EP3481922A1 - Korrosionsinhibitoren für kraft- und schmierstoffe - Google Patents

Korrosionsinhibitoren für kraft- und schmierstoffe

Info

Publication number
EP3481922A1
EP3481922A1 EP17732458.9A EP17732458A EP3481922A1 EP 3481922 A1 EP3481922 A1 EP 3481922A1 EP 17732458 A EP17732458 A EP 17732458A EP 3481922 A1 EP3481922 A1 EP 3481922A1
Authority
EP
European Patent Office
Prior art keywords
acid
polyisobutene
use according
weight
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17732458.9A
Other languages
English (en)
French (fr)
Other versions
EP3481922B1 (de
Inventor
Jochen Mezger
Szilard Csihony
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP3481922A1 publication Critical patent/EP3481922A1/de
Application granted granted Critical
Publication of EP3481922B1 publication Critical patent/EP3481922B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/06Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/92Carboxylic acids
    • C10M129/93Carboxylic acids having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/95Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/54Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/56Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives

Definitions

  • Corrosion inhibitors are common additives in fuels and lubricants, often based on acid-containing structures, e.g. Dimer fatty acids.
  • a disadvantage of these corrosion inhibitors is that they tend to precipitate, especially in the presence of calcium ions, and as a result their corrosion-inhibiting action is reduced.
  • the deposits formed by these precipitations may also affect the operation of engines, engine components or parts of the fuel system, in particular the injection system, especially the injection pumps or nozzles.
  • injection system is understood to mean the part of the fuel system in motor vehicles from the fuel pump through the injector outlet.
  • fuel system is understood to mean the components of motor vehicles which are in contact with the respective fuel, preferably the region from the tank up to and including the injector outlet.
  • the compounds of the invention against deposits not only act in the injection system, but also in the rest of the fuel system, in particular against deposits in fuel filters and pumps.
  • WO 2010/042378 A1 discloses the use of hydrolyzed and unhydrolyzed hydrocarbylsuccinic acids against metal uptake.
  • WO 2004/024850 A1 describes the preparation of polyisobutene-succinic acid and its anhydride, as well as their anticorrosive action.
  • anhydrides as compound (B) more than 90% of the anhydride groups present in the reaction product, as corrosion inhibitors in fuels or lubricants, preferably in fuels, particularly preferably in fuels containing a content of alkali and or alkaline earth metals and / or zinc of at least 0.1 ppm by weight.
  • the described substantially acid groups free reaction products of polyisobutene show a particular advantage in fuels or lubricants, especially in fuels containing at least 0.1 and a content of alkali and / or alkaline earth metals and / or zinc
  • Gew.ppm particularly preferably at least 0.2 Gew.ppm and very particularly prefers at least 0.3 Gew.ppm and in particular at least 0.5 Gew.ppm. Also conceivable is a content of alkali metals and / or alkaline earth metals and / or zinc of at least 1
  • the described substantially acid groups free reaction products of polyisobutene are still active in the presence of calcium and show no precipitation.
  • the stated amounts of alkali and / or alkaline earth metals and / or zinc in each case relate to individual metal species.
  • the derivatives are selected from the group consisting of monoalkyl esters, dialkyl esters and anhydrides.
  • essentially acid groups-free reaction products are meant those reaction products of polyisobutene with derivatives of maleic acid in the narrower sense, as well as products resulting from the reaction of polyisobutene with derivatives of ⁇ , ⁇ -unsaturated monocarboxylic acids or derivatives of others ⁇ , ⁇ -unsaturated dicarboxylic acids are obtainable as maleic acid in which more than 90% of the carboxyl groups contained in component (B) as ester or anhydride groups are retained, ie not saponified or hydrolyzed to carboxylic acid groups, preferably at least 92% , particularly preferably at least 94%, very particularly preferably at least 95%, in particular at least 96%, especially at least 97% and even at least 98%.
  • a C 4 hydrocarbon stream from an FCC refinery unit is also known as a "b / b" stream.
  • suitable isobutene-containing C 4 -hydrocarbon streams are, for example, the product stream of a propylene-isobutane co-oxidation or the product stream from a metathesis unit, which are generally used after customary purification and / or concentration.
  • Suitable C 4 hydrocarbon streams generally contain less than 500 ppm, preferably less than 200 ppm, butadiene.
  • the presence of 1-butene and of cis- and trans-2-butene is largely uncritical.
  • the isobutene concentration in said C 4 hydrocarbon streams is in the range of 40 to 60 weight percent.
  • raffinate 1 usually consists essentially of 30 to 50 wt .-% of isobutene, 10 to 50 wt .-% 1-butene, 10 to 40 wt .-% cis- and trans-2-butene and 2 to 35 wt .-% butanes;
  • the unbranched butenes in the raffinate 1 are generally practically inert and only the isobutene is polymerized.
  • the monomer used for the polymerization is a technical C 4 -hydrocarbon stream having an isobutene content of from 1 to 100% by weight, in particular from 1 to 99% by weight, in particular from 1 to 90% by weight. %, more preferably from 30 to 60% by weight, especially a raffinate 1 stream, a b / b stream from an FCC refinery unit, a product stream from a propylene-isobutane co-oxidation or a product stream from a metathesis unit.
  • Said isobutene-containing monomer mixture may contain small amounts of contaminants such as water, carboxylic acids or mineral acids, without resulting in critical yield or selectivity losses. It is expedient to avoid an enrichment of these impurities by removing such pollutants from the isobutene-containing monomer mixture, for example by adsorption on solid adsorbents such as activated carbon, molecular sieves or ion exchangers. It is also possible to react monomer mixtures of isobutene or of the isobutene-containing hydrocarbon mixture with olefinically unsaturated monomers which are copolymerizable with isobutene.
  • Suitable copolymerizable monomers are: vinylaromatics such as styrene and ⁇ -methylstyrene, C 1 to C 4 -alkylstyrenes such as 2-, 3- and 4-methylstyrene and 4-tert-butyl-styrene, and isoolefins having 5 to 10 carbon atoms such as 2-methylbutene-1, 2-methylpentene-1, 2-methylhexene-1, 2-ethylpentene-1, 2-ethylhexene-1 and 2-propylheptene-1.
  • suitable comonomers are isoprene, 1-butene and cis- and trans-2-butene.
  • the process can be designed such that preferably random polymers or preferably block copolymers are formed.
  • block copolymers it is possible for example to feed the various monomers one after the other to the polymerization reaction, the addition of the second comonomer taking place, in particular, only when the first comonomer has already been at least partially polymerized.
  • both diblock, triblock and higher block copolymers are accessible, which have a block of one or the other comonomer as a terminal block, depending on the order of monomer addition.
  • block copolymers also form when all comonomers are simultaneously fed to the polymerization reaction, but one of them polymerizes significantly faster than the one or the other.
  • block copolymers are formed with a terminal polystyrene block. This is because the vinyl aromatic compound, especially styrene, polymerizes significantly slower than isobutene.
  • the polymerization can be carried out both continuously and discontinuously.
  • Continuous processes can be carried out in analogy to known processes of the prior art for the continuous polymerization of isobutene in the presence of Lewis acids, preferably boron trifluoride or aluminum trichloride or alkylaluminum chloride-based catalysts, in the liquid phase.
  • Lewis acids preferably boron trifluoride or aluminum trichloride or alkylaluminum chloride-based catalysts
  • reactive double bonds or "vinylidene bonds” are understood to mean terminal, so-called o and ⁇ double bonds (in total). These are characterized by the following structural elements (shown here using the example of the isobutene homopolymer): ⁇ -double bond ⁇ -double bond
  • the distribution of ⁇ -: ⁇ double bonds in the polyisobutene (A) is generally from 100: 0 to 10:90, preferably from 99: 1 to 20:80, particularly preferably from 98: 2 to 30:70, very particularly preferably from 97: 3 to 40:60 and especially from 95: 5 to 50:50.
  • the vinylidene groups show the highest reactivity, for example in the case of thermal addition to sterically demanding reactants such as maleic anhydride, whereas a double bond further inside the macromolecules shows in most cases no or lower reactivity in the case of functionalization reactions.
  • the number average molecular weight M n of the polyisobutenes which can be used in the process according to the invention is from 200 to 10,000.
  • the molecular weight M n of the polyisobutenes may preferably be up to 2500 and more preferably up to 1100 g / mol.
  • the reactants for the polyisobutene (A) are derivatives of ⁇ , ⁇ -unsaturated mono- and dicarboxylic acids (B), preferably derivatives of ⁇ , ⁇ -unsaturated dicarboxylic acids.
  • Mono- or dialkyl esters preferably mono- or di-C 1 -C 4 -alkyl esters, particularly preferably mono- or dimethyl esters or the corresponding mono- or diethyl esters, and
  • Ci-C4-alkyl in the context of this specification means methyl, ethyl, / soPropyl, n-propyl, n-butyl, iso- butyl, sea 'butyl and fe butyl understood, preferably methyl and ethyl, particularly preferably methyl.
  • the derivatives of ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acids are derivatives of such mono- or dicarboxylic acids in which the carboxyl group or, in the case of dicarboxylic acids, at least one carboxyl group, preferably both carboxyl groups, are conjugated with the ethylenically unsaturated double bond.
  • Examples of ethylenically unsaturated mono- or dicarboxylic acids which are not ⁇ , ⁇ -ethylenically unsaturated are cis-5-norbornene-endo-2,3-dicarboxylic anhydride, exo-3,6-epoxy-1,2,3,6- tetrahydrophthalic anhydride and cis-4-cyclohexene-1,2-dicarboxylic acid anhydride.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids as component (B) are acrylic acid, methacrylic acid, crotonic acid and ethylacrylic acid, preferably acrylic acid and methacrylic acid, referred to in this document as (meth) acrylic acid, and particularly preferably acrylic acid.
  • Particularly preferred derivatives of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids are methyl acrylate, ethyl acrylate, n-butyl acrylate and methyl methacrylate.
  • dicarboxylic acids (B) are maleic acid, fumaric acid, itaconic acid (2-methylenebutanoic acid), citraconic acid (2-methylmaleic acid), glutaconic acid (pent-2-ene-1, 5-dicarboxylic acid), 2,3-dimethylmaleic acid, 2- Methyl fumaric acid, 2,3-dimethyl fumaric acid, methylenemalonic acid and tetrahydrophthalic acid, preferably maleic acid and fumaric acid, and more preferably maleic acid.
  • the reactant (B) is maleic anhydride.
  • the molar ratio of component (B) to reactive double bond in the polyisobutene (A) is more than 1: 1, particularly preferably at least 1.1: 1, very particularly preferably at least 1.2: 1, in particular at least 1.3: 1 and especially at least 1, 5: 1.
  • a molar ratio of component (B) to reactive double bond in the polyisobutene (A) of more than 30: 1 brings no advantage, preferably it is up to 25: 1, more preferably up to 20: 1, and very particularly preferably up to 18: 1.
  • An excess of component (B) can generally be separated off easily by distillation or by sublimation. The thus recovered excess component (B) can then be used again in a further reaction.
  • the reaction is usually carried out at a temperature of 180 to 250 ° C, preferably 190 to 240 and more preferably from 200 to 230 ° C.
  • maleic anhydride as component (B) boils at about 202 ° C, the reaction at temperatures above 200 ° C, preferably above 190 ° C and more preferably already at temperatures above 180 ° C at least under autogenous pressure, preferably with slight Overpressure performed.
  • This overpressure should be at least 100 mbar, preferably at least 200 mbar, particularly preferably at least 500 mbar and in particular at least 1 bar.
  • a pressure of up to 10 bar is sufficient, preferably up to 8 bar, more preferably up to 7 bar and most preferably up to 5 bar.
  • the reaction is carried out under an inert atmosphere, more preferably, nitrogen or carbon dioxide atmosphere is used.
  • the duration of the reaction should be at least 15 minutes, preferably at least 30, more preferably at least 45, and most preferably at least 60 minutes.
  • the reaction time should be at least 2 hours.
  • the reaction should be completed within 10 hours, preferably within 8 and more preferably within 7 hours.
  • the reaction is carried out in a solvent which, of course, preferably under the reaction conditions should show no significant reaction with the polyisobutene and / or the component (B).
  • the solvent is preferably hydrocarbons or hydrocarbon mixtures, carboxylic esters, ethers or ketones, more preferably hydrocarbons or hydrocarbon mixtures.
  • Preferred aromatic hydrocarbon mixtures are those which comprise predominantly aromatic C 7 - to C 4 -hydrocarbons and may have a boiling range of from 10 to 300 ° C., particular preference is given to toluene, o-, m- or p-xylene, trimethylbenzene isomers, tetramethylbenzene isomers, ethylbenzene , Cumene, tetrahydronaphthalene and mixtures containing such.
  • Solvesso® grades from ExxonMobil Chemical, in particular Solvesso® 100 (CAS No. 64742-95-6, predominantly C9 and Cio-aromatics, boiling range about 154-178 ° C.), 150 (boiling range approx 182-207 ° C) and 200 (CAS No. 64742-94-5), as well as the Shellspell® grades from Shell, Caromax® (eg Caromax® 18) from Petrochem Carless and Hydrosol from DHC ( eg as Hydrosol® A 170). Hydrocarbon mixtures of paraffins, cycloparaffins and aromatics are also known under the designations crystal oil (for example crystal oil 30, boiling range about 158-198 ° C. or crystal oil 60: CAS No.
  • the aromatic content of such hydrocarbon mixtures is generally more than 90% by weight, preferably more than 95, more preferably more than 98, and very preferably more than 99% by weight. It may be useful to use hydrocarbon mixtures with a particularly reduced content of naphthalene.
  • (Cyclo) aliphatic hydrocarbons are, for example, decalin, alkylated decalin and isomer mixtures of straight-chain or branched alkanes and / or cycloalkanes.
  • the solvent used has a boiling point at atmospheric pressure of at least 140 ° C.
  • This has the advantage that at the reaction temperature of the reactant component (B), preferably maleic anhydride remains in the liquid reaction mixture and can escape only to a small extent in the gas phase, so that the availability of component (B) is increased in the reaction mixture.
  • said reactor is backmixing or backmixing free.
  • This conveying characteristic is characterized by a Bodenstein number of at least 3, preferably at least 5, more preferably at least 7.
  • stabilizers for suppressing side reactions preferably those as described in EP 156310 A2, may be added to the reaction mixture.
  • alkoxides preferably the C 2 - to C 4 -alkoxides, titanium, zirconium, vanadium or aluminum.
  • alkoxides preferably the C 2 - to C 4 -alkoxides, titanium, zirconium, vanadium or aluminum.
  • no further stabilizers are used in the process according to the invention.
  • reaction mixture may also contain unreacted polyisobutene, which usually corresponds to the proportion in the polyisobutene used which does not contain any reactive double bonds, whereas the fraction containing reactive double bonds in the polyisobutene preferably reacts completely or almost completely.
  • the proportion of unreacted polyisobutene present in the reaction mixture therefore generally corresponds to the abovementioned up to 100 missing proportion of reactive double bonds in the isobutene homo- or copolymers which can be used according to the invention.
  • the proportion of unreacted polyisobutene is preferably not more than 30% by weight, more preferably not more than 25% by weight, very preferably not more than 20% by weight, in particular not more than 15% by weight and especially not more than 10% by weight.
  • the reaction mixture is dissolved in n-heptane and applied to a column of silica gel 60 and eluted with n-heptane until no product occurs in the eluate.
  • a column chromatography the unreacted polyisobutene is separated from the maleated components, since the maleated components are not eluted.
  • the weight fraction of maleinated components in the reaction mixture is determined by weighing.
  • the above formula can be applied analogously to other components (B) than maleic anhydride and is also referred to herein for other components (B) as maleic anhydride for simplicity also as Bismalein istsgrad.
  • the degree of bismeralization thus stands for the proportion by weight of those products which carry more than one compound (B) per polyisobutene chain in relation to the total amount of products which carry one or more than one compound (B) per polyisobutene chain. be included in the determination carrying reactive double bonds.
  • the use of the invention are essentially acid groups free reaction products of polyisobutene whose Bismalein istsgrad is at least 1%, preferably at least 2%, more preferably at least 3%, most preferably at least 4%, in particular at least 5% and especially at least 6%.
  • the degree of bismaleination may be up to 40%, preferably up to 35%, more preferably up to 30%, especially up to 25% and especially up to 20%.
  • Excess and unreacted component (B) can preferably be separated off from the reaction product of components (A) and (B) after completion of the reaction, preferably by distillation or sublimation, but it is also conceivable, for example, to extract.
  • the reaction mixture thus obtained is preferably from sources of water, e.g. Humidity, kept away to minimize hydrolysis or saponification of contained ester or anhydride groups.
  • the use according to the invention relates to the inhibition of the corrosion of iron, steel and / or non-ferrous metal surfaces.
  • the described substantially acid groups-free reaction products of polyisobutene are fuels with the above-specified content of alkali and / or alkaline earth metals and / or zinc usually in amounts of 1 to 60, preferably 4 to 50 ppm by weight and more preferably of 10 to 40 wt ppm added.
  • the described substantially acid groups are free reaction products of polyisobutene in the form of fuel additive mixtures used, together with conventional additives:
  • these are primarily conventional detergent additives, carrier oils, cold flow improvers, lubricity improvers (Lubricity Improver), other corrosion inhibitors than the described essentially acid groups-free reaction products of polyisobutene, demulsifiers, dehazers, defoamers, Cetanierevermonyer, combustion improvers, antioxidants or stabilizers, antistatic agents, metallocenes, metal deactivators, dyes and / or solvents.
  • the usual detergent additives are preferably amphiphilic substances which have at least one hydrophobic hydrocarbon radical having a number-average molecular weight (M n ) of from 85 to 20 000 and at least one polar group selected from:
  • Polyamino groups wherein at least one nitrogen atom has basic properties, or terminated by carbamate groups; (Dg) carboxylic acid ester groups;
  • Amino and / or amido and / or imido groups and / or (di) groups generated by Mannich reaction of substituted phenols with aldehydes and mono- or polyamines.
  • the hydrophobic hydrocarbon radical in the above detergent additives which provides sufficient solubility in the fuel has a number average molecular weight (M n ) of from 85 to 20,000, preferably from 1 13 to 10,000, more preferably from 300 to 5,000, more preferably from 300 up to 3,000, more preferably from 500 to 2,500 and especially from 700 to 2,500, especially from 800 to 1,500.
  • M n number average molecular weight
  • hydrophobic hydrocarbon radical in particular in combination with the polar, in particular polypropenyl, polybutenyl and polyisobutenyl radicals having a number average molecular weight M n of preferably in each case from 300 to 5,000, particularly preferably from 300 to 3,000, more preferably from 500 to 2,500, even more preferably from 700 to 2,500 and in particular from 800 to 1,500 into consideration.
  • Such additives based on highly reactive polyisobutene, which from the polyisobutene, the up to 20 wt .-% n Can be prepared by hydroformylation and reductive amination with ammonia, monoamines or polyamines such as dimethyl-aminopropylamine, ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine, are known in particular from EP-A 244 616.
  • the preparation route is afforded by chlorination and subsequent amination or by oxidation of the double bond with air or ozone to carbonyl - or carboxyl compound and subsequent amination under reductive (hydrogenating) conditions.
  • amines such as. As ammonia, monoamines or the above polyamines, are used.
  • Corresponding additives based on polypropene are described in particular in WO-A 94/24231.
  • these reaction products are mixtures of pure nitropolyisobutenes (for example ⁇ , ⁇ -dinitropolyisobutene) and mixed hydroxynitropolyisobutenes (for example ⁇ -nitro- ⁇ -hydroxy-polyisobutene).
  • Carboxyl groups or their alkali metal or alkaline earth metal salts (Dd) containing additives are preferably copolymers of C2 to C4o-olefins with maleic anhydride having a total molecular weight of 500 to 20,000, their carboxyl groups wholly or partly to the alkali metal or alkaline earth metal salts and a remaining Rest of the carboxyl groups are reacted with alcohols or amines.
  • Such additives are known in particular from EP-A 307 815.
  • Such additives serve primarily to prevent valve seat wear and, as described in WO-A 87/01 126, can advantageously be used in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Sulfonic acid groups or their alkali metal or alkaline earth metal salts (De) containing additives are preferably alkali metal or alkaline earth metal salts of a Sulfobern-steinklaklalesters, as described in particular in EP-A 639 632.
  • Such additives are mainly used to prevent valve seat wear and may advantageously be used in combination with conventional fuel detergents such as poly (iso) buteneamines or polyetheramines.
  • Polyoxy-C2-C4-alkylene (Df) containing additives are preferably polyether or polyetheramines, which by reaction of C2 to C6o-alkanols, C6 to C3o-alkanediols, mono- or D1-C2 to C3o-alkylamines, Cr to C3o-alkylcyclo-hexanols or Cr to C30-alkyl- kylphenolen with 1 to 30 moles of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of polyether amines, by subsequent reductive amination with ammonia, monoamines or polyamines are available , Such products are described in particular in EP-A 310 875, EP-A 356 725, EP-A 700 985 and US-A 4 877 416 described.
  • polyethers such products also meet carrier oil properties.
  • Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • Carboxyl ester groups (Dg) containing additives are preferably esters of Mo no, Dioder tricarboxylic acids with long-chain alkanols or polyols, especially those having a minimum viscosity of 2 mm 2 / s at 100 ° C, as described in particular in DE-A 38 38 918 are described.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 C atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of iso-octanol, iso-nonanol, iso-decanol and of isotridecanol. Such products also meet carrier oil properties.
  • the groups having hydroxyl and / or amino and / or amido and / or imido groups are, for example, carboxylic acid groups, acid amides of monoamines, acid amides of diamines or polyamines which, in addition to the amide function, still have free amine groups, succinic acid derivatives with an acid and an amide function, carboximides with monoamines, carboximides with di- or polyamines which, in addition to the imide function, still have free amine groups, or diimides which are formed by reacting di- or polyamines with two succinic acid derivatives.
  • Such fuel additives are well known and described, for example, in documents (1) and (2).
  • reaction products of alkyl- or alkenyl-substituted succinic acids or derivatives thereof with amines and particularly preferably to the reaction products of polyisobutenyl-substituted succinic acids or derivatives thereof with amines.
  • reaction products with aliphatic polyamines polyalkyleneimines
  • ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and hexaethyleneheptamine which have an imide structure.
  • Mannich reaction of substituted phenols with aldehydes and mono- or polyamines generated moieties containing (di) additives are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine ,
  • Such "polyisobutene-Mannich bases" are described in particular in EP-A 831 141.
  • One or more of said detergent additives may be added to the fuel in such an amount that the metering rate of these detergent additives is preferably from 25 to 2500 ppm by weight, in particular from 75 to 1500 ppm by weight, especially from 150 to 1000% by weight . ppm. B2) carrier oils
  • suitable synthetic carrier oils are polyolefins (polyalphaolefins or polyinteralolefins), (poly) esters, poly) alkoxylates, polyethers, aliphatic polyetheramines, alkylphenol-initiated polyethers, alkylphenol-initiated polyetheramines and carboxylic acid esters of long-chain alkanols.
  • suitable polyethers or polyetheramines are preferably compounds containing polyoxy-C 2 - to C 4 -alkylene groups which are prepared by reacting C 2 - to C 6 -alkanols, C 6 - to C 3 0 -alkanediols, mono- or C 1 - to C 2 - Alkylaminen, Cr to C3o-alkyl-cyclohexanols or Cr to C30-alkylphenols with 1 to 30 moles of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of polyetheramines, by subsequent reductive amination with ammonia , Monoamines or polyamines are lent.
  • Such products are described in particular in EP-A 310 875, EP-A 356 725, EP-A 700 985 and US-A 4,877,416.
  • polyetheramines polyC 2 to C 6 alkylene oxide amines or functional derivatives thereof can be used. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and polyisobutenol butoxylates and propoxylates and the corresponding reaction products with ammonia.
  • carboxylic acid esters of long-chain alkanols are, in particular, esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as described in particular in DE-A 38 38 918.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 carbon atoms.
  • suitable representatives of the esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and of isotridecanol, eg.
  • B di- (n- or isotridecyl) phthalate.
  • suitable carrier oil systems are described, for example, in DE-A 38 26 608, DE-A 41 42 241, DE-A 43 09 074, EP-A 452 328 and EP-A 548 617.
  • suitable synthetic carrier oils are alcohol-started polyethers having about 5 to 35, preferably about 5 to 30, particularly preferably 10 to 30 and in particular 15 to 30 C3 to C6 alkylene oxide units, for.
  • suitable starter alcohols are long-chain alkanols or long-chain alkyl-substituted phenols, where the long-chain alkyl radical is in particular a straight-chain or branched Ce to C18-alkyl radical.
  • Specific examples include tridecanol and nonylphenol.
  • Particularly preferred alcohol-started polyethers are the reaction products (polyetherification products) of monohydric C6- to Cis-aliphatic alcohols with C3- to C6-alkylene oxides.
  • monohydric aliphatic C6-C18-alcohols are hexanol, heptanol, octanol, 2-ethyl-hexanol, nonyl alcohol, decanol, 3-propylheptanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, octadecanol and their constitution and position isomers.
  • the alcohols can be used both in the form of pure isomers and in the form of technical mixtures.
  • a particularly preferred alcohol is tridecanol.
  • C3 to C6 alkylene oxides are propylene oxide, such as 1, 2-propylene oxide, butylene oxide, such as 1, 2-butylene oxide, 2,3-butylene oxide, isobutylene oxide or tetrahydrofuran, pentylene oxide and hexylene oxide.
  • Particularly preferred among these are C3 to C4 alkylene oxides, i.
  • Propylene oxide such as 1, 2-propylene oxide and butylene oxide such as 1, 2-butylene oxide, 2,3-butylene oxide and isobutylene oxide.
  • butylene oxide is used.
  • suitable synthetic carrier oils are alkoxylated alkylphenols, as described in DE-A 10 102 913.
  • carrier oils are synthetic carrier oils, the alkohol-based polyethers described above being particularly preferred.
  • the carrier oil or the mixture of different carrier oils is added to the fuel in an amount of preferably from 1 to 1000 ppm by weight, more preferably from 10 to 500 ppm by weight and in particular from 20 to 100 ppm by weight.
  • Suitable cold flow improvers are in principle all organic compounds which are able to improve the flow behavior of middle distillate fuels or diesel fuels in the cold. Conveniently, they must have sufficient oil solubility.
  • middle distillates of fossil origin ie for conventional mineral diesel fuels
  • used cold flow improvers (“middle distillate flow improvers", "MDFI") come into consideration.
  • MDFI middle distillate flow improvers
  • WASA wax anti-settling additive
  • they can act partly or predominantly as nucleators. But it can also mixtures of effective as MDFI and / or as WASA-effective and / or as nucleators effective organic compounds.
  • the cold flow improver is selected from:
  • Suitable C 2 - to C 4 -olefin monomers for the copolymers of class (K1) are, for example, those having 2 to 20, in particular 2 to 10 carbon atoms and having 1 to 3, preferably 1 or 2, in particular a carbon-carbon double pelitati. In the latter case, the carbon-carbon double bond can be arranged both terminally ( ⁇ -olefins) and internally.
  • ⁇ -olefins particularly preferably ⁇ -olefins having 2 to 6 carbon atoms, for example propene, 1-butene, 1-pentene, 1-hexene and, above all, ethylene.
  • the at least one further ethylenically unsaturated monomer is preferably selected from carboxylic alkenyl esters, (meth) acrylic esters and further olefins.
  • further olefins are polymerized in, these are preferably higher molecular weight than the abovementioned C 2 - to C 4 -olefin base monomers. If, for example, ethylene or propene is used as the olefin basic monomer, suitable further olefins are, in particular, C 10 -C 40 -olefins. Other olefins are polymerized in most cases only when monomers with carboxylic acid ester functions are used.
  • Suitable (meth) acrylic esters are, for example, esters of (meth) acrylic acid with C 2 to C 20 -alkanols, in particular C 1 to C 10 -alkanols, especially with methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, isobutanol , tert-butanol, pentanol, hexanol, heptanol, octanol, 2-ethylhexanol, nonanol and decanol, and structural isomers thereof.
  • Suitable carboxylic alkenyl esters are, for example, C 2 - to C 6 -alkenyl esters, for example the vinyl and propenyl esters, of carboxylic acids having 2 to 21 carbon atoms, whose hydrocarbon radical may be linear or branched. Preferred among these are the vinyl esters.
  • carboxylic acids with a branched hydrocarbon radical preference is given to those whose branching is is in the ⁇ -position to the carboxyl group, wherein the ⁇ -carbon atom is particularly preferably tertiary, ie, the carboxylic acid is a so-called neocarboxylic acid.
  • the hydrocarbon radical of the carboxylic acid is linear.
  • carboxylic alkenyl esters examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl neopentanoate, vinyl hexanoate, vinyl neononanoate, vinyl neodecanoate and the corresponding propenyl esters, the vinyl esters being preferred.
  • a particularly preferred carboxylic acid alkenyl ester is vinyl acetate; typical resulting copolymers of group (K1) are the most commonly used ethylene-vinyl acetate copolymers ("EVA").
  • Suitable copolymers of class (K1) are also those which contain two or more mutually different carboxylic acid alkenyl esters in copolymerized form, these differing in the alkenyl function and / or in the carboxylic acid group. Also suitable are copolymers which, in addition to the carboxylic acid alkenyl ester (s), contain at least one olefin and / or at least one (meth) acrylic acid ester in copolymerized form.
  • terpolymers of a C2 to C4o- ⁇ -olefin, a Cr to C2o-alkyl ester of an ethylenically unsaturated monocarboxylic acid having 3 to 15 carbon atoms and a C2 to C-alkenyl ester of a saturated monocarboxylic acid having 2 to 21 carbon atoms are copolymers of the Class (K1) suitable.
  • Such terpolymers are described in WO 2005/054314.
  • a typical such terpolymer is made up of ethylene, 2-ethylhexyl acrylate and vinyl acetate.
  • the at least one or the other ethylenically unsaturated monomers are present in the copolymers of class (K1) in an amount of preferably from 1 to 50% by weight, in particular from 10 to 45% by weight and especially from 20 to 40% by weight .-%, based on the total copolymer, copolymerized.
  • the majority by weight of the monomer units in the copolymers of class (K1) thus usually comes from the C2 to C4o-based olefins.
  • the copolymers of class (K1) preferably have a number average molecular weight M n of from 1000 to 20,000, particularly preferably from 1000 to 10,000 and in particular from 1000 to 8000.
  • Typical comb polymers of component (K2) are, for example, by the copolymerization of maleic anhydride or fumaric acid with another ethylenically unsaturated monomer, for example with an ⁇ -olefin or an unsaturated ester such as vinyl acetate, and subsequent esterification of the anhydride or acid function with an alcohol available with at least 10 carbon atoms.
  • Further suitable comb polymers are copolymers of ⁇ -olefins and esterified comonomers, for example esterified copolymers of styrene and maleic anhydride or esterified copolymers of styrene and fumaric acid.
  • Suitable comb The polymers can also be polyfumarates or polymaleinates.
  • homo- and copolymers of vinyl ethers are suitable comb polymers.
  • Comb polymers suitable as a component of class (K2) are, for example, those described in WO 2004/035715 and in "Comb-Like Polymers, Structure and Properties", NA Plate and VP Shibaev, J. Poly. Be. Macromolecular Revs. 8, pages 1 17 to 253 (1974). "Mixtures of comb polymers are also suitable.
  • Polyoxyalkylenes suitable as component of class (K3) are, for example, polyoxyalkylene esters, polyoxyalkylene ethers, mixed polyoxyalkylene ester ethers and mixtures thereof. These polyoxyalkylene compounds preferably comprise at least one, preferably at least two, linear alkyl groups each having from 10 to 30 carbon atoms and a polyoxyalkylene group having a number average molecular weight of up to 5,000. Such polyoxyalkylene compounds are described, for example, in EP-A 061 895 and in US Pat 491 455. Particular polyoxyalkylene compounds are based on polyethylene glycols and polypropylene glycols having a number average molecular weight of 100 to 5,000. Polyoxyalkylene mono- and diesters of fatty acids having 10 to 30 carbon atoms, such as stearic acid or behenic acid, are furthermore suitable.
  • Polar nitrogen compounds suitable as component of class (K4) can be of both ionic and nonionic nature and preferably have at least one, in particular at least two, substituents in the form of a tertiary nitrogen atom of general formula> NR 7 , where R 7 is a until C4o hydrocarbon residue stands.
  • the nitrogen substituents may also be quaternized, ie in cationic form. Examples of such nitrogen compounds are ammonium salts and / or amides obtainable by reacting at least one amine substituted with at least one hydrocarbon radical with a carboxylic acid having 1 to 4 carboxyl groups or with a suitable derivative thereof.
  • the amines contain at least one linear Cs to C4o-alkyl radical.
  • suitable primary amines for the preparation of said polar nitrogen compounds are octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tetradecylamine and the higher linear homologues
  • suitable secondary amines are, for example, dioctadecylamine and methylbehenylamine.
  • amine mixtures in particular industrially available amine mixtures such as fatty amines or hydrogenated tallamines, as described, for example, in U Ilmann's Encyclopedia of Industrial Chemistry, 6th edition, in the chapter "Amines, aliphatic".
  • Suitable acids for the reaction are, for example, cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid and succinic acids substituted by long-chain hydrocarbon radicals.
  • the component of class (K4) is an oil-soluble reaction product of at least one tertiary amino group-containing poly (C 2 - to C 20 -carboxylic acids) with primary or secondary amines.
  • the poly (C 2 - to C 20 -carboxylic acids) which have at least one tertiary amino group and are based on this reaction product preferably contain at least 3 carboxyl groups, in particular 3 to 12, especially 3 to 5, carboxyl groups.
  • the carboxylic acid units in the polycarboxylic acids preferably have 2 to 10 carbon atoms in particular, they are acetic acid units.
  • the carboxylic acid units are suitably linked to the polycarboxylic acids, usually via one or more carbon and / or nitrogen atoms. Preferably, they are attached to tertiary nitrogen atoms, which are connected in the case of several nitrogen atoms via hydrocarbon chains.
  • the component of the class (K4) is preferably an oil-soluble reaction product based on poly (C 2 - to C 20 -carboxylic acids) having the general formula IIa or IIb and having at least one tertiary amino group
  • variable A is a straight-chain or branched C 2 - to C 6 -alkylene group or the grouping of the formula III
  • CH 2 -CH 2 - and the variable B denotes a C to Cig-alkylene group.
  • the compounds of the general formula IIa and IIb have in particular the properties of a WASA.
  • the preferred oil-soluble reaction product of component (K4) in particular that of general formula IIa or IIb, is an amide, an amide ammonium salt or an ammonium salt in which no, one or more carboxylic acid groups are converted into amide groups.
  • Straight-chain or branched C 2 - to C 6 -alkylene groups of the variable A are, for example, 1, 1-ethylene, 1, 2-propylene, 1, 3-propylene, 1, 2-butylene, 1, 3-butylene, 1, 4-butylene ethylene, 2-methyl-1,3-propylene, 1, 5-pentylene, 2-methyl-1,4-butylene, 2,2-dimethyl-1,3-propylene, 1,6-hexylene ( Hexamethylene) and in particular 1, 2-ethylene.
  • the variable A comprises 2 to 4, in particular 2 or 3 carbon atoms.
  • C 1 to C 12 alkylene groups of the variable B are, for example, 1,2-ethylene, 1,3-propylene, 1,4-butylene, hexamethylene, octamethylene, decamethylene, dodecamethylene, tetradecamethylene, hexadecamethylene, octadecamethylene, nonadecamethylene and in particular methylene.
  • the variable B comprises 1 to 10, in particular 1 to 4, carbon atoms.
  • the primary and secondary amines as reaction partners for the polycarboxylic acids to form the component (K4) are usually monoamines, in particular aliphatic monoamines. These primary and secondary amines may be selected from a variety of amines bearing hydrocarbon radicals, optionally linked together.
  • amines which are the oil-soluble reaction products of component (K4) are secondary amines and have the general formula HN (R 8 ) 2 in which the two variables R 8 independently of one another each represent straight-chain or branched C 10 - to C 30 -alkyl radicals, in particular Cu - to C24-alkyl radicals mean.
  • These longer-chain alkyl radicals are preferably straight-chain or only slightly branched.
  • the abovementioned secondary amines are derived, with regard to their longer-chain alkyl radicals, from naturally occurring fatty acids or from their derivatives.
  • the two radicals R 8 are the same.
  • the abovementioned secondary amines can be bound to the polycarboxylic acids by means of amide structures or in the form of the ammonium salts, and only one part can be present as amide structures and another part as ammonium salts. Preferably, only a few or no free acid groups are present. Preferably, the oil-soluble reaction products of component (K4) are completely in the form of the amide structures.
  • Typical examples of such components (K4) are reaction products of nitrilotriacetic acid, ethylenediaminetetraacetic acid or propylene-1,2-diaminetetraacetic acid with in each case 0.5 to 1.5 mol per carboxyl group, in particular 0.8 to 1.2 mol per carboxyl group, dioleylamine, dipalmitinamine, dicoco fatty amine, distearylamine, dibehenylamine or especially ditallow fatty amine.
  • a particularly preferred component (K4) is the reaction product of 1 mole of ethylenediaminetetraacetic acid and 4 moles of hydrogenated ditallow fatty amine.
  • component (K4) are the N, N-dialkylammonium salts of 2-N ', N'-dialkylamidobenzoates, for example the reaction product of 1 mol of phthalic anhydride and 2 mol of ditallow fatty amine, the latter hydrogenated or unhydrogenated may be, and the reaction product of 1 mole of a Alkenylspirobislactons with 2 moles of a dialkylamine, for example Ditalgfettamin and / or tallow fatty amine, the latter two may be hydrogenated or not hydrogenated, called.
  • component of the class (K4) are cyclic compounds having tertiary amino groups or condensates of long-chain primary or secondary amines with carboxylic acid-containing polymers, as described in WO 93/181 15.
  • Sulfocarboxylic acids, sulfonic acids or their derivatives which are suitable as cold flow improvers of the component of the class (K5) are, for example, the oil-soluble carboxamides and carboxylic acid esters of ortho-sulfobenzoic acid in which the sulfonic acid function is present as sulfonate with alkyl-substituted ammonium cations, as described in EP-A 261 957 are described.
  • suitable poly (meth) acrylic acid esters are both homo- and copolymers of acrylic and methacrylic acid esters. Preference is given to copolymers of at least two different (meth) acrylic esters, which differ with respect to the condensed alcohol. Optionally, the copolymer contains a further, different of which olefinically unsaturated monomer copolymerized.
  • the weight-average molecular weight of the polymer is preferably 50,000 to 500,000.
  • a particularly preferred polymer is a copolymer of methacrylic acid and methacrylic acid esters of saturated C14 and Cis alcohols, wherein the acid groups are neutralized with hydrogenated tallamine.
  • Suitable poly (meth) acrylic esters are described, for example, in WO 00/44857.
  • the middle distillate fuel or diesel fuel is the cold flow improver or the mixture of various cold flow improvers in a total amount of preferably 10 to 5000 ppm by weight, more preferably from 20 to 2000 ppm by weight, more preferably from 50 to 1000 wt. ppm and in particular from 100 to 700 ppm by weight, eg from 200 to 500 ppm by weight, added.
  • Suitable lubricity improvers are usually based on fatty acids or fatty acid esters. Typical examples are tall oil fatty acid, as described for example in WO 98/004656, and glycerol monooleate.
  • the reaction products of natural or synthetic oils, for example triglycerides, and alkanolamines described in US Pat. No. 6,743,266 B2 are also suitable as such lubricity improvers.
  • Suitable corrosion inhibitors are e.g. Succinic esters, especially with polyols, fatty acid derivatives, e.g. Oleic acid esters, oligomerized fatty acids, substituted ethanolamines and products sold under the trade name RC 4801 (Rhein Chemie Mannheim, Germany), Irgacor® L12 (BASF SE) or HiTEC 536 (Ethyl Corporation).
  • Succinic esters especially with polyols, fatty acid derivatives, e.g. Oleic acid esters, oligomerized fatty acids, substituted ethanolamines and products sold under the trade name RC 4801 (Rhein Chemie Mannheim, Germany), Irgacor® L12 (BASF SE) or HiTEC 536 (Ethyl Corporation).
  • Suitable demulsifiers are e.g. the alkali or alkaline earth salts of alkyl-substituted phenol and naphthalene sulfonates and the alkali or alkaline earth salts of fatty acids, as well as neutral compounds such as alcohol alkoxylates, e.g. Alcohol ethoxylates, phenol alkoxylates, e.g. tert-butyl phenol ethoxylate or tert-pentyl phenol ethoxylate, fatty acids, alkyl phenols, condensation points of ethylene oxide (EO) and propylene oxide (PO), e.g. also in the form of EO / PO block copolymers, polyethyleneimines or else polysiloxanes.
  • EO ethylene oxide
  • PO propylene oxide
  • Suitable dehazers are, for example, alkoxylated phenol-formaldehyde condensates, such as, for example, the products NALCO 7D07 (Nalco) and TOLAD 2683 (Porrolite) available under the trade name. B8) antifoam
  • Suitable antifoams are e.g. Polyether-modified polysiloxanes such as the TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) and RHODOSIL (Rhone Poulenc) products available under the tradename.
  • Polyether-modified polysiloxanes such as the TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) and RHODOSIL (Rhone Poulenc) products available under the tradename.
  • Cetane number improvers are e.g. aliphatic nitrates such as 2-ethylhexyl nitrate and cyclohexyl nitrate, and peroxides such as di-tert-butyl peroxide.
  • antioxidants are e.g. substituted phenols such as 2,6-di-tert-butylphenol and 6-di-tert-butyl-3-methylphenol and phenylenediamines such as N, N'-di-sec-butyl-p-phenylenediamine.
  • Metal deactivators Suitable metal deactivators are e.g. Salicylic acid derivatives such as N, N'-disalicylidene-1,2-propanediamine.
  • Solvents Suitable are e.g. nonpolar organic solvents such as aromatic and aliphatic hydrocarbons, for example, toluene, xylenes, white spirit, and products sold under the trade name SHELLSOL (Royal Dutch / Shell Group) and EXXSOL (ExxonMobil), as well as polar organic solvents, for example, alcohols such as 2-ethylhexanol, decanol and isotridecanol.
  • solvents usually arrive together with the aforementioned additives and co-additives which they are intended to dissolve or dilute for better handling into the diesel fuel.
  • Fuels The use according to the invention relates in principle to all fuels, preferably diesel and gasoline fuels.
  • Middle distillate fuels such as diesel fuels or fuel oils
  • Fuels or diesel fuels are also those obtainable by coal gasification or gas-to-liquid (GTL) fuels or by biomass to liquid (BT L) fuels. Also suitable are mixtures of the abovementioned middle distillate fuels or diesel fuels with regenerative fuels, such as biodiesel or bioethanol.
  • middle distillate fuels of fossil, vegetable or animal origin which are essentially hydrocarbon mixtures
  • biofuel oils biodiesel
  • middle distillate fuel Such mixtures are encompassed by the term "middle distillate fuel”. They are commercially available and usually contain the biofuel oils in minor amounts, typically in amounts of 1 to 30 wt .-%, in particular from 3 to 10 wt .-%, based on the total amount of middle distillate of fossil, vegetable or animal origin and biofuel.
  • Biofuel oils are generally based on fatty acid esters, preferably substantially on alkyl esters of fatty acids derived from vegetable and / or animal oils and / or fats.
  • Alkyl esters are usually lower alkyl esters, especially C 1 to C 4 alkyl esters, understood by transesterification of occurring in vegetable and / or animal oils and / or fats glycerides, especially triglycerides, by means of lower alcohols, for example ethanol or especially methanol ( "FAME”) are available.
  • Typical lower alkyl esters based on vegetable and / or animal oils and / or fats which are used as biofuel oil or components thereof include, for example, sunflower methyl ester, palm oil methyl ester ("PME”), soybean oil methyl ester (“SME”) and in particular rapeseed oil methyl ester (“RME”).
  • the middle distillate fuels or diesel fuels are particularly preferably those with a low sulfur content, ie with a sulfur content of less than 0.05% by weight, preferably less than 0.02% by weight, in particular less as 0.005 wt .-% and especially less than 0.001 wt .-% sulfur.
  • gasoline fuels are all commercially available gasoline fuel compositions into consideration.
  • a typical representative here is the market-standard basic fuel of Eurosuper according to EN 228. Furthermore, gasoline compositions of the specification according to WO 00/47698 are also possible fields of use for the present invention. The following examples are intended to illustrate the present invention without limiting it. Examples
  • the mass-average Mw and number-average molecular weight Mn of the polymers were measured by gel permeation chromatography (GPC). GPC separation was carried out using two PLge Mixed B columns (Agilent) in tetrahydrofuran at 35 ° C. The calibration was carried out by means of a narrowly distributed polystyrene standard (PSS, Germany) with molecular weight 162-50400 Da. Hexylbenzene was used as a low molecular weight marker.
  • the product was dissolved 50% in toluene.
  • the rate of product sizing was measured by reacting 10 ml of the resulting solution with excess potassium hydroxide, followed by back titration of the residual potassium hydroxide with hydrochloric acid.
  • the saponification number was 120 mg KOH / g.
  • reaction mixture contained 13.4% by weight of unfunctionalized polyisobutene.
  • reaction mixture contained monofunctionalized and difunctionalized polyisobutene succinic anhydride, resulting in a degree of bis-malalination of 40.3%, provided that no other by-products were present.
  • FIG. 1 a shows in the middle the clear oil mixed with 2 ml of product from synthesis example 3.
  • 1 ml of dimer fatty acid dimer fatty acid (dimeric acid, CAS: 61788-89-4, 40% in Solvent Naphtha) was used.
  • Dimer fatty acid dimer fatty acid
  • FIG. 1 b shows on the right the clear oil mixed with 2 ml of product from Synthesis Example 1.
  • dimer fatty acid was used as a corrosion inhibitor (dimeric oleic acid, CAS: 61788-89-4, 40% strength in solvent naphtha).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Die vorliegende Erfindung betrifft neue Verwendungen von Korrosionsinhibitoren in Kraft- und Schmierstoffen.

Description

Korrosionsinhibitoren für Kraft- und Schmierstoffe Beschreibung Die vorliegende Erfindung betrifft neue Verwendungen von Korrosionsinhibitoren in Kraft- und Schmierstoffen.
Korrosionsinhibitoren sind gängige Additive in Kraft- und Schmierstoffen, die oftmals auf säure- gruppenhaltigen Strukturen beruhen, z.B. Dimerfettsäuren.
Nachteilig an diesen Korrosionsinhibitoren ist, daß sie insbesondere in Gegenwart von Calcium- lonen zu Ausfällungen neigen und dadurch ihre korrosionsinhibierende Wirkung vermindert wird. Die durch diese Ausfällungen gebildeten Ablagerungen können darüber hinaus die Funktionsweise von Motoren, Motorbestandteilen oder Teilen des Kraftstoffsystems, insbesondere dem Einspritzsystem, speziell den Einspritzpumpen oder -düsen, beeinträchtigen.
Unter dem "Einspritzsystem" wird dabei der Teil des Kraftstoffsystems in Kraftfahrzeugen von Kraftstoffpumpe bis einschließlich Injektorauslass verstanden. Als "Kraftstoffsystem" werden dabei die Bauteile von Kraftfahrzeugen verstanden, die mit dem jeweiligen Kraftstoff in Kontakt ste- hen, bevorzugt der Bereich von Tank bis einschließlich Injektorauslass.
Es stelle eine Ausführungsform der vorliegenden Erfindung dar, daß die erfindungsgemäßen Verbindungen gegen Ablagerungen nicht nur im Einspritzsystem wirken, sondern auch im übrigen Kraftstoffsystem, hier insbesondere gegen Ablagerungen in Kraftstofffiltern und -pumpen.
Es bestand daher die Aufgabe, Korrosionsinhibitoren zur Verfügung zu stellen, die eine erhöhte Verträglichkeit gegen Calcium-Ionen zeigen und dabei ihre Wirkung als Korrosionsinhibitor behalten. Die Aufgabe wird gelöst durch die anspruchsgemäße Verwendung.
Aus WO 2010/042378 A1 ist die Verwendung von hydrolysierten und unhydrolysierten Hydro- carbylbernsteinsäuren gegen Metallaufnahme bekannt. In WO 2004/024850 A1 wird die Herstellung von Polyisobutenbersteinsäure und deren Anhydrid, sowie deren antikorrosive Wirkung beschrieben.
EP 235868 A1 beschreibt explizit eine antikorrosive Wirkung des Diels-Alder Adduktes von Po- lyisobutylen und Maleinsäureanhydrid auf Stahl, Aluminium und Messing.
US 4655946 beschreibt eine antikorrosive Wirkung von Umsetzungsprodukten von Polyisobu- tenbernsteinsäuren mit Aminen. In keiner dieser Schriften werden Mehrfachaddukte von Maleinsäureanhydrid an Polyisobuten beschrieben oder deren vorteilhafte Wirkung als Korrosionsinhibitor erkannt. Ferner wird die Sensibilität der Korrosionsinhibitoren auf Metallsalze nicht erkannt und gelöst. Demgemäß ist Gegenstand der Erfindung die Verwendung von im wesentlichen Säuregruppen freien Umsetzungsprodukten von Polyisobuten, erhältlich, bevorzugt erhalten indem man Polyisobuten (A) mit einem zahlenmittleren Molekulargewicht Mn von 200 bis 10000 mit Derivaten von mindestens einer α,β-ungesättigten Mono- oder Dicarbonsäure (B), wobei die Derivate ausgewählt sind aus der Gruppe bestehend aus Monoalkylestern, Dialkylestern und Anhydriden, in einem stochiometrischen Verhältnis von mehr als einem Äquivalent Derivate der α,β-ungesättig- ten Mono- oder Dicarbonsäure, pro reaktiver Doppelbindung im Polyisobuten (A) umsetzt, mit der Maßgabe, daß
- im Falle der Verwendung von Monoalkylestern und/oder Dialkylestern als Verbindung (B) mehr als 90% der vorhandenen Estergruppen im Umsetzungsprodukt erhalten bleiben und/oder
- im Fall der Verwendung von Anhydriden als Verbindung (B) mehr als 90% der vorhandenen Anhydridgruppen im Umsetzungsprodukt erhalten bleiben, als Korrosionsinhibitoren in Kraft- oder Schmierstoffen, bevorzugt in Kraftstoffen, besonders be- vorzugt in Kraftstoffen, die einen Gehalt an Alkali- und/oder Erdalkalimetallen und/oder Zink von mindestens 0,1 Gew.ppm aufweisen.
Die beschriebenen im wesentlichen Säuregruppen freien Umsetzungsprodukte von Polyisobuten zeigen einen besonderen Vorteil in Kraft- oder Schmierstoffen, besonders in Kraftstoffen, die einen Gehalt an Alkali- und/oder Erdalkalimetallen und/oder Zink von mindestens 0,1
Gew.ppm aufweisen, besonders bevorzugt mindestens 0,2 Gew.ppm und ganz besonders bevorzugt mindestens 0,3 Gew.ppm und insbesondere mindestens 0,5 Gew.ppm. Denkbar ist auch ein Gehalt an Alkali- und/oder Erdalkalimetallen und/oder Zink von mindestens 1
Gew.ppm, bevorzugt mindestens 2 und besonders bevorzugt mindestens 3 Gew.ppm.
Es stellt einen Vorteil der beschriebenen im wesentlichen Säuregruppen freien Umsetzungsprodukte von Polyisobuten dar, daß sie ihre korrosionsinhibierende Wirkung auch in Gegenwart von Alkali- und/oder Erdalkalimetallen und/oder Zink zeigen, bevorzugt auch in Gegenwart von Erdalkalimetallen. Der Gehalt an Alkali- und/oder Erdalkalimetallen in Kraftstoffen rührt bei- spielsweise her durch Vermischung mit Alkali- und/oder Erdalkalimetallen-haltigen Schmierstoffen, beispielsweise in der Kraftstoffpumpe. Ferner können Alkali- und/oder Erdalkalimetalle aus nicht oder unzureichend entsalzten Kraftstoffadditiven stammen, beispielsweise Trägerölen. Durch das Einschleppen von Alkali- und/oder Erdalkalimetallen in die Kraftstoffe können die oben genannten Nachteile hervorgerufen werden. Eine Quelle für Zink sind beispielsweise anti- wear Additive.
Als Alkalimetalle zu nennen sind besonders Natrium und Kalium, insbesondere Natrium. Als Erdalkalimetalle zu nennen sind besonders Magnesium und Calcium, insbesondere Calcium.
Ferner ist Zink hervorzuheben
Mit besonderem Vorteil sind die beschriebenen im wesentlichen Säuregruppen freien Umsetzungsprodukte von Polyisobuten auch in Gegenwart von Calcium noch aktiv und zeigen keine Ausfällungen. Die angegebenen Mengen an Alkali- und/oder Erdalkalimetallen und/oder Zink beziehen sich dabei jeweils auf einzelne Metallespezies.
Beschreibung der im wesentlichen Säuregruppen freien Umsetzungsprodukte von Polyisobuten Die Aufgabe wurde gelöst durch im wesentlichen Säuregruppen freie Umsetzungsprodukte von Polyisobuten, erhältlich, bevorzugt erhalten indem man Polyisobuten (A) mit einem zahlenmittleren Molekulargewicht Mn von 200 bis 10000, bevorzugt 500 bis 2500 und besonders bevorzugt 700 bis 1 100 mit Derivaten von mindestens einer α,β-ungesättigte Mono- und Dicarbon- säure (B), in einem stöchiometrischen Verhältnis von mehr als einem Äquivalent Derivate der α,β-ungesättigter Mono- und Dicarbonsäure (B), pro reaktiver Doppelbindung im Polyisobuten (A) umsetzt.
Die Derivate sind dabei ausgewählt aus der Gruppe bestehend aus Monoalkylestern, Dial- kylestern und Anhydriden.
Um sicherzustellen, daß die Umsetzungsprodukte von Polyisobutenen mit Alkylestern bzw. Anhydriden (B) im wesentlichen frei von Säuregruppen bleiben, herrscht dabei die Maßgabe, daß im Umsetzungsprodukt
- im Falle der Verwendung von Monoalkylestern und/oder Dialkylestern als Verbindung (B) mehr als 90% der vorhandenen Estergruppen im Umsetzungsprodukt erhalten bleiben und/oder
- im Fall der Verwendung von Anhydriden als Verbindung (B) mehr als 90% der vorhandenen Anhydridgruppen im Umsetzungsprodukt erhalten bleiben.
Unter "im wesentlichen Säuregruppen freien Umsetzungsprodukten" werden dabei solche Um- Setzungsprodukte von Polyisobuten mit Derivaten von Maleinsäure im engeren Sinn verstanden, als auch Produkte, die aus der Umsetzung von Polyisobuten mit Derivaten von α,β-unge- sättigten Monocarbonsäuren oder Derivaten von anderen α,β-ungesättigten Dicarbonsäuren als Maleinsäure erhältlich sind, bei denen mehr als 90 % der in der Komponente (B) als Ester- oder Anhydridgruppen enthaltenen Carboxylgruppen erhalten bleiben, d.h. nicht zu Carbonsäure- gruppen verseift bzw. hydrolysiert werden, bevorzugt mindestens 92%, besonders bevorzugt mindestens 94%, ganz besonders bevorzugt mindestens 95%, insbesondere mindestens 96%, speziell mindestens 97% und sogar mindestens 98%. Bei dem einsetzbaren Polymer (A) handelt es sich um iso-Buten-Homopolymere oder iso-Buten enthaltende Copolymere, hier unter dem Begriff "Polyisobuten" zusammengefaßt, die wie folgt aus den jeweiligen Monomergemischen erhältlich sind: Für den Einsatz von Isobuten oder eines Isobuten enthaltenden Monomerengemisches als zu polymerisierendem Monomer eignet sich als Isobuten-Quelle sowohl Rein-Isobuten als auch Isobuten-haltige C4-Kohlenwasserstoffströme, beispielsweise C4-Raffinate, insbesondere "Raffinat 1 ", C4-Schnitte aus der Isobutan-Dehydrierung, C4-Schnitte aus Steamcrackern und aus FCC-Crackern (fluid catalysed Cracking), sofern sie weitgehend von darin enthaltenem 1 ,3-Bu- tadien befreit sind. Ein C4-Kohlenwasserstoff-strom aus einer FCC-Raffinerieeinheit ist auch als "b/b"-Strom bekannt. Weitere geeignete Isobuten-haltige C4-Kohlenwasserstoffströme sind beispielsweise der Produktstrom einer Propylen-Isobutan-Cooxidation oder der Produktstrom aus einer Metathese-Einheit, welche in der Regel nach üblicher Aufreinigung und/oder Aufkonzentrierung eingesetzt werden. Geeignete C4-Kohlenwasserstoffströme enthalten in der Regel weni- ger als 500 ppm, vorzugsweise weniger als 200 ppm, Butadien. Die Anwesenheit von 1-Buten sowie von eis- und trans-2-Buten ist weitgehend unkritisch. Typischerweise liegt die Isobutenkonzentration in den genannten C4-Kohlenwasserstoffströmen im Bereich von 40 bis 60 Gew.- %. So besteht Raffinat 1 in der Regel im wesentlichen aus 30 bis 50 Gew.-% Isobuten, 10 bis 50 Gew.-% 1 -Buten, 10 bis 40 Gew.-% eis- und trans-2-Buten sowie 2 bis 35 Gew.-% Butanen; beim anschließenden Polymerisationsverfahren verhalten sich die unverzeigten Butene im Raffinat 1 in der Regel praktisch inert und nur das Isobuten wird polymerisiert.
In einer bevorzugten Ausführungsform setzt man als Monomerquelle für die Polymerisation einen technischen C4-Kohlenwasserstoffstrom mit einem Isobuten-Gehalt von 1 bis 100 Gew.-%, insbesondere von 1 bis 99 Gew.-%, vor allem von 1 bis 90 Gew.-%, besonders bevorzugt von 30 bis 60 Gew.-%, insbesondere einen Raffinat 1 -Strom, einen b/b-Strom aus einer FCC-Raffinerieeinheit, einen Produktstrom einer Propylen-Isobutan-Cooxidation oder einen Produktstrom aus einer Metathese-Einheit ein. Insbesondere bei Verwendung eines Raffinat 1 -Stromes als Isobutenquelle hat sich die Verwendung von Wasser als alleinigem oder als weiterem Initiator bewährt, vor allem wenn man bei Temperaturen von -20°C bis +30°C, insbesondere von 0°C bis +20°C, polymerisiert. Bei Temperaturen von -20°C bis +30°C, insbesondere von 0°C bis +20°C, kann man bei Verwendung eines Raffinat 1 -Stromes als Isobutenquelle jedoch auch auf den Einsatz eines Initiators verzichten.
Das genannte Isobuten-haltige Monomerengemisch kann geringe Mengen an Kontaminanten wie Wasser, Carbonsäuren oder Mineralsäuren enthalten, ohne dass es zu kritischen Ausbeute- oder Selektivitätseinbußen kommt. Es ist zweckdienlich, eine Anreicherung dieser Ver- unreinigungen zu vermeiden, indem man solche Schadstoffe beispielsweise durch Adsorption an feste Adsorbentien wie Aktivkohle, Molekularsiebe oder Ionenaustauscher, aus dem Isobuten-haltigen Monomerengemisch entfernt. Es können auch Monomermischungen von Isobuten beziehungsweise des Isobuten-haltigen Kohlenwasserstoffgemischs mit olefinisch ungesättigten Monomeren, welche mit Isobuten co- polymerisierbar sind, umgesetzt werden. Sofern Monomermischungen des Isobutens mit geeigneten Comonomeren copolymerisiert werden sollen, enthält die Monomermischung vorzugs- weise wenigstens 5 Gew.-%, besonders bevorzugt wenigstens 10 Gew.-% und insbesondere wenigstens 20 Gew.-% Isobuten, und vorzugsweise höchstens 95 Gew.-%, besonders bevorzugt höchstens 90 Gew.-% und insbesondere höchstens 80 Gew.-% Comonomere.
Als copolymerisierbare Monomere kommen in Betracht: Vinylaromaten wie Styrol und a-Methyl- styrol, d- bis C4-Alkylstyrole wie 2-, 3- und 4-Methylstyrol und 4-tert.-Butyl-styrol, sowie Isoole- fine mit 5 bis 10 Kohlenstoffatomen wie 2-Methylbuten-1 , 2-Methylpenten-1 , 2-Methylhexen-1 , 2-Ethylpenten-1 , 2-Ethylhexen-1 und 2-Propylhepten-1. Weiterhin kommen - abhängig von den Polymerisationsbedingungen - als Comonomere auch Isopren, 1 -Buten und eis- und trans-2- Buten in Betracht.
Das Verfahren kann so ausgestaltet werden, dass bevorzugt statistische Polymere oder bevorzugt Blockcoplymere entstehen. Zur Herstellung von Blockcopolymeren kann man beispielsweise die verschiedenen Monomere nacheinander der Polymerisationsreaktion zuführen, wobei die Zugabe des zweiten Comonomers insbesondere erst dann erfolgt, wenn das erste Comono- mer zumindest teilweise schon polymerisiert ist. Auf diese Weise sind sowohl Diblock-, Triblock- als auch höhere Blockcopolymere zugänglich, die je nach Reihenfolge der Monomerzugabe einen Block des einen oder anderen Comonomers als terminalen Block aufweisen. Blockcopolymere entstehen in einigen Fällen aber auch dann, wenn alle Comonomere zwar gleichzeitig der Polymerisationsreaktion zugeführt werden, eines davon aber signifikant schneller polymerisiert als das oder die anderen. Dies ist insbesondere dann der Fall, wenn Isobuten und eine vinylaro- matische Verbindung, insbesondere Styrol, im erfindungsgemäßen Verfahren copolymerisiert werden. Dabei entstehen vorzugsweise Blockcopolymere mit einem terminalen Polystyrolblock. Dies ist darauf zurückzuführen, dass die vinylaromatische Verbindung, speziell Styrol, signifikant langsamer polymerisiert als Isobuten.
Die Polymerisation kann sowohl kontinuierlich als auch diskontinuierlich erfolgen. Kontinuierliche Verfahren können in Analogie zu bekannten Verfahren des Standes der Technik zur kontinuierlichen Polymerisation von Isobuten in Gegenwart von Lewis-Säuren, bevorzugt Bortrifluo- rid- oder Aluminiumtrichlorid- oder Alkylaluminiumchlorid-basierten Katalysatoren, in flüssiger Phase durchgeführt werden.
Als "reaktive Doppelbindungen" oder "Vinylidenbindungen" werden im Rahmen der vorliegenden Erfindung terminale, sogenannte o und ß-Doppelbindungen (in Summe) verstanden. Diese zeichnen sich durch folgende Strukturelemente (hier dargestellt am Beispiel des iso-Buten Ho- mopolymers) aus: α-Doppelbindung ß-Doppelbindung
Der Anteil an reaktiven Doppelbindungen in den erfindungsgemäß einsetzbaren Isobutenhomooder -copolymeren, bezogen auf a- und ß-Doppelbindungen in Summe, kann von 30 bis 100 mol% betragen, bevorzugt 40 bis 97, besonders bevorzugt 50 bis 95, ganz besonders bevor- zugt 55 bis 93 und insbesondere 60 bis 90 mol%.
Die Verteilung von a- : ß-Doppelbindungen im Polyisobuten (A) beträgt in der Regel von 100:0 bis 10:90, bevorzugt von 99:1 bis 20:80, besonders bevorzugt von 98:2 bis 30:70, ganz besonders bevorzugt von 97:3 bis 40:60 und insbesondere von 95:5 bis 50:50.
Der Anteil an a- und ß-Doppelbindungen als auch die Verteilung von o : ß-Doppelbindungen hängt von der Herstellung der Polyisobutene (A) ab.
Der Gehalt an Doppelbindungen wird bestimmt und den jeweiligen Strukturen zugeordnet ge- mäß der 13C-NMR Methode wie beschrieben in James J. Harrison, Donald C. Young, Charles L. Mayne, J. Org. Chem. 1997, 62, 693-699.
Die Vinylidengruppen zeigen die höchste Reaktivität, beispielsweise bei der thermischen Addition an sterisch anspruchsvolle Reaktionspartner wie Maleinsäureanhydrid, wohingegen eine weiter im Inneren der Makromoleküle liegende Doppelbindung in den meisten Fällen keine oder geringere Reaktivität bei Funktionalisierungsreaktionen zeigt.
Häufig reagieren unter den Vinylidengruppen die α-Doppelbindungen schneller und bereitwilliger als die ß-Doppelbindungen, so daß im Reaktionsgemisch im Verlauf der Reaktion die Reak- tionsprodukte der Umsetzung der α-Doppelbindungen zunächst in höherem Maße gebildet werden als die der ß-Doppelbindungen. Dies kann dazu führen, daß zur Umsetzung der ß-Doppelbindungen schärfere Reaktionsbedingungen erforderlich sind als zur Umsetzung der a-Doppel- bindungen. Das zahlenmittlere Molekulargewicht Mn der in das erfindungsgemäße Verfahren einsetzbaren Polyisobutene beträgt von 200 bis 10000.
Mit Vorteil können Polyisobutene mit einem Molekulargewicht Mn von mindestens 500 und besonders bevorzugt von mindestens 700 g/mol eingesetzt werden.
Das Molekulargewicht Mn der Polyisobutene kann bevorzugt bis zu 2500 und besonders bevorzugt bis zu 1 100 g/mol betragen.
Die Polydispersität Mw/Mn kann von 1 bis 10, vorzugsweise von 1 ,05 bis 8, besonders bevorzugt von 1 ,1 bis 7, ganz besonders bevorzugt von 1 ,15 bis 6 und insbesondere bevorzugt von 1 ,2 bis 5 betragen. Das gewichtsmittlere Molekulargewicht Mw kann aus diesen Daten für Mn und Polydispersität errechnet werden.
Als Reaktionspartner für das Polyisobuten (A) dienen gemäß der vorliegenden Erfindung Deri- vate von α,β-ungesättigten Mono- und Dicarbonsäuren (B), bevorzugt Derivate von α,β-unge- sättigten Dicarbonsäuren.
Unter Derivaten werden dabei verstanden
- die betreffenden Anhydride in monomerer oder auch polymerer Form,
- Mono- oder Dialkylester, bevorzugt Mono- oder Di-Ci-C4-alkylester, besonders bevorzugt Mono- oder Dimethylester oder die entsprechenden Mono- oder Diethylester, sowie
- gemischte Ester, bevorzugt gemischte Ester mit unterschiedlichen Ci-C4-Alkylkomponenten, besonders bevorzugt gemischte Methylethylester. Bevorzugt handelt es sich bei den Derivaten um Anhydride in monomerer Form oder D1-C1-C4- alkylester, besonders bevorzugt um Anhydride oder Methylester und ganz besonders bevorzugt um Anhydride in monomerer Form.
Unter Ci-C4-Alkyl wird im Rahmen dieser Schrift Methyl, Ethyl, /soPropyl, n-Propyl, n-Butyl, iso- Butyl, seA'-Butyl und fe -Butyl verstanden, bevorzugt Methyl und Ethyl, besonders bevorzugt Methyl.
Bei den Derivaten von α,β-ethylenisch ungesättigten Mono- oder Dicarbonsäuren handelt es sich um Derivate solcher Mono- oder Dicarbonsäuren, bei denen die Carboxylgruppe oder im Fall von Dicarbonsäuren mindestens eine Carboxylgruppe, bevorzugt beide Carboxylgruppen mit der ethylenisch ungesättigten Doppelbindung konjugiert sind.
Beispiele für ethylenisch ungesättigte Mono- oder Dicarbonsäure, die nicht α,β-ethylenisch ungesättigt sind, sind cis-5-Norbornen-endo-2,3-dicarbonsäureanhydrid, exo-3,6-Epoxy-1 ,2,3,6-tetra- hydrophthalsäureanhydrid und cis-4-Cyclohexen-1 ,2-dicarbonsäure anhydrid.
Beispiele für α,β-ethylenisch ungesättigten Monocarbonsäuren als Komponente (B) sind Acryl- säure, Methacrylsäure, Crotonsäure und Ethylacrylsäure, bevorzugt Acrylsäure und Methacryl- säure, in dieser Schrift kurz als (Meth)acrylsäure bezeichnet, und besonders bevorzugt Acryl- säure.
Besonders bevorzugte Derivate von α,β-ethylenisch ungesättigten Monocarbonsäuren sind Ac- rylsäuremethylester, Acrylsäureethylester, Acrylsäure-n-butylester und Methacrylsäuremethyl- ester.
Beispiele für Dicarbonsäuren (B) sind Maleinsäure, Fumarsäure, Itaconsäure (2-Methylenbutan- disäure), Citraconsäure (2-Methylmaleinsäure), Glutaconsäure (Pent-2-en-1 ,5-dicarbonsäure), 2,3-Dimethylmaleinsäure, 2-Methylfumarsäure, 2,3-Dimethylfumarsäure, Methylenmalonsäure und Tetrahydrophthalsäure, bevorzugt um Maleinsäure und Fumarsäure und besonders bevorzugt um Maleinsäure.
Insbesondere handelt es sich bei dem Reaktionspartner (B) um Maleinsäureanhydrid.
Das molare Verhältnis von Komponente (B) zu reaktiver Doppelbindung im Polyisobuten (A) beträgt erfindungsgemäß mehr als 1 :1 , besonders bevorzugt mindestens 1 ,1 : 1 , ganz besonders bevorzugt mindestens 1 ,2 : 1 , insbesondere mindestens 1 ,3 : 1 und speziell mindestens 1 ,5 : 1 . In der Regel ist bringt ein molares Verhältnis von Komponente (B) zu reaktiver Doppelbindung im Polyisobuten (A) von mehr als 30 : 1 keinen Vorteil, bevorzugt beträgt es bis zu 25 : 1 , besonders bevorzugt bis zu 20 : 1 und ganz besonders bevorzugt bis zu 18 : 1 .
Ein Überschuß an Komponente (B) kann in der Regel leicht destillativ bzw. per Sublimation ab- getrennt werden. Die so wiedergewonnene überschüssige Komponente (B) kann dann in einer weiteren Reaktion nochmals eingesetzt werden.
Die Reaktion wird in der Regel bei einer Temperatur von 180 bis 250 °C durchgeführt, bevorzugt 190 bis 240 und besonders bevorzugt von 200 bis 230 °C.
Da Maleinsäureanhydrid als Komponente (B) bei ca. 202 °C siedet, wird die Reaktion bei Temperaturen oberhalb von 200 °C, bevorzugt oberhalb von 190 °C und besonders bevorzugt bereits bei Temperaturen oberhalb von 180 °C zumindest unter Eigendruck, bevorzugt unter leichtem Überdruck durchgeführt.
Dieser Überdruck sollte mindestens 100 mbar, bevorzugt mindestens 200 mbar, besonders bevorzugt mindestens 500 mbar und insbesondere mindestens 1 bar betragen.
In der Regel sind bis zu 10 bar Überdruck ausreichend, bevorzugt bis zu 8 bar, besonders be- vorzugt bis zu 7 bar und ganz besonders bevorzugt bis zu 5 bar.
Bevorzugt führt man die Reaktion unter einer Inertatmosphäre durch, besonders bevorzugt wird Stickstoff- oder Kohlendioxidatmosphäre verwendet. Die Dauer der Reaktion sollte je nach Temperatur mindestens 15 Minuten betragen, bevorzugt mindestens 30, besonders bevorzugt mindestens 45 und ganz besonders bevorzugt mindestens 60 Minuten. Insbesondere sollte die Reaktionsdauer mindestens 2 Stunden betragen.
In der Regel und je nach Temperatur sollte die Reaktion innerhalb von 10 Stunden abgeschlos- sen sein, bevorzugt innerhalb von 8 und besonders bevorzugt innerhalb von 7 Stunden.
Es stellt eine mögliche Ausführungsform der vorliegenden Erfindung dar, die Reaktion ohne weiteres Lösungsmittel durchzuführen. Dies ist dann bevorzugt, wenn ein hoher Überschuß an Komponente (B) eingesetzt wird und die Reaktion in der Schmelze der flüssigen oder aufgeschmolzenen Komponente (B) durchgeführt werden kann.
In einer bevorzugten Ausführungsform wird die Reaktion jedoch in einem Lösungsmittel durch- geführt, das natürlich bevorzugt unter den Reaktionsbedingungen keine wesentliche Reaktion mit dem Polyisobuten und/oder der Komponente (B) zeigen soll. Bevorzugt handelt es sich bei dem Lösungsmittel um Kohlenwasserstoffe oder Kohlenwasserstoffgemische, Carbonsäureester, Ether oder Ketone, besonders bevorzugt um Kohlenwasserstoffe oder Kohlenwasserstoffgemische.
Als aromatische Kohlenwasserstoffgemische sind solche bevorzugt, die überwiegend aromatische C7- bis Ci4-Kohlenwasserstoffe umfassen und einen Siedebereich von 1 10 bis 300 °C umfassen können, besonders bevorzugt sind Toluol, o-, m- oder p-Xylol, Trimethylbenzolisomere, Tetramethylbenzolisomere, Ethylbenzol, Cumol, Tetrahydronaphthalin und solche enthaltende Gemische.
Beispiele dafür sind die Solvesso®-Marken der Firma ExxonMobil Chemical, besonders Sol- vesso® 100 (CAS-Nr. 64742-95-6, überwiegend C9 und Cio-Aromaten, Siedebereich etwa 154 - 178 °C), 150 (Siedebereich etwa 182 - 207 °C) und 200 (CAS-Nr. 64742-94-5), sowie die Shell- sol®-Marken der Firma Shell, Caromax® (z.B. Caromax® 18) der Firma Petrochem Carless und Hydrosol der Firma DHC (z.B. als Hydrosol® A 170). Kohlenwasserstoffgemische aus Paraffinen, Cycloparaffinen und Aromaten sind auch unter den Bezeichnungen Kristallöl (beispielsweise Kristallöl 30, Siedebereich etwa 158 - 198 °C oder Kristallöl 60: CAS-Nr. 64742-82-1 ), Testbenzin (beispielsweise ebenfalls CAS-Nr. 64742-82-1 ) oder Solventnaphtha (leicht: Sie- debereich etwa 155 - 180 °C, schwer: Siedebereich etwa 225 - 300 °C) im Handel erhältlich. Der Aromatengehalt derartiger Kohlenwasserstoffgemische beträgt in der Regel mehr als 90 Gew%, bevorzugt mehr als 95, besonders bevorzugt mehr als 98 und ganz besonders bevorzugt mehr als 99 Gew%. Es kann sinnvoll sein, Kohlenwasserstoffgemische mit einem besonders verringerten Gehalt an Naphthalin einzusetzen.
(Cyclo)aliphatische Kohlenwasserstoffe sind beispielsweise Dekalin, alkyliertes Dekalin und Isomerengemische von geradlinigen oder verzweigten Alkanen und/oder Cycloalkanen.
In einer bevorzugten Ausführungsform weist das eingesetzte Lösungsmittel einen Siedepunkt bei Normaldruck von mindestens 140 °C auf.
Es stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar, die Reaktion in einem Reaktor auszuführen, dessen Reaktionsvolumen zu mindestens 50% durch das flüssige Reaktionsgemisch ausgefüllt ist, bevorzugt zu mindestens 60%, besonders bevorzugt zu min- destens 66%, ganz besonders bevorzugt zu mindestens 75%, insbesondere zu mindestens 90% und speziell vollständig. Dies hat den Vorteil, daß bei der Reaktionstemperatur der Reaktionspartner Komponente (B), bevorzugt Maleinsäureanhydrid im flüssigen Reaktionsgemisch verbleibt und nur zu einem geringen Anteil in die Gasphase ausweichen kann, so daß die Verfügbarkeit an Komponente (B) im Reaktionsgemisch erhöht wird.
In einer weiteren bevorzugten Ausführungsform ist der besagte Reaktor rückvermischungsarm oder rückvermischungsfrei. Diese Fördercharakteristik ist durch eine Bodensteinzahl von mindestens 3, bevorzugt mindestens 5, besonders bevorzugt mindestens 7 gekennzeichnet. Optional können dem Reaktionsgemisch Stabilisatoren zur Unterbindung von Nebenreaktionen zugesetzt werden, bevorzugt solche wie beschrieben in EP 156310 A2.
Bei diesen Zusatzstoffen handelt es sich um Alkoxide, bevorzugt die C2- bis C4-Alkoxide, des Titans, Zirkons, Vanadins oder Aluminiums. Derartige Verbindungen sind an sich bekannt und verfügbar. Insbesondere geeignete Alkoxide sind die Verbindungen: Titan(IV)butoxid = Ti(C4H90)4, Titan(IV)i-butoxid = Ti[(CH3)2CHCH20]4, Titan(IV)ethoxid = Ti(C2H50)4, Titan(IV)i- propoxid = Ti(OC3H7)4, Titan(IV)n-propoxid = Ti(C3H70)4, Zirkon n-butoxid-Butanolkomplex = (C4H90)4Zr-C4H9OH, Zirkon-i-propoxid = Zr(OC3H7) = C3H7OH, Zirkon-n-propoxid = Zr(OC3H7)4, Vanadin(V)tri-n-butoxid-oxid = VO(OC4H9)3, Vanadin(V)triethoxid-oxid = VO(OC2H5)3, Vana- din(V)tri-i-propoxidoxid = VO(OC3H7)3 , Vanadin(V)tris-n-propoxid-oxid = VO(OC3H7)3, Alumi- nium-i-butoxid = AI(OC4H9)3, Aluminium-n-butoxid = AI(OC4H9)3, Aluminium-s-butoxid = AI(OC4H9)3, Aluminium-t-butoxid = AI(OC4H9)3 oder Aluminium-i-propoxid = AI(OC3R7)3.
Die erwähnten Alkoxide liegen in flüssigem Zustand, gegebenenfalls als Komplexverbindung mit dem entsprechenden Alkohol, vor und werden in dieser Form bei der erfindungsgemäßen Reaktion verwendet. Sie werden mit einem Reinheitsgrad von 95 bis 99 Gew.%, bei den Alkoxiden des Aluminiums von 90 bis 99 Gew.%, eingesetzt. Die zu verwendenden Alkoxide sind in der Reaktionsmischung löslich. Die Stabilisatoren werden in Mengen von 1 bis 5000, bevorzugt 5 bis 1000 Gew.-ppm, besonders bevorzugt 10 bis 500 Gew.ppm, ganz besonders bevorzugt 25 bis 300 Gew.ppm bezogen auf das eingesetzte Olefin eingesetzt.
In einer bevorzugten Ausführungsform werden in dem erfindungsgemäßen Verfahren keine wei- teren Stabilisatoren eingesetzt.
Bei der hier exemplarisch gezeigten Umsetzung von Polyisobuten Homopolymer mit Maleinsäureanhydrid können sich, insbesondere bei höheren Molverhältnissen von Maleinsäureanhydrid zu Polyisobuten, als Folgeprodukte Verbindungen bilden, die mehr als eine Bernsteinsäurean- hydridgruppe pro Polymer tragen. Diese Produkte haben ausgehend von o bzw. ß-Doppelbin- dungen unterschiedliche Strukturen: In diesen Reaktionsschemata steht n für eine natürliche Zahl von 2 bis 39, bevorzugt von 3 bis 34, besonders bevorzugt von 4 bis 25, ganz besonders bevorzugt von 5 bis 19 und insbesondere von 6 bis 16. Das Verhältnis der höher zu den einfach maleinierten Komponenten zueinander kann durch den "Bismaleinierungsgrad" (BMG) angegeben werden. Der BMG ist an sich bekannt (Siehe auch US 5,883,196) und kann nach folgender Formel bestimmt werden:
BMG = 100% x [(wt-%(BM PIBSA)/(wt-%(BM PIBSA)+wt-%(PIBSA))] wobei wt-%(X) für den jeweiligen Gewichtsanteil der Komponente X (X = PIBSA (einfach malei- niertes Polyisobuten) oder BM PIBSA (mehr als einfach maleiniertes Polyisobuten)) im Umsetzungsprodukt von Polyisobuten mit Maleinsäureanhydrid steht. Berechnet wird der Bismaleinierungsgrad bevorzugt aus der Verseifungszahl gemäß DIN 53401 : 1988-06 der Probe. Dabei muß die Probe gegebenenfalls mit einem geeigneten Lösungsmittel solubilisiert werden, bevorzugt in einem 2:1 Gemisch aus Toluol und Ethanol.
Dabei ist zu beachten, daß lediglich das Verhältnis der höher maleinierten Komponenten zu den einfach maleinierten Komponenten einbezogen wird, wohingegen im Reaktionsgemisch befindliches unumgesetztes Polyisobuten, beispielsweise solches, das keine reaktiven Doppelbindungen enthält, nicht in die Bestimmung des Bismaleinierungsgrades eingeht. Mithin kann das Reaktionsgemisch auch noch unumgesetztes Polyisobuten enthalten, was meist dem Anteil im eingesetzten Polyisobuten entspricht, der keine reaktiven Doppelbindungen enthält, wohinge- gen der reaktive Doppelbindungen enthaltende Anteil im Polyisobuten bevorzugt vollständig o- der nahezu vollständig abreagiert.
Der Anteil an im Reaktionsgemisch befindlichen, unumgesetztem Polyisobuten entspricht daher in der Regel dem oben angegebenen bis zu 100 fehlenden Anteil an reaktiven Doppelbindun- gen in den erfindungsgemäß einsetzbaren Isobutenhomo- oder -copolymeren.
Der Anteil an unumgesetztem Polyisobuten beträgt bevorzugt nicht mehr als 30 Gew%, besonders bevorzugt nicht mehr als 25 Gew%, ganz besonders bevorzugt nicht mehr als 20 Gew%, insbesondere nicht mehr als 15 Gew% und speziell nicht mehr als 10 Gew%.
Zur Bestimmung des Anteils an maleinierten Komponenten im Verhältnis zum unumgesetzten Polyisobuten wird das Reaktionsgemisch in n-Heptan gelöst und auf eine Säule mit Kieselgel 60 aufgebracht und mit n-Heptan eluiert, bis kein Produkt mehr im Eluat auftritt. Mit Hilfe einer Säulenchromatographie wird das unumgesetzten Polyisobuten von den maleinierten Kompo- nenten getrennt, da die maleinierten Komponenten nicht eluiert werden. Nach Abtrennung des Lösungsmittels durch Destillation wird durch Abwiegen der Gewichtsanteil an maleinierten Komponenten im Reaktionsgemisch bestimmt. Die obige Formel kann analog auch auf andere Komponenten (B) als Maleinsäureanhydrid angewendet werden und wird hier auch für andere Komponenten (B) als Maleinsäureanhydrid einfachheitshalber ebenfalls als Bismaleinierungsgrad bezeichnet. Allgemein formuliert steht der Bismaleininerungsgrad also für den Gewichtsanteil von solchen Produkten, die mehr als eine Verbindung (B) pro Polyisobutenkette tragen im Verhältnis zur Gesamtmenge von Produkten, die eine oder mehr als eine Verbindung (B) pro Polyisobutenkette tragen, wobei nur solche Po- lyisobutenketten in die Bestimmung einbezogen werden, die reaktive Doppelbindungen tragen.
Gegenstand der erfindungsgemäßen Verwendung sind im wesentlichen Säuregruppen freie Umsetzungsprodukte von Polyisobuten, deren Bismaleinierungsgrad mindestens 1 %, bevorzugt mindestens 2%, besonders bevorzugt mindestens 3%, ganz besonders bevorzugt mindestens 4%, insbesondere mindestens 5% und speziell mindestens 6% beträgt.
Mit weiterem Vorteil können solche im wesentlichen Säuregruppen freien Umsetzungsprodukte von Polyisobuten mit einem Bismaleinierungsgrad von mindestens 7%, bevorzugt mindestens 8%, besonders bevorzugt mindestens 9%, ganz besonders bevorzugt mindestens 10%, insbesondere mindestens 1 1 % und speziell mindestens 12% eingesetzt werden.
Der Bismaleinierungsgrad kann bis zu 40% betragen, bevorzugt bis zu 35%, besonders bevor- zugt bis zu 30%, insbesondere bis zu 25% und speziell bis zu 20%.
Die besten Ergebnisse werden erzielt bei einem Bismaleinierungsgrad von 10 bis 40%, bevorzugt 12 bis 35% und besonders bevorzugt 15 bis 30%. Aus dem Reaktionsprodukt der Komponenten (A) und (B) kann nach Beendigung der Reaktion bevorzugt überschüssige und unumgesetzte Komponente (B) abgetrennt werden, bevorzugt per Destillation oder Sublimation, denkbar ist aber auch beispielsweise eine Extraktion.
Das so erhaltene Reaktionsgemisch wird bevorzugt von Quellen für Wasser, z.B. Luftfeuchtig- keit, ferngehalten, um eine Hydrolyse oder Verseifung von enthaltenen Ester- oder Anhydridgruppen so gering wie möglich zu halten.
Verwendung Die erfindungsgemäße Verwendung betrifft die Inhibierung der Korrosion von Eisen-, Stahl- und/oder Buntmetalloberflächen.
Unter den Buntmetallen sind dabei Kupfer und dessen Legierungen bevorzugt. Besonders bevorzugt wird die Korrosion von Stahloberflächen inhibiert. Die beschriebenen im wesentlichen Säuregruppen freien Umsetzungsprodukte von Polyisobu- ten werden Kraftstoffen mit dem oben spezifizierten Gehalt an Alkali- und/oder Erdalkalimetallen und/oder Zink in der Regel in Mengen von 1 bis 60, bevorzugt 4 bis 50 Gew. ppm und besonders bevorzugt von 10 bis 40 Gew. ppm zugesetzt.
Häufig werden die beschriebenen im wesentlichen Säuregruppen freien Umsetzungsprodukte von Polyisobuten in Form von Kraftstoffadditivgemischen eingesetzt, zusammen mit üblichen Additiven: Im Falle von Dieselkraftstoffen sind dies in erster Linie übliche Detergenz-Additive, Trägeröle, Kaltfließverbesserer, Schmierfähigkeitsverbesserer (Lubricity Improver), andere Korrosionsinhibitoren als die beschriebenen im wesentlichen Säuregruppen freien Umsetzungsprodukte von Polyisobuten, Demulgatoren, Dehazer, Antischaummittel, Cetanzahlverbesserer, Verbrennungsverbesserer, Antioxidantien oder Stabilisatoren, Antistatika, Metallocene, Metalldeaktivatoren, Farbstoffe und/oder Lösungsmittel.
Im Falle von Ottokraftstoffen sind dies vor allem Schmierfähigkeitsverbesserer (Friction Modifier), andere Korrosionsinhibitoren als die im wesentlichen Säuregruppen freien Umsetzungsprodukte von Polyisobuten, Demulgatoren, Dehazer, Antischaummittel, Verbrennungsverbesserer, Antio- xidantien oder Stabilisatoren, Antistatika, Metallocene, Metalldeaktivatoren, Farbstoffe und/oder Lösungsmittel.
Typische Beispiele geeigneter Co-Additive sind im folgenden Abschnitt aufgeführt: B1 ) Detergenz-Additive
Vorzugsweise handelt es sich bei den üblichen Detergenz-Additiven um amphiphile Substanzen, die mindestens einen hydrophoben Kohlenwasserstoffrest mit einem zahlengemittelten Molekulargewicht (Mn) von 85 bis 20.000 und mindestens eine polare Gruppierung besitzen, die ausge- wählt ist unter:
(Da) Mono- oder Polyaminogruppen mit bis zu 6 Stickstoffatomen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat; (Db) Nitrogruppen, gegebenenfalls in Kombination mit Hydroxylgruppen;
(De) Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
(Dd) Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
(De) Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen; (Df) Polyoxy-C2- bis C4-alkylengruppierungen, die durch Hydroxylgruppen, Mono- oder
Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat, oder durch Carbamatgruppen terminiert sind; (Dg) Carbonsäureestergruppen;
(Dh) aus Bernsteinsäureanhydrid abgeleiteten Gruppierungen mit Hydroxy- und/oder
Amino- und/oder Amido- und/oder Imidogruppen; und/oder (Di) durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugten Gruppierungen.
Der hydrophobe Kohlenwasserstoffrest in den obigen Detergenz-Additiven, welcher für die ausreichende Löslichkeit im Kraftstoff sorgt, hat ein zahlengemitteltes Molekulargewicht (Mn) von 85 bis 20.000, vorzugsweise von 1 13 bis 10.000, besonders bevorzugt von 300 bis 5.000, stärker bevorzugt von 300 bis 3.000, noch stärker bevorzugt von 500 bis 2.500 und insbesondere von 700 bis 2.500, vor allem von 800 bis 1500. Als typischer hydrophober Kohlenwasserstoffrest, insbesondere in Verbindung mit den polaren insbesondere Polypropenyl-, Polybutenyl- und Po- lyisobutenylreste mit einem zahlenmittleren Molekulargewicht Mn von vorzugsweise jeweils 300 bis 5.000, besonders bevorzugt 300 bis 3.000, stärker bevorzugt 500 bis 2.500 noch stärker bevorzugt 700 bis 2.500 und insbesondere 800 bis 1.500 in Betracht.
Als Beispiele für obige Gruppen von Detergenz-Additiven seien die folgenden genannt: Mono- oder Polyaminogruppen (Da) enthaltende Additive sind vorzugsweise Polyalkenmono- o- der Polyalkenpolyamine auf Basis von Polypropen oder von hochreaktivem (d.h. mit überwiegend endständigen Doppelbindungen) oder konventionellem (d.h. mit überwiegend mittenständigen Doppelbindungen) Polybuten oder Polyisobuten mit Mn = 300 bis 5000, besonders bevorzugt 500 bis 2500 und insbesondere 700 bis 2500. Derartige Additive auf Basis von hochreaktivem Poly- isobuten, welche aus dem Polyisobuten, das bis zu 20 Gew.-% n-Buten-Einheiten enthalten kann, durch Hydroformylierung und reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen wie Dimethyl-aminopropylamin, Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethylenpentamin hergestellt werden können, sind insbesondere aus der EP-A 244 616 bekannt. Geht man bei der Herstellung der Additive von Polybuten oder Polyisobuten mit überwie- gend mittenständigen Doppelbindungen (meist in der ß- und γ-Position) aus, bietet sich der Herstellweg durch Chlorierung und anschließende Aminierung oder durch Oxidation der Doppelbindung mit Luft oder Ozon zur Carbonyl- oder Carboxylverbindung und anschließende Aminierung unter reduktiven (hydrierenden) Bedingungen an. Zur Aminierung können hier Amine, wie z. B. Ammoniak, Monoamine oder die oben genannten Polyamine, eingesetzt werden. Entsprechende Additive auf Basis von Polypropen sind insbesondere in der WO-A 94/24231 beschrieben.
Weitere besondere Monoaminogruppen (Da) enthaltende Additive sind die Hydrierungsprodukte der Umsetzungsprodukte aus Polyisobutenen mit einem mittleren Polymerisationsgrad P = 5 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in der WO-A 97/03946 beschrieben sind.
Weitere besondere Monoaminogruppen (Da) enthaltende Additive sind die aus Poly-isobutenepo- xiden durch Umsetzung mit Aminen und nachfolgender Dehydratisierung und Reduktion der Ami- noalkohole erhältlichen Verbindungen, wie sie insbesondere in der DE-A 196 20 262 beschrieben sind.
Nitrogruppen (Db), gegebenenfalls in Kombination mit Hydroxylgruppen, enthaltende Additive sind vorzugsweise Umsetzungsprodukte aus Polyisobutenen des mittleren Polymerisationsgrades P = 5 bis 100 oder 10 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in der WO-A96/03367 und in der WO-A 96/03479 beschrieben sind. Diese Umsetzungsprodukte stellen in der Regel Mischungen aus reinen Nitropolyisobutenen (z. B. α,β-Dinitropolyisobuten) und gemischten Hydroxynitropolyisobutenen (z. B. a-Nitro-ß-hydroxy- polyisobuten) dar.
Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen (De) enthaltende Additive sind insbesondere Umsetzungsprodukte von Polyisobutenepoxiden, erhältlich aus vorzugsweise überwiegend endständige Doppelbindungen aufweisendem Polyisobuten mit Mn = 300 bis 5000 mit Ammoniak, Mono- oder Polyaminen, wie sie insbeson-dere in der EP-A 476 485 beschrieben sind.
Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (Dd) enthaltende Additive sind vorzugsweise Copolymere von C2- bis C4o-Olefinen mit Maleinsäureanhydrid mit einer Ge- samt-Molmasse von 500 bis 20.000, deren Carboxylgruppen ganz oder teilweise zu den Alkalimetall- oder Erdalkalimetallsalzen und ein verbleibender Rest der Carboxylgruppen mit Alkoholen oder Aminen umgesetzt sind. Solche Additive sind insbesondere aus der EP-A 307 815 bekannt. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können, wie in der WO-A 87/01 126 beschrieben, mit Vorteil in Kombination mit üblichen Kraftstoffdeter- genzien wie Poly(iso)-butenaminen oder Polyetheraminen eingesetzt werden.
Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (De) enthaltende Additive sind vorzugsweise Alkalimetall- oder Erdalkalimetallsalze eines Sulfobern-steinsäurealkylesters, wie er insbesondere in der EP-A 639 632 beschrieben ist. Derartige Additive dienen hauptsäch- lieh zur Verhinderung von Ventilsitzverschleiß und können mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)buten-aminen oder Polyetheraminen eingesetzt werden.
Polyoxy-C2-C4-alkylengruppierungen (Df) enthaltende Additive sind vorzugsweise Polyether oder Polyetheramine, welche durch Umsetzung von C2- bis C6o-Alkanolen, C6- bis C3o-Alkandiolen, Mono- oder D1-C2- bis C3o-alkylaminen, Cr bis C3o-Alkylcyclo-hexanolen oder Cr bis C30-AI- kylphenolen mit 1 bis 30 mol Ethylenoxid und/oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in der EP-A 310 875, EP-A 356 725, EP-A 700 985 und US-A 4 877 416 beschrieben. Im Falle von Polyethern erfüllen solche Produkte auch Trägeröleigenschaften. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
Carbonsäureestergruppen (Dg) enthaltende Additive sind vorzugsweise Ester aus Mo-no-, Dioder Tricarbonsauren mit langkettigen Alkanolen oder Polyolen, insbesondere solche mit einer Mindestviskosität von 2 mm2/s bei 100 °C, wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C-Atomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso- Phthalate, Terephthalate und Trimellitate des iso-Octanols, iso-Nonanols, iso-Decanols und des iso-Tridecanols. Derartige Produkte erfüllen auch Trägeröleigenschaften. Aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder insbesondere Imidogruppen (Dh) enthaltende Additive sind vorzugsweise entsprechende Derivate von Alkyl- oder Alkenyl-substituiertem Bernsteinsäureanhydrid und insbesondere die entsprechenden Derivate von Polyisobutenylbernsteinsäureanhydrid, welche durch Umsetzung von konventionellem oder hochreaktivem Polyisobuten mit Mn = vorzugsweise 300 bis 5000, besonders bevorzugt 300 bis 3000, stärker bevorzugt 500 bis 2500, noch stärker bevorzugt 700 bis 2500 und insbesondere 800 bis 1500, mit Maleinsäureanhydrid auf thermischem Weg in einer En-Reaktion oder über das chlorierte Polyisobuten erhältlich sind. Bei den Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen handelt es sich beispielsweise um Carbonsäuregruppen, Säureamide von Monoaminen, Säure-amide von Di- oder Polyaminen, die neben der Amidfunktion noch freie Amingruppen aufweisen, Bernsteinsäurederivate mit einer Säure- und einer Amidfunktion, Carbonsäureimide mit Monoaminen, Carbonsäureimide mit Di- oder Polyaminen, die neben der Imidfunktion noch freie Amingruppen aufweisen, oder Diimide, die durch die Umsetzung von Di- oder Polyaminen mit zwei Bernsteinsäurederivaten gebildet werden. Derartige Kraftstoffadditive sind allgemein bekannt und beispielsweise in den Dokumenten (1 ) und (2) beschrieben. Bevorzugt handelt es sich um die Umsetzungsprodukte von Alkyl- oder Alkenyl-substituierten Bernsteinsäuren oder Derivaten davon mit Aminen und besonders bevorzugt um die Umsetzungsprodukte von Polyisobutenyl-substituierten Bernsteinsäuren oder Derivaten davon mit Aminen. Von besonderem Interesse sind hierbei Umsetzungsprodukte mit aliphatischen Polyaminen (Polyalkylenimine) wie insbesondere Ethylendia- min, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin und He- xaethylenheptamin, welche eine Imidstruktur aufweisen.
Durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugte Gruppierungen (Di) enthaltende Additive sind vorzugsweise Umsetzungsprodukte von Polyisobuten-substituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetra-ethylenpentamin oder Dimethylami- nopropylamin. Die Polyisobutenyl-substituierten Phenole können aus konventionellem oder hochreaktivem Polyisobuten mit Mn = 300 bis 5000 stammen. Derartige "Polyisobuten-Mannichbasen" sind insbesondere in der EP-A 831 141 beschrieben. Dem Kraftstoff können ein oder mehrere der genannten Detergenz-Additive in solch einer Menge zugegeben werden, dass die Dosierrate an diesen Detergenz-Additiven vozugsweise 25 bis 2500 Gew.-ppm, insbesondere 75 bis 1500 Gew.-ppm, vor allem 150 bis 1000 Gew.-ppm, beträgt. B2) Trägeröle
Mitverwendete Trägeröle können mineralischer oder synthetischer Natur sein. Geeignete mineralische Trägeröle sind bei der Erdölverarbeitung anfallende Fraktionen, wie Brightstock oder Grundöle mit Viskositäten wie beispielsweise aus der Klasse SN 500 bis 2000, aber auch aroma- tische Kohlenwasserstoffe, paraffinische Kohlenwasserstoffe und Alkoxyalkanole. Brauchbar ist ebenfalls eine als "hydrocrack oil" bekannte und bei der Raffination von Mineralöl anfallende Fraktion (Vakuumdestillatschnitt mit einem Siedebereich von etwa 360 bis 500 °C, erhältlich aus unter Hochdruck katalytisch hydriertem und isomerisiertem sowie entparaffiniertem natürlichen Mineralöl). Ebenfalls geeignet sind Mischungen oben genannter mineralischer Trägeröle.
Beispiele für geeignete synthetische Trägeröle sind Polyolefine (Polyalphaolefine oder Polyinter- nalolefine), (Poly)ester, Poly)alkoxylate, Polyether, aliphatische Polyetheramine, alkylphenolgestartete Polyether, alkylphenolgestartete Polyetheramine und Carbonsäureester langkettiger Alkanole.
Beispiele für geeignete Polyolefine sind Olefinpolymerisate mit Mn = 400 bis 1800, vor allem auf Polybuten- oder Polyisobuten-Basis (hydriert oder nicht hydriert).
Beispiele für geeignete Polyether oder Polyetheramine sind vorzugsweise Polyoxy-C2- bis C4- alkylengruppierungen enthaltende Verbindungen, welche durch Umsetzung von C2- bis C6o-Alka- nolen, C6- bis C3o-Alkandiolen, Mono- oder D1-C2- bis C3o-alkylaminen, Cr bis C3o-Alkyl-cyclohe- xanolen oder Cr bis C3o-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/ oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Amino-gruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhält- lieh sind. Derartige Produkte werden insbesondere in der EP-A 310 875, EP-A 356 725, EP-A 700 985 und der US-A 4,877,416 beschrieben. Beispielsweise können als Polyetheramine Poly- C2- bis C6-Alkylenoxidamine oder funktionelle Derivate davon verwendet werden. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Po- lyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Am- moniak.
Beispiele für Carbonsäureester langkettiger Alkanole sind insbesondere Ester aus Mono-, Dioder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, wie sie insbesondere in der DE- A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 Kohlenstoffatomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Trimellitate des Isooctanols, Isonona- nols, Isodecanols und des Iso-tridecanols, z. B. Di-(n- oder lsotridecyl)phthalat. Weitere geeignete Trägerölsysteme sind beispielsweise in der DE-A 38 26 608, DE-A 41 42 241 , DE-A 43 09 074, EP-A 452 328 und der EP-A 548 617 beschrieben.
Beispiele für besonders geeignete synthetische Trägeröle sind alkoholgestartete Polyether mit etwa 5 bis 35, vorzugsweise etwa 5 bis 30, besonders bevorzugt 10 bis 30 und insbesondere 15 bis 30 C3- bis C6-Alkylenoxideinheiten, z. B. Propylenoxid-, n-Butylenoxid- und Isobutylenoxid- Einheiten oder Gemischen davon, pro Alkoholmolekül. Nichtlimitierende Beispiele für geeignete Starteralkohole sind langkettige Alkanole oder mit langkettigem Alkyl-substituierte Phenole, wobei der langkettige Alkylrest insbesondere für einen geradkettigen oder verzweigten Ce- bis C18- Alkylrest steht. Als besondere Beispiele sind zu nennen Tridecanol und Nonylphenol. Besonders bevorzugte alkoholgestartete Polyether sind die Umsetzungsprodukte (Polyveretherungspro- dukte) von einwertigen aliphatischen C6- bis Cis-Alkoholen mit C3- bis C6-Alkylenoxiden. Beispiele für einwertige aliphatische C6-Ci8-Alkohole sind Hexanol, Heptanol, Octanol, 2-Ethyl-hexanol, Nonylalkohol, Decanol, 3-Propylheptanol, Undecanol, Dodecanol, Tridecanol, Tetradecanol, Pentadecanol, Hexadecanol, Octadecanol und deren Konstitutions- und Stellungsisomere. Die Alkohole können sowohl in Form der reinen Isomere als auch in Form technischer Gemische eingesetzt werden. Ein besonders bevorzugter Alkohol ist Tridecanol. Beispiele für C3- bis C6- Alkylenoxide sind Propylenoxid, wie 1 ,2-Propylen-oxid, Butylenoxid, wie 1 ,2-Butylenoxid, 2,3- Butylenoxid, Isobutylenoxid oder Tetrahydrofuran, Pentylenoxid und Hexylenoxid. Besonders bevorzugt sind hierunter C3- bis C4-Alkylenoxide, d.h. Propylenoxid wie 1 ,2-Propylenoxid und Buty- lenoxid wie 1 ,2-Buty-lenoxid, 2,3-Butylenoxid und Isobutylenoxid. Speziell verwendet man Butylenoxid.
Weitere geeignete synthetische Trägeröle sind alkoxylierte Alkylphenole, wie sie in der DE-A 10 102 913 beschrieben sind.
Besondere Trägeröle sind synthetische Trägeröle, wobei die zuvor beschriebenen al-koholgestar- teten Polyether besonders bevorzugt sind.
Das Trägeröl bzw. das Gemisch verschiedener Trägeröle wird dem Kraftstoff in einer Menge von vorzugsweise 1 bis 1000 Gew.-ppm, besonders bevorzugt von 10 bis 500 Gew.-ppm und insbesondere von 20 bis 100 Gew.-ppm zugesetzt.
B3) Kaltfließverbesserer Geeignete Kaltfließverbesserer sind im Prinzip alle organischen Verbindungen, welche in der Lage sind, das Fließverhalten von Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen in der Kälte zu verbessern. Zweckmäßigerweise müssen sie eine ausreichende Öllöslichkeit aufweisen. Insbesondere kommen hierfür die üblicherweise bei Mitteldestillaten aus fossilem Ursprung, also bei üblichen mineralischen Dieselkraftstoffen, eingesetzten Kaltfließverbesserer ("middle distillate flow improvers", "MDFI") in Betracht. Jedoch können auch organische Verbindungen verwendet werden, die beim Einsatz in üblichen Dieselkraftstoffen zum Teil oder überwiegend die Eigenschaften eines Wax Anti-Settling Additivs ("WASA") aufweisen. Auch können sie zum Teil oder überwiegend als Nukleatoren wirken. Es können aber auch Mischungen aus als MDFI wirksamen und/oder als WASA wirksamen und/oder als Nukleatoren wirksamen organischen Verbindungen eingesetzt werden.
Typischerweise wird der Kaltfließverbesserer ausgewählt aus:
(K1 ) Copolymeren eines C2- bis C4o-Olefins mit wenigstens einem weiteren ethyle- nisch ungesättigten Monomer;
(K2) Kammpolymeren;
(K3) Polyoxyalkylenen;
(K4) polaren Stickstoffverbindungen;
(K5) Sulfocarbonsäuren oder Sulfonsäuren oder deren Derivaten; und
(K6) Poly(meth)acrylsäureestern.
Es können sowohl Mischungen verschiedener Vertreter aus einer der jeweiligen Klassen (K1 ) bis (K6) als auch Mischungen von Vertretern aus verschiedenen Klassen (K1 ) bis (K6) eingesetzt werden.
Geeignete C2- bis C4o-Olefin-Monomere für die Copolymeren der Klasse (K1 ) sind beispielsweise solche mit 2 bis 20, insbesondere 2 bis10 Kohlenstoffatomen sowie mit 1 bis 3, vorzugsweise mit 1 oder 2, insbesondere mit einer Kohlenstoff-Kohlenstoff-Dop-pelbindung. Im zuletzt genannten Fall kann die Kohlenstoff-Kohlenstoff-Doppelbindung sowohl terminal (a-Olefine) als auch intern angeordnet sein kann. Bevorzugt sind jedoch α-Olefine, besonders bevorzugt a-Olefine mit 2 bis 6 Kohlenstoffatomen, beispielsweise Propen, 1 -Buten, 1 -Penten, 1 -Hexen und vor allem Ethylen.
Bei den Copolymeren der Klasse (K1 ) ist das wenigstens eine weitere ethylenisch ungesättigte Monomer vorzugsweise ausgewählt unter Carbonsäurealkenylestern, (Meth)Acrylsäureestern und weiteren Olefinen.
Werden weitere Olefine mit einpolymerisiert, sind dies vorzugsweise höhermolekulare als das oben genannte C2- bis C4o-Olefin-Basismonomere. Setzt man beispielsweise als Olefin-Basismo- nomer Ethylen oder Propen ein, eignen sich als weitere Olefine insbesondere C10- bis C40-0 Olefine. Weitere Olefine werden in den meisten Fällen nur dann mit einpolymerisiert, wenn auch Monomere mit Carbonsäureester-Funktionen eingesetzt werden.
Geeignete (Meth)Acrylsäureester sind beispielsweise Ester der (Meth)Acrylsäure mit C bis C20- Alkanolen, insbesondere Cr bis Cio-Alkanolen, vor allem mit Methanol, Ethanol, Propanol, Isop- ropanol, n-Butanol, sec.-Butanol, Isobutanol, tert.-Butanol, Pentanol, Hexanol, Heptanol, Octanol, 2-Ethylhexanol, Nonanol und Decanol sowie Strukturisomeren hiervon.
Geeignete Carbonsäurealkenylester sind beispielsweise C2- bis C-u-Alkenylester, z.B. die Vinyl- und Propenylester, von Carbonsäuren mit 2 bis 21 Kohlenstoffatomen, deren Kohlenwasserstoffrest linear oder verzweigt sein kann. Bevorzugt sind hierunter die Vinylester. Unter den Carbonsäuren mit verzweigtem Kohlenwasserstoffrest sind solche bevorzugt, deren Verzweigung sich in der α-Position zur Carboxylgruppe befindet, wobei das α-Kohlenstoffatom besonders bevorzugt tertiär ist, d. h. die Carbonsäure eine sogenannte Neocarbonsäure ist. Vorzugsweise ist der Kohlenwasserstoffrest der Carbonsäure jedoch linear. Beispiele für geeignete Carbonsäurealkenylester sind Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinyl-2-ethylhexanoat, Neopentansäurevinylester, Hexansäurevinylester, Neononansäurevi- nylester, Neodecansäurevinylester und die entsprechenden Propenyl-ester, wobei die Vinylester bevorzugt sind. Ein besonders bevorzugter Carbonsäurealkenylester ist Vinylacetat; typische hieraus resultierende Copolymere der Gruppe (K1 ) sind die mit am häufigsten eingesetzten Ethylen- Vinylacetat-Copolymere ("EVA").
Besonders vorteilhaft einsetzbare Ethylen-Vinylacetat-Copolymere und ihre Herstellung sind in der WO 99/29748 beschrieben.
Als Copolymere der Klasse (K1 ) sind auch solche geeignet, die zwei oder mehrere voneinander verschiedene Carbonsäurealkenylester einpolymerisiert enthalten, wobei diese sich in der Alke- nylfunktion und/oder in der Carbonsäuregruppe unterscheiden. Ebenfalls geeignet sind Copolymere, die neben dem/den Carbonsäurealkenylester(n) wenigstens ein Olefin und/oder wenigstens ein (Meth)Acrylsäureester einpolymerisiert enthalten. Auch Terpolymere aus einem C2- bis C4o-a-Olefin, einem Cr bis C2o-Alkylester einer ethylenisch ungesättigten Monocarbonsäure mit 3 bis 15 Kohlenstoffatomen und einem C2- bis C -Alkenyles- ter einer gesättigten Monocarbonsäure mit 2 bis 21 Kohlenstoffatomen sind als Copolymere der Klasse (K1 ) geeignet. Derartige Terpolymere sind in der WO 2005/054314 beschrieben. Ein typisches derartiges Terpolymer ist aus Ethylen, Acrylsäure-2-ethylhexylester und Vinylacetat aufge- baut.
Das wenigstens eine oder die weiteren ethylenisch ungesättigten Monomeren sind in den Copo- lymeren der Klasse (K1 ) in einer Menge von vorzugsweise 1 bis 50 Gew.-%, insbesondere von 10 bis 45 Gew.-% und vor allem von 20 bis 40 Gew.-%, bezogen auf das Gesamtcopolymer, einpolymerisiert. Der gewichtsmäßige Hauptanteil der Monomereinheiten in den Copolymeren der Klasse (K1 ) stammt somit in der Regel aus den C2- bis C4o-Basis-Olefinen.
Die Copolymere der Klasse (K1 ) weisen vorzugsweise ein zahlenmittleres Molekulargewicht Mn von 1000 bis 20.000, besonders bevorzugt von 1000 bis 10.000 und insbesondere von 1000 bis 8000 auf.
Typische Kammpolymere der Komponente (K2) sind beispielsweise durch die Copolymerisation von Maleinsäureanhydrid oder Fumarsäure mit einem anderen ethylenisch ungesättigten Monomer, beispielsweise mit einem α-Olefin oder einem ungesättigten Ester wie Vinylacetat, und an- schließende Veresterung der Anhydrid- bzw. Säurefunktion mit einem Alkohol mit wenigstens 10 Kohlenstoffatomen erhältlich. Weitere geeignete Kammpolymere sind Copolymere von a-Ole- finen und veresterten Comonomeren, beispielsweise veresterte Copolymere von Styrol und Maleinsäureanhydrid oder veresterte Copolymere von Styrol und Fumarsäure. Geeignete Kammpo- lymere können auch Polyfumarate oder Polymaleinate sein. Außerdem sind Homo- und Copoly- mere von Vinylethern geeignete Kammpolymere. Als Komponente der Klasse (K2) geeignete Kammpolymere sind beispielsweise auch solche, die in der WO 2004/035715 und in "Comb-Like Polymers. Structure and Properties", N. A. Plate und V. P. Shibaev, J. Poly. Sei. Macromolecular Revs. 8, Seiten 1 17 bis 253 (1974)" beschrieben sind. Auch Gemische von Kammpolymeren sind geeignet.
Als Komponente der Klasse (K3) geeignete Polyoxyalkylene sind beispielsweise Poly-oxyalky- lenester, Polyoxyalkylenether, gemischte Polyoxyalkylenesterether und Gemische davon. Bevor- zugt enthalten diese Polyoxyalkylenverbindungen wenigstens eine, vorzugsweise wenigstens zwei lineare Alkylgruppen mit jeweils 10 bis 30 Kohlenstoffatomen und eine Polyoxyalkylen- gruppe mit einem zahlenmittleren Molekulargewicht von bis zu 5000. Derartige Polyoxyalkylenverbindungen sind beispielsweise in der EP-A 061 895 sowie in der US 4 491 455 beschrieben. Besondere Polyoxyalkylenverbindungen basieren auf Polyethylenglykolen und Polypropylengly- kolen mit einem zahlenmittleren Molekulargewicht von 100 bis 5000. Weiterhin sind Polyoxyalky- lenmono- und -diester von Fettsäuren mit 10 bis 30 Kohlenstoffatomen wie Stearinsäure oder Behensäure geeignet.
Als Komponente der Klasse (K4) geeignete polare Stickstoffverbindungen können sowohl ioni- scher als auch nicht ionischer Natur sein und besitzen vorzugsweise wenigstens einen, insbesondere wenigstens zwei Substituenten in Form eines tertiären Stickstoffatoms der allgemeinen Formel >NR7, worin R7 für einen Cs- bis C4o-Kohlenwas-serstoffrest steht. Die Stickstoffsubsti- tuenten können auch quaternisiert, das heißt in kationischer Form, vorliegen. Beispiele für solche Stickstoffverbindungen sind Ammoniumsalze und/oder Amide, die durch die Umsetzung wenigs- tens eines mit wenigstens einem Kohlenwasserstoffrest substituierten Amins mit einer Carbonsäure mit 1 bis 4 Carboxylgruppen bzw. mit einem geeignetem Derivat davon erhältlich sind. Vorzugsweise enthalten die Amine wenigstens einen linearen Cs- bis C4o-Alkylrest. Zur Herstellung der genannten polaren Stickstoffverbindungen geeignete primäre Amine sind beispielsweise Octylamin, Nonylamin, Decylamin, Undecylamin, Dodecylamin, Tetradecylamin und die höheren linearen Homologen, hierzu geeignete sekundäre Amine sind beispielsweise Dioctadecylamin und Methylbehenylamin. Geeignet sind hierzu auch Amingemische, insbesondere großtechnisch zugängliche Amingemische wie Fettamine oder hydrierte Tallamine, wie sie beispielsweise in U Ilmanns Encyclopedia of Industrial Chemistry, 6. Auflage, im Kapitel "Amines, aliphatic" beschrieben werden. Für die Umsetzung geeignete Säuren sind beispielsweise Cyclohexan-1 ,2-dicarbon- säure, Cyclohexen-1 ,2-dicarbonsäure, Cyclopentan-1 ,2-dicarbonsäure, Naphthalindicarbon- säure, Phthalsäure, Isophthalsäure, Terephthalsäure und mit langkettigen Kohlenwasserstoffresten substituierte Bernsteinsäuren.
Insbesondere ist die Komponente der Klasse (K4) ein öllösliches Umsetzungsprodukt aus min- destens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbonsäuren) mit primären oder sekundären Aminen. Die diesem Umsetzungsprodukt zugrundeliegenden mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbonsäuren) enthalten vorzugsweise mindestens 3 Carboxylgruppen, insbesondere 3 bis 12, vor allem 3 bis 5 Carboxylgruppen. Die Carbonsäure-Einheiten in den Polycarbonsäuren weisen vorzugsweise 2 bis 10 Kohlenstoffatome auf, insbesondere sind es Essigsäure-Einheiten. Die Carbonsäure-Einheiten sind in geeigneter Weise zu den Polycarbonsäuren verknüpft, meist über ein oder mehrere Kohlenstoff- und/oder Stickstoffatome. Vorzugsweise sind sie an tertiäre Stickstoffatome angebunden, die im Falle mehrerer Stickstoffatome über Kohlenwasserstoffketten verbunden sind.
Vorzugsweise ist die Komponente der Klasse (K4) ein öllösliches Umsetzungsprodukt auf Basis von mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbonsäuren) der allgemeinen Formel IIa oder IIb
HOOCk_ D„COOH
B B
HOOC^N^N^COOH
B A B
HOOC'BvN'B COOH
i
B COOH in denen die Variable A eine geradkettige oder verzweigte C2- bis C6-Alkylengruppe oder die Gruppierung der Formel III
HOOC^N-0^"^2"
i
CH2-CH2- darstellt und die Variable B eine C bis Cig-Alkylengruppe bezeichnet. Die Verbindungen der allgemeinen Formel IIa und IIb weisen insbesondere die Eigenschaften eines WASA auf.
Weiterhin ist das bevorzugte öllösliche Umsetzungsprodukt der Komponente (K4), insbesondere das der allgemeinen Formel IIa oder IIb, ein Amid, ein Amidammoniumsalz oder ein Ammonium- salz, in dem keine, eine oder mehrere Carbonsäuregruppen in Amidgruppen übergeführt sind.
Geradkettige oder verzweigte C2- bis C6-Alkylengruppen der Variablen A sind beispielsweise 1 ,1 - Ethylen, 1 ,2-Propylen, 1 ,3-Propylen, 1 ,2-Butylen, 1 ,3-Butylen, 1 ,4-Bu-tylen, 2-Methyl-1 ,3-propy- len, 1 ,5-Pentylen, 2-Methyl-1 ,4-butylen, 2,2-Dimethyl-1 ,3-pro-pylen, 1 ,6-Hexylen (Hexamethylen) und insbesondere 1 ,2-Ethylen. Vorzugsweise umfasst die Variable A 2 bis 4, insbesondere 2 oder 3 Kohlenstoffatome.
Cr bis Ci9-Alkylengruppen der Variablen B sind vor beispielsweise 1 ,2-Ethylen, 1 ,3-Propylen, 1 ,4-Butylen, Hexamethylen, Octamethylen, Decamethylen, Dodecamethylen, Tetradecamethy- len, Hexadecamethylen, Octadecamethylen, Nonadecamethylen und insbesondere Methylen. Vorzugsweise umfasst die Variable B 1 bis 10, insbesondere 1 bis 4 Kohlenstoffatome. Die primären und sekundären Amine als Umsetzungspartner für die Polycarbonsäuren zur Bildung der Komponente (K4) sind üblicherweise Monoamine, insbesondere aliphatische Monoa- mine. Diese primären und sekundären Amine können aus einer Vielzahl von Aminen ausgewählt sein, die - gegebenenfalls miteinander verbundene - Kohlenwasserstoffreste tragen.
Meist sind diese den öllöslichen Umsetzungsprodukten der Komponente (K4) zugrundeliegenden Amine sekundären Amine und weisen die allgemeine Formel HN(R8)2 auf, in der die beiden Variablen R8 unabhängig voneinander jeweils geradkettige oder verzweigte C10- bis C3o-Alkylreste, insbesondere Cu- bis C24-Alkylreste bedeuten. Diese längerkettigen Alkylreste sind vorzugs- weise geradkettig oder nur in geringem Grade verzweigt. In der Regel leiten sich die genannten sekundären Amine hinsichtlich ihrer längerkettigen Alkylreste von natürlich vorkommenden Fettsäuren bzw. von deren Derivaten ab. Vorzugsweise sind die beiden Reste R8 gleich.
Die genannten sekundären Amine können mittels Amidstrukturen oder in Form der Ammonium- salze an die Polycarbonsäuren gebunden sein, auch kann nur ein Teil als Amidstrukturen und ein anderer Teil als Ammoniumsalze vorliegen. Vorzugsweise liegen nur wenige oder keine freien Säuregruppen vor. Vorzugsweise liegen die öllöslichen Umsetzungsprodukte der Komponente (K4) vollständig in Form der Amidstrukturen vor. Typische Beispiele für derartige Komponenten (K4) sind Umsetzungsprodukte der Nitrilotriessig- säure, der Ethylendiamintetraessigsäure oder der Propylen-1 ,2-diamintetra-essigsäure mit jeweils 0,5 bis 1 ,5 Mol pro Carboxylgruppe, insbesondere 0,8 bis 1 ,2 Mol pro Carboxylgruppe, Di- oleylamin, Dipalmitinamin, Dikokosfettamin, Distearylamin, Dibehenylamin oder insbesondere Ditalgfettamin. Eine besonders bevorzugte Komponente (K4) ist das Umsetzungsprodukt aus 1 Mol Ethylendiamintetraessigsäure und 4 Mol hydriertem Ditalgfettamin.
Als weitere typische Beispiele für die Komponente (K4) seien die N,N-Dialkylammoni-umsalze von 2-N',N'-Dialkylamidobenzoaten, beispielsweise das Reaktionsprodukt aus 1 Mol Phthalsäu- reanhydrid und 2 Mol Ditalgfettamin, wobei letzteres hydriert oder nicht hydriert sein kann, und das Reaktionsprodukt von 1 Mol eines Alkenylspirobislactons mit 2 Mol eines Dialkylamins, beispielsweise Ditalgfettamin und/oder Talgfettamin, wobei die beiden letzteren hydriert oder nicht hydriert sein können, genannt.
Weitere typische Strukturtypen für die Komponente der Klasse (K4) sind cyclische Verbindungen mit tertiären Aminogruppen oder Kondensate langkettiger primärer oder sekundärer Amine mit carbonsäurehaltigen Polymeren, wie sie in der WO 93/181 15 beschrieben sind.
Als Kaltfließverbesserer der Komponente der Klasse (K5) geeignete Sulfocarbonsäuren, Sulfon- säuren oder deren Derivate sind beispielsweise die öllöslichen Carbonsäureamide und Carbonsäureester von ortho-Sulfobenzoesäure, in denen die Sulfonsäurefunktion als Sulfonat mit alkyl- substituierten Ammoniumkationen vorliegt, wie sie in der EP-A 261 957 beschrieben werden.
Als Kaltfließverbesserer der Komponente der Klasse (K6) geeignete Poly(meth)acryl-säureester sind sowohl Homo- als auch Copolymere von Acryl- und Methacrylsäure-estern. Bevorzugt sind Copolymere von wenigstens zwei voneinander verschiedenen (Meth)Acrylsäureestern, die sich bezüglich des einkondensierten Alkohols unterscheiden. Gegebenenfalls enthält das Copolymer noch ein weiteres, davon verschiedenes olefinisch ungesättigtes Monomer einpolymerisiert. Das gewichtsmittlere Molekulargewicht des Polymers beträgt vorzugsweise 50.000 bis 500.000. Ein besonders bevorzugtes Polymer ist ein Copolymer von Methacrylsäure und Methacrylsäu- reestern von gesättigten C14- und Cis-Alkoholen, wobei die Säuregruppen mit hydriertem Tallamin neutralisiert sind. Geeignete Poly(meth)acrylsäureester sind beispielsweise in der WO 00/44857 beschrieben.
Dem Mitteldestillat-Kraftstoff bzw. Dieselkraftstoff wird der Kaltfließverbesserer bzw. das Ge- misch verschiedener Kaltfließverbesserer in einer Gesamtmenge von vorzugsweise 10 bis 5000 Gew.-ppm, besonders bevorzugt von 20 bis 2000 Gew.-ppm, stärker bevorzugt von 50 bis 1000 Gew.-ppm und insbesondere von 100 bis 700 Gew.-ppm, z.B. von 200 bis 500 Gew.-ppm, zugegeben. B4) Schmierfähigkeitsverbesserer
Geeignete Schmierfähigkeitsverbesserer (Lubricity Improver bzw. Friction Modifier) basieren üblicherweise auf Fettsäuren oder Fettsäureestern. Typische Beispiele sind Tallölfettsäure, wie beispielsweise in der WO 98/004656 beschrieben, und Glycerinmonooleat. Auch die in der US 6 743 266 B2 beschriebenen Reaktionsprodukte aus natürlichen oder synthetischen Ölen, beispielsweise Triglyceriden, und Alkanolaminen sind als solche Schmierfähigkeitsverbesserer geeignet.
B5) Andere Korrosionsinhibitoren als die beschriebenen im wesentlichen Säuregruppen freien Umsetzungsprodukte von Polyisobuten
Geeignete Korrosionsinhibitoren sind z.B. Bernsteinsäureester, vor allem mit Polyolen, Fettsäurederivate, z.B. Ölsäureester, oligomerisierte Fettsäuren, substituierte Ethanolamine und Produkte, die unter dem Handelsnamen RC 4801 (Rhein Chemie Mannheim, Deutschland), Irgacor® L12 (BASF SE) oder HiTEC 536 (Ethyl Corporation) vertrieben werden.
B6) Demulgatoren
Geeignete Demulgatoren sind z.B. die Alkali- oder Erdalkalisalze von Alkyl-substituierten Phenol- und Naphthalinsulfonaten und die Alkali- oder Erdalkalisalze von Fettsäuren, außerdem neutrale Verbindungen wie Alkoholalkoxylate, z.B. Alkoholethoxylate, Phenolalkoxylate, z.B. tert- Butylphenolethoxylat oder tert-Pentylphenolethoxylat, Fettsäuren, Alkylphenole, Kondensations- produnkte von Ethylenoxid (EO) und Propylenoxid (PO), z.B. auch in Form von EO/PO-Blockco- polymeren, Polyethylenimine oder auch Polysiloxane. B7) Dehazer
Geeignete Dehazer sind z.B. alkoxylierte Phenol-Formaldehyd-Kondensate, wie beispielsweise die unter dem Handelsnamen erhältlichen Produkte NALCO 7D07 (Nalco) und TOLAD 2683 (Pet- rolite). B8) Antischaummittel
Geeignete Antischaummittel sind z.B. Polyether-modifizierte Polysiloxane, wie beispielsweise die unter dem Handelsnamen erhältlichen Produkte TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) und RHODOSIL (Rhone Poulenc).
B9) Cetanzahlverbesserer Geeignete Cetanzahlverbesserer sind z.B. aliphatische Nitrate wie 2-Ethylhexylnitrat und Cyclo- hexylnitrat sowie Peroxide wie Di-tert-butylperoxid.
B10) Antioxidantien Geeignete Antioxidantien sind z.B. substituierte Phenole, wie 2,6-Di-tert.-butylphenol und 6-Di- tert.-butyl-3-methylphenol sowie Phenylendiamine wie N,N'-Di-sec.-butyl-p-phenylendiamin.
B1 1 ) Metalldeaktivatoren Geeignete Metalldeaktivatoren sind z.B. Salicylsäurederivate wie N,N'-Disalicyliden-1 ,2-propan- diamin.
B12) Lösungsmittel Geeignete sind z.B. unpolare organische Lösungsmittel wie aromatische und aliphatische Kohlenwasserstoffe, beispielsweise Toluol, Xylole, "white spirit" und Produkte, die unter dem Handelsnamen SHELLSOL (Royal Dutch/Shell Group) und EXXSOL (ExxonMobil) vertrieben werden, sowie polare organische Lösungsmittel, bei-spielsweise Alkohole wie 2-Ethylhexanol, Deca- nol und Isotridecanol. Derartige Lösungsmittel gelangen meist zusammen mit den vorgenannten Additiven und Co-Additi-ven, die sie zur besseren Handhabung lösen oder verdünnen sollen, in den Dieselkraftstoff.
C) Kraftstoffe Die erfindungsgemäße Verwendung betrifft im Prinzip jegliche Kraftstoffe, bevorzugt Diesel- und Ottokraftstoffe.
Bei Mitteldestillat-Kraftstoffen wie Dieselkraftstoffen oder Heizölen handelt es sich vorzugsweise um Erdölraffinate, die üblicherweise einen Siedebereich von 100 bis 400°C haben. Dies sind meist Destillate mit einem 95%-Punkt bis zu 360°C oder auch darüber hinaus. Dies können aber auch so genannte "Ultra Low Sulfur Diesel" oder "City Diesel" sein, gekennzeichnet durch einen 95%-Punkt von beispielsweise maximal 345°C und einem Schwefelgehalt von maximal 0,005 Gew.-% oder durch einen 95%-Punkt von beispielsweise 285°C und einem Schwefelgehalt von maximal 0,001 Gew.-%. Neben den durch Raffination erhältlichen mineralischen Mitteldestillat- Kraftstoffen bzw. Dieselkraftstoffen sind auch solche, die durch Kohlevergasung oder Gasverflüssigung ["gas to liquid" (GTL)-Kraftstoffe] oder durch Biomasse-Verflüssigung ["biomass to liquid" ( BT L)- Kraftstoffe] erhältlich sind, geeignet. Geeignet sind auch Mischungen der vorstehend genannten Mitteldestillat-Kraftstoffe bzw. Dieselkraftstoffe mit regenerativen Kraftstoffen, wie Bio- diesel oder Bioethanol.
Die Qualitäten der Heizöle und Dieselkraftstoffe sind beispielsweise in DIN 51603 und EN 590 näher festgelegt (vgl. auch Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A12, S. 617 ff.).
Die erfindungsgemäße Verwendung in Mitteldestillat-Kraftstoffen aus fossilem, pflanzlichem oder tierischem Ursprung, die im wesentlichen Kohlenwasserstoffmischungen darstellen, betrifft auch Mischungen aus solchen Mitteldestillaten mit Biobrennstoffölen (Biodiesel). Derartige Mischungen werden von dem Begriff "Mitteldestillat-Kraftstoff" umfasst. Sie sind handelsüblich und ent- halten meist die Biobrennstofföle in untergeordneten Mengen, typischerweise in Mengen von 1 bis 30 Gew.-% insbesondere von 3 bis 10 Gew.-%, bezogen auf die Gesamtmenge aus Mitteldestillat fossilen, pflanzlichem oder tierischen Ursprungs und Biobrennstofföl.
Biobrennstofföle basieren in der Regel auf Fettsäureestern, vorzugsweise im wesentlichen auf Alkylester von Fettsäuren, die sich von pflanzlichen und/oder tierischen Ölen und/oder Fetten ableiten. Unter Alkylestern werden üblicherweise Niedrigalkylester, insbesondere d- bis C4-Al- kylester, verstanden, die durch Umesterung der in pflanzlichen und/oder tierischen Ölen und/oder Fetten vorkommenden Glyceride, insbesondere Triglyceride, mittels Niedrigalkoholen, beispielsweise Ethanol oder vor allem Methanol ("FAME"), erhältlich sind. Typische Niedrigalkylester auf Basis von pflanzlichen und/oder tierischen Ölen und/oder Fetten, die als Biobrennstofföl oder Komponenten hierfür Verwendung finden, sind beispielsweise Sonnenblumenmethylester, Palmölmethylester ("PME"), Sojaölmethylester ("SME") und insbesondere Rapsölmethylester ("RME"). Besonders bevorzugt handelt es sich bei den Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen um solche mit niedrigem Schwefelgehalt, das heißt mit einem Schwefelgehalt von weniger als 0,05 Gew.-%, vorzugsweise von weniger als 0,02 Gew.-%, insbesondere von weniger als 0,005 Gew.-% und speziell von weniger als 0,001 Gew.-% Schwefel. Als Ottokraftstoffe kommen alle handelsüblichen Ottokraftstoffzusammensetzungen in Betracht. Als typischer Vertreter soll hier der marktübliche Eurosuper Grundkraftstoff gemäß EN 228 genannt werden. Weiterhin sind auch Ottokraftstoffzusammensetzungen der Spezifikation gemäß WO 00/47698 mögliche Einsatzgebiete für die vorliegende Erfindung. Die nachfolgenden Beispiele sollen die vorliegende Erfindung erläutern, ohne sie zu beschränken. Beispiele
GPC-Analytik
Wenn nicht anders angegeben wurde das massenmittlere Mw und zahlenmittlere Molekularge- wicht Mn der Polymere mittels Gel-Permeations-Chromatographie gemessen (GPC). GPC-Tren- nung erfolgte über zwei PLge Mixed B-Säulen (Agilent) in Tetrahydrofuran bei 35 °C. Die Kalibrierung erfolgte mittels eines engverteilten Polystyrolstandards (Firma PSS, Deutschland) mit Molekulargewicht 162-50400 Da. Hexylbenzol wurde als Marker für niedriges Molekulargewicht verwendet.
Synthesebeispiel 1
524 g (0,54 mol) eines Polyisobutens mit einem zahlenmittleren Molgewicht Mn von 1000 g/mol und einem Gehalt an α-Doppelbindungen von 87% wurden mit 87g (0,89 mol) Maleinsäurean- hydrid in einem 11-Autoklav, ausgerüstet mit Rührer und Thermometer, vorgelegt. Das Gemisch wurde bei 210 °C unter Stickstoff über 8 Stunden umgesetzt, wobei der Druck auf 3 bar anstieg. Das Reaktionsgemisch wurde auf Raumtemperatur abgekühlt, mit Hilfe von 11 Toluol in einen Rundkolben überführt und filtriert. Lösungsmittel und Maleinsäureanhydrid wurden an einem Rotationsverdampfer bei 190 °C bei 1 mbar abgetrennt. Man erhielt 580 g eines dunkelbraunen, öligen und viskosen Produktes.
Um die Verseifungszahl zu ermitteln wurde das Produkt 50%ig in Toluol gelöst. Die Versei- fungszahl des Produktes wurde gemessen durch Reaktion von 10 ml der erhaltenen Lösung mit Überschuß Kaliumhydroxid, gefolgt von Rücktitration des Rests Kaliumhydroxid mit Salz- säure. Die Verseifungszahl bestimmte sich zu 120 mg KOH/g.
10 ml der Lösung wurden dann über eine Kieselgelsäule eluiert um den Gehalt an unfunktiona- lisertem Polyisobuten zu bestimmen. Das gesamte mit Maleinsäureanhydrid umgesetzte Poly- isobuten wurde auf der Säule zurückgehalten und Polyisobuten wurde mit Hexan eluiert. Dem- nach enthielt das Reaktionsgemisch 13,4 Gew% unfunktionalisiertes Polyisobuten.
Nach den obigen Messungen enthielt das Reaktionsgemisch neben 13,4 Gew% unfunktionali- siertem Polyisobuten monofunktionalisiertes und difunktionalisiertes Polyisobutenbernsteinsäu- reanhydrid, woraus sich unter der Voraussetzung, daß keine anderen Nebenprodukte anwe- send waren, ein Bismaleinierungsgrad von 40,3 % ergibt. Synthesebeispiele 2 und 3
In analoger Weise zu Synthesebeispiel 1 wurden durch Veränderung der Stöchiometrie Maleinsäureanhydrid : Polyisobuten Reaktionsgemische mit einem Bismaleinierungsgrad von 10% bzw. 25,9% (1 1 ,9 Gew% unfunktionalisiertes Polyisobuten) erhalten.
Anwendungsbeispiele
1 ) Calciumverträglichkeitstest:
100 ml Motorenöl (Shell Helix®, Figur 1 a und 1 b, Becherglas ganz links, mit einem Ca-Gehalt von 1500 ppm, Mg-Gehalt 1 100 ppm und Zn-Gehalt 1300 ppm) wurden im Becherglas auf 70°C erhitzt und anschließend 1 ml Korrosionsinhibitor zugesetzt. Sollte die Lösung noch klar sein, gibt man weitere 1 ml Inhibitor zu. Wenn sich die Lösung trübt, gilt der Test als nicht bestanden (z.B. Figur 1 a, rechtes Becherglas). Figur 1 a zeigt in der Mitte das mit 2 ml Produkt aus Synthesebei- spiel 3 versetzte, klar bleibende Öl. Im rechten Becherglas wurde 1 ml Dimerfettsäure (dimere Ölsäure; CAS: 61788-89-4, 40%ig in Solvent Naphtha) eingesetzt. Man erkennt eine deutlich sichtbare Trübung.
Figur 1 b zeigt rechts das mit 2 ml Produkt aus Synthesebeispiel 1 versetzte, klar bleibende Öl.
2) Stahlkorrosionstest nach ASTM D 665 B (Benzin)
Als Kraftstoff wurde handelsüblicher Ottokraftstoff E0 CEC RF-12-09 der Firma Haltermann (Chargennummer 1878) eingesetzt und mit 490 mg/kg eines Additivpakets aus Polyisobutenamin (PIBA) und Trägeröl (Polyether) additiviert. Zur Formulierung wurden die in der folgenden Tabelle angegebenen Korrosionsinhibitoren in den angegebenen Mengen (bezogen auf Aktivkomponente) zugesetzt und einem Korrosionstest nach ASTM D 665 B in Salzwasser unterworfen.
Als Vergleich wurde Dimerfettsäure als Korrosionsinhibitor (dimere Ölsäure; CAS: 61788-89-4, 40%ig in Solvent Naphtha) eingesetzt.
Formulierung Korrosionsinhibitor BismaleinierungsDosierung Bewertung grad [mg/kg] aktiv nach NACE
E0 Basiskraftstoff - - E
Formulierung 1 ** Dimerfettsäure - 4/4 B++/B++
Formulierung 2** Beispiel 1 40,3 10/10 A/A
Formulierung 3** Beispiel 2 10% 16/8 A/C Formulierung 4** Beispiel 3 25,9% 10 B+
**PIBA haltiges Grundpaket mit Polyetherträgeröl bei 490 mg/kg
Die Bewertung erfolgte folgendermaßen: A 100% rostfrei
B++ 0,1 % oder weniger der gesamten Oberfläche verrostet
B+ 0,1 % bis 5% der gesamten Oberfläche verrostet
B 5 % bis 25% der gesamten Oberfläche verrostet
C 25 % bis 50% der gesamten Oberfläche verrostet
D 50 % bis 75% der gesamten Oberfläche verrostet
E 75 % bis 100% der gesamten Oberfläche verrostet

Claims

Patentansprüche
Verwendung von im wesentlichen Säuregruppen freien Umsetzungsprodukten von Polyisobuten, erhältlich indem man Polyisobuten (A) mit einem zahlenmittleren Molekulargewicht Mn von 200 bis 10000 mit Derivaten von mindestens einer α,β-ungesättigten Mono- oder Dicarbonsäure (B), wobei die Derivate ausgewählt sind aus der Gruppe bestehend aus Monoalkylestern, Dialkylestern und Anhydriden, in einem stöchiometri- schen Verhältnis von mehr als einem Äquivalent Derivate der α,β-ungesättigten Mono- oder Dicarbonsäure, pro reaktiver Doppelbindung im Polyisobuten (A) umsetzt, mit der Maßgabe, daß
- im Falle der Verwendung von Monoalkylestern und/oder Dialkylestern als Verbindung (B) mehr als 90% der vorhandenen Estergruppen im Umsetzungsprodukt erhalten bleiben und/oder
- im Fall der Verwendung von Anhydriden als Verbindung (B) mehr als 90% der vorhandenen Anhydridgruppen im Umsetzungsprodukt erhalten bleiben, als Korrosionsinhibitoren in Kraft- oder Schmierstoffen, bevorzugt in Kraftstoffen, besonders bevorzugt in Kraftstoffen, die einen Gehalt an Alkali- und/oder Erdalkalimetallen und/oder Zink von mindestens 0,1 Gew.ppm aufweisen.
Verwendung gemäß Anspruch 1 , dadurch gekennzeichnet, daß Polyisobuten (A) ein zahlenmittleres Molekulargewicht Mn von 500 bis 2500 aufweist.
Verwendung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Derivate der α,β-ungesättigten Mono- oder Dicarbonsäure ausgewählt sind aus der Gruppe bestehend aus Acrylsäure, Methacrylsäure, Crotonsäure und Ethylacrylsäure.
Verwendung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Derivate der α,β-ungesättigten Mono- oder Dicarbonsäure ausgewählt sind aus der Gruppe bestehend aus Derivaten der Maleinsäure, Fumarsäure, Itaconsäure (2-Methylenbutan- disäure), Citraconsäure (2-Methylmaleinsäure), Glutaconsäure (Pent-2-en-1 ,5-dicar- bonsäure), 2,3-Dimethylmaleinsäure, 2-Methylfumarsäure, 2,3-Dimethylfumarsäure, Methylenmalonsäure und Tetrahydrophthalsäure.
5. Verwendung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß es sich bei den Derivaten der α,β-ungesättigten Mono- oder Dicarbonsäure (B) um Maleinsäureanhydrid handelt.
6. Verwendung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das freie Säuregruppen tragende Umsetzungsprodukt von Polyisobuten einen Bis- maleinierungsgrad von 10 bis 40% aufweist.
7. Verwendung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Anteil an unumgesetztem Polyisobuten im Umsetzungsprodukt nicht mehr als
30 Gew% beträgt.
8. Verwendung gemäß einem der vorstehenden Ansprüche zur Verringerung der Korrosion an Buntmetalloberflächen.
9. Verwendung gemäß einem der vorstehenden Ansprüche in Ottokraftstoffen mit einem Gehalt an Natrium und/oder Kalium in Mengen von mindestens 0,1 Gew.ppm.
10. Verwendung gemäß einem der vorstehenden Ansprüche in Ottokraftstoffen mit einem Gehalt an Magnesium und/oder Calcium in Mengen von mindestens 0,1 Gew.ppm.
1 1. Verwendung gemäß einem der vorstehenden Ansprüche in Ottokraftstoffen mit einem Gehalt an Zink in Mengen von mindestens 0,1 Gew.ppm.
12. Verwendung gemäß einem der vorstehenden Ansprüche zur Verhinderung und Verminderung von Ablagerungen im Kraftstoffsystem.
EP17732458.9A 2016-07-05 2017-06-27 Korrosionsinhibitoren für kraft- und schmierstoffe Active EP3481922B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16177916 2016-07-05
PCT/EP2017/065752 WO2018007192A1 (de) 2016-07-05 2017-06-27 Korrosionsinhibitoren für kraft- und schmierstoffe

Publications (2)

Publication Number Publication Date
EP3481922A1 true EP3481922A1 (de) 2019-05-15
EP3481922B1 EP3481922B1 (de) 2020-12-30

Family

ID=56363761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17732458.9A Active EP3481922B1 (de) 2016-07-05 2017-06-27 Korrosionsinhibitoren für kraft- und schmierstoffe

Country Status (5)

Country Link
US (1) US10844308B2 (de)
EP (1) EP3481922B1 (de)
ES (1) ES2858088T3 (de)
PT (1) PT3481922T (de)
WO (1) WO2018007192A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168273B2 (en) 2014-01-29 2021-11-09 Basf Se Polycarboxylic acid-based additives for fuels and lubricants
US11085001B2 (en) 2015-07-16 2021-08-10 Basf Se Copolymers as additives for fuels and lubricants
US11078418B2 (en) 2016-07-05 2021-08-03 Basf Se Corrosion inhibitors for fuels and lubricants
CN110088253B (zh) 2016-12-15 2022-03-18 巴斯夫欧洲公司 作为燃料添加剂的聚合物

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464182A (en) 1981-03-31 1984-08-07 Exxon Research & Engineering Co. Glycol ester flow improver additive for distillate fuels
JPS58138791A (ja) 1982-02-10 1983-08-17 Nippon Oil & Fats Co Ltd 燃料油用流動性向上剤
DE3411531A1 (de) 1984-03-29 1985-10-10 Basf Ag, 6700 Ludwigshafen Verfahren zur umsetzung von olefinen mit maleinsaeureanhydrid und verwendung der erhaltenen bernsteinsaeureanhydride zur herstellung von korrosionsschutzmitteln und mineraloelhilfsmitteln
US4690687A (en) 1985-08-16 1987-09-01 The Lubrizol Corporation Fuel products comprising a lead scavenger
US4655946A (en) 1985-11-07 1987-04-07 Exxon Research And Engineering Company Sea water resistant turbo oil
GB8605535D0 (en) 1986-03-06 1986-04-09 Shell Int Research Fuel composition
DE3611230A1 (de) 1986-04-04 1987-10-08 Basf Ag Polybutyl- und polyisobutylamine, verfahren zu deren herstellung und diese enthaltende kraft- und schmierstoffzusammensetzungen
IN184481B (de) 1986-09-24 2000-08-26 Exxon Chemical Patents Inc
DE3869887D1 (de) 1987-09-15 1992-05-14 Basf Ag Kraftstoffe fuer ottomotoren.
DE3732908A1 (de) 1987-09-30 1989-04-13 Basf Ag Polyetheramine enthaltende kraftstoffe fuer ottomotoren
US4877416A (en) 1987-11-18 1989-10-31 Chevron Research Company Synergistic fuel compositions
DE3826608A1 (de) 1988-08-05 1990-02-08 Basf Ag Polyetheramine oder polyetheraminderivate enthaltende kraftstoffe fuer ottomotoren
DE3838918A1 (de) 1988-11-17 1990-05-23 Basf Ag Kraftstoffe fuer verbrennungsmaschinen
DE4030164A1 (de) 1990-09-24 1992-03-26 Basf Ag Kraftstoffe fuer verbrennungsmotoren und schmierstoffe enthaltende hochmolekulare aminoalkohole
DE4142241A1 (de) 1991-12-20 1993-06-24 Basf Ag Kraftstoffe fuer ottomotoren
GB9204709D0 (en) 1992-03-03 1992-04-15 Exxon Chemical Patents Inc Additives for oils
DE4309074A1 (de) 1993-03-20 1994-09-22 Basf Ag Als Kraftstoffadditiv geeignete Mischungen
DE4313088A1 (de) 1993-04-22 1994-10-27 Basf Ag Poly-1-n-alkenamine und diese enthaltende Kraft- und Schmierstoffzusammensetzungen
AT400149B (de) 1993-08-17 1995-10-25 Oemv Ag Additiv für unverbleite ottokraftstoffe sowie dieses enthaltender kraftstoff
DE4425834A1 (de) 1994-07-21 1996-01-25 Basf Ag Umsetzungsprodukte aus Polyisobutenen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff und ihre Verwendung als Kraft- und Schmierstoffadditive
DE4425835A1 (de) 1994-07-21 1996-01-25 Basf Ag Verwendung von Umsetzungsprodukten aus Polyolefinen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff als Additive für Kraftstoffe
DE4432038A1 (de) 1994-09-09 1996-03-14 Basf Ag Polyetheramine enthaltende Kraftstoffe für Ottomotoren
DE19519042A1 (de) * 1995-05-24 1996-11-28 Basf Ag Herstellung von Polyalkenylbernsteinsäure-Derivaten und ihre Verwendung als Kraft- und Schmierstoffadditive
DE19525938A1 (de) 1995-07-17 1997-01-23 Basf Ag Verfahren zur Herstellung von organischen Stickstoffverbindungen, spezielle organische Stickstoffverbindungen und Mischungen aus solchen Verbindungen sowie deren Verwendung als Kraft- und Schmierstoffadditive
DE19620262A1 (de) 1996-05-20 1997-11-27 Basf Ag Verfahren zur Herstellung von Polyalkenaminen
FR2751982B1 (fr) 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
GB9618546D0 (en) 1996-09-05 1996-10-16 Bp Chemicals Additives Dispersants/detergents for hydrocarbons fuels
DE19754039A1 (de) 1997-12-05 1999-06-24 Basf Ag Verfahren zur Herstellung von Ethylencopolymeren in segmentierten Rohrreaktoren und Verwendung der Copolymere als Fließverbesserer
GB9827366D0 (en) 1998-12-11 1999-02-03 Exxon Chemical Patents Inc Macromolecular materials
DE19905211A1 (de) 1999-02-09 2000-08-10 Basf Ag Kraftstoffzusammensetzung
CA2403573A1 (en) 2000-03-31 2001-10-04 James R. Ketcham Fuel additive composition for improving delivery of friction modifier
DE10102913A1 (de) 2001-01-23 2002-07-25 Basf Ag Alkoxylierte Alkyphenole und deren Verwendung in Kraft- und Schmierstoffen
CA2502623C (en) 2002-09-13 2013-10-08 Octel Starreon Llc Process for the production of a fuel composition
DE10247795A1 (de) 2002-10-14 2004-04-22 Basf Ag Verwendung von Hydrocarbylvinyletherhomopolymeren zur Verbesserung der Wirkung von Kaltfliessverbesserern
DE10356595A1 (de) 2003-12-04 2005-06-30 Basf Ag Brennstoffölzusammensetzungen mit verbesserten Kaltfließeigenschaften
WO2008138836A2 (de) 2007-05-11 2008-11-20 Basf Se Verfahren zur herstellung von polyisobutylbernsteinsäureanhydriden
JP6046347B2 (ja) 2008-10-10 2016-12-14 ザ ルブリゾル コーポレイションThe Lubrizol Corporation 燃料中の金属の溶出を減少させるための添加剤
CA2938220A1 (en) * 2014-01-29 2015-08-06 Basf Se Corrosion inhibitors for fuels and lubricants

Also Published As

Publication number Publication date
WO2018007192A1 (de) 2018-01-11
US10844308B2 (en) 2020-11-24
ES2858088T3 (es) 2021-09-29
PT3481922T (pt) 2021-03-29
EP3481922B1 (de) 2020-12-30
US20190218471A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
EP3099768B1 (de) Korrosionsinhibitoren für kraftstoffe
EP3322780B1 (de) Korrosionsinhibitoren für kraftstoffe
EP3481921B1 (de) Copolymere als additive für kraft- und schmierstoffe
EP3481920B1 (de) Verwendung von korrosionsinhibitoren für kraft- und schmierstoffe
EP3555244B1 (de) Polymere als dieselkraftstoffadditive für direkteinspritzende dieselmotoren
EP3481922B1 (de) Korrosionsinhibitoren für kraft- und schmierstoffe
EP2114844A1 (de) Verzweigte decylnitrate und ihre verwendung als verbrennungsverbesserer und/oder cetanzahlverbesserer in kraftstoffen
WO2011161149A1 (de) Quaternisiertes copolymerisat
EP3322775B1 (de) Verwendung von copolymeren in direkteinspritzenden verbrennungsmotoren
WO2018007486A1 (de) Polymere als additive für kraft und schmierstoffe
EP3555242B1 (de) Additive zur verbesserung der thermischen stabilität von kraftstoffen
EP3609990B1 (de) Polymere als additive für kraft- und schmierstoffe
WO2017016909A1 (de) Korrosionsinhibitoren für kraft- und schmierstoffe
EP3940043B1 (de) Korrosionsinhibitoren für kraft- und schmierstoffe
WO2016083090A1 (de) Korrosionsinhibitoren für kraft- und schmierstoffe
WO2018007445A1 (de) Korrosionsinhibitoren für kraft- und schmierstoffe
WO2017144378A1 (de) HYDROPHOBE POLYCARBONSÄUREN ALS REIBVERSCHLEIß-VERMINDERNDER ZUSATZ ZU KRAFTSTOFFEN

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C10N 30/12 20060101ALN20200821BHEP

Ipc: C10L 1/198 20060101AFI20200821BHEP

Ipc: C10M 129/95 20060101ALI20200821BHEP

Ipc: C10L 10/04 20060101ALI20200821BHEP

Ipc: C10M 129/93 20060101ALI20200821BHEP

INTG Intention to grant announced

Effective date: 20200908

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEZGER, JOCHEN

Inventor name: CSIHONY, SZILARD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1349934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008848

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3481922

Country of ref document: PT

Date of ref document: 20210329

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2858088

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008848

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

26N No opposition filed

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210627

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20220606

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201230

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 7

Ref country code: DE

Payment date: 20230627

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1349934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230626

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 7

Ref country code: ES

Payment date: 20230721

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230