede de transfert d&#39;une couche mince comportant une etape de surfragililisation
WO2007020351A1 (fr) Procédé de report d&#39;une couche mince sur un support
EP2965346B1 (fr) Procédé de réalisation d&#39;un collage direct métallique conducteur
FR2952224A1 (fr) Procede de controle de la repartition des contraintes dans une structure de type semi-conducteur sur isolant et structure correspondante.
EP3900064B1 (fr) Procede de transfert d&#39;une couche superficielle sur des cavites
EP3591724B1 (fr) Procede de realisation d&#39;un dispositif transducteur piezoelectrique
EP3766094B1 (fr) Procédé de préparation d&#39;une couche mince de matériau ferroélectrique à base d&#39;alcalin
EP4030467B1 (fr) Procédé de collage direct hydrophile de substrats
EP4088309B1 (fr) Procede d&#39;assemblage de deux substrats semi-conducteurs
EP3800658B1 (fr) Procédé de fabrication d&#39;un dispositif électronique
EP1861873A1 (fr) Procede de fabrication d&#39;une hetero-structure comportant au moins une couche epaisse de materiau semi-conducteur
FR3063834A1 (fr) Procede de fabrication d&#39;un dispositif semi-conducteur tridimensionnel
WO2021191527A1 (fr) Procede de fabrication d&#39;une structure empilee
WO2023057700A1 (fr) Procede de fabrication d&#39;une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic poly-cristallin
EP4199040A1 (fr) Procede de transfert d&#39;une couche utile en diamant cristallin sur un substrat support
WO2020144438A1 (fr) Procede de fabrication d&#39;un substrat receveur pour une structure de type semi-conducteur sur isolant pour applications radiofrequences et procédé de fabrication d&#39; une telle structure
FR3076393A1 (fr) Procede de transfert d&#39;une couche utile
FR2984598A1 (fr) Structure substrat sur isolant comprenant une structure electriquement isolante et procede associe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200310

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018006473

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1296796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018006473

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231218

Year of fee payment: 6

Ref country code: DE

Payment date: 20231219

Year of fee payment: 6